Adverse Selection, Aggregate Uncertainty, and the Role for Mutual Insurance Companies

Smith, Bruce D. and Michael J. Stutzer

Working Paper No. 118
February 1988
ADVERSE SELECTION, AGGREGATE UNCERTAINTY, AND THE ROLE FOR MUTUAL INSURANCE COMPANIES

Bruce D. Smith
University of Western Ontario and Rochester Center for Economic Research

Michael J. Stutzer
Federal Reserve Bank of Minneapolis

Working Paper No. 118

February 1988

We would like to thank, without implicating, two anonymous referees for helpful comments on an earlier draft of this paper.
I. Introduction

At this point the theoretical and empirical literature about insurance contracts is large and diverse (and sufficiently so that we will not attempt to make a list of major contributions). However in all of this literature there is virtually no mention made of the fact that large parts of the insurance industry are populated by mutual insurance firms, with these firms playing a major role in life and casualty insurance, for instance, as well as other areas of the industry. Given that mutual forms of organization are also common in other activities, such as lending, it seems important to understand why such forms of organization arise.

We take the distinguishing feature of mutual insurance contracts to be what Rothschild and Stiglitz [1976, p. 646] described as "the peculiar provision...that the effective premium [on such contracts] is not determined until the end of the period..." i.e., until the aggregate experience of those insured is known. Or, put differently, we view mutual insurance companies as a form of organization in which aggregate risks are shared between the insurer and the insured. In this paper we develop a model in which mutual insurance companies arise endogenously. Moreover, such insurance companies co-exist in insurance markets with investor owned (or "non-mutual") insurance firms, replicating an important unexplained aspect of observed behavior in the insurance (and other) industries.

The model we develop to explain the existence of mutual insurance firms (and their co-existence with non-mutual firms) is a simple variant of the adverse selection model of Rothschild and Stiglitz [1976] and Wilson [1977]. In particular, we consider an environment which is identical to that of those authors, with the single addition being that insurance contracts are written before the realization of some random variable, which affects the accident
probabilities of the entire insured population. Thus there will be a set of
agents of different types, indexed by i, who have different probabilities of
not filing a claim. These probabilities, \(p_i(s) \), depend on the realization of
a random variable \(s \), which is drawn after insurance contracts are written.
Under a simple non-degeneracy condition on the values \(p_i(s) \), and under the
assumption of risk neutral insurers, we show that the insurance industry will
consist of two kinds of firms. One kind, which will insure "high-risk
agents," will consist of non-mutual insurers, or in other words, will offer
insurance contracts where payments do not depend on the realization of \(s \).
(That is, premiums are determined before the "end of the period.") The other
type of insurer will be a mutual insurer, so insurance contracts depend on \(s \).
"Low risk" agents will purchase contracts from mutual insurers. Thus the
organization of an insurance firm as a mutual or as an investor owned
enterprise functions as a sorting device. Low risk insurance purchasers
signal their type by being willing to share in aggregate risk with their
insurer.

In addition to offering an explanation for why mutual and non-mutual
forms of organization co-exist, we also view this paper as part of a
literature that has explored the results of fairly basic alterations in
adverse selection environments. For instance, Judd [1984] and Riley [1985]
examine the implications of agents having alternate opportunities in such
assumptions about what is observable. Here we introduce aggregate
uncertainty, and consider its consequences. In other contexts, such as a loan
market context, our results can be reinterpreted as predicting the
co-existence of state contingent and uncontingent debt.\(^2\)
II. The Model

We consider a simple variation of the insurance environment discussed by Rothschild and Stiglitz (1976). There are three groups of agents. One group is a set (with a fixed number of members that exceeds one) of potential sellers of insurance. These agents will be called insurance firms. Insurance firms are risk neutral, and in addition are assumed to have an endowment of the single consumption good which is large enough so that insurance firms can conceivably assume all aggregate risk.3

In addition to insurance firms, there is a continuum of risk averse agents, who can be divided into two types. All of these agents have identical utility functions $U(c)$ with $U' > 0$, $U'' < 0 \forall c \in \mathbb{R}_+$. Each agent receives a random endowment e of the consumption good drawn from the two element set $\{e_1, e_2\}$; $e_1 > e_2 > 0$. An agent whose endowment is e_1 has not suffered a loss, while obtaining the endowment e_2 constitutes "a loss".

There is an aggregate random variable s, which is also drawn from a two element set; $s \in \{1, 2\}$. s is realized after insurance contracts are entered into (thus giving insurance firms an opportunity to insure against aggregate as well as individual specific risk). Let $\pi(s)$ denote the probability of state s.

Further, let i index agents' "types". Given the realization of s, a type i agent has a probability $p_i(s)$ of receiving the endowment e_1, or a probability $1-p_i(s)$ of suffering a loss. We let $p_2(s) > p_1(s)$ hold for all s, so that type 2 agents are the "low risk" group. We also let $p_1(2) > p_1(1)$ hold $\forall i$, so that state 2 is unambiguously the "good" aggregate state. Agents know their types before purchasing insurance contracts (and hence before s is known). A fraction θ of all insured agents are of type one. Conditional on s, endowment realizations are independent across agents, so the fraction of
type i agents receiving \(e_1 \) is \(p_1(s) \). Finally, it is assumed that either

\[(1) \quad p_1(1)/p_2(1) \neq p_1(2)/p_2(2) \]

or

\[(2) \quad [1 - p_1(1)]/[1 - p_2(1)] \neq [1 - p_1(2)]/[1 - p_2(2)] \]

holds, or both.\(^5\)

A. Equilibrium

Let \(c_{i,j}^i(s) \) denote the consumption of a type i agent who receives endowment \(e_j \) in state \(s \). Then insurance firms offer contracts which consist of consumption schedules \(c_{i,j}^i(s) \); \(i,j,s = 1,2 \). As before, and as in Rothschild and Stiglitz, each insurance firm is restricted to the offer of a single consumption schedule, so that "cross-subsidization" is ruled out.\(^6\)

Given an offered consumption schedule \(c_{i,j}^i(s) \), an insurance firm attracting type i agents earns the ex post profit

\[(3) \quad \psi_i(s) = p_i(s)[e_1 - c_{i,1}^i(s)] + [1 - p_i(s)][e_2 - c_{i,2}^i(s)]; \ i = 1,2. \]

The objective of each firm is to maximize expected profits, given the offers of other firms. Expected profits associated with any contract offer are

\[\sum_s p(s)\psi_i(s) \]. \] Finally, contract offers must be incentive compatible in the presence of other announced contracts. Incentive compatibility here requires
that

\[
(4) \sum_{s} \Pi(s) p(s) U(c(s)) + \sum_{s} \Pi(s)(1-p(s)) U(c(s)) \geq \sum_{s} \Pi(s) p(s) U(c(s)) + \sum_{s} \Pi(s)(1-p(s)) U(c(s))
\]

\[
(5) \sum_{s} \Pi(s) p(s) U(c(s)) + \sum_{s} \Pi(s)(1-p(s)) U(c(s)) \geq \sum_{s} \Pi(s) p(s) U(c(s)) + \sum_{s} \Pi(s)(1-p(s)) U(c(s)).
\]

As usual, a Nash equilibrium is a set of announced insurance contracts such that, given these announcements, no firm has an incentive to offer an alternative insurance contract.

III. The Rothschild-Stiglitz Equilibrium

As a point of reference, this section constructs the analogue of the Rothschild-Stiglitz equilibrium for this economy. Specifically, for the purposes of this section, it is assumed that firms are precluded from offering insurance contracts contingent on \(s\) or, in other words, announced contracts must obey \(c_j^i(1) = c_j^i(2) \forall i,j\). This restriction will essentially reproduce the Rothschild-Stiglitz equilibrium allocation of resources.

Under the restriction on announced contracts, any equilibrium contract offer must have the properties derived by Rothschild and Stiglitz: (i) self-selection of types by contract selected must occur, (ii) all offered contracts must earn zero expected profits, and (iii) all contracts must be maximal for the agents selecting them among the set of contracts that earn nonnegative expected profits and that are consistent with self-selection. The arguments to this effect are identical to those given by Rothschild and Stiglitz, and
are therefore omitted here.

Equilibrium contracts are now easily derived. To begin, define

\[p_i = \sum_s p(s)p_i(s); i=1,2. \]

In addition, noting that (as in Rothschild and Stiglitz) incentive constraints do not bind on the determination of \((c^1_1, c^1_2)\), this contract must be maximal for type 1 (high-risk) agents among the set of contracts that earn nonnegative expected profits. Hence, in equilibrium \((c^1_1, c^1_2)\) must solve the problem

\[
\max p \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} U(c^1) + (1-p) \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} U(c^1)
\]

subject to

\[
\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} e & -c \end{pmatrix}^\top \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} + (1-p) \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} (e - c^1) = 0.
\]

The solution to this problem is characterized by complete insurance, i.e.,

\[
c^1_1 = c^1_2 = p e_1 + (1-p) e_2 = c^*.
\]

Determination of \((c^2_1, c^2_2)\) involves finding the maximal contract for type 2 agents that earns nonnegative expected profits, and that is incentive compatible in the presence of the contract offer \((c^1_1, c^1_2) = (c^*, c^*)\). In equilibrium \((c^2_1, c^2_2)\) must solve the problem

\[
\max p \begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix} U(c^2) + (1-p) \begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix} U(c^2)
\]
subject to

\[(7) \quad p \frac{U(c^2_1)}{1} + (1-p)\frac{U(c^2_2)}{2} \leq U(c^*)\]
\[(8) \quad p \frac{(e-c^2)}{2} + (1-p)\frac{(e-c^2)}{2} = 0.\]

As in Rothschild-Stiglitz, (7) must be binding in equilibrium. This equation and (8) then determine a unique consumption pair \((c^2_1, c^2_2)\).

The contract offers \((c^1_1, c^1_2) = (c^*, c^*)\) and \((c^2_1, c^2_2) = (c^2_1, c^2_2)\) are exactly the Rothschild-Stiglitz contracts with the expected loss probabilities \(\sum \pi(s)p_i(s)\) playing the role of the Rothschild-Stiglitz probabilities. Finally, existence issues here are exactly as in Rothschild-Stiglitz, so that existence of equilibrium can be guaranteed by appropriate choice of the fraction \(\theta\) of type 1 agents.

IV. An Equilibrium with Mutual Insurance Firms

We now investigate the properties of equilibrium contracts with the restrictions \(c^j_1 = c^j_2\) relaxed. As in the previous section, it is the case that any set of equilibrium contract offers must have the following properties: (i) self-selection of types by contract selected occurs, (ii) all offered contracts earn zero expected profits, and (iii) all offered contracts must be maximal for the agents selecting them among the set of contracts that earn non-negative expected profits and that result in self-selection occurring. 7 We now proceed to characterize equilibrium contracts.

To begin, consider the contracts obtained by type 1 agents, specifying values \(c^1_j(s)\). Incentive constraints cannot bind on the choice of type 1.
contracts, as will be apparent. Then $c_j^1(s); j, s = 1, 2$, solves the problem

$$\max_{s} \sum_{s} \pi(s)p_j(s)U[c_j^1(s)] + \sum_{s} \pi(s)(1-p_j(s))U[c_j^1(s)]$$

subject to

$$\sum_{s} \pi(s)p_j(s)\lambda = \sum_{s} \pi(s)(1-p_j(s))\lambda = 0. \tag{9}$$

Letting λ denote the Lagrange multiplier associated with the constraint (9), the first order conditions for this problem are

$$\pi(s)p_j(s)U'[c_j^1(s)] = \lambda \pi(s)p_j(s); s = 1, 2 \tag{10}$$

$$\pi(s)(1-p_j(s))U'[c_j^2(s)] = \lambda \pi(s)(1-p_j(s)); s = 1, 2 \tag{11}$$

Then, as is apparent from (10) and (11), $c_j^1(s)$ is constant across j and s, so $c_j^1(s) = c^* \forall j, s$. Thus type 1 agents do not share aggregate risk with their insurers, i.e., type 1 agents purchase contracts from firms that are not mutual insurance firms. These contracts provide complete insurance against both individual specific and aggregate risks.

It remains to derive type 2 contracts. If an equilibrium exists, the equilibrium contract obtained by type 2 agents must be maximal for them among the set of contracts earning zero expected profits, and that satisfy (4) given that $c_j^1(s) = c^* \forall j, s$. Thus the values $c_j^2(s)$ must solve the problem

$$\max_{s} \sum_{s} \pi(s)p_j(s)U[c_j^2(s)] + \sum_{s} \pi(s)(1-p_j(s))U[c_j^2(s)]$$
subject to

\begin{align*}
(12) \quad U(c^*) &= \sum_{s} \pi(s)p(s)U[c(s)] + \sum_{s} \pi(s)[1-p(s)]U[c(s)] \\
(13) \quad \pi(s)p(s)[e^{-c(s)}] + \pi(s)[1-p(s)][e^{-c(s)}] &= 0.
\end{align*}

The first order conditions for this problem are

\begin{align*}
(14) \quad [p_2(s)-\mu p_1(s)]U'[c_1^2(s)] - \eta p_2(s) &= 0; \quad s=1,2 \\
(15) \quad [1-p_2(s)-\mu(1-p_1(s))]U'[c_2^2(s)] - \eta[1-p_2(s)] &= 0; \quad s=1,2.
\end{align*}

where \(\mu \) and \(\eta \) are the Lagrange multipliers associated with (12) and (13) respectively.

The contract that satisfies (12) – (15) is characterized more fully below. However, we may immediately note that \(c_j^2(1) \neq c_j^2(2) \) for at least one \(j \). To see this, suppose that \(c_j^2(1) = c_j^2(2); \quad j=1,2 \). Then (14) and (15) imply that

\begin{align*}
(16) \quad \frac{p_2(1) - \mu p_1(1)}{p_2(2) - \mu p_1(2)} &= \frac{p_2(1)}{p_2(2)}
\end{align*}

and

\begin{align*}
(17) \quad \frac{1-p_2(1) - \mu(1-p_1(1))}{1-p_2(2) - \mu(1-p_1(2))} &= \frac{1-p_2(1)}{1-p_2(2)}.
\end{align*}
But (16) and (17) imply that (since $\mu > 0$ must hold)

\[
p_1(1)/p_2(1) = p_1(2)/p_2(2) \quad \text{and} \quad [1-p_1(1)]/[1-p_2(1)] = [1-p_1(2)]/[1-p_2(2)],
\]

contrary to (1) and (2). Thus $c_j^1(1) \neq c_j^2(2)$ for at least one j. In any equilibrium, type 2 agents must share aggregate risks with their insurers.

Any equilibrium, then, has the property that some agents (type 1 agents) are insured by investor owned insurance firms, while other agents (type 2 agents) receive insurance contracts where their payments are not determined until the aggregate experience of their insurer is known. Thus mutual insurance firms must co-exist with investor owned firms in equilibrium.

A. **Existence of Equilibrium**

We would like to have something to say about existence issues in the presence of state contingent insurance contracts. However, we have been unable to obtain any interesting results on this question. In particular, it is not obvious whether permitting state contingent contracts makes existence of an equilibrium easier or more difficult to obtain here. The introduction of state contingent insurance contracts improves the welfare of type 2 agents relative to section III. However, the pooling contract most preferred by type 2 agents also has $c_j^1(1) \neq c_j^2(2)$ for at least one j. Thus the introduction of state contingencies into insurance contracts also increases the expected utility obtainable by type 2 agents under pooling. We have not been able to determine which expected utility level increases more. However, we might observe that in a loan market version of the model presented here, but in which all agents are risk neutral, if the section III equilibrium exists, then the section IV equilibrium exists as well. We might also observe that if θ is chosen sufficiently large, an equilibrium will continue to exist, as in Section III.
B. Properties of Equilibrium Contracts

When an equilibrium exists, then, the equilibrium has the feature that agents are sorted in part by the type of firm from which they purchase insurance. High risk agents receive complete insurance (including against aggregate uncertainty) from investor owned insurance firms, while low risk agents signal their type by purchasing insurance from mutual insurance firms. In doing so, these agents signal their type by expressing a willingness to share risks associated with aggregate uncertainty with their insurers.

It is possible to characterize further how this signalling occurs. Using (14) for \(s=1,2 \), it is immediate that \(c_1^2(2) \geq (\prec) c_1^2(1) \) iff

\[
\frac{p_1(1)}{p_2(1)} \geq (\prec) \frac{p_1(2)}{p_2(2)}.
\]

(18)

Similarly, using (15) for \(s=1,2 \), it is immediate that \(c_2^2(2) \geq (\prec) c_2^2(1) \) iff

\[
\frac{1-p_1(1)}{1-p_2(1)} \geq (\prec) \frac{1-p_1(2)}{1-p_2(2)}.
\]

(19)

Since \(p_2(s) > p_1(s) \); \(s=1,2 \) it is possible to show that \(c_1^2(2) \geq c_1^2(1) \) and \(c_2^2(2) \geq c_1^2(2) \) never hold simultaneously. (By (1) and (2), \(c_3^2(1) \neq c_3^2(2) \) holds for some \(j \).) All other combinations are possible, however. We now say a word about when each case occurs.

Case 1. \(p_1(1)/p_2(1) > p_1(2)/p_2(2) \) and \([1-p_1(1)]/[1-p_2(1)] < [1-p_1(2)]/[1-p_2(2)] \). In this case \(c_1^2(2) > c_1^2(1) \) and \(c_2^2(1) > c_2^2(2) \) hold, so
that in this case low risk agents receive closer to complete insurance in the "bad" aggregate state \((s=1)\) than in the "good" aggregate state. Intuitively this may be thought of as follows. \(1 > \frac{p_1(1)}{p_2(1)} > \frac{p_1(2)}{p_2(2)}\) implies that the probability of not filing a claim for type 1 agents is higher relative to that for type 2 agents when \(s=1\) than when \(s=2\). Hence setting \(c_1^2(2) > c_1^2(1)\) makes the cost of insurance highest (when purchasing from a mutual firm) when type 1 and 2 agents are most alike in terms of probabilities of not filing claims. Similarly \(1 < \frac{1-p_1(1)}{1-p_2(1)} < \frac{1-p_1(2)}{1-p_2(2)}\) means that the probability of filing a claim is most similar between type 1 and 2 agents when \(s=1\). Thus setting \(c_2^2(2) < c_2^2(1)\) makes it least attractive to file a claim in the state \((s=2)\) where type 1 agents are relatively more likely to do so. Thus setting \(c_1^2(2) > c_1^2(1)\) and \(c_2^2(2) < c_2^2(1)\) increases the perceived costs to a type 1 agent of buying an insurance contract from a mutual insurance firm, and hence such a contract structure maximizes incentives for self-selection to occur.

Case 2. \(\frac{p_1(1)}{p_2(1)} < \frac{p_1(2)}{p_2(2)}\) and \(\frac{1-p_1(1)}{1-p_2(1)} < \frac{1-p_1(2)}{1-p_2(2)}\). In this case \(c_1^2(1) > c_1^2(2)\) and \(c_2^2(1) > c_2^2(2)\). Intuitively, type 1 agents are relatively likely to file a claim when \(s=2\), as in case 1. Thus optimal signalling dictates that \(c_2^2(1) > c_2^2(2)\). Moreover, since \(1 > \frac{p_1(2)}{p_2(2)} > \frac{p_1(1)}{p_2(1)}\), the probability of not filing a claim for type 1 agents is also high relative to type 2 agents when \(s=2\). Therefore, incentives for self-selection are increased by setting \(c_1^2(1) > c_1^2(2)\).

Case 3. \(\frac{p_1(1)}{p_2(1)} < \frac{p_1(2)}{p_2(2)}\) and \(\frac{1-p_1(1)}{1-p_2(1)} > \frac{1-p_1(2)}{1-p_2(2)}\). In this case \(c_1^2(1) > c_1^2(2)\) and \(c_2^2(2) > c_2^2(1)\). Thus, in this case, type 2 agents receive something closer to complete insurance in the "good" aggregate state \((s=2)\) than in the "bad" aggregate state \((s=1)\).
Again, the intuition revolves around setting $c^2_1(1) > c^2_1(2)$ because the probability of type 1 agents not filing claims in state 2 is relatively high. Similarly, the probability of type 1 agents filing claims is relatively high when $s=1$, so signalling considerations dictate that $c^2_2(2) > c^1_2(1)$.

C. Discussion

Perhaps the natural presumption is that agents purchasing insurance policies from mutual firms should receive more complete insurance when the aggregate experience of the firm is best ($s=2$). This does occur in case 3 above. However, it does not occur in case 1, and in case 2 total "rebates" from firms to policy holders are lowest in the "good" state ($s=2$). Should this be viewed as a troublesome aspect of the analysis? We think not. For instance, in agricultural credit markets the cooperatively organized farm credit system has increased rebates to borrowers recently, despite clearly having a poor aggregate experience. Thus, in practice, behavior by cooperative organizations does sometimes mimic the outcome predicted in case 2, for instance.

V. Pareto Optimality

The introduction of aggregate uncertainty changes the predictions of a simple adverse selection model about the nature of insurance contracts that emerge when the Nash equilibrium concept of Rothschild and Stiglitz [1976] is imposed. In this section we briefly argue that the introduction of aggregate uncertainty has implications that are not dependent on the choice of an equilibrium concept. In particular, we show that the set of Pareto optimal allocations is altered by the introduction of aggregate uncertainty.

To do so, it is sufficient to argue as follows. Suppose that $p_i(1) = p_i(2)$; $i=1,2$ held, so that there was no genuine aggregate uncertainty
here. Then, as shown by Prescott and Townsend [1984], any Pareto optimum would have $c_j^i(1) = c_j^i(2)$ for all i, j. Moreover, as Rothschild and Stiglitz and Prescott and Townsend show, in this case the equilibrium contracts derived in section III are Pareto optimal so long as

$$
\frac{\theta}{1-\theta} \left[\frac{p - p^*}{p(1-p^*)} \right] \geq \frac{\frac{\delta}{2} \left[U'(c^*) U'(c^2) - U'(c^1) U'(c^2) \right]}{\frac{\delta}{2} U'(c^1) U'(c^2)}.
$$

(20)

When $p_i^i(1) < p_i^i(2)$ for all i, however, and when either (1) or (2) holds, the results of section IV imply that the allocation derived in section III can never be Pareto optimal. Thus the presence of aggregate uncertainty changes the set of Pareto optimal allocations for at least some parameters values (those satisfying (20)).

VI. Conclusion

Since our results depend on the occurrence of events that affect the probabilities of filing claims for all insured agents, and on either (1) or (2) holding, it seems appropriate to conclude by commenting on the plausibility of these assumptions. With respect to random aggregate events affecting the probability of filing claims for all agents, it would seem that this happens regularly in the auto insurance (weather) or life insurance (random developments in health care) industries. Mutual insurance firms are common in both industries. Moreover, it seems plausible that these random events affect the probabilities of claims being filed differently for different agents. For instance, bad weather may affect the relative occurrence of auto accidents across drivers who differ in terms of
(unobservable) patience levels. Developments in health care will impact differently on different agents as well, in ways that might well depend on unobservable characteristics. Thus in those areas of insurance where mutual insurers are common, it seems quite reasonable to assume that aggregate uncertainty matters, and matters in ways that we require in order to explain the existence of mutual insurance firms.

University of Western Ontario
and Rochester Center for Economic Research

Federal Reserve Bank of Minneapolis
and University of Minnesota
References

Wilson, Charles, "A Model of Insurance Markets with Incomplete Information,"

Notes

2. See Smith and Stutzer [1987a] for such an interpretation.

3. We expect that some will question the appropriateness of assuming risk neutral insurance firms when there is aggregate ('undiversifiable') risk faced by these firms. However, if insurance firms are not risk neutral, or if they do not have resources permitting them to assume risk on behalf of those they insure, it is a foregone conclusion that insurance firms and insured agents must share aggregate risks. Thus we view our assumptions as being those that make the analysis interesting.

4. For justifications see Green [1984], Judd [1985] or Stutzer [1986].

5. (1) and (2) fail simultaneously iff \(p_2(2) - p_2(1) = p_1(2) - p_1(1) \), or iff different realizations of \(s \) simply scale up accident probabilities in equal amounts for all agents.

6. This assumption is made to make the equilibrium that is derived here directly comparable to that of Rothschild and Stiglitz [1976].

7. The only one of these properties that may not be apparent in the presence of non-trivially state contingent contracts is (i). We therefore sketch a proof of property (i). Suppose, contrary to property (i), that a pooling contract can occur in equilibrium. Denote such a contract by values \(c_j(s) \); \(j, s = 1, 2 \). We show that some firm has an incentive to offer a contract \(c_j^2(s) \) that attracts type 2 agents only.

In particular, construct the contract \(c_j^2(s) \) as follows. Let \(c_j^2(1) = c_j(1) \); \(j = 1, 2 \), and choose values \(c_j^2(2) \) so that
\[p_1(2)U[c_1^2(2)] + [1-p_1(2)]U[c_2^2(2)] < p_1(2)U[c_1^1(2)] + [1-p_1(2)]U[c_2^1(2)] \]

\[p_2(2)U[c_1^2(2)] + [1-p_2(2)]U[c_2^2(2)] > p_2(2)U[c_1^1(2)] + [1-p_2(2)]U[c_2^1(2)]. \]

Such a choice is possible, since it simply reproduces such a construction in Rothschild-Stiglitz [1976] after \(s \) is realized. Then the contract \(c_j^2(s) \) attracts all type 2 agents, and no type 1 agents. Moreover, if the contract \(c_j^1(s) \) earns non-negative expected profits, the contract \(c_j^2(s) \) earns positive expected profits if \(c_j^2(2) \) is sufficiently close to \(c_j^1(2); j=1,2 \). Thus the contract \(c_j^1(s) \) cannot be offered in equilibrium, proving property (i).

8. See Smith and Stutzer [1987a].

9. For a discussion of this point, see Smith and Stutzer [1987b].
1987-88 DISCUSSION PAPERS

WP#68 RECURSIVE UTILITY AND OPTIMAL CAPITAL ACCUMULATION, I: EXISTENCE, by Robert A. Becker, John H. Boyd III, and Bom Yong Sung, January 1987

WP#69 MONEY AND MARKET INCOMPLETENESS IN OVERLAPPING-GENERATIONS MODELS, by Marianne Baxter, January 1987

WP#70 GROWTH BASED ON INCREASING RETURNS DUE TO SPECIALIZATION, by Paul M. Romer, January 1987

WP#71 WHY A STUBBORN CONSERVATIVE WOULD RUN A DEFICIT: POLICY WITH TIME-INCONSISTENT PREFERENCES, by Torsten Persson and Lars E.O. Svensson, January 1987

WP#72 ON THE CONTINUUM APPROACH OF SPATIAL AND SOME LOCAL PUBLIC GOODS OR PRODUCT DIFFERENTIATION MODELS, by Marcus Berliant and Thijs ten Raa, January 1987

WP#73 THE QUIT-LAYOFF DISTINCTION: GROWTH EFFECTS, by Kenneth J. McLaughlin, February 1987

WP#74 SOCIAL SECURITY, LIQUIDITY, AND EARLY RETIREMENT, by James A. Kahn, March 1987

WP#75 THE PRODUCT CYCLE HYPOTHESIS AND THE HECKSCHER-OHLIN-SAMUELSON THEORY OF INTERNATIONAL TRADE, by Sugata Marjit, April 1987

WP#76 NOTIONS OF EQUAL OPPORTUNITIES, by William Thomson, April 1987

WP#77 BARGAINING PROBLEMS WITH UNCERTAIN DISAGREEMENT POINTS, by Youngsub Chun and William Thomson, April 1987

WP#78 THE ECONOMICS OF RISING STARS, by Glenn M. MacDonald, April 1987

WP#79 STOCHASTIC TRENDS AND ECONOMIC FLUCTUATIONS, by Robert King, Charles Plosser, James Stock, and Mark Watson, April 1987

WP#80 INTEREST RATE SMOOTHING AND PRICE LEVEL TREND-STATIONARITY, by Marvin Goodfriend, April 1987
THE EQUILIBRIUM APPROACH TO EXCHANGE RATES
by Alan C. Stockman, revised, April 1987

INTEREST-RATE SMOOTHING
by Robert J. Barro, May 1987

CYCLICAL PRICING OF DURABLE LUXURIES
by Mark Bils, May 1987

EQUILIBRIUM IN COOPERATIVE GAMES OF POLICY FORMULATION
by Thomas F. Cooley and Bruce D. Smith, May 1987

RENT SHARING AND TURNOVER IN A MODEL WITH EFFICIENCY UNITS OF HUMAN CAPITAL
by Kenneth J. McLaughlin, revised, May 1987

THE CYCLICALITY OF LABOR TURNOVER: A JOINT WEALTH MAXIMIZING HYPOTHESIS
by Kenneth J. McLaughlin, revised, May 1987

CAN EVERYONE BENEFIT FROM GROWTH? THREE DIFFICULTIES
by Herve' Moulin and William Thomson, May 1987

TRADE IN RISKY ASSETS
by Lars E.O. Svensson, May 1987

RATIONAL EXPECTATIONS MODELS WITH CENSORED VARIABLES
by Marianne Baxter, June 1987

EMPIRICAL EXAMINATIONS OF THE INFORMATION SETS OF ECONOMIC AGENTS
by Nils Gottfries and Torsten Persson, June 1987

DO WAGES VARY IN CITIES? AN EMPIRICAL STUDY OF URBAN LABOR MARKETS
by Eric A. Hanushek, June 1987

ASPECTS OF TOURNAMENT MODELS: A SURVEY
by Kenneth J. McLaughlin, July 1987

ON MODELLING THE NATURAL RATE OF UNEMPLOYMENT WITH INDIVISIBLE LABOR
by Jeremy Greenwood and Gregory W. Huffman

TWENTY YEARS AFTER: ECONOMETRICS, 1966-1986
by Adrian Pagan, August 1987

ON WELFARE THEORY AND URBAN ECONOMICS
by Marcus Berliant, Yorgos Y. Papageorgiou and Ping Wang, August 1987

ENDOGENOUS FINANCIAL STRUCTURE IN AN ECONOMY WITH PRIVATE INFORMATION
by James Kahn, August 1987
WP#97 THE TRADE-OFF BETWEEN CHILD QUANTITY AND QUALITY: SOME EMPIRICAL EVIDENCE
by Eric Hanushek, September 1987

WP#98 SUPPLY AND EQUILIBRIUM IN AN ECONOMY WITH LAND AND PRODUCTION
by Marcus Berliant and Hou-Wen Jeng, September 1987

WP#99 AXIOMS CONCERNING UNCERTAIN DISAGREEMENT POINTS FOR 2-PERSON BARGAINING PROBLEMS
by Youngsub Chun, September 1987

WP#100 MONEY AND INFLATION IN THE AMERICAN COLONIES: FURTHER EVIDENCE ON THE FAILURE OF THE QUANTITY THEORY
by Bruce Smith, October 1987

WP#101 BANK PANICS, SUSPENSIONS, AND GEOGRAPHY: SOME NOTES ON THE "CONTAGION OF FEAR" IN BANKING
by Bruce Smith, October 1987

WP#102 LEGAL RESTRICTIONS, "SUNSPOTS", AND CYCLES
by Bruce Smith, October 1987

WP#103 THE QUIT-LAYOFF DISTINCTION IN A JOINT WEALTH MAXIMIZING APPROACH TO LABOR TURNOVER
by Kenneth McLaughlin, October 1987

WP#104 ON THE INCONSISTENCY OF THE MLE IN CERTAIN HETEROSKEDASTIC REGRESSION MODELS
by Adrian Pagan and H. Sabau, October 1987

WP#105 RECURRENT ADVERTISING
by Ignatius J. Horstmann and Glenn M. MacDonald, October 1987

WP#106 PREDICTIVE EFFICIENCY FOR SIMPLE NONLINEAR MODELS
by Thomas F. Cooley, William R. Parke and Siddhartha Chib, October 1987

WP#107 CREDIBILITY OF MACROECONOMIC POLICY: AN INTRODUCTION AND A BROAD SURVEY
by Torsten Persson, November 1987

WP#108 SOCIAL CONTRACTS AS ASSETS: A POSSIBLE SOLUTION TO THE TIME-CONSISTENCY PROBLEM
by Laurence Kotlikoff, Torsten Persson and Lars E. O. Svensson, November 1987

WP#109 EXCHANGE RATE VARIABILITY AND ASSET TRADE
by Torsten Persson and Lars E. O. Svensson, Novmeber 1987

WP#110 MICROFOUNDATIONS OF INDIVISIBLE LABOR
by Vittorio Grilli and Richard Rogerson, November 1987
WP#111 FISCAL POLICIES AND THE DOLLAR/POUND EXCHANGE RATE: 1870-1984
by Vittorio Grilli, November 1987

WP#112 INFLATION AND STOCK RETURNS WITH COMPLETE MARKETS
by Thomas Cooley and Jon Sonstelie, November 1987

WP#113 THE ECONOMETRIC ANALYSIS OF MODELS WITH RISK TERMS
by Adrian Pagan and Aman Ullah, December 1987

WP#114 PROGRAM TARGETING OPTIONS AND THE ELDERLY
by Eric Hanushek and Roberton Williams, December 1987

WP#115 BARGAINING SOLUTIONS AND STABILITY OF GROUPS
by Youngsub Chun and William Thomson, December 1987

WP#116 MONOTONIC ALLOCATION MECHANISMS
by William Thomson, December 1987

WP#117 MONOTONIC ALLOCATION MECHANISMS IN ECONOMIES WITH PUBLIC GOODS
by William Thomson, December 1987

WP#118 ADVERSE SELECTION, AGGREGATE UNCERTAINTY, AND THE ROLE FOR MUTUAL
INSURANCE COMPANIES
by Bruce D. Smith and Michael J. Stutzer, February 1988

WP#119 INTEREST ON RESERVES AND SUNSPOT EQUILIBRIA: FRIEDMAN'S PROPOSAL
RECONSIDERED
by Bruce D. Smith, February 1988

WP#120 INTERNATIONAL FINANCIAL INTERMEDIATION AND AGGREGATE FLUCTUATIONS
UNDER ALTERNATIVE EXCHANGE RATE REGIMES
by Jeremy Greenwood and Stephen D. Williamson, February 1988

WP#121 FINANCIAL DeregULATION, MONETARY POLICY, AND CENTRAL BANKING
by Marvin Goodfriend and Robert G. King, February 1988
To order copies of the above papers complete the attached invoice and return to Christine Massaro, W. Allen Wallis Institute of Political Economy, RCER, 109B Harkness Hall, University of Rochester, Rochester, NY 14627. Three (3) papers per year will be provided free of charge as requested below. Each additional paper will require a $5.00 service fee which must be enclosed with your order. For your convenience an invoice is provided below in order that you may request payment from your institution as necessary. Please make your check payable to the Rochester Center for Economic Research. Checks must be drawn from a U.S. bank and in U.S. dollars.

W. Allen Wallis Institute for Political Economy

Rochester Center for Economic Research, Working Paper Series

OFFICIAL INVOICE

Requestor's Name

Requestor's Address

Please send me the following papers free of charge (Limit: 3 free per year).

WP# _____ WP# _____ WP# _____

I understand there is a $5.00 fee for each additional paper. Enclosed is my check or money order in the amount of $__________. Please send me the following papers.

WP# _____ WP# _____ WP# _____
WP# _____ WP# _____ WP# _____
WP# _____ WP# _____ WP# _____
WP# _____ WP# _____ WP# _____