Predictive Efficiency for Simple Nonlinear Models

Cooley, Thomas F., William R. Parke and Siddhartha Chib

Working Paper No. 106
October 1987
PREDICTIVE EFFICIENCY FOR SIMPLE NONLINEAR MODELS

Thomas F. Cooley
University of Rochester

William R. Parke
University of Rochester and
University of California, Santa Barbara

Siddhartha Chib
University of Missouri, Columbia

Working Paper No. 106

October 15, 1987

This is a substantially abridged version of the paper "Prediction Functions" presented at the Conference on Forecasting at Arizona State University in March 1987. We are grateful to Adrian Pagan, Peter Schmidt and an anonymous referee for helpful comments. Responsibility for errors remains ours. The first author acknowledges financial support from the John M. Olin Foundation and the Center for Research in Government Policy and Business.
ABSTRACT

This paper demonstrates the use of exact predictive likelihood functions for simple nonlinear models. A measure of predictive efficiency based on the concept of expected information loss is introduced as a way of comparing alternative prediction functions. It is shown that the predictive likelihood function minimizes expected information loss over a wide class of potential prediction functions. Some Monte Carlo experiments illustrate the performance of alternative prediction functions in settings where prediction is difficult.
1. Introduction

Problems of prediction are distinguished from classical parameter estimation by the fact that the object of interest is an unknown probability distribution rather than an unknown, but non-stochastic parameter. Prediction functions based on mean squared analysis, Monte Carlo simulation, or Bayesian procedures are commonly used devices for approximating the unknown future distribution. In Cooley and Parke (1987a, 1987b) we have described approximate prediction functions based on a definition of predictive likelihood. In this paper we propose a way of comparing alternative prediction functions and illustrate its use in simple nonlinear models.

Practical as well as theoretical considerations suggest that successful prediction functions should (i) be free of unknown parameters, (ii) reflect parameter estimation uncertainty, and (iii) converge in probability to the true density of the future observations as the sample size goes to infinity. A prediction function with these characteristics can be summarized by a measure of location such as the mean or median or via a predictive confidence interval that incorporates the shape and dispersion. In an earlier paper (1987a) we compared the performance of several alternative prediction functions in the context of a simple dynamic model. The basis for comparison was largely how well they captured the mean and median and whether they had appropriate length confidence intervals. The results of that paper suggest that, although there are important theoretical differences among them, the techniques seem to perform about equally well when judged in terms of their moments and confidence intervals whether or not they account for parameter uncertainty or capture the correct functional form. If that were generally the case, there would not seem to be much reason to worry about exact or approximate predictive densities.

Our goal in this paper is to shed more light on this issue in two respects. First, we introduce a measure of expected information loss as a way of comparing
predictive densities. This provides an informative summary of the relative predictive efficiencies of alternative prediction functions by accounting for the entire shape of the distribution and by taking expectations over realizations of both past and future data. The second notable feature of this paper is that we illustrate the information loss associated with different prediction functions for some difficult prediction problems. The examples themselves are simple nonlinear models: a log-linear function and a logistic function. The prediction problems are difficult, however, in that they arise from either policy interventions or exogenous circumstances of low probability. The results demonstrate significant differences in the information loss associated with alternative prediction functions.

2. **Exact Predictive Likelihood Functions**

Before introducing the measure of information loss, we define here the exact predictive likelihood functions for the linear regression model and two nonlinear extensions. Although the concept of predictive likelihood is discussed in Cooley and Parke (1987a, 1987b), those papers develop approximate versions based on asymptotic expansions and asymptotic distributions. The cases considered here are logically prior in that they lend themselves to exact small sample derivations. Interesting analytic results can be obtained for these models that can only be illustrated numerically for other models.

Lauritzen (1974) and Hinkley (1979) define a predictive likelihood function based on minimal sufficient statistics S_d for the m data period observations $Y_d = (Y_1, \ldots, Y_m)$, S_f for the n future period observations $Y_f = (Y_{m+1}, \ldots, Y_{m+n})$, and S_{d+f} for the combined data and forecast period observations Y_{d+f}. Sufficiency ensures that the conditional probability densities $f(S_f, S_d \mid S_{d+f})$ and $f(Y_f \mid S_f)$ do not involve the true parameters. Loosely stated, the predictive likelihood function is intended to reflect the degree to which Y_f and Y_d are compatible with a common sufficient reduction S_{d+f}. We state this formally as:
Definition 1. Lauritzen (1974), Hinkley (1979)

\[(2.1) \quad \text{plik}(Y_f \mid Y_d) = f(Y_f \mid S_f) \cdot f(S_f, S_d \mid S_{d+f}). \]

We can illustrate this idea for the linear regression model,

\[(2.2) \quad Y_i = X_i \beta + \epsilon_i, \quad i=1,\ldots,m+n, \]

where \(X_i \) is \(1 \times k \) and \(\epsilon_{d+f} \sim N(0, \sigma^2 I_{m+n}) \). The minimal sufficient statistics \(S_{d+f} \) are the independent quantities \(X'_{d+f} Y_{d+f} \) and \(\text{SSR}_{d+f} = Y'_{d+f} [I-M] Y_{d+f} \), where \(M = X'_{d+f} (X'_{d+f} X_{d+f})^{-1} X'_{d+f} \) [Cox and Hinkley (1974, p. 14)].\(^1\) (The sufficient statistics for the data period are \(X'_{d} Y_{d} \) and \(\text{SSR}_{d} \).) Applying Definition 1, we obtain:

Proposition 1. For (2.2), let \(\hat{\beta}_d = (X'_d X_d)^{-1} X'_d Y_d \) and let

\[A = (Y_f - X_f \hat{\beta}_d)' [I_n + X_f (X'_d X_d)^{-1} X'_d]^{-1} (Y_f - X_f \hat{\beta}_d). \]

For \(\beta \) and \(\sigma^2 \) unknown: \[\text{plik}(Y_f \mid Y_d) \propto (1 + A/\text{SSR}_d)^{-\frac{1}{2}(m+n-k)/2}. \]

For \(\beta \) unknown and \(\sigma^2 \) known: \[\text{plik}(Y_f \mid Y_d) \propto e^{-\frac{1}{2}A/\sigma^2}. \]

Proof: Appendix.

The predictive likelihood function (plik) thus takes on a familiar form for the linear regression model. If both \(\beta \) and \(\sigma^2 \) are unknown, it has the form of a multivariate t with \(m-k \) degrees of freedom, mean \(X_f \hat{\beta}_d \), and covariance matrix \(s^2 I_n + s^2 X_f (X'_d X_d)^{-1} X'_f \), where \(s^2 = \text{SSR}_d/(m-k) \) is the usual estimate of \(\sigma^2 \). The term \(s^2 I_n \) in the covariance matrix is due to error term uncertainty, and the

\(^1\)Any one-to-one transformation of a minimal sufficient statistic is also minimal sufficient, and we choose \(\log(\text{SSR}) \) because the latter is consistent with an invariant uniform prior [Jeffreys (1983)].
term \(s^2 X_f (X'_d X_d)^{-1} X'_f \) is due to parameter uncertainty. If \(\sigma^2 \) is known, the predictive likelihood function is the corresponding multivariate normal density. For simplicity, we will use the latter density and the case \(n=1 \) (so that \(f \) denotes \(m+1 \)) in the remainder of this paper.

Extending Proposition 1 to simple nonlinearities is straightforward. The minimal sufficient statistics for the nonlinear model

\[
(2.3) \quad h(Z_i) = Y_i, \quad Y_i = X_i \beta + \epsilon_i,
\]

are again \(X'Y \) and SSR. Letting \(J \) denote the Jacobian \(dY_i/dZ_i \),

\[
(2.4) \quad \text{plik}(Z_f | Z_d) = |J| \cdot \text{plik}(Y_f | Y_d).
\]

This functional form parallels the true density

\[
(2.5) \quad f(Z_f; \beta, \sigma^2) = |J| \cdot f(Y_f; \beta, \sigma^2).
\]

In particular, under the usual assumption that \((X'_d X_d)^{-1} = O(m^{-1}) \), we have \(\hat{\beta}_d = \beta + O_p(m^{-1/2}) \) and \(\text{plik}(Z_f | Z_d) \) converges to the true density \(f(Z_f; \beta, \sigma^2) \).

Convergence to the true density helps in constructing minimum length predictive confidence intervals with prespecified probability levels. Consider, for example, a log-linear model

\[
(2.6) \quad \log(Z_i) = Y_i, \quad Y_i = X_i \beta + \epsilon_i.
\]

In this case,

\[
(2.7) \quad \text{plik}(Z_f | Z_d) \propto Z_f^{-1} \cdot \exp \left(\frac{-1}{2} (\log(Z_f) - X_f \hat{\beta}_d)^2/(\sigma^2 + \tau^2) \right)
\]

where \(\hat{\beta}_d = (X'_d X_d)^{-1} X'_d \) and \(\tau^2 = \sigma^2 X_f (X'_d X_d)^{-1} X'_f \). Plik\((Z_f | Z_d) \) thus has the form of a log-linear density with log-mean \(X_f \hat{\beta}_d \) and log-variance \(\sigma^2 + \tau^2 \). While one might construct a confidence interval for \(Z_f \) by simply transforming a confidence interval for \(Y_f = \log(Z_f) \), a Neyman-Pearson type construction based on (2.7) will yield shorter confidence intervals for a given probability level.

The distinction between region forecasts for \(Z_f \) and transformed region
forecasts for Y_f is even more striking for the logistic model

$$(2.8) \quad \log(Z_i/(1-Z_i)) = Y_i, \quad Y_i = X_i \beta + \epsilon_i, \quad 0 < Z_i < 1.$$

If σ^2 is large enough, the true density for Z_f will be bimodal with a region of highest probability consisting of two disjoint intervals. While the region of highest predictive likelihood will also be composed of two intervals, transforming a confidence interval for Y_f will yield a single interval that totally misses the bimodal nature of the true density.

3. Predictive Efficiency

These simple examples illustrate that the entire shape of a predictive density may well be relevant for nonlinear prediction problems. As a quantitative measure of how well a candidate normalized prediction function $f^*(Z_f|Z_d)$ based on estimated parameters resembles the unknown true density $f(Z_f; \beta, \sigma^2)$, we adopt the Kullback-Leibler information measure of the difference between $f^*(Z_f|Z_d)$ and $f(Z_f; \beta, \sigma^2)$.

Definition 2. Predictive Efficiency. The K-L information measure is

$$(3.1) \quad I(f^O,f^*) = \int [\log(f(Z_f; \beta, \sigma^2)) - \log(f^*(Z_f|Z_d))] f(Z_f; \beta, \sigma^2) \, dZ_f.$$

The expected value of this measure over realizations of Z_d

$$(3.2) \quad \bar{I}(f^O,f^*) = \int I(f^O,f^*) f(Z_d; \beta, \sigma^2) \, dZ_d$$

measures the information loss associated with f^*. We say that f^* is predictive efficient relative to f^{**} if $\bar{I}(f^O,f^*) < \bar{I}(f^O,f^{**})$.

Aitchison (1975) and Larimore (1983) also advocate (3.2) as an information measure of goodness of prediction fit. Akaike's (1973) information criterion (AIC) for model selection is based on a sample variant of (3.2).
Two advantages of this approach should be noted. First, unlike other efficiency measures such as mean squared prediction error, \(\hat{I}(f^O, f^*) \) is naturally tailored to the functional form of the true future density. Furthermore, it is invariant to common nonlinear transformations \(Y_i = h(Z_i) \) in the following sense.

Proposition 2. For any monotone, differentiable transformation \(Y_i = h(Z_i) \), let \(f^*(Y_i | Y_d) = |J|^{-1} f^*(Z_i | Z_d) \). Then

\[
I(f^O(Z_i; \beta, \sigma^2), f^*(Z_i | Z_d)) = I(f^O(Y_i; \beta, \sigma^2), f^*(Y_i | Y_d)) \quad \text{and}
\]

\[
\hat{I}(f^O(Z_i; \beta, \sigma^2), f^*(Z_i | Z_d)) = \hat{I}(f^O(Y_i; \beta, \sigma^2), f^*(Y_i | Y_d)).
\]

Proof: Appendix.

We can thus frame predictive efficiency questions for many nonlinear models in terms of the underlying linear model. For the linear model, Levy and Perng (1986) show that \(\text{plik}(Y_i | Y_d) \) minimizes \(\hat{I}(f^O, f^*) \) over a wide class of potential prediction functions of the form \(g(Y_i - X_i \hat{\beta}_d) \) for some function \(g \). Proposition 2 effectively extends Levy and Perng's optimality result to a general class of nonlinear models.

The resulting bound on predictive efficiency, which is attained by the predictive likelihood function, follows directly from Kullback (1959, p. 189):

\[
\hat{I}(f^O, \text{plik}) = \frac{\Pi}{2} \log(1 + \frac{r^2}{\sigma^2})
\]

We can compare this expected information loss to that obtained by other prediction functions. One example is the naive plug-in function that simply substitutes parameter estimates for the unknown parameters in the true density:

\[
CEQ(Y_i | Y_d) = f(Y_i; \hat{\beta}_d, s^2). \quad \text{The expected information loss for this function is}
\]

\[
\hat{I}(f^O, \text{CEQ}) = \frac{\Pi}{2} \frac{r^2}{\sigma^2},
\]

where \(r^2 = \sigma^2 X_f (X_d'X_d)^{-1} X_f \). Correcting for parameter uncertainty is thus
important to the extent that $\log(1+r^2/o^2) < r^2/o^2$.

4. Monte Carlo Results.\(^3\)

We conclude this paper with some Monte Carlo experiments that compare predictive efficiencies for alternative prediction functions. The experiments are deliberately chosen to illustrate situations where nonlinearities and parameter uncertainty make an important difference in the prediction problem. We report results for three techniques and for each technique we have a version that corrects for parameter uncertainty and one that ignores it. The predictive likelihood function, PLIK, is as discussed in Section 2. The certainty equivalence function, CEQ, is essentially the same as the PLIK (it has the correct functional form) but it does not correct for parameter uncertainty. Rather, it treats estimated parameters as known.

The other two approaches considered yield symmetric prediction functions with the form of a normal density. The mean squared error prediction functions, MSE/MSE*, are based on a linear approximation to a nonlinear estimated model. The asterisk denotes the version that corrects for parameter uncertainty. A direct linear regression of Z_i on the explanatory variables yields the misspecified prediction functions RGB/RGB*. We use truncated normal densities in calculating the information loss for the normal prediction functions to take into account the restriction on the permissible range of Z_i inherent in the true specification. This makes the results for these normal prediction functions more favorable than would otherwise be the case.

The first two examples involve prediction from a log-linear model (2.6) with three explanatory variables exhibiting moderate collinearity. For the first experiment, the sample period exogenous data are drawn from a mixing process designed to permit the possible rare occurrence of extreme observations.

\(^3\)The results reported here are a brief summary of a more complete Monte Carlo study described in Cooley, Parke and Chib (1987).
Future period observations are drawn from the density that can generate extreme values. The second example, also a log-linear model, represents the sort of prediction problem encountered when the X's are altered by a policy intervention. To capture this, we add a constant to the draw for one of the X's for the future observations.

Figures 1A and 1B illustrate the expected information losses for the two experiments just described for sample sizes of 50, 100, 200, 400, and 800. These results illustrate the importance of accounting for both parameter uncertainty and functional form. While the latter is apparently the more important of the two, parameter uncertainty is clearly important for the combination of small sample sizes and difficult prediction problems.

The final two examples consider the same prediction problems as above, but in the context of a logistic model (2.8). The logistic specification increases the extent of the nonlinearity: there is both an upper and lower bound on the range of the dependent variable and the function changes from concave to convex. The parameter values are chosen so that the true density is essentially unimodal.\(^4\) Figures 1C and 1D illustrate the results for these two experiments. These results are basically similar to those reported above although the misspecified REG/REG* prediction functions perform much worse here. Once again both functional form and parameter uncertainty make a difference. The information loss associated with functions that ignore parameter uncertainty converges relatively quickly to the information loss of the corresponding functions that incorporate it as the sample size increases.

These simple examples do not test the candidate prediction functions on two important points. First, realistic prediction models are often more elaborate than those we have used. In particular, they almost always involve a greater number of parameters and, hence, entail a greater possibly for practically

\(^4\) The results for a bimodal true density are not reported because MSE/MSE* and REG/REG* fare very poorly in terms of information losses in that case.
important parameter uncertainty. Second, the nonlinearities in more elaborate models may be difficult to analyze in a closed form and, unlike the simple log and logistic transformations, may depend upon estimated parameters. The examples do, however, give some indication of how the importance of parameter uncertainty depends on sample size. They also suggest that there are prediction problems arising in familiar models where it is quite important to have an accurate approximation of the underlying true density. There are many different approaches to obtaining that density. While we have emphasized the predictive likelihood approach it is worth noting that for the problems considered here the plik is equivalent to prediction functions based on Monte Carlo simulation or a Bayesian posterior density.

APPENDIX

Lemma 1. The sufficient statistics \(X'_{d+f} Y_{d+f} \), \(X'_{d+f} X_{d+f} \), \(\log(\text{SSR}_d) \), and \(\log(\text{SSR}_{d+f}) \) are related by the relations \(X'_{d+f} Y_{d+f} = X'_{d+f} Y_{d+f} \) and

\[
\text{SSR}_{d+f} = \text{SSR}_d + A,
\]

where

\[
A = (X'_{f} X'_{f} X_{d})' (X'_{f} X_{d})^{-1} - (X'_{f} X'_{f} X_{d})^{-1} (X'_{f} X'_{f} X_{d})'.
\]

Proof of Lemma 1. Let \(X=X'_{d+f}, Y=Y'_{d+f}, \hat{\beta}=\hat{\beta}_{d+f} \) and \(\text{SSR} = \text{SSR}_{d+f} \). The recursion

\[
\hat{\beta}_{d} - \hat{\beta}_{d+f} = (X'X)^{-1} X' (Y - X\hat{\beta}_{d+f})
\]

follows directly from \(X'X(\hat{\beta}_{d}) = X'Y - X'Y_{d} - X'X_{f} \hat{\beta}_{d+f} \) which can also be written in the form \(X'X(\hat{\beta}_{d}) = X'(Y - X\hat{\beta}_{d}) \). We can use this last relation and the device \(Y - X\hat{\beta} = Y - X\hat{\beta}_{d} + X(\hat{\beta}_{d} - \hat{\beta}) \) to write \(\text{SSR} = (Y - X\hat{\beta})'(Y - X\hat{\beta}) \) as

\[
\text{SSR} = (Y - X\hat{\beta}_{d})'(Y - X\hat{\beta}_{d}) + (Y - X\hat{\beta}_{d})'(Y - X\hat{\beta}_{d}) - (\hat{\beta}_{d} - \hat{\beta})'(X'X)(\hat{\beta}_{d} - \hat{\beta}).
\]

We then use the recursion (A.2) to obtain
\[SSR = \text{SSR}_d + (Y_f - X_f \hat{\beta}_d)' [I_n - X_f (X'X)^{-1} X_f'] (Y_f - X_f \hat{\beta}_d). \]

(A.1) follows from \(I_n - X_f (X'X)^{-1} X_f' = [I_n + X_f (X'X)^{-1} X_f']^{-1} \) [Rao (1973, p. 33)].

End of proof.

Proof of Proposition 1. Definition 1 can be written as

\[\text{plik}(Y_f|Y_d) = \frac{f(Y_f; \beta, \sigma^2) f(\hat{\beta}_d, \log(\text{SSR}_d); \beta, \sigma^2)}{f(\beta, \log(\text{SSR}); \beta, \sigma^2)}. \]

\(\hat{\beta} \) and \(\log(\text{SSR}) \) are independent, with \(\hat{\beta} \sim N(\beta, \sigma^2 (X'X)^{-1}) \) and \(\text{SSR}/\sigma^2 \sim \chi^2_{m+n-k} \).

Using similar distributions for \(\hat{\beta}_d \) and \(\text{SSR}_d \), the factors of (A.3) are

\[f(Y_f; \beta, \sigma^2) \propto \exp\left(-\frac{1}{2} (Y_f - X_f \beta)' (Y_f - X_f \beta)/\sigma^2 \right), \]

\[f(\hat{\beta}_d, \log(\text{SSR}_d); \beta, \sigma^2) \propto \exp\left(-\frac{1}{2} (\hat{\beta}_d - \beta)' (X'_d X_d) (\hat{\beta}_d - \beta)/\sigma^2 \right)
\cdot (\text{SSR}_d/\sigma^2)^{(m-k)/2} \exp\left(-\frac{1}{2} \text{SSR}_d/\sigma^2 \right), \]

and

\[f(\hat{\beta}, \log(\text{SSR}); \beta, \sigma^2) \propto \exp\left(-\frac{1}{2} (\hat{\beta} - \beta)' (X'X) (\hat{\beta} - \beta)/\sigma^2 \right)
\cdot (\text{SSR}/\sigma^2)^{(m+n-k)/2} \exp\left(-\frac{1}{2} \text{SSR}/\sigma^2 \right). \]

Using the well-known results

\[(Y - X\beta)' (Y - X\beta) = \text{SSR} + (\hat{\beta} - \beta)' (X'X) (\hat{\beta} - \beta) \]

and

\[(Y_d - X_d \hat{\beta}_d)' (Y_d - X_d \hat{\beta}_d) = \text{SSR}_d + (\hat{\beta}_d - \beta)' (X'_d X_d) (\hat{\beta}_d - \beta), \]

the exponential functions in (A.4), (A.5), and (A.6) cancel, leaving

\[\text{plik}(Y_f|Y_d) \propto \frac{(\text{SSR}/\sigma^2)^{-(m+n-k)/2}}{(\text{SSR}_d/\sigma^2)^{-(m-k)/2}} \]

Finally, Lemma 1 yields

\[\text{plik}(Y_f|Y_d) \propto (1 + A/\text{SSR}_d)^{-(m+n-k)/2} \]
For the case that \(\sigma^2 \) is known, \(\beta \) is sufficient and we can eliminate the \(\chi^2 \) densities from (A.5) and (A.6). Applying (A.7) and (A.8) then yields

\[
p(\mathcal{Y}_f | \mathcal{Y}_d) \propto \frac{\exp\left(-\frac{1}{2}\frac{\text{SSR}}{\sigma^2}\right)}{\exp\left(-\frac{1}{2}\frac{\text{SSR}_d}{\sigma^2}\right)}.
\]

Lemma 1 gives us the desired prediction function.

End of proof.

Proof of Proposition 2. Substituting (2.4) and (2.5) into (3.1) yields

\[
I(f^O(Z_f; \beta, \sigma^2), f^*(Z_f | \mathcal{Y}_d)) = \int \log\left(\frac{|J| \cdot f^*(Y_f | \mathcal{Y}_d)}{|J| \cdot f(Y_f; \beta, \sigma^2)} \right) \, dZ_f.
\]

Using (2.5) once more, this equals \(I(f^O(Y_f; \beta, \sigma^2), f^*(Y_f | \mathcal{Y}_d)) \). The extension to \(I(f^O, f^*) \) is immediate.

End of proof.
References

Rochester Center for Economic Research
University of Rochester
Department of Economics
Rochester, NY 14627

1986-87 DISCUSSION PAPERS

WP#33 OIL PRICE SHOCKS AND THE DISPERSION HYPOTHESIS, 1900 - 1980
by Prakash Loungani, January 1986

WP#34 RISK SHARING, INDIVISIBLE LABOR AND AGGREGATE FLUCTUATIONS
by Richard Rogerson, (Revised) February 1986

WP#35 PRICE CONTRACTS, OUTPUT, AND MONETARY DISTURBANCES
by Alan C. Stockman, October 1985

WP#36 FISCAL POLICIES AND INTERNATIONAL FINANCIAL MARKETS
by Alan C. Stockman, March 1986

WP#37 LARGE-SCALE TAX REFORM: THE EXAMPLE OF EMPLOYER-PAID HEALTH INSURANCE PREMIUMS
by Charles E. Phelps, March 1986

WP#38 INVESTMENT, CAPACITY UTILIZATION AND THE REAL BUSINESS CYCLE
by Jeremy Greenwood and Zvi Hercowitz, April 1986

WP#39 THE ECONOMICS OF SCHOOLING: PRODUCTION AND EFFICIENCY IN PUBLIC SCHOOLS
by Eric A. Hanushek, April 1986

WP#40 EMPLOYMENT RELATIONS IN DUAL LABOR MARKETS (IT’S NICE WORK IF YOU CAN GET IT!)
by Walter Y. Oi, April 1986

WP#41 SECTORAL DISTURBANCES, GOVERNMENT POLICIES, AND INDUSTRIAL OUTPUT IN SEVEN EUROPEAN COUNTRIES
by Alan C. Stockman, April 1986

WP#42 SMOOTH VALUATIONS FUNCTIONS AND DETERMINANCY WITH INFINITELY LIVED CONSUMERS
by Timothy J. Kehoe, David K. Levine and Paul R. Romer, April 1986

WP#43 AN OPERATIONAL THEORY OF MONOPOLY UNION–COMPETITIVE FIRM INTERACTION
by Glenn M. MacDonald and Chris Robinson, June 1986

WP#44 JOB MOBILITY AND THE INFORMATION CONTENT OF EQUILIBRIUM WAGES: PART 1,
by Glenn M. MacDonald, June 1986

WP#45 SKI-LIFT PRICING, WITH APPLICATIONS TO LABOR AND OTHER MARKETS
by Robert J. Barro and Paul M. Romer, May 1986, revised April 1987
FORMULA BUDGETING: THE ECONOMICS AND ANALYTICS OF FISCAL POLICY UNDER RULES, by Eric A. Hanushek, June 1986

EXCHANGE RATE POLICY, WAGE FORMATION, AND CREDIBILITY by Henrik Horn and Torsten Persson, June 1986

MONEY AND BUSINESS CYCLES: COMMENTS ON BERNANKE AND RELATED LITERATURE, by Robert G. King, July 1986

NOMINAL SURPRISES, REAL FACTORS AND PROPAGATION MECHANISMS by Robert G. King and Charles I. Plosser, Final Draft: July 1986

JOB MOBILITY IN MARKET EQUILIBRIUM by Glenn M. MacDonald, August 1986

SECRECY, SPECULATION AND POLICY by Robert G. King, (revised) August 1986

THE TULIPMANIA LEGEND by Peter M. Garber, July 1986

THE WELFARE THEOREMS AND ECONOMIES WITH LAND AND A FINITE NUMBER OF TRADERS, by Marcus Berliant and Karl Dunz, July 1986

NONLABOR SUPPLY RESPONSES TO THE INCOME MAINTENANCE EXPERIMENTS by Eric A. Hanushek, August 1986

INDIVISIBLE LABOR, EXPERIENCE AND INTERTEMPORAL ALLOCATIONS by Vittorio U. Grilli and Richard Rogerson, September 1986

TIME CONSISTENCY OF FISCAL AND MONETARY POLICY by Mats Persson, Torsten Persson and Lars E. O. Svensson, September 1986

ON THE NATURE OF UNEMPLOYMENT IN ECONOMIES WITH EFFICIENT RISK SHARING, by Richard Rogerson and Randall Wright, September 1986

INFORMATION PRODUCTION, EVALUATION RISK, AND OPTIMAL CONTRACTS by Monica Hargraves and Paul M. Romer, September 1986

RECURSIVE UTILITY AND THE RAMSEY PROBLEM by John H. Boyd III, October 1986

WHO LEAVES WHOM IN DURABLE TRADING MATCHES by Kenneth J. McLaughlin, October 1986

SYMMETRIES, EQUILIBRIA AND THE VALUE FUNCTION by John H. Boyd III, December 1986

A NOTE ON INCOME TAXATION AND THE CORE by Marcus Berliant, December 1986
INCREASING RETURNS, SPECIALIZATION, AND EXTERNAL ECONOMIES: GROWTH AS DESCRIBED BY ALLYN YOUNG, By Paul M. Romer, December 1986

THE QUIT-LAYOFF DISTINCTION: EMPIRICAL REGULARITIES by Kenneth J. McLaughlin, December 1986

FURTHER EVIDENCE ON THE RELATION BETWEEN FISCAL POLICY AND THE TERM STRUCTURE, by Charles I. Plosser, December 1986

INVENTORIES AND THE VOLATILITY OF PRODUCTION by James A. Kahn, December 1986

RECURSIVE UTILITY AND OPTIMAL CAPITAL ACCUMULATION, I: EXISTENCE, by Robert A. Becker, John H. Boyd III, and Bom Yong Sung, January 1987

MONEY AND MARKET INCOMPLETENESS IN OVERLAPPING-GENERATIONS MODELS, by Marianne Baxter, January 1987

GROWTH BASED ON INCREASING RETURNS DUE TO SPECIALIZATION by Paul M. Romer, January 1987

WHY A STUBBORN CONSERVATIVE WOULD RUN A DEFICIT: POLICY WITH TIME-INCONSISTENT PREFERENCES by Torsten Persson and Lars E.O. Svensson, January 1987

ON THE CONTINUUM APPROACH OF SPATIAL AND SOME LOCAL PUBLIC GOODS OR PRODUCT DIFFERENTIATION MODELS by Marcus Berliant and Thijs ten Raa, January 1987

THE QUIT-LAYOFF DISTINCTION: GROWTH EFFECTS by Kenneth J. McLaughlin, February 1987

SOCIAL SECURITY, LIQUIDITY, AND EARLY RETIREMENT by James A. Kahn, March 1987

THE PRODUCT CYCLE HYPOTHESIS AND THE HECKSCHER-OHLIN-SAMUELSON THEORY OF INTERNATIONAL TRADE by Sugata Marjit, April 1987

NOTIONS OF EQUAL OPPORTUNITIES by William Thomson, April 1987

BARGAINING PROBLEMS WITH UNCERTAIN DISAGREEMENT POINTS by Youngsub Chun and William Thomson, April 1987

THE ECONOMICS OF RISING STARS by Glenn M. MacDonal, April 1987

STOCHASTIC TRENDS AND ECONOMIC FLUCTUATIONS by Robert King, Charles Plosser, James Stock, and Mark Watson, April 1987
WP#80 INTEREST RATE SMOOTHING AND PRICE LEVEL TREND-STATIONARITY
by Marvin Goodfriend, April 1987

WP#81 THE EQUILIBRIUM APPROACH TO EXCHANGE RATES
by Alan C. Stockman, revised, April 1987

WP#82 INTEREST-RATE SMOOTHING
by Robert J. Barro, May 1987

WP#83 CYCLICAL PRICING OF DURABLE LUXURIES
by Mark Bils, May 1987

WP#84 EQUILIBRIUM IN COOPERATIVE GAMES OF POLICY FORMULATION
by Thomas F. Cooley and Bruce D. Smith, May 1987

WP#85 RENT SHARING AND TURNOVER IN A MODEL WITH EFFICIENCY UNITS OF HUMAN
CAPITAL
by Kenneth J. McLaughlin, revised, May 1987

WP#86 THE CYCLICALITY OF LABOR TURNOVER: A JOINT WEALTH MAXIMIZING
HYPOTHESIS
by Kenneth J. McLaughlin, revised, May 1987

WP#87 CAN EVERYONE BENEFIT FROM GROWTH? THREE DIFFICULTIES
by Herve Moulin and William Thomson, May 1987

WP#88 TRADE IN RISKY ASSETS
by Lars E.O. Svensson, May 1987

WP#89 RATIONAL EXPECTATIONS MODELS WITH CENSORED VARIABLES
by Marianne Baxter, June 1987

WP#90 EMPIRICAL EXAMINATIONS OF THE INFORMATION SETS OF ECONOMIC AGENTS
by Nils Gottfries and Torsten Persson, June 1987

WP#91 DO WAGES VARY IN CITIES? AN EMPIRICAL STUDY OF URBAN LABOR MARKETS
by Eric A. Hanushek, June 1987

WP#92 ASPECTS OF TOURNAMENT MODELS: A SURVEY
by Kenneth J. McLaughlin, July 1987

WP#93 ON MODELLING THE NATURAL RATE OF UNEMPLOYMENT WITH INDIVISIBLE LABOR
by Jeremy Greenwood and Gregory W. Huffman

WP#94 TWENTY YEARS AFTER: ECONOMETRICS, 1966-1986
by Adrian Pagan, August 1987

WP#95 ON WELFARE THEORY AND URBAN ECONOMICS
by Marcus Berliant, Yorgos Y. Papageorgiou and Ping Wang, August 1987

WP#96 ENDOGENOUS FINANCIAL STRUCTURE IN AN ECONOMY WITH PRIVATE
INFORMATION
by James Kahn, August 1987
THE TRADE-OFF BETWEEN CHILD QUANTITY AND QUALITY: SOME EMPIRICAL EVIDENCE
by Eric Hanushek, September 1987

SUPPLY AND EQUILIBRIUM IN AN ECONOMY WITH LAND AND PRODUCTION
by Marcus Berliant and Hou-Wen Jeng, September 1987

AXIOMS CONCERNING UNCERTAIN DISAGREEMENT POINTS FOR 2-PERSON BARGAINING PROBLEMS
by Youngsub Chun, September 1987

MONEY AND INFLATION IN THE AMERICAN COLONIES: FURTHER EVIDENCE ON THE FAILURE OF THE QUANTITY THEORY
by Bruce Smith, October 1987

BANK PANICS, SUSPENSIONS, AND GEOGRAPHY: SOME NOTES ON THE "CONTAGION OF FEAR" IN BANKING
by Bruce Smith, October 1987

LEGAL RESTRICTIONS, "SUNSPOTS", AND CYCLES
by Bruce Smith, October 1987

THE QUIT-LAYOFF DISTINCTION IN A JOINT WEALTH MAXIMIZING APPROACH TO LABOR TURNOVER
by Kenneth McLaughlin, October 1987

ON THE INCONSISTENCY OF THE MLE IN CERTAIN HETEROSKEDASTIC REGRESSION MODELS
by Adrian Pagan and H. Sabau, October 1987

RECURRENT ADVERTISING
by Ignatius J. Horstmann and Glenn M. MacDonald, October 1987

PREDICTIVE EFFICIENCY FOR SIMPLE NONLINEAR MODELS
by Thomas F. Cooley, William R. Parke and Siddhartha Chib, October 1987
To order copies of the above papers complete the attached invoice and return to Christine Massaro, W. Allen Wallis Institute of Political Economy, RCER, 109B Harkness Hall, University of Rochester, Rochester, NY 14627. Three (3) papers per year will be provided free of charge as requested below. Each additional paper will require a $5.00 service fee which must be enclosed with your order. For your convenience an invoice is provided below in order that you may request payment from your institution as necessary. Please make your check payable to the Rochester Center for Economic Research. Checks must be drawn from a U.S. bank and in U.S. dollars.

W. Allen Wallis Institute for Political Economy
Rochester Center for Economic Research, Working Paper Series

OFFICIAL INVOICE

Requestor’s Name

Requestor’s Address

Please send me the following papers free of charge (Limit: 3 free per year).

WP# ______ WP# ______ WP# ______

I understand there is a $5.00 fee for each additional paper. Enclosed is my check or money order in the amount of $___________. Please send me the following papers.

WP# ______ WP# ______ WP# ______
WP# ______ WP# ______ WP# ______
WP# ______ WP# ______ WP# ______
WP# ______ WP# ______ WP# ______