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ABSTRACT

This paper establishes a simple existence result for solutions to
variational problems of the form ng(x,i,t)dt or JSG(x,i,;,t)dt. The
key assumptions are that G have an integrable upper bound, that it
satisfy a growth condition and that it be concave as a function of the
highest order derivative in the problem, other arguments held constant.
The discussion illustrates why three well known types of problems fail
to have solutions. Ffor two of these--chattering and cake eating--
extended solution concepts are contrasted with simple modifications that
restore the existence of a conventional solution. In a third case--
state variables with jumps--the source of the difficulty is fundamental.
For these problems a natural extended solution, analogous to the

extension from probability density functions to general distribution

functions is suggested.



1. INTRODUCTION

Many problems in economics can be stated as variational problems
of the form "maximize ng(x,i,t)dt.“ When the integrand G is concave
as a function of x and x, t held constant, solutions to this problem
can be analyzed by means of a welli-known set of sufficient conditions.
When G does not possess this kind of concavity, a theorist must rely on
necessary conditions and an existence theorem. Without such a theorem
there is no guarantee that there exists a path which satisfies the
necessary conditions or that one of the paths which do satisfy the
necessary conditions will be a solution. |In finite dimensional
problems, economists often omit explicit reference to an existence
result because it is obvious that the problem under consideration does
indeed have a solution; however, experience with variational problems
suggests caution because apparently reasonable problems can fail to have
a solution. This paper presents a general existence result and uses it
to discuss what goes wrong in each of the three kinds of problems
referred to in the title and how a economic theorist faced with such a
problem should proceed.

Because it is useful for understanding probliems which exhibit
""chattering," the main theorem actually considers a more general
variational problem of the form "maximize ng(x,i,;,t)dt.” Stated in
this form, the key assumptions are that G have an integrable upper
bound, that it satisfy a growth condition and that it be concave as a
function of the highest order derivative in the problem, other arguments

held constant. Because of the form of the growth condition, this

extension to integrands stated in terms of higher order derivatives



cannot be derived from the usual statement of the problem by stacking a
higher order system to form a first order system. This extension (and
an easy generalization to n'th order derivatives) also makes explicit
the role played by concavity. |In contrast to problems in finite
dimensional spaces, some concavity assumption is crucial for
establishing the existence of a solution; but this assumption is much
weaker than joint concavity of the integrand in all arguments except t.
In particular, it is weak enough to allow consideration of most economic
problems with some form of non-convexity.

Problems which fail to have a solution because of chattering do
not satisfy this convexity assumption. An extended solution concept
which formally restores the existence of a solution in these cases has
been proposed by L. C. Young [26]. The discussion here argues that in
economic problems, a solution in the usual sense fails to exist because
the problem is not completely specified. The correct response is not to
extend the notion of what is a solution but rather to consider cost
terms associated with higher order derivatives which are usually
neglected. This modified problem will satisfy the convexity assumption.
The ‘''‘cake eating' problem of Gale [12] fails to have a solution because
it does not have an integrable upper bound. For this problem an
extended solution concept has been proposed by Artstein [2]. Once
again, economic arguments suggest that it is more natural to modify the
statement of the problem sc that it will have such a bound. In the
third kind of problem considered here, the obvious '"solution'" is a path
for the state variable x(t) which is discontinuous and therefore lies

outside the space of functions aliowed as possible solutions. These



"jumps" arise because of the absence of a growth condition. The
previous two kinds of problems can be modified to recover solutions in
the usual sense, but the absence of a growth condition is fundamental in
many economic problems. |In particular, this condition cannot be present
in the equilibrium problem of a price-taking agent. |In this case a
natural and persuasive extended solution concept is available from the
work of Rockafellar [20]. Paths with derivatives in the usual sense can
be extended to paths which have Radon-Nykodym derivatives. Formally,
this is analogous to the generalization from densities to general
measures used in the commodity differentiation literature. (See Jones
[13] and the references cited therein.)

The organization of the paper is as follows. Section 2 gives a
precise statement of the general problem in terms of a functional
defined over a function space. The existence theorem is stated and its
relation to other work is discussed. Section 3 considers the three
problems described above, illustrating in each case the role played by
the assumption which is violated and showing how solutions can be found
either by looking in a larger function space or by modifying the
statement of the problem. Section 4 gives the proof of the theorem. It
amounts to an application of three basic results from analysis--Fatou's
lemma, Mazur's lemma and a compactness result of de la Vallee-Poussin--
which require respectively the integrable upper bound, the convexity

assumption and the growth condition.



2, EXISTENCE THEOREM

2.1 FORMALISM AND STATEMENT

The classical problem of Lagrange, from the calculus of
variations, is to calculate an extreme point of an integral functional
which depends on a (possibly vector valued) state variable, x(t), and
its first derivative, x (t), both defined on some interval | € ®. To
accommodate the extension here to higher order derivatives, we choose to
write this functional in the form ng(x(t),i(t),;(t),t)é(t)dt. The
choice of the unbounded interval of integration is harmless since s ()
can be chosen to be the indicator function for some interval. For many
economic problems, §(t) will represent a discount function. When it
arises naturally in a problem, it is useful to separate it from any
other possibie time dependence in the integrand F.

To state the maximization problem precisely, let F be an extended
real valued function F: QM X QM X aM x [0,0) 3 R U {-=} so all

constraints can be stated implicitly. Let LIM

denote the space of
locally (Lebesgue) integrable functions y: [0,e) - QM. Given any value
d € QM, we can define an integration mapping which sends y to Idy where
tqy (t) = féy(s)ds + d. Let b and a be the prespecified initial values
for x(0) and x(0) respectively. Then under suitable measurability and
boundedness assumptions on F and §, we can define a functional

we LM R U {-} by W(y) = I‘SF(lblay(t),|ay(t),y(t),t)5(t)dt. One
could always stack (x,x) and (i,;) and write such a problem using only

one derivative of a higher dimensional state variable, but the statement

of the theorem in this extended form is weaker in an economically



interesting way. We can always assume that the dependence of F on its
first argument is trivial so this formulation will contain the classical
problem as a special case.
For simplicity, the main theorem is stated and proved oniy for the
case where §(t) is a strictly positive discount function over [0,).
By a trivial modification of lemma 3 in Section 4, it can be extended to
the case where § is the indicator of some finite interval. To state
the theorem, we need one additional definition. An extended real valued
function G defined on a topological space D is upper—semi—continuous
(u.s.c.) if the subgraph of G, sub G = {(z,b) € DxR: b £ G(2)}, is
closed in DxR.
Theorem: Assume that §: [0,») - & is non-increasing, strictly
positive and (Lebesgue) integrable. Assume that
F: & x & x &M x [0,=) » & U {-=} is u.s.c. and satisfies the
following conditions:
(i) For all u,v € & x @M and aimost all t,
Fluw, .00 & 5 @ U (=} is concave.
(i1) There exists a constant p > 1 and a measurable function m(t) ,
with m(t) & (t) integrable, such that for all

wwv.2) € &Y x &V x &M and aimost all t,
Flu,v,z,t) < m@ - ||z]|P.

Then W: LI » & U {—=} is well defined and there exists an element
y* € LI such that = > W (y*) > W) for all y € LI.

The proof of the theorem is deferred until Section 4,



2.2 RELATION TO EXISTING RESULTS

The proof of the theorem follows an approach which dates back to
the work of McShane [16]. As always, it relies on compactness and some
form of continuity. |In this case it is convenient to use the weak
topology on an L] space because it allows a simple characterization of
compact sets. |n economic problems, this topology is often avoided
because preferences stated in the variational form used here are not
continuous. (See for example Bewliey [6].) This objection is irrelevant
here because the functional is upper-semi-continuous in the weak L]
topoliogy. Combined with compactness, upper-semi-continuity is all that
is necessary for the existence of a maximum. The functional W is

defined over all of LI, but it will be shown that the upper-contour set,

{y € LI: W(y) 2 b} for any b € ®, is contained in the specified subset

of L]

functions.

The treatment here follows most closely the existence result in
Ekeland and Temam [10]. Relative to that result or the results of Bates
[3] and Baum [L], which explicitly consider infinite horizon control
problems, the innovation here is to observe that the growth condition
and concavity assumption are required only on the '"highest order
derivative' in any problem stated in terms of multiple derivatives. As
is clear from the proof in Section 4, the theorem can be immediately
extended to problems with n'th order derivatives of the state variable
(i.e. n'th order integrals of function y(t)) for any integer n. The
results of Chichilnisky [7] [8], while technically very different in

approach, contain an observation similar to the one here; in non-concave

maximization problems which do not have solutions, any perturbation of
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the problem which acts to limit the rate of change of the highest order
derivative in the problem will produce a problem which does have a
solution. The existence result proved by Magill [17] follows a similar
approach to the one followed here for the special case where F depends
only on x and X and is jointly concave in these arguments. The
assumption that F depends upper-semi-continuously on t is stronger than
is strictiy necessary; essentially all that is required is measurable
dependence. Nothing in the proof is changed if F is assumed to be a
normal integrand as defined in [19]. Ffor a description of how a control

problem can be stated formally as a variational problem, see [21].

3. PROBLEMS WITHOUT SOLUTIONS
This section considers three problems known not to have solutions
when posed as variational problems in the form stated above. Each
illustrates the role of one of the key assumptions in the theorem. In
each case we compare extended solution concepts proposed for these
problems with the alternative of slightly modifying the statement of the

problem so it has a conventional solution.

3.1 CHATTERING

Consider an optimizing growth model with a bounded, strictly
increasing instantaneous utility function U: @ » & U {-=} that is
discounted at a constant exponential rate §. Assume that output as a
function of a single capital good is described by a conventional
production function f: § » @ U {-=}. |If consumption goods and capital

goods can be exchanged one for one and if capital depreciates at a rate



ps the integrand for this economy can be written as
F(k,k,t) = U(f (k) -pk-K). Assume that there is an optimal steady state
value k for the capital stock and that the initial stock for this
economy equals this value. Then the solution to the problem
max ng(k,R,t)e_Stdt has k identically zero and constant gross
investment pE.

Now suppose that the problem is modified so that there is a fixed
minimum level m > pE for positive gross investment. Forgone
consumption of less than this amount causes no increase in k, so gross
investment equal to pE and kK identically zero cannot be a solution. A
sequence of functions {k"} that converges to the supremum of this
modified problem can be constructed by forcing gross investment to
alternate back and forth between O and m with resting times at the two
points such that on average k is close to zero and k is close to k. As
the period of the alternation decreases with n, the path for N
"ehatters' increasingly rapidly between its two values. The limit of
the objective functional along this sequence equals the supremum for the
problem, but the sequence does not converge to any well-defined function
kK (t) on [0,=). The problem as posed has no solution. Because of the
minimum level of gross investment, the integrand for this problem is not
concave in k, but all the other assumptions of the theorem can be
verified.

The behavioral prediction which emerges from this model is
nonsensical. Every path for k(t) in Ll is dominated by some other
path, so no path can be chosen. As suggested in the introduction, one

obvious way to remedy this situation is to expand the class of
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mathematical objects of choice. For non-convex problems there is a well
developed theory of generalized curves based on the work of L. C. Young
[26]. 1In this extension, k(t) is allowed to be a measure over the real
line at each point in time. This includes the classical case where
k(t) is a measure with a single atom for all t. For the problem here,
the generalized solution is to choose a measure k (t) which assigns
positive probability to each of the two values for k(t) corresponding
to the values of 0 and m for gross investment. For the correct relative
probabilities, k(t) will be constant at the initial value k. This will
be the solution to the maximization problem stated in terms of an
extended version of the objective functional which integrates the
expectation of the integrand with respect to the choosen measure.
Because of the strict concavity of U, the value of this objective will
differ from the value of the solution to the original problem.
Observationally, the solutions to the two problems are equivalent except
for the restriction that in the second case, k(t) is not directly
observable. Only the average value of k (t) over arbitrarily small time
intervals is observed.

This extension does provide a formal solution to the problem as
posed, but it is artificial and methodologically upattractive.
According to this model, there is an important non-convexity in
investment, but it has no observable consequence. Presumably, the
reason an econcmist adds a non-convexity to the statement of a problem
is to capture observable features of behavior. An alternative approach
to this problem is to exploit the economic intuition that there will be

some (possibly small) cost associated with rapidly changing rates of



investment. Ultimately, the incremental cost should outweigh the
advantage of higher frequency oscillations. Specifically suppose that
quadratic costs —aI in the rate of change of net investment must also
be subtracted from gross output. Then the modified problem stated in
terms of I and its first two integrals will have a solution by the
theorem.] This solution will have the property that k will vary
continuously between the values implied by gross investment equal to O
or m. The frequency of this oscilation will decrease as g gets larger
and the costs in I become relatively more important. Other than
producing an economically sensible solution to this problem, this kind
of analysis of existence yields a general insight about such problems.
|f the costs associated with ? are small (i.e. g is small) then little
error is introduced by dropping them altogether in problems which are
concave in k since in these cases |K| will be small. Ffor problems
which are not concave in Kk, the term involving E is decisive for the
qualitative features of the solution. In general, approximations of

this form must include derivatives up to and including one in which the

integrand is concave.

The form of the theorem stated above is necessary for this result. A
theorem dealing with a state variable (k,k) and its derivative (k,k)
would not apply becauge the problem will satisfy a growth gondition

only with respect to k, not with respect to the vector (K,k).



3.2 CAKE EATING

The bound in condition (ii) from the theorem contains two parts,
the integrable upper bound m(t) (integrable here means with respect to
5 (t)dt) and the growth condition involving the term ||y||p. One
probliem which can arise when there is no integrable upper bound is well
known. The improper integral defining the functional W can take on the
value +=. There is nothing per se wrong with allowing an objective
function to achieve the other endpoint of the extended real line, but in
most models this impiies an unrealistic form of satiation. Typically,
if you can achieve +o starting from k (0), you can also achieve it from
1/2 k(0). Various catching up criteria have been proposed for
discriminating amongst such paths, most of which are equivalent to some
renormalization of the instantaneous utility function U. But the
absence of an integrable upper bound implies a possible continuity
problem that is far more troublesome than satiation. Consider the
undiscounted problem max ISU (F(k(t)) -k (t))dt where U{c) = In ¢ and
where f takes the form f(k) = k for kK € [0, 1], f(k) = 1 for k>1. That
is, f is a productive technology for values of k up to 1; beyond that it

is a pure storage technology. Since U and f were chosen so that

U(f(1)) = 0, we can show by elementary means that this problem has an
optimum, hence an overtaking optimum, for any k(0) < 1. With any
translation of the function U, the problem will still have an overtaking

optimum. But for any value of k(0) > 1, the problem cannot have an
optimum of any form. |In this case the difficulty concerns how best to
allocate the consumption of the amount k(0) - 1 over the infinite time

horizon. This amount contributes nothing to production and can only be
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stored. How best to consume this amount is the cake eating problem
described by Gale [12]. Because of diminishing marginal utility, a
sequence of paths for consumption that consume the excess at
successively slower rates over longer intervals will converge to the
supremﬁm of the problem. But this sequence of consumption paths
converges to one where none of the excess is consumed. In the natural
topology on consumption paths, the objective functional fails to be
upper-semi-continuous.

Artstein [2] has described an extended solution concept for this
problem designed to remove this difficulty, but it has the unattractive
feature that a given consumption path can be assigned different utility
values. As in the last example, the alternative to extending the
functional and the set of possible solutions is to restrict the
statement of the problem. In the usual growth theory context,
restricting attention to problems satisfying an integral upper bound
requires joint restrictions on the possible sets of preferences and
technologies. For example, with constant relative risk aversion
utility, U(c) = c7/7, ¥<1, linear technology f (k) = rk, and exponential
discounting, e_at, the bound is possible only if § > 4r. In principle,
one should be able to specify preferences and technologies
independently. That this is not possible in general for fixed discount
rate preferences suggests that these are only an analytically convenient
approximation to a more complicated set of preferences like those
studied by Lucas and Stokey [15] or Epstein and Hynes [11] which have
endogenously determined discount rates. The existence theorem above

then gives conditions on the possible values of § so that a constant



discount rate approximation to the true preferences will have the
correct continuity properties given the specified technology. Inferring
that some approximate specifications of preferences are inadmissible
given certain technologies seems preferable to introducing preferences

which are not uniquely defined in terms of consumption.

3.3 JUMPS

A third class of problems which fail to have solutions in the
sense defined above arises when the growth condition involving ||y||
raised to a power p fails to hold. What this term in the bound does is
ensure that high values of ||y|| are sufficiently costly that ||y|| is
effectively bounded. Any probiem with restrictions like ||y|]| € M will
automatically satisfy this condition by setting the integrand equal to
-= for ||y|| > M. If there is no cost or constraint which limits
||y||, then it may be possible to construct a sequence of paths
converging to the supremum of a problem such that ||y|| goes to « and
I 5y (t) converges to a path which has a discrete jump. As an example,
consider the profit maximizing problem of a competitive firm facing a

constant interest rate r, max j%"(f(k)-li)e_rt

dt. Let k(0) be an
arbitrary initial value. Jt is easy to see that the limit of any
maximizing sequence for this problem has a path for k(t) which jumps
instantaneously at t=0 to a value k such that Df(k) = r. In general
these jumps can occur at any time t. One could try to re-establish
existence in the sense of the theorem by adding a cost term —K , but

this arbitrarily prohibits the perfectly reasonable economic concept of

a discrete sale or purchase of a finite amount of capital between two



firms at a point in time. This kind of restriction is even more
artificial in the context of a financia! investment problem for an
individual consumer. Here portfolio shares are the state variables.
There is no economic reason to force trades to take place at finite
rates and prohibit discrete portfolio shifts.

There is an important economic reason why this kind of problem
arises so naturally in equilibrium problems where agents maximize
subject to prices which are taken as given. In problems with enough
convexity, economists and mathematicians have long been aware of the
duality between state variables and co-state variables and the possible
interpretation of co-state variables as equilibrium prices. It is also
widely recognized that in problems with state constraints the price or
co-state variables, which are generally absolutely continuous, can jump
when a state variable hits a constraint. (See [1] for a recent
discussion.) The problem of a competitive agent is the dual to such a
problem. By the definition of competitive behavior, there are no
restrictions on the quantities any agent can trade but there are
implicit constraints on the shadow prices. Quantities can jump when the
price constraints are binding. More precisely, the solution for the
path of gquantities in the agent's primal problem is also the path of co-
state variables for his dual probiem. Shadow prices will be the state
variables in the derived dual problem, and it will contain state
variable (i.e. price) constraints.

In contrast to the last two examples, this is a case with a
natural and easily interpreted extension of the basic solution concept.

It is developed in detail by Rockafellar [20] for finite horizon
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problems with integrands which are concave (or convex) in all arguments
except time, t. Romer [22] has a partial extension to infinite horizon
problems. Now, instead of choosing paths y(t) which are locally
Lebesgue integrable functions, one selects regular Borel measures dz(t).
Let z (t)dt and—%%%t)dt represent the absolutely continuous and singular
parts of dz respectively, where dg(t) is some non-negative singular
measure and dz/dg@ is the Radon-Nykodym derivative of dz with respect to
dg. Assuming for simplicity that F depends only on a state variable
and its first derivative, we can define

J(d2) = [ZF(0),2(0),08@dt + jFr G510, 08 (0de (D).
Here rp is the recession function of F(z,+,t) and z(t) is defined by
z(t) = ][O,t)dz(s) + zo. See [20] for details. Extending the
statement from measures with densities y(t) to Borel measures dz(t) is
analogous to the extension in probability theory from probability
distributions with densities to general distributions. |In problems like
that of a competitive agent where the integrand is concave in all
arguments other than t, standard sufficient conditions can be extended
to include problems of this form with general measures ([20], [22]).
For some forms of this problem with concave F, existence results have

also been established ([14], [25]).

4, PROOF OF THE THEOREM
The proof of the theorem is simplified by establishing two
preliminary lemmas. Given a function which is concave in some arguments
but not in others (e.g. a saddle function), the first lemma gives
conditions under which it is possible to separate the graph of the

function from a point lying above it using a ‘strip' of a hyperplane.
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LEMMA 1: Let F: RN X QM + R U {—=} be u.s.c. Assume that for
all z € (RN , F(z,+) is concave. Assume also that F is bounded by the
estimate F(z,y) < m - ||y||P where p>1. Given (z%,y*), suppose that
v > F(z%,y*) . Then there exists r € &M and 0>0 such that | |z=z%|| < o
implies F (z,y) < (y*-y) er + 4.

PROOF: [10, p.241].

Let §(t) be as specified in the statement of the theorem so
§(t) > 0 everywhere and jgé(t)dt is finite. Let 7727 be the Lebesgue
completion of the Borel sigma algebra on [0,») and let A be the measure
defined by §, A(A) = jAa(t)dt. Let LT,& denote the Lebesgue integrable
functions from ([0,x), 77 ,A) into aM. Recall that a sequence {yj} in
L1,8 converges weakly to y*% if

<g,y;> <g,y%>
for all g € (L?,é)*’ the space of continuous linear functionals on
Ll,&' Since A and Lebesgue measure have the same sets of measure zero,
we can represent (LT,a)* as Lg, the usual set of essentially bounded
functions on [0,»). Then g € Lg implies <g,y> = fgy-gdA.

LEMMA 2: /f {y/} converges weakly to y* in L@7’5, then /ay/ and
Ipl 2y j converge pointwise to Igy* and I,/ y* for all a,b € GM .

PROOF: Pick any t in [0,») and assume for notational simplicity

that M=1. Let g: [0,») 3 & be defined by g(s) = 1/5(s) for s € [0,t],

«
—

0
~

"

0 for s>t. Since §(t) is non-increasing and strictly positive,

(e}
—
0w
~
IA

1/5(t) < = so g € L_. Then by the weak convergence of Yo
lay; (1) - a = Iéyj (s)ds = [gy;(s)g(s)da(s)

+ Joy*(s)g(s)dAa(s) = I y* (1) - a.
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Thus layj converges pointwise to | y%; in particular | y: (s) converges

a’]

to |ay*(s) for all s € [0o,t]. Then 'blayj(t) will converge to |b|ay*(t)
by the Dominated Convergence Theorem provided Iayj(r) is bounded for aill
j and all r € [0,t]. By the Uniform Boundedness Principle [9, I1.3.27,
p.68], we know that a weakly convergent sequence is bounded in the norm.
Thus for all r € [0,t], for all j and for some BER, B 2 jglyj(s)|dA(s)
> §(t) |15yj (s)ds| so Ilay_j (r)| < B/8(t) + |a].

Using this argument componentwise, the result also holds for M>1.

Q.E.D.

This result can easily be extended to give pointwise convergence
of integrals of any order. The next lemma is one way to use the fact
that in normed linear spaces the strong (i.e. norm) closure and weak
closure of a convex set coincide.

MAZUR'S LEMMA: [et V be a normed linear space and {u /} a sequence
converging weakly to u*x. Then there exists a sequence of convex

combinations of elements in the tail of the original sequence,

N{()) N ()
v; = L A; where L N; =17
Py JkYk k=] Ik

for all j, such that v j converges to u* in the norm topology -

PROOF: [10, p.6].

With these preliminaries we can prove the theorem stated in
Section 2.

PROOF OF THE THEOREM: Because F is u.s.c., it is Borel
measurabie, so F (I 1y (t),1,y(t),y(t),t) is Lebesgue-measurable [24,
p.70]. Then W: LlM » R U {-=} is well defined because

JRFs(t)dt < sim(t) 5 (Vdt < o.



Let s = sup W(y). We can assume s > -o; otherwise the theorem is
yEL |
trivial. Let {y:} be a maximizing sequence for W so lim W(y:) = s.
J jom J

Without loss of generality we can assume that there exists some BER
such that B £ W(yj) for all j. Using the bound on F, this implies
jg||yj||p6(t)dt < jgm(t)é(t)dt - B, so {yj} is uniformly bounded in
Lg,é‘ By a result of de la Vallee-Poussin for finite measure spaces
(10, p.239], this implies that {yj} is weakly relatively compact in
Lq,5° Then reindexing if necessary, {Yj} converges weakly to some
y% € L’]‘,G.

It remains to show that W is weakly u.s.c. in LT 5" For

. . 2
notational convenience, let z.(t) = (Iblayj(t)’layj(t)) €E R M. By

J
Lemma 2, zj(t) converges to z*(t) = (Iblay*(t),lay*(t)) for all t in
[0,o) . By Mazur's lemma there exists an array {kjk} such that
( N ()
Vj t) = kéj kjkyk(t)

converges almost everywhere to y*(t). Define £(t) by

N ()
£(t) = 1im sup I A f(z (1),y (1),0),
jox k=]

and fix a t such that vj(t) » y*(t). We want to show that

£(t) < F(zx(t),y*(t),t). Suppose not. Let 4 be such that
F(z*(t),y*(t),t) < 4 <4 (t). By Lemma 2 there exists ¢>0 and r € QM
such that ||zj(t) - z*(t)|| < g implies

F(zj(t),yj(t),t) < (yx(t) - yj(t))-r + 4. Since zj(t) converges to

2% (t) ,
N()
lim sup z )\ij(zk(t)Yk(t),t)
Joe k=]

N(j)
< lim sup I kjk(Y*(t) - yk(t))-r ty =7
Jj k=]
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Then ¢(t) £ v, but by assumption y < £(t). By contradiction, we have
2 (t) < F{z=(t),y*(t),t). Since this expression holds for almost all t,

integrate with respect to §(t)dt to get

N(J)
I Tim sup I AjF(z (0),y (0),1) 6 (1) dt < W(y%).
joo k=]

Because F§ has the integrable upper bound m§, we can use Fatou's lemma

to conclude that

N(J)
I[m sup ;_ xjkW(yk) < Wy .
jox k=k

But since w(yj) converges to s, this implies s < W(y%).

Q.E.D.

It is useful to recapitulate where the three basic assumptions
corresponding to the three problems in Section 3 enter the proof. The
concavity of the integrand in the highest derivative is necessary to
apply Mazur's Lemma. The integrable upper bound is required for Fatou's
lemma. The growth condition is essentially equivalent to the
characterization of weak relative compactness in L, due to de la Vallee
Poussin. |t is also used in Lemma 1 to get the local form of a
separating hyperplane argument necessary for the convex combinations
taken in the proof, but weaker conditions would have been sufficient for
this purpose. |In brief, Mazur stops chattering, Fatou solves cake

eating and de la Vallee Poussin rules out jumps.
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