BARGAINING SOLUTIONS AND STABILITY OF GROUPS

by

Youngsub Chun*

and

William Thomson**

Working Paper No. 115

December 1987

* Department of Economics, Southern Illinois University, Carbondale, IL 62901-4515.

** Department of Economics, University of Rochester, Rochester, NY 14627. Thomson gratefully acknowledges support from NSF under Grant No. 85 11136.
Abstract

We propose to evaluate solutions to abstract problems of fair division on the basis of the extent to which they differentially affect the fortunes of two individuals initially present, when the number of agents increases while their opportunities do not. We introduce the concept of the relative guarantee structure of a solution to quantify this possibility. The Kalai-Smorodinsky and Egalitarian solutions offer maximal guarantees in the class of anonymous solutions, and, in particular, they strictly dominate the Nash solution. In that class, the Kalai-Smorodinsky solution is the only weakly Pareto-optimal solution to offer maximal guarantees and to satisfy scale invariance while the Egalitarian solution is the only weakly Pareto-optimal solution to offer maximal guarantees and to satisfy independence of irrelevant alternatives.

Key words: relative guarantee structure; Kalai-Smorodinsky solution; Egalitarian solution; Nash solution.
1. Introduction. We consider abstract problems of fair division in circumstances in which the number of agents may increase while their opportunities do not. We propose to evaluate solutions to such problems on the basis of the extent to which they differentially affect the fortunes of two individuals initially present. We suggest that the stability of society is more likely to be preserved by solutions for which such changes remain small. We define the notion of the relative guarantee structure of a solution as a way of quantifying these changes and we use this measure to rank solutions.

We show that the Kalai-Smorodinsky (1975) and Egalitarian (Kalai, 1977) solutions are best among all solutions satisfying the minimal requirement of Anonymity, while the Nash (1950) solution is strictly inferior (we derive explicit formulas for these three solutions). Moreover, the requirement on a solution that it offers maximal guarantees can be used to characterize the Kalai-Smorodinsky and Egalitarian solutions. In addition to this requirement, these characterizations involve two alternative sets of standard conditions, differing only in that Scale Invariance is used for the first result while Independence of Irrelevant Alternatives (Nash, 1950) is used for the latter.

2. Preliminaries. Our analysis is placed within the context of Nash's bargaining theory, as generalized by Thomson (1983a) to accommodate variations in the number of agents. There is an infinite set of potential agents, $I = \{1,2,\ldots\}$. \mathcal{F} is the set of all finite subsets of I, with generic elements P.
Q,... Given $P \in \mathcal{P}$, \mathbb{R}_+^P is the utility space pertaining to the group P. Σ^P is the class of problems that P may face: each $S \in \Sigma^P$ is a convex, compact, and comprehensive ($\forall x, y \in \mathbb{R}_+^P$, if $y \leq x$ and $x \in S$, then $y \in S$) subset of \mathbb{R}_+^P, containing at least one $x > 0.1,2$ A solution F is a mapping defined on $\Sigma \equiv \bigcup \Sigma^P$, associating with each $P \in \mathcal{P}$ and each $S \in \Sigma^P$, a unique point of S, $F(S)$. $F(S)$ is interpreted as the predicted, or recommended, depending upon the context, compromise for S. For the Nash (1950) solution, $N(S)$ is the maximizer of π_x, for $x \in S$; for the Kalai-Smorodinsky (1975) solution, $K(S)$ is the maximal point of S on the segment connecting the origin to $a(S)$, where for each $i \in P$, $a_i(S) \equiv \max(x_i | x \in S)$; for the Egalitarian (Kalai, 1977) solution, $E(S)$ is the maximal point of S with equal coordinates.

The following properties of solutions will be useful.

Weak Pareto-Optimality (WPO): For all $P \in \mathcal{P}$, for all $S \in \Sigma^P$, for all $x \in \mathbb{R}_+^P$, if $x > F(S)$, then $x \notin S$.

Anonymity (AN): For all $P, P' \in \mathcal{P}$ with $|P| = |P'|$, for all $S \in \Sigma^P$, $S' \in \Sigma^{P'}$, for all one-to-one functions $\gamma : P \rightarrow P'$, if $S' = \{x' \in \mathbb{R}_+^{P'} | \exists x \in S$ with $x'_\gamma(i) = x_i \ \forall i \in P\}$, then $F_{\gamma(1)}(S') = F_{\gamma}(S)$ for all $i \in P$.

$\lambda : \mathbb{R}_+^P \rightarrow \mathbb{R}_+^P$ is an independent person by person, positive linear transformation if there exists $\alpha \in \mathbb{R}_+^P$ with $\lambda_i(x) = \alpha_i x_i \ \forall i \in P$. Let Λ^P be the class of these transformations.

1 Vector inequalities: $x > y$, $x \geq y$, $x \leq y$.

2 The usual specification of a bargaining problem involves a distinguished element of S, usually called the disagreement point and denoted d. Here, utilities are assumed to be normalized so that $d = 0$. This allows us to eliminate all references to d in the notation, with no essential loss of substance.
Scale Invariance (S.INV): For all $P \in \Phi$, for all $S \in \Sigma^P$, for all $\lambda \in \Lambda^P$, $F(\lambda(S)) = \lambda(F(S))$.

Independence of Irrelevant Alternatives (IIA): For all $P \in \Phi$, for all $S, S' \in \Sigma^P$, if $S' \subseteq S$ and $F(S) \in S'$, then $F(S') = F(S)$.

WPO says that it should not be feasible to make all agents better off than they are at the compromise; AN says that no other information is available than that contained in the mathematical description of the problem so that if two agents enter symmetrically in that description, they should be treated symmetrically by the solution; S.INV says that the theory should be unaffected by linear transformations of the utility scales; IIA says that if an alternative is thought to be the best compromise for a particular problem, it should still be thought best for any subproblem that still contains it.

The Nash solution satisfies all four properties, the Kalai-Smorodinsky solution satisfies all but IIA and the Egalitarian solution satisfies all but S.INV.

Other notation: e_p is the vector of all ones in \mathbb{R}^p. Given $S, S' \in \mathbb{R}^p$, $cch(S,S')$ is the smallest convex and comprehensive set containing S and S'.

3. The problem. Although our work is formulated in the abstract framework of bargaining theory, the concrete problem of resource allocation constitutes an important motivation for it. Consider the classical problem of fair division: there is a vector of resources available to a group of consumers who have equal claims on it. How should these goods be allocated? And how should they be reallocated if the number of claimants happens to increase, while the resources at their disposal remain fixed? Given a solution to the problem of
fair division, let z'_1 and z'_i be the consumptions assigned to agent i, one of the agents initially present, before and after the arrival of the new agents. The ratio $u'_i(z'_i)/u_i(z'_i)$ of agent i's final to initial utility is a measure of how he is affected by this event. A small ratio indicates that he greatly suffers. But, the ratio could be greater than 1, indicating that he has actually gained, in spite of the fact that the number of claimants on the fixed resources has increased. In order to evaluate the solution, we propose to determine how any two members of the initial group fare relative to each other. If one of them is very negatively affected while the other is hardly affected, or perhaps even gains, one might expect resentment on the part of the disadvantaged agent and his opposition to the solution. On the other hand, a solution for which agents are similarly affected is more likely to preserve the stability of society.

This is the issue with which we will be concerned here, but as mentioned earlier, we will operate in the abstract framework of bargaining theory.

Let P be the initial group and $S \subseteq \mathbb{R}^P$ be the image in utility space of the set of feasible allocations of the initial economy. The group P enlarges to Q and $T \subseteq \mathbb{R}^Q$ is the new feasible set. Since resources remain fixed, $S = T_P$ (T_P is the projection of T onto \mathbb{R}^P). Given two individuals i and j in P, the change in their relative fortunes is given by the ratio

$$\frac{F_i(T)/F_i(S)}{F_j(T)/F_j(S)}$$

if this ratio is well defined on the extended real line. In order to evaluate the extent to which F is likely to preserve the stability of the group, we determine the smallest value of the ratio as S and T vary.
\[
\begin{align*}
\inf \{ r | S \in \Sigma^P, T \in \Sigma^Q, T_P = S, \frac{F_i(T)}{F_i(S)} \text{ is well defined} \} \text{ if this infimum exists,}^3 & \\
0 \text{ otherwise.}
\end{align*}
\]

If \(F \) satisfies AN, \(\varepsilon_F(i,j,P,Q) \) depends on the cardinalities of \(P \) and \(Q \backslash P \) only, denoted \(m \) and \(n \) respectively, and it can be written as \(\varepsilon_F^{mn} \). Then, necessarily, \(\varepsilon_F^{mn} \leq 1 \) for all \((m,n) \in (\mathbb{N} \backslash 1) \times \mathbb{N} \). Let \(\varepsilon_F = \{ \varepsilon_F^{mn} | (m,n) \in (\mathbb{N} \backslash 1) \times \mathbb{N} \} \) be the relative guarantee structure of \(F \). \(\varepsilon_F^{mn} \) measures the maximal change in the relative fortunes of two agents initially part of a group of cardinality \(m \) upon the arrival of \(n \) additional agents. Seen positively, a high value of \(\varepsilon_F^{mn} \) indicates that each original agent is guaranteed to not be very differentially affected from any other agent as new agents come in.

In the next section we compare solutions on the basis of their relative guarantee structures.

4. The results. Our aim here is to compare solutions on the basis of their relative guarantee structures. We will in fact be able to rank the major solutions. First, we consider the Kalai-Smorodinsky and Egalitarian solutions.

^3Most solutions, and in particular the three that we examine in detail here, are such that for all \(P \in \mathcal{F} \) and for all \(S \in \Sigma^P \), \(F(S) > 0 \). Therefore, the ratio under study happens to be well defined for all pairs \(\{S, T\} \) satisfying \(S = T_P \).
Theorem 1. $e_{K}^{mn} = e_{E}^{mn} = 1$ for all $(m,n) \in (\mathbb{N}\setminus 1) \times \mathbb{N}$.

Proof. Given any i, j, P, Q as in the definition of e_{K}^{mn}, note that

$K_{i}(S)/K_{j}(S) = a_{i}(S)/a_{j}(S)$. Also, $K_{i}(T)/K_{j}(T) = a_{i}(T)/a_{j}(T)$. Since $S = T_{p}$ implies $a_{i}(S) = a_{i}(T)$ and $a_{j}(S) = a_{j}(T)$, we have $e_{K}^{mn} = 1$.

We omit the straightforward proof that $e_{E}^{mn} = 1$.

Q.E.D.

Together with our earlier observation that if F is anonymous, then $e_{F}^{mn} \leq 1$ for all $(m,n) \in (\mathbb{N}\setminus 1) \times \mathbb{N}$, Theorem 1 says that the Kalai-Smorodinsky and Egalitarian solutions are best among all anonymous solutions. Moreover, it is worth noting that for both of these solutions the ratio under study is equal to 1 for all pairs $\{S,T\}$ satisfying $S = T_{p}$. This means that these two solutions dominate all anonymous solutions for all such pairs. Of course, if T happens to be a symmetric problem (invariant under all exchanges of agents),

$\frac{F_{i}(T)}{F_{i}(S)}$ the ratio $\frac{F_{j}(T)}{F_{j}(S)}$ is equal to 1 for any weakly Pareto-optimal and anonymous F. However, if T is not a symmetric problem the ratio will usually be strictly smaller than 1. This is in particular the case for the Nash solution, to which we now turn.

Theorem 2. $e_{N}^{mn} = \frac{B^{2} - 2 - \sqrt{(B^{2} - 2)^{2} - 4}}{2}$ where $B = \sqrt{m(m+n)} - m + 2$ for all $(m,n) \in (\mathbb{N}\setminus 1) \times \mathbb{N}$.

Proof. Let $P = \{1,...,m\}$ with $m \geq 2$ and $Q = \{1,...,m+n\}$ with $n \geq 1$. We have to solve the following problem:
P1: Find \(\inf \left\{ \frac{N_1(T)/N_1(S)}{N_2(T)/N_2(S)} \mid S \in \Sigma^P, T \in \Sigma^Q, S = T_p \right\} \).

Since \(N \) satisfies \(S.\text{INV} \), we can assume that \(N(T) = e_Q \) and since \(N \) satisfies \(IIA \), that \(S = \text{cch}(x, e_p) \) with \(x = N(S) \). Then, \(N(T) = e_Q \) if and only if \(x \) lies below the hyperplane in \(\mathbb{R}^Q \) supporting at \(e_Q \) the set \(\left\{ y \in \mathbb{R}^Q_+ \mid \Pi y = 1 \right\} \). The equation of this hyperplane is \(\Sigma y = m+n \). Also, \(x = N(\text{cch}(x, e_p)) \) if and only if \(e_p \) lies below the hyperplane in \(\mathbb{R}^P \) supporting at \(x \) the set \(\left\{ x' \in \mathbb{R}^P_+ \mid \Pi x = \Pi x \right\} \). The equation of this hyperplane is \(\Sigma(x_i/x_i) = m \). Then P1 reduces to

P2. Find \(\inf \{x_2/x_1 \mid \Sigma x_i \leq m+n, \Sigma(1/x_i) \leq m \} \).

This problem takes place entirely in \(\mathbb{R}^P \).

First, we note that we can impose \(\Sigma x_i = m+n \). Indeed, starting from \(x \)

with \(\Sigma x_i < m+n \) and \(\Sigma(1/x_i) \leq m \), let \(\bar{x} = (x_1, x_2, \ldots, x_m) \) where \(e > 0 \) is small enough so that \(\Sigma \bar{x}_i \leq m+n \). Then, \(\Sigma(1/\bar{x}_i) = 1/\bar{x}_1 + \Sigma(1/\bar{x}_i) = 1/(x_1+e) + \Sigma(1/\bar{x}_i) \leq m \). Since \(\bar{x}_2/\bar{x}_1 < x_2/x_1 \), we are done.

Next, we note that we can impose \(\Sigma(1/x_i) = m \). Indeed, given \(x \) with \(\Sigma x_i = m+n \) and \(\Sigma(1/x_i) < m \), let \(\bar{x} = (x_1, x_2, e, \ldots, x_m) \), where \(e > 0 \) is small enough so that \(\Sigma \bar{x}_i \leq m+n \). Since \(\Sigma \bar{x}_i \leq \Sigma x_i = m+n \), and \(\bar{x}_2/\bar{x}_1 < x_2/x_1 \) we are done.

Finally, we claim that we can set \(x_i = x_j \) for all \(i, j \in P' \equiv P\setminus\{1,2\} \).

(of course, \(P' \) is empty if \(m = 2 \)). Indeed, supposing \(m > 2 \), let \(x \in \mathbb{R}^P_+ \) with \(\Sigma x_i = m+n \) and \(\Sigma(1/x_i) = m \) be given. Let \(\bar{x} \) be such that \(\bar{x}_1 = x_1, \bar{x}_2 = x_2 \) and \(\bar{x}_i = (\Sigma x_i)/(m-2) \) for all \(i \in P' \). Note that \(\Sigma \bar{x}_i \leq \Sigma x_i + x_2 + (m-2)(\Sigma x_j)/(m-2) \)
\[\sum_{p} x_j = m+n. \] Also, \(\sum_{p} \frac{1}{x_j} = \frac{1}{x_1} + \frac{1}{x_2} + \frac{(m-2)^2}{\sum_{p} x_j} \leq \sum_{p} \frac{1}{x_j} = m \] since \(\frac{1}{x_j} \leq \frac{1}{m-2} \sum_{p} \frac{1}{x_j} \) by convexity of the function \(h(t) = \frac{1}{t} \). Finally, since \(\frac{\bar{x}_2}{\bar{x}_1} = \frac{x_2}{x_1} \), we are done.

After eliminating from the two constraints the common value of \(x_j \) for \(j \in P' \), we are then led to solving the following problem:

P3. Find \(\inf \{ x_2/x_1 | 1/x_1 + 1/x_2 + (m-2)^2/(m+n-x_1-x_2) = m \} \).

Forming the Lagrangian
\[L(x_1, x_2, \lambda) = \frac{x_2}{x_1} + \lambda \left[\frac{1}{x_1} + \frac{1}{x_2} + \frac{(m-2)^2}{m+n-x_1-x_2} - m \right]. \]
we obtain after differentiation
\[\frac{\partial L(x_1, x_2, \lambda)}{\partial x_1} = \frac{-x_2}{x_1} + \lambda \left[\frac{-1}{x_1} + \frac{(m-2)^2}{(m+n-x_1-x_2)^2} \right] = 0, \]
\[\frac{\partial L(x_1, x_2, \lambda)}{\partial x_2} = \frac{1}{x_1} + \lambda \left[\frac{-1}{x_2} + \frac{(m-2)^2}{(m+n-x_1-x_2)^2} \right] = 0. \]

Since \(x > 0 \), the coefficients of \(\lambda \) are non-zero. Then, eliminating \(\lambda \) between these two equations gives
\[\frac{-1}{x_2} + A = \frac{x_2}{x_1} = \frac{1}{x_1} - \frac{1}{x_2} - A \]
where \(A = \left[\frac{m-2}{m+n-x_1-x_2} \right]^2 \).

and after cross multiplication,
\[\frac{1}{x_2} - x_2 A = \frac{-1}{x_1} + x_1 A. \]
Setting $S = x_1 + x_2$ and $P = x_1x_2$, this equality becomes $\frac{S}{P} = SA$, and since $S \neq 0$, $\frac{1}{P} = \left[\frac{m-2}{m+n-S}\right]^2$. Inserting this expression into the equality constraint written as $\frac{S}{P} + \frac{(m-2)^2}{m+n-S} = m$ yields $\frac{S}{P} + \frac{m+n-S}{P} = m$, i.e. $P = \frac{m+n}{m}$. Using this expression for P in $\frac{m+n-S}{m-2} = \sqrt{P}$ we obtain $S = m+n - (m-2)\sqrt{\frac{m+n}{m}}$.

The expression we are looking for is the smallest root of the following equation in t:

$$t^2 - \frac{S^2-2P}{P} t + 1 = 0,$$

which after replacing S and P by their values as functions of m and n, becomes

$$t^2 - (B^2-2)t + 1 = 0$$

where $B = \sqrt{m(m+n)} - m + 2$.

The smallest root is $\frac{B^2-2-\sqrt{(B^2-2)^2-4}}{2}$, the desired expression.

The derivation of the second order condition is relegated to Appendix 1.

Q.E.D.

It can be shown that for each fixed m, ϵ_n^m is a decreasing and convex function of n and that $\epsilon_n^m \to 0$ as $n \to \infty$. Also, for each fixed n, ϵ_n^m is a decreasing and convex function of m and $\epsilon_n^m \to 8 / \left[n^2 + 8n + 8 + (n+4)\sqrt{n^2 + 8n} \right]$ as $m \to \infty$ (the calculations can be found in appendix).

An intuitive reason why the Nash solution does not offer very good relative guarantees is that, as opposed to the Kalai-Smorodinsky and Egalitarian solutions, which keep the agents' utilities tied together, it
responds to "stretchings" of the feasible set in somewhat unpredictable ways. It is also for that reason that it violates Population Monotonicity (which says that as a result of an increase in the number of agents, unaccompanied by an expansion of opportunities, all agents initially present weakly lose; see Thomson (1983a,b)), a property which is satisfied by both the Kalai-Smorodinsky and Egalitarian solutions. Not surprisingly, the minimum of the ratio appearing in the definition of ε^{mn}_N is attained precisely for a pair \{S,T\} for which the Nash solution violates the property. Indeed, using the expressions for $x_1 + x_2$ and $x_1 x_2$ obtained in the proof of Theorem 2, it can be shown that $x_2 = N_2(S) < 1$ while $N_2(T) = 1$ (see Appendix 1 for the calculations). Agent 2 has gained in spite of the fact that the group of claimants has enlarged from P to Q.

Theorems 1 and 2 together imply that the Kalai-Smorodinsky and Egalitarian solutions are both strictly superior to the Nash solution from the viewpoint of relative guarantees. We have already noted that these two solutions offer maximal relative guarantees among all anonymous solutions. We show next that it is possible to characterize them with the help of two alternative sets of standard conditions together with the requirement of maximal relative guarantees. The proofs of these results, which are based on constructions that are somewhat similar to those used in the characterizations appearing in Thomson (1983a,b), can be found in Appendix 2.

Theorem 3. The Kalai-Smorodinsky solution is the only solution satisfying \textsc{wpo}, \textsc{an}, and \textsc{s.inv} that offers maximal relative guarantees.

Theorem 4. The Egalitarian solution is the only solution satisfying \textsc{wpo}, \textsc{an} and \textsc{iaa} that offers maximal relative guarantees.
5. Concluding comments

This study should be a useful complement to an earlier contribution by
Thomson and Lensberg (1983), where solutions were evaluated on the basis of
the extent to which an agent could see his own situation deteriorate, upon the
arrival of new agents unaccompanied by an expansion of their opportunities. A
notion of absolute guarantees was introduced there and used to rank solutions.
It was found that the Kalai-Smorodinsky solution performed strictly better
than the Nash and Egalitarian solutions, and that no solution satisfying Weak
Pareto-Optimality and Anonymity could do better.

Two main differences should be noted between the two studies. First,
according to the criterion used there to rank solutions, the Egalitarian
solution performed extremely badly (it offers no absolute guarantees at all),
while for the criterion under consideration here this solution is just as good
as the Kalai-Smorodinsky solution. The second difference is that while we are
able here to characterize the Kalai-Smorodinsky solution by using the
condition that the solution offers maximal relative guarantees, the condition
that the solution offers maximal absolute guarantees, together with the same
list of complementary axioms, was not sufficient there to yield a
characterization. Although the Kalai-Smorodinsky solution was more easily
distinguishable from its main competitors, isolating it in the class of
solutions satisfying Weak Pareto-Optimality and Anonymity was actually more
difficult.

The Thomson-Lensberg study and the current study offer new viewpoints
from which to evaluate solutions to the bargaining problem. The differences
between the conclusions of the two papers should reinforce what is perhaps the
main lesson to be drawn from the developments of the axiomatic theory of bargaining that took place over the last ten years: no unique solution has emerged as the best solution to the bargaining problem, but a few solutions have kept reappearing as major actors in study after study. These solutions are the Nash, Kalai-Smorodinsky and Egalitarian solutions. In the present study, the spotlight has been on the latter two.
References

Appendix 1

The purpose of this appendix is to check the second-order conditions for the optimization problem of Theorem 2.

Using the notation \(A = \left[\frac{m-2}{m+n-x_1-x_2} \right]^2 \), we obtain the following bordered Hessian

\[
|H| = \begin{pmatrix}
0 & -\frac{1}{x_1} + A & -\frac{1}{x_2} + A \\
-\frac{1}{x_1} + A & \frac{2x_2}{x_1} + \frac{2}{x_1} \left[\frac{2}{x_1} + \frac{2A}{m+n-x_1-x_2} \right] & \frac{2A\lambda}{x_1} \\
-\frac{1}{x_2} + A & \frac{1}{x_2} + \frac{2A\lambda}{m+n-x_1-x_2} & \frac{2A\lambda}{x_2} + \frac{2A\lambda}{m+n-x_1-x_2}
\end{pmatrix}
\]

With \(C \equiv -\frac{1}{x_1} + A \), the first-order conditions become

\[
-\frac{1}{x_2} + A = \frac{x_1}{x_2} \left(\frac{1}{x_2} - A \right)
\]

\[
x_1
\]

\[
= -\frac{x_1}{x_2} C. \quad \text{Let} \quad D \equiv \frac{2A\lambda}{m+n-x_1-x_2}
\]
Therefore, we have

\[
|\vec{H}| = \begin{vmatrix}
0 & C & x_1 \\
C & \frac{2x_2}{x_1^3} + \frac{2\lambda}{x_1^3} + D & -\frac{1}{x_2^1} + D \\
-x_1 & -\frac{1}{x_2^1} + D & \frac{2\lambda}{x_3^1} + D \\
-x_2 & -\frac{1}{x_2^2} + D & \frac{2\lambda}{x_3^2} + D
\end{vmatrix}
\]

\[
= -C^2\begin{vmatrix}
1 & -\frac{1}{x_1^2} + D \\
-x_1 & -\frac{1}{x_2^1} + D \\
-x_2 & -\frac{1}{x_2^2} + D
\end{vmatrix}
\]

\[
= -C^2\left[\frac{2\lambda}{x_2^3} + D + \frac{x_1}{x_2}(-\frac{1}{x_2^2} + D) + \frac{x_1}{x_2}(-\frac{1}{x_2^1} + D) + \frac{x_1^2}{x_2^1} + \frac{2x_2}{x_2^2} + \frac{2\lambda}{x_2^3} + D\right]
\]

\[
= -C^2\left[\frac{2\lambda}{x_2^3} - \frac{2}{x_1x_2} + \frac{2}{x_1x_2} + \frac{2\lambda}{x_1x_2^2} + D\left[\frac{x_1^2}{x_2^2} + \frac{2x_1}{x_2} + 1\right]\right]
\]

\[
= -C^2\left[\frac{2\lambda}{x_2^2} + \frac{1}{x_1^1} + D\left[\frac{x_1^1}{x_2^2} + 1\right]^2\right]
\]
From the second first-order condition, we have

\[
\lambda = \frac{1}{\frac{1}{x_1} - A} = \frac{x_2^2}{x_1(1-Ax_2^2)}.
\]

From the first-order conditions, \(x_1 + x_2 = S = m + n - (m-2)\sqrt{\frac{m}{m+n}}\). Therefore, \(A = \frac{m}{m+n}\), so that \(0 < A < 1\). Also, from the first-order conditions, \(0 < x_2 < 1\). Indeed, \(x_1\) and \(x_2\) are obtained as solutions to the following equation

\[
t^2 - (x_1 + x_2)t + x_1x_2 = 0
\]

\[
t^2 - St + P = 0
\]

\[
t = \frac{S \pm \sqrt{S^2 - 4P}}{2},
\]

where \(S = m+n-(m-2)\sqrt{\frac{m}{m+n}}\) and \(P = \frac{m+n}{m}\). Since \(x_2 < x_1\), we have

\[
x_1 = \frac{S + \sqrt{S^2 - 4P}}{2}, \quad x_2 = \frac{S - \sqrt{S^2 - 4P}}{2}.
\]

Now, substituting \(S\) and \(P\) with their expressions as functions of \(m\) and \(n\), we obtain \(x_2 < 1\).

Altogether, we have \(0 < Ax_2^2 < 1\), so that \(\lambda > 0\). Since \(A > 0\) and \(m + n - x_1 - x_2 > 0\), all the terms appearing in the bracket multiplying \(-c^2\) are positive. Therefore, \(|\bar{H}| < 0\).
Remark. It is of interest to note that the minimum of \(\frac{N_1(S)/N_1(T)}{N_j(S)/N_j(T)} \) is obtained at a point where the axiom of population monotonicity is violated.

Next we study the behavior of \(\varepsilon_{mn}^N \) as a function of \(m \) and \(n \). To simplify notation, we will from here on write \(\varepsilon \) instead of \(\varepsilon_{mn}^N \).

Lemma. \(\varepsilon_{mn}^N \) is a decreasing and convex function of \(n \), for each fixed \(m \).

Proof. First, we compute \(\frac{\partial B}{\partial n} \).

\[
\frac{\partial B}{\partial n} = \frac{1}{2} \left[\frac{1}{m(m+n)} \right]^2 m = \frac{1}{2} \left(\frac{m}{m+n} \right)^2 > 0.
\]

Then,

\[
\frac{\partial \varepsilon}{\partial n} = \frac{1}{2} \left[1 - \frac{1}{2} \left(\frac{B^2-2}{2} - 4 \right) \right] \frac{1}{2B} \frac{\partial B}{\partial n} = B \frac{\partial B}{\partial n} \left(1 - \frac{1}{2} \frac{B^2-2}{2} \right).
\]

The expression in braces is negative since

\[
1 < \frac{B^2-2}{\sqrt{(B^2-2)^2-4}} \quad \text{and} \quad B > 2.
\]

Therefore \(\frac{\partial \varepsilon}{\partial n} < 0 \).

Next, we compute the second-order partial derivative.

\[
\frac{\partial^2 B}{\partial n^2} = - \frac{1}{4} \left[m(m+n) \right]^2 m^2 < 0.
\]
\[
\frac{\sigma^2 \epsilon}{\partial n^2} = \left(\frac{\partial B}{\partial n}\right)^2 \left(1 - \left[\frac{(B^2 - 2)^2}{2} - B^2 \right] \frac{1}{(B^2 - 2)} \right) + B \left(\frac{\partial B^2}{\partial n^2}\right) \left(1 - \left[\frac{(B^2 - 2)^2}{2} - B^2 \right] \frac{1}{(B^2 - 2)} \right) + 2B^2 \left(\frac{\partial B}{\partial n}\right)^2 \left[\left(\frac{B^4 - 4B^2}{2}(B^2 - 2)^2 + \frac{1}{(B^2 - 4)^2}\right) \right].
\]

Since the expression on the second line is positive, it is enough to show that

\[
1 - \left(\frac{B^4 - 4B^2}{2}(B^2 - 2)^2 + 2B^2 \left(\frac{B^4 - 4B^2}{2}(B^2 - 2)^2 + 2B^2 \left(\frac{B^4 - 4B^2}{2}\right)\right) + 2B^2 \left(\frac{B^4 - 4B^2}{2}\right)\right)
\]

is positive.

Indeed,

\[
-\left(\frac{B^4 - 4B^2}{2}\right)^2 \left\{\left[(B^2 - 2)^2 \left(\frac{B^4 - 4B^2}{2}(B^2 - 2)^2 + 2B^2 \left(\frac{B^4 - 4B^2}{2}(B^2 - 2)^2 + 2B^2 \left(\frac{B^4 - 4B^2}{2}\right)\right) + 2B^2 \left(\frac{B^4 - 4B^2}{2}\right)\right] - 3B^2 + 10 > 0, \right.
\]

since \(B > 2\), \(B^2 (B^2 - 4) > 0\) and \(-3B^2 + 10 < 0\). Therefore, \(\frac{\sigma^2 \epsilon}{\partial n^2} > 0\). Q.E.D.

Lemma: \(e^{mn}_N\) is a decreasing and convex function of \(m\), for each fixed \(n\).

Proof. \(\frac{\partial B}{\partial m} = \frac{1}{2} \left[\frac{m(m+n)}{2} - (2m+n) - 1 \right] \geq 0\).
\[
\frac{\partial \varepsilon}{\partial m} = B \frac{\partial B}{\partial m} \{1 - [(B^2 - 2)^2 - 4]^\frac{1}{2} (B^2 - 2)\},
\]

therefore, \(\frac{\partial \varepsilon}{\partial m} < 0\).

The second-order partial derivative is

\[
\frac{\partial^2 B}{\partial m^2} = -\frac{1}{4} \left[m(m+n) \right]^\frac{3}{2} (2m+n)^2 + \frac{1}{2} \left[m(m+n) \right]^\frac{1}{2} 2
\]

\[
= -\frac{1}{4} n^2 \left[m(m+n) \right]^\frac{3}{2} < 0.
\]

Therefore, by a calculation similar to that of \(\frac{\partial^2 \varepsilon}{\partial n^2}\), we conclude that \(\frac{\partial^2 \varepsilon}{\partial m^2} > 0\).

\(\varepsilon\) is a convex function of \(m\). \(\text{Q.E.D.}\)

Next we study the asymptotic behavior of \(\varepsilon^m_n\) as \(m \to \infty\) and as \(n \to \infty\).

\[
B = \sqrt{m(m+n)} - m + 2
\]

\[
= \frac{m(n+4) - 4}{\sqrt{m(m+n)} + m - 2}.
\]

As \(m \to \infty\), \(B \to \frac{n+4}{2}\) and \(B^2 - 4 \to \frac{n^2 + 8n}{4}\).

Since we have

\[
\varepsilon = \frac{(B^2 - 2)^2 - (B^2 - 2)^2 + 4}{2(B^2 - 2 + \sqrt{(B^2 - 2)^2 - 4})}
\]
\[
\frac{2}{B^2 - 2 + \sqrt{B^2 - 4}},
\]
as \(m \to \infty\),
\[
\varepsilon \to \frac{2}{\frac{n^2 + 8n + 8}{4} + \sqrt{\left(\frac{n^2 + 8n + 16}{4}\right)\left(\frac{n^2 + 8n}{4}\right)}} = \frac{8}{n^2 + 8n + 8 + \sqrt{(n^2 + 8n)(n^2 + 8n + 16)}}.
\]
Also, as \(n \to \infty\),
\[
\varepsilon = \frac{2}{(\sqrt{m(m+n)} - m + 2)^2 - 2 + \sqrt{((\sqrt{m(m+n)} - m + 2)^2 - 2)^2 - 4}} \to 0.
\]
Appendix 2

Here, we characterize the Kalai-Smorodinsky and Egalitarian solutions.

First, we formally introduce the requirement on a solution that it offers maximal relative guarantees.

Maximal Relative Guarantee Structure (MRGS). For all \(P, Q \subseteq \emptyset \) with \(P \subseteq Q \), for all \(i, j \in P \), \(\epsilon_P(i, j, P, Q) = 1 \).

Now, we characterize the Kalai-Smorodinsky solution with the help of MRGS. The proof is similar to, but more direct than, Thomson's (1983a) characterization of that solution based on population monotonicity.

Proposition 1. The Kalai-Smorodinsky solution satisfies \(\mathbf{WPO} \), \(\mathbf{AN} \), \(\mathbf{S.INV} \) and \(\mathbf{MRGS} \).

Proof. Straightforward.

Proposition 2. If a solution \(F \) satisfies \(\mathbf{WPO} \), \(\mathbf{AN} \), \(\mathbf{S.INV} \) and \(\mathbf{MRGS} \), then it is the Kalai-Smorodinsky solution.

Proof. First, we show that \(F = K \) on \(\Sigma^P \) for \(|P| = 2 \). To fix the ideas, we let \(P \equiv \{1, 2\} \) and we observe that by \(\mathbf{S.INV} \) it is enough to prove that \(F(S) = K(S) \) for all \(S \in \Sigma^P \) with \(a(S) = e_P \). We introduce a third agent whom, without loss of generality, we take to be agent 3, and we construct a problem \(T \in \Sigma^Q \), where \(Q \equiv \{1, 2, 3\} \), such that

\[
S^1 \equiv \{(y_2, y_3) \in \mathbb{R}^{\{2, 3\}} \mid \exists (x_1, x_2) \in S \text{ with } y_2 = x_1 \text{ and } y_3 = x_2\},
\]

\[
S^2 \equiv \{(y_3, y_1) \in \mathbb{R}^{\{3, 1\}} \mid \exists (x_1, x_2) \in S \text{ with } y_3 = x_1 \text{ and } y_1 = x_2\},
\]
and
\[T = \text{cch}\{S, S^1, S^2\}. \]

By WPO and AN, we have \(F(T) = e_Q \).

Since by WPO there exists \(i \in P \) such that \(F_1(S) > 0 \), then by MRCS applied to \(\{1, 2\} \), we find
\[\frac{F_1(T)/F_1(S)}{F_2(T)/F_2(S)} = 1 \implies F_1(S) = F_2(S). \]

By WPO and the fact that \(K \) satisfies WPO, we obtain \(F(S) = K(S) \).

Given \(Q \in \mathcal{G} \) with \(|Q| > 2 \), and \(T \in \Sigma^Q \), we show that \(F(T) = K(S) \) by considering \(P \subseteq Q \) with \(|P| = 2 \) and noting that if \(F(S) = K(S) = \lambda a(S) \) for some \(\lambda > 0 \) by the first step. Therefore, by MRCS, \(F_P(T) = \mu a(S) \) for some \(\mu > 0 \).

Since \(a_P(T) = a(S) \), we obtain, by repeated application of this argument, \(F(T) = \mu a(T) \) and by WPO, \(F(T) = K(T) \).

Q.E.D.

Finally, we characterize the Egalitarian solution. The proof bears some similarity to Thomson's (1983b) characterization of the solution based on population monotonicity. It essentially involves showing that if \(S \in \Sigma^P \), then \(S \) is the intersection with \(\mathbb{R}^P \) of a problem in \(\mathbb{R}^Q \), for some \(Q \supset P \), whose solution outcome can be shown to have equal coordinates. An application of MRCS then implies that the solution outcome of \(S \) also has to have equal coordinates.

Proposition 3. The Egalitarian solution satisfies WPO, AN, IIA and MRCS.

Proof. Straightforward.
Proposition 4. If a solution F satisfies WPO, AN, IIA and MRGS, then it is the Egalitarian solution.

Proof. Let $P \in \mathcal{P}$ and $S \in \Sigma^P$ be given. Without loss of generality, assume that $E(S) = e_P$. Let $m = \max\{\Sigma x_1 \mid x \in S\}$. Note that $m \geq |P|$. Let $Q \in \mathcal{P}$ with $P \subseteq Q$ and $|Q| \equiv q$ be the smallest integer with $q > n$, and $T \in \Sigma^Q$ be defined by T $\equiv \{x \in \mathbb{R}^Q \mid \Sigma x_1 \leq q\}$. Finally, let $T' \equiv \text{cch}\{S, e_Q\}$. By WPO and AN, $F(T) = e_Q$.

Since $T' \subseteq T$ and $F(T) \in T'$, by IIA, $F(T') = F(T)$. It can be checked that $T' = S$. By WPO, there exists $i \in P$ such that $F_i(S) > 0$. Therefore, for all $j \in P$, $j \neq i$, by MRGS, we find that $F_j(T)/F_j(S) = E_j(T)/E_j(S) = F_j(S)$. Therefore, $F_i(S) = F_j(S)$ for all $i, j \in P$. Finally, by WPO, and the fact that E satisfies WPO, we obtain $F(S) = E(S)$.

Q.E.D.
OIL PRICE SHOCKS AND THE DISPERSION HYPOTHESIS, 1900 - 1980
by Prakash Loungani, January 1986

RISK SHARING, INDIVISIBLE LABOR AND AGGREGATE FLUCTUATIONS
by Richard Rogerson, (Revised) February 1986

PRICE CONTRACTS, OUTPUT, AND MONETARY DISTURBANCES
by Alan C. Stockman, October 1985

FISCAL POLICIES AND INTERNATIONAL FINANCIAL MARKETS
by Alan C. Stockman, March 1986

LARGE-SCALE TAX REFORM: THE EXAMPLE OF EMPLOYER-PAID HEALTH
INSURANCE PREMIUMS
by Charles E. Phelps, March 1986

INVESTMENT, CAPACITY UTILIZATION AND THE REAL BUSINESS CYCLE
by Jeremy Greenwood and Zvi Hercowitz, April 1986

THE ECONOMICS OF SCHOOLING: PRODUCTION AND EFFICIENCY IN PUBLIC
SCHOOLS
by Eric A. Hanushek, April 1986

EMPLOYMENT RELATIONS IN DUAL LABOR MARKETS (IT'S NICE WORK IF YOU
CAN GET IT!)
by Walter Y. Oi, April 1986

SECTORAL DISTURBANCES, GOVERNMENT POLICIES, AND INDUSTRIAL OUTPUT IN
SEVEN EUROPEAN COUNTRIES
by Alan C. Stockman, April 1986

SMOOTH VALUATIONS FUNCTIONS AND DETERMINANCY WITH INFINITELY LIVED
CONSUMERS
by Timothy J. Kehoe, David K. Levine and Paul R. Romer, April 1986

AN OPERATIONAL THEORY OF MONOPOLY UNION-COMPETITIVE FIRM INTERACTION
by Glenn M. MacDonald and Chris Robinson, June 1986

JOB MOBILITY AND THE INFORMATION CONTENT OF EQUILIBRIUM WAGES:
PART 1, by Glenn M. MacDonald, June 1986

SKI-LIFT PRICING, WITH APPLICATIONS TO LABOR AND OTHER MARKETS
by Robert J. Barro and Paul M. Romer, May 1986, revised April 1987
WP#46 FORMULA BUDGETING: THE ECONOMICS AND ANALYTICS OF FISCAL POLICY UNDER RULES, by Eric A. Hanushek, June 1986

WP#48 EXCHANGE RATE POLICY, WAGE FORMATION, AND CREDIBILITY by Henrik Horn and Torsten Persson, June 1986

WP#49 MONEY AND BUSINESS CYCLES: COMMENTS ON BERNANKE AND RELATED LITERATURE, by Robert G. King, July 1986

WP#50 NOMINAL SURPRISES, REAL FACTORS AND PROPAGATION MECHANISMS by Robert G. King and Charles I. Plosser, Final Draft: July 1986

WP#51 JOB MOBILITY IN MARKET EQUILIBRIUM by Glenn M. MacDonald, August 1986

WP#52 SECRECY, SPECULATION AND POLICY by Robert G. King, (revised) August 1986

WP#53 THE TULIPMANIA LEGEND by Peter M. Garber, July 1986

WP#54 THE WELFARE THEOREMS AND ECONOMIES WITH LAND AND A FINITE NUMBER OF TRADERS, by Marcus Berliant and Karl Dunz, July 1986

WP#55 NONLABOR SUPPLY RESPONSES TO THE INCOME MAINTENANCE EXPERIMENTS by Eric A. Hanushek, August 1986

WP#56 INDIVISIBLE LABOR, EXPERIENCE AND INTERTEMPORAL ALLOCATIONS by Vittorio U. Grilli and Richard Rogerson, September 1986

WP#57 TIME CONSISTENCY OF FISCAL AND MONETARY POLICY by Mats Persson, Torsten Persson and Lars E. O. Svensson, September 1986

WP#58 ON THE NATURE OF UNEMPLOYMENT IN ECONOMIES WITH EFFICIENT RISK SHARING, by Richard Rogerson and Randall Wright, September 1986

WP#59 INFORMATION PRODUCTION, EVALUATION RISK, AND OPTIMAL CONTRACTS by Monica Hargraves and Paul M. Romer, September 1986

WP#60 RECURSIVE UTILITY AND THE RAMSEY PROBLEM by John H. Boyd III, October 1986

WP#61 WHO LEAVES WHOM IN DURABLE TRADING MATCHES by Kenneth J. McLaughlin, October 1986

WP#62 SYMMETRIES, EQUILIBRIA AND THE VALUE FUNCTION by John H. Boyd III, December 1986

WP#63 A NOTE ON INCOME TAXATION AND THE CORE by Marcus Berliant, December 1986
WP#64 INCREASING RETURNS, SPECIALIZATION, AND EXTERNAL ECONOMIES: GROWTH AS DESCRIBED BY ALLYN YOUNG, By Paul M. Romer, December 1986

WP#65 THE QUIT-LAYOFF DISTINCTION: EMPIRICAL REGULARITIES by Kenneth J. McLaughlin, December 1986

WP#66 FURTHER EVIDENCE ON THE RELATION BETWEEN FISCAL POLICY AND THE TERM STRUCTURE, by Charles I. Plosser, December 1986

WP#67 INVENTORIES AND THE VOLATILITY OF PRODUCTION by James A. Kahn, December 1986

WP#68 RECURSIVE UTILITY AND OPTIMAL CAPITAL ACCUMULATION, I: EXISTENCE, by Robert A. Becker, John H. Boyd III, and Bom Yong Sung, January 1987

WP#69 MONEY AND MARKET INCOMPLETENESS IN OVERLAPPING-GENERATIONS MODELS, by Marianne Baxter, January 1987

WP#70 GROWTH BASED ON INCREASING RETURNS DUE TO SPECIALIZATION by Paul M. Romer, January 1987

WP#71 WHY A STUBBORN CONSERVATIVE WOULD RUN A DEFICIT: POLICY WITH TIME-INCONSISTENT PREFERENCES by Torsten Persson and Lars E.O. Svensson, January 1987

WP#72 ON THE CONTINUUM APPROACH OF SPATIAL AND SOME LOCAL PUBLIC GOODS OR PRODUCT DIFFERENTIATION MODELS by Marcus Berliant and Thijs ten Raa, January 1987

WP#73 THE QUIT-LAYOFF DISTINCTION: GROWTH EFFECTS by Kenneth J. McLaughlin, February 1987

WP#74 SOCIAL SECURITY, LIQUIDITY, AND EARLY RETIREMENT by James A. Kahn, March 1987

WP#75 THE PRODUCT CYCLE HYPOTHESIS AND THE HECKSCHER-OHLIN-SAMUELSON THEORY OF INTERNATIONAL TRADE by Sugata Marjit, April 1987

WP#76 NOTIONS OF EQUAL OPPORTUNITIES by William Thomson, April 1987

WP#77 BARGAINING PROBLEMS WITH UNCERTAIN DISAGREEMENT POINTS by Youngsub Chun and William Thomson, April 1987

WP#78 THE ECONOMICS OF RISING STARS by Glenn M. MacDonald, April 1987

WP#79 STOCHASTIC TRENDS AND ECONOMIC FLUCTUATIONS by Robert King, Charles Plosser, James Stock, and Mark Watson, April 1987
<table>
<thead>
<tr>
<th>WP#</th>
<th>Title</th>
<th>Author(s)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP#80</td>
<td>INTEREST RATE SMOOTHING AND PRICE LEVEL TREND-STATIONARITY</td>
<td>Marvin Goodfriend</td>
<td>April 1987</td>
</tr>
<tr>
<td>WP#81</td>
<td>THE EQUILIBRIUM APPROACH TO EXCHANGE RATES</td>
<td>Alan C. Stockman, revised</td>
<td>April 1987</td>
</tr>
<tr>
<td>WP#82</td>
<td>INTEREST-RATE SMOOTHING</td>
<td>Robert J. Barro</td>
<td>May 1987</td>
</tr>
<tr>
<td>WP#83</td>
<td>CYCLICAL PRICING OF DURABLE LUXURIES</td>
<td>Mark Bils</td>
<td>May 1987</td>
</tr>
<tr>
<td>WP#84</td>
<td>EQUILIBRIUM IN COOPERATIVE GAMES OF POLICY FORMULATION</td>
<td>Thomas F. Cooley and Bruce D. Smith</td>
<td>May 1987</td>
</tr>
<tr>
<td>WP#85</td>
<td>RENT SHARING AND TURNOVER IN A MODEL WITH EFFICIENCY UNITS OF HUMAN CAPITAL</td>
<td>Kenneth J. McLaughlin, revised</td>
<td>May 1987</td>
</tr>
<tr>
<td>WP#86</td>
<td>THE CYCLICALITY OF LABOR TURNOVER: A JOINT WEALTH MAXIMIZING HYPOTHESIS</td>
<td>Kenneth J. McLaughlin, revised</td>
<td>May 1987</td>
</tr>
<tr>
<td>WP#87</td>
<td>CAN EVERYONE BENEFIT FROM GROWTH? THREE DIFFICULTIES</td>
<td>Herve' Moulin and William Thomson</td>
<td>May 1987</td>
</tr>
<tr>
<td>WP#88</td>
<td>TRADE IN RISKY ASSETS</td>
<td>Lars E.O. Svensson</td>
<td>May 1987</td>
</tr>
<tr>
<td>WP#89</td>
<td>RATIONAL EXPECTATIONS MODELS WITH CENSORED VARIABLES</td>
<td>Marianne Baxter</td>
<td>June 1987</td>
</tr>
<tr>
<td>WP#90</td>
<td>EMPIRICAL EXAMINATIONS OF THE INFORMATION SETS OF ECONOMIC AGENTS</td>
<td>Nils Gottfries and Torsten Persson</td>
<td>June 1987</td>
</tr>
<tr>
<td>WP#91</td>
<td>DO WAGES VARY IN CITIES? AN EMPIRICAL STUDY OF URBAN LABOR MARKETS</td>
<td>Eric A. Hanushek</td>
<td>June 1987</td>
</tr>
<tr>
<td>WP#92</td>
<td>ASPECTS OF TOURNAMENT MODELS: A SURVEY</td>
<td>Kenneth J. McLaughlin, July</td>
<td>July 1987</td>
</tr>
<tr>
<td>WP#93</td>
<td>ON MODELLING THE NATURAL RATE OF UNEMPLOYMENT WITH INDIVISIBLE LABOR</td>
<td>Jeremy Greenwood and Gregory W. Huffman</td>
<td></td>
</tr>
<tr>
<td>WP#94</td>
<td>TWENTY YEARS AFTER: ECONOMETRICS, 1966-1986</td>
<td>Adrian Pagan</td>
<td>August 1987</td>
</tr>
<tr>
<td>WP#95</td>
<td>ON WELFARE THEORY AND URBAN ECONOMICS</td>
<td>Marcus Berliant, Yorgos Y. Papageorgiou and Ping Wang</td>
<td>August 1987</td>
</tr>
<tr>
<td>WP#96</td>
<td>ENDOGENOUS FINANCIAL STRUCTURE IN AN ECONOMY WITH PRIVATE INFORMATION</td>
<td>James Kahn</td>
<td>August 1987</td>
</tr>
</tbody>
</table>
THE TRADE-OFF BETWEEN CHILD QUANTITY AND QUALITY: SOME EMPIRICAL EVIDENCE
by Eric Hanushek, September 1987

SUPPLY AND EQUILIBRIUM IN AN ECONOMY WITH LAND AND PRODUCTION
by Marcus Berliant and Hou-Wen Jeng, September 1987

AXIOMS CONCERNING UNCERTAIN DISAGREEMENT POINTS FOR 2-PERSON BARGAINING PROBLEMS
by Youngsub Chun, September 1987

MONEY AND INFLATION IN THE AMERICAN COLONIES: FURTHER EVIDENCE ON THE FAILURE OF THE QUANTITY THEORY
by Bruce Smith, October 1987

BANK PANICS, SUSPENSIONS, AND GEOGRAPHY: SOME NOTES ON THE "CONTAGION OF FEAR" IN BANKING
by Bruce Smith, October 1987

LEGAL RESTRICTIONS, "SUNSPOTS", AND CYCLES
by Bruce Smith, October 1987

THE QUIT-LAYOFF DISTINCTION IN A JOINT WEALTH MAXIMIZING APPROACH TO LABOR TURNOVER
by Kenneth McLaughlin, October 1987

ON THE INCONSISTENCY OF THE MLE IN CERTAIN HETEROSKEDASTIC REGRESSION MODELS
by Adrian Pagan and H. Sabau, October 1987

RECURRENT ADVERTISING
by Ignatius J. Horstmann and Glenn M. MacDonald, October 1987

PREDICTIVE EFFICIENCY FOR SIMPLE NONLINEAR MODELS
by Thomas F. Cooley, William R. Parke and Siddhartha Chib, October 1987

CREDIBILITY OF MACROECONOMIC POLICY: AN INTRODUCTION AND A BROAD SURVEY
by Torsten Persson, November 1987

SOCIAL CONTRACTS AS ASSETS: A POSSIBLE SOLUTION TO THE TIME-CONSISTENCY PROBLEM
by Laurence Kotlikoff, Torsten Persson and Lars E. O. Svensson, November 1987

EXCHANGE RATE VARIABILITY AND ASSET TRADE
by Torsten Persson and Lars E. O. Svensson, November 1987

MICROFOUNDBATIONS OF INDIVISIBLE LABOR
by Vittorio Grilli and Richard Rogerson, November 1987

FISCAL POLICIES AND THE DOLLAR/POUND EXCHANGE RATE: 1870-1984
by Vittorio Grilli, November 1987
<table>
<thead>
<tr>
<th>WP#</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP#112</td>
<td>INFLATION AND STOCK RETURNS WITH COMPLETE MARKETS</td>
<td>Thomas Cooley and Jon Sonstelie</td>
<td>November 1987</td>
</tr>
<tr>
<td>WP#113</td>
<td>THE ECONOMETRIC ANALYSIS OF MODELS WITH RISK TERMS</td>
<td>Adrian Pagan and Aman Ullah</td>
<td>December 1987</td>
</tr>
<tr>
<td>WP#114</td>
<td>PROGRAM TARGETING OPTIONS AND THE ELDERLY</td>
<td>Eric Hanushek and Roberton Williams</td>
<td>December 1987</td>
</tr>
<tr>
<td>WP#115</td>
<td>BARGAINING SOLUTIONS AND STABILITY OF GROUPS</td>
<td>Youngsub Chun and William Thomson</td>
<td>December 1987</td>
</tr>
</tbody>
</table>
To order copies of the above papers complete the attached invoice and return to Christine Massaro, W. Allen Wallis Institute of Political Economy, RCER, 109B Harkness Hall, University of Rochester, Rochester, NY 14627. Three (3) papers per year will be provided free of charge as requested below. Each additional paper will require a $5.00 service fee which must be enclosed with your order. For your convenience an invoice is provided below in order that you may request payment from your institution as necessary. Please make your check payable to the Rochester Center for Economic Research. Checks must be drawn from a U.S. bank and in U.S. dollars.

W. Allen Wallis Institute for Political Economy

Rochester Center for Economic Research, Working Paper Series

OFFICIAL INVOICE

Requestor's Name ________________________________
Requestor's Address ________________________________

Please send me the following papers free of charge (Limit: 3 free per year).

WP# _______ WP# _______ WP# _______

I understand there is a $5.00 fee for each additional paper. Enclosed is my check or money order in the amount of $___________. Please send me the following papers.

WP# _______ WP# _______ WP# _______
WP# _______ WP# _______ WP# _______
WP# _______ WP# _______ WP# _______
WP# _______ WP# _______ WP# _______