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Characterizing the Nash Bargaining Solution
Without Pareto-Optimality

ABSTRACT

We consider the bargaining problem with a variable number of agents.
Lensberg had previously characterized the Nash solution as the only solution
to satisfy the following axioms: Pareto-Optimality, Symmetry., Scale
Invariance, and Multilateral Stability. We show that the disagreement

solution is the only additional solution to satisfy the restricted list of
axioms obtained by dropping Pareto-Optimality.






Characterizing the Nash Bargaining Solution

Without Pareto-Optimality

1. Introduction

Ve propose a new axiomatic characterization of the Nash solution that
does not involve any optimality axiom.

An n—person bargaining problem is a subset of @2 each point of which
gives the (von Néumann—Morgensterﬁ) utilities achieved by n agents through the
choice of some alternative open to them. Given a class of such problems, a
solution on that class is a function associating with every problem of the
class a point in it, its solution outcome, interpreted as the compromise
reached by the agents, or recommended to them, depending on the context. Nash
(1950)1 proposed to search for solutions by specifying axioms that they should
satisfy and he established the existence and the uniqueness of a solution, now
called the Nash solution, satisfying the following four axioms;
Pareto-optimality: the solution outcome should be Pareto-dominated by no
feasible point; Symmetry: if a problem is invariant under all exchanges of
the names of the agents, the solution outcome should have equal coordinates;
Scale Invariance: the solution should be independent of which elements in the
class of equivalent von Neumann-Morgenstern utility scales representing the
agents’ preferences that are chosen to describe the problem; Independence of
Irrelevant Alternatives: the elimination from a problem of a subset that does

not contain its solution outcome yields a new problem whose solution outcome

is the same.

1Although Nash considered only the 2-person case, his result extends
straightforwardly to the n-person case.



The independence axiom has been widely criticized. Indeed, its
hypotheses allow for asymmetric contractions to which it is intuitively felt
that the compromise should be allowed to respond.

Recently, Lensberg (1988) proposed a new characterization of the Nash
solution which does not rely on this controversial axiom. Placing his
analysis in the context of a variable number of agents (see Thomson (1983)),
Lensberg showed the Nash solution to be the only solution to satisfy
Pareto-Optimality, Anonymity, Scale Invariance, together with a condition of
Multilateral stability stating a certain form of consistency of the solution
across cardinalities.

Our objective is to elucidate the role played by the Pareto-optimality
axiom in this theorem, and, at the same time, to better understand the role of
the stability axiom.

Given that conflict situations in the real world are often solved at
non-optimal points, it is indeed important to develop theories that allow for
violations of Pareto-optimality. A number of recent axiomatizations have
proceeded without this axiom and uncovered solutions that may help predict the
sort of violations likely to occur. For instance, Dubey, Neyman and Weber
(1981) have characterized non-optimal solutions to games in characteristic
function form. These solutions generalize the Shapley-value. Non-optimal
solutions to bargaining problems have also been characterized by Roth (1979)
in the case of a fixed number of agents, and by Thomson (1982) in the case of
a variable number of agents. These solutions generalize the egalitarian
solution.

Although, as just noted, Nash’'s classic characterization of the Nash

solution involves Pareto-optimality, this axiom plays essentially no role in



the theorem. Indeed, as shown by Roth (1977), there are only two solutions
satisfying symmetry, scale invariance and independence of irrelevant
alternatives: they are the Nash solution and the solution selecting the
origin as solution outcome of all problems, which we will call the
disagreement solution. Therefore, by requiring of the solution that there be
at least one problem that is not solved at the origin, a very minor
restriction indeed, only the Nash solution remains admissible. (Roth achieves
the same purpose by imposing the condition that the solution always select a
point that strictly dominates the origin.)

This result has strong implications. It shows that the other three
axioms together have much more power than one might have thought a priori and
that a search for non-optimal solutions would have to proceed in other
directions.

We investigate here whether Lensberg’s alternative characterization of
the Nash solution is a more fruitful starting point in the search for
interesting solutions that would fail to satisfy Pareto-optimality. The
answer is negative. Indeed, the only additional solution made admissible by
removing this requirement is also the disagreement solution. But this
negative result has a positive side since it reveals the robustness of

Lensberg’s characterization.

2. Notation. Definitions. Axioms.
There is a set ¥ of agents indexed by the positive integers. % is the
class of finite subsets of ¥ containing at least two members, with generic

elements P, Q,.... Given P e &, %f is the cartesian product of |P| copies of
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P
ﬁ+, indexed by the members of P, and EP is the class of all subsets S of ﬁ+
that are convex, compact, comprehensive (for all x, y e ﬁf, if x e Sand y £
X, then y e S)2, and contain at least one x with x > O. EP is the class of

bargaining problems, or simply problems, that the group P may face. A

solution is a function F defined on Z = U EP which associates, for every P e

Pe?®
#, and with every S e EP, a unique point of S, F(S), called the solution

outcome of S. This point is interpreted as the compromise recommended for S,
or alternatively, as a prediction as to how the agents would solve S on their
own. The restriction of F to a particular EP is called the component of F
relative to P.

We will consider solutions satisfying (some of) the following axioms.
Pareto—optimality (PO): For all P e ¥, for all S e EP, for all y e %E, ify 2
F(S), theny € S.

Weak Pareto-optimality (WPO): For all Pe %, for all S e EP, for all y e ﬁz.
if y > F(S), then y € S.

Let PO(S) and WPO(S) be the sets of Pareto-optimal and weakly
Pareto-optimal points of S respectively.

Anonymity (AN): For all P, P' ¢ ® with |[P| = |P'|, for all one-to-one
functions v:P - P', for all S e EP, S' e EP', if S' =+(S) = {x' € %P.|3x €S
with Vi e P, x;(i) = xi}, then for all i € P, Fw(i)(s.) = Fi(S).

Symmetry (SY): For all P e #, for all S e EP, if for all one-to-one functions
T:P-2P, S=7(S) (E {x' e %P|3x e S with Vi e P, x;(i) = xi}), then for all

1. j e P, Fi(S) = F (S).

2Vector inequalities: y > x, y 2 X, y > X.
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Given P e %, AP is the class of transformations A:%P~9 %P for which there
exists a e %E+ such that for all x e %P and for all i e P, Ai(x) = a;X,.

Scale Invariance (S.INV): For all P e #, for all A e AP, for all S e EP.
F(A(S)) = A(F(S)).
Homogeneity (HOM): For all P e #, for all A e AP with Ai = Aj’ for all i, j e
P, for all S e 3, F(A(S)) = A(F(S))

Given P, Qe $ with PCQ, T e EQ and y e T, let tg(T) = {xe %PI(X,YQ\P)
e T}. tg(t) is the slice of T through y parallel to the coordinate subspace

&

Multilateral Stability (M.STAB): For all P, Q e # with P C Q, for all S e EP.
Te ZQ, if S = t%(T), where y = F(T), then F(S) = Yp-

Bilateral Stability (B.STAB): For all P, Q e # with P C Q and |P| = 2, for
allSe s, Te? ifs= t)(T). where y = F(T), then F(S) = yp.

Our final axiom is:

Continuity (CONT): For all P € #, for all sequences {Sk} from EP, for all S e

EP, if Sk-e S (in the Hausdorff topology), then F(Sk)-% F(S).

Next, we define two solutions of interest. Given Pe # and S e EP, the
Nash solution (1950) outcome of S, N(S), is the unique maximizer of IIxi for x

e S, and the disagreement solution outcome of S, D(S), is the origin.

Other Notation. Given Q e %, Sl,...,Sk C QQ, cch{Sl,...,Sk} is the smallest

convex and comprehensive subset of QQ containing Sl,...,Sk. e, is the vector

Q

in %Q whose coordinates are all equal to one. Given S C %Q and i e Q, ai(S) =

max{xi|x e S}.



3. The Results

We start with a short summary of our results. We will need the following
important definition.

Given Pe #, i e P, x e % and A e ]0.1]. the i ™" A-extension of x,
denoted xi(R,x), is the point y e %P such that X = Ayi and xj = yj for all j
e Pwith j #1i.

First, we show that if a solution satisfies AN, HOM and B.STAB, then
either it satisfies PO, or it is the disagreement solution, or there exists A
e JO,1[ such that for all P ¢ # and for all S e EP, if x is the solution
outcome of S, then for all i e P, the |P| A—extensions of x all belong to the
weak Pareto-optimal boundary of S.

Given S e EP, and A e ]O,1[, let NA(S) be the set of points whose |P|
A-extensions all belong to WPO(S). If |P| =2, NA(S) is always a singleton so
that the necessary conditions lead to well-defined two-person component
solutions. As A increases from O to 1, the path of this point is a continuous
curve which has the origin and the Nash solution outcome of S as end points.
Therefore, this one parameter family of Nash-like solutions, NA, may be
interpreted as modelling a progressive negotiation process leading to the Nash
solution.

If |P]| 2 3, it remains true that NA(S) # ¢ for all S e EP. However,
complications arise. Indeed, for every A e ]O,1[ there exist some problems S
for which NR(S) is not a singleton. Are there single-valued selections from
the correspondence NA that satisfy CONT? The answer is negative. This is

somewhat disappointing since continuity certainly is a desirable property.



However, the property that is of most interest to us here is M.STAB. Are
there single-valued selections that satisfy M.STAB? Again, the answer is
negative. This dashes our hopes of finding interesting solutions satisfying
AN, HOM and M.STAB.

But this negative result is what gives us our characterization of the
Nash solution. Indeed, the only values of A left are then A=0 and A=1. If
A=0, the disagreement solution obtains. If A=1, PO holds and then Lensberg’s
result becomes applicable, when HON is strengthened to S.INV, leading to the
Nash solution. ‘Again, by requiring that at least one problem be solved at a
point different from the origin, only the Nash solution remains admissible.
It will be convenient to extend the definition of the family NA of Nash-like
solution correspondences to include the boundary cases A = O and A = 1.

Formally, for all Pe ® and all S e EP, we define

(0} ifA=0
M(S) = |{x e S|V ieP, x'(A,x) e WPO(S)} if A e 10.1[
PO(S) if A= 1

We are now ready to present the details of the proof. Recall that our
objective is to characterize all solutions satisfying AN, S.INV and N.STAB.
As it turns out, we will be able to derive workable necessary conditions by
using HON instead of S.INV and B.STAB instead of M.STAB. The necessary
conditions are what we develop first. Let then F be a solution satisfying AN,

HON and B.STAB. Our first result is based only on the first two of those

axioms.



Lemma 1: There exists A e [0,1] such that for all P e #, and for all a e &__,
F(cch{aep}) = AaeP.

Proof: Let P = {1,2} and S = cch{e By SY (implied by AN), it follows that

P}'

F(S) = Aep for some A e [0,1]. By HOM, for all a € ﬁ++. F(aS) = kaep. The

proof concludes by appealing to AN.

Q.E.D.

Lemma 2: For all P e % with |P| = 2, for all x e %E+, F(cch{x}) = Ax, where A

is the parameter identified in Lemma 1.

Proof: The proof is illustrated in Figure 1. Let P = {1,2} and S = cch{x}
where x e %E+. We introduce agent 3, and we set Q = {1,2,3} and T =
cch{(x;.x,.%;)}. Note that T e Q. letz= F(T). p? = {1,3} and §? = tlz)z(T)-

82 is a square in & of side X, . By Lemma 1, F(Sz) = A(xl,xl). Since by

B.STAB, ZP2 = F(Sz), we conclude that z zZ, = A\x,. Also, S = t;(T) and by

1~ “3 1

B.STAB again, we conclude that z, = FI(S) = N\x

1 1
Next, let T = cch{(xl,xz,xz)}. Note that T e Q. Let z = F(T).



Agent 2
Xy <
S
s’ =
Agent 1
yd X4
X1
Agent 3
Figure 1
1 1 z 1 P1
Set P = {2,3} and S" = t 1(T). S” is a square in & of side Xg - By Lemma

P
1, F(Sl) = A(x2,x2). A repetition of the argument above yields zy = F2(S) =
kxz.
Altogether, we have shown that F(S) = A(xl,x2) = AX.

Q.E.D.

Proposition 1: For all P e # and for all S e EP. F(S) e NA(S), where A is the

parameter identified in Lemma 1.
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Proof: We first show that the proposition holds for all P ¢ # with |p| = 2.
The proof is illustrated in Figure 2. Let P = {1,2} and S e EP be given. Let

Q={1.2.3)} and T € 3° be defined by T

cch{S + {ceB}}, where c is some

arbitrary positive number. Let z = F(T) and P2 = {1,3}. Note that tZ (T) is

P2

a rectangle, that is, there exists a > O such that tz2(T) = cch{(a,c)}.
B P

Suppose first that A { 1. We claim that a > 0. Indeed, if a = O, note
1

first that z, = a2(S) = a2(T). Then, let P

9 {2,3} and observe that til(T) =

1
cch{(az(S),c)} € EP . By Lemma 2, F(tzl(T))
P

(a2(S),c)R and by B.STAB,

F(tzl(T)) =z ag(S)\. Since A < 1, we obtain
P

P

a contradiction with the previous equality z

z
1 Therefore, F2(tP1(T)) = Z,

9 = a2(S). Since a > O, then

tz2(T)) in a non-degenerate rectangle and it follows by Lemma 2 that F(tzz(T)
P P

= {a.c)A. Since t;(T) = S, B.STAB then implies that Fl(t;(T)) = Fl(S) = aA.

2
The same reasoning, applied to subproblems parallel to %P ., yields that

F2(S) = bA for some b > O such that tz2(T) = cch{(b,c)}. Altogether, we have
P

shown that if x = F(S), then either x = 0 if A = O or xl(k,x) e WPO(S) and
x2(k,x) e WPO(S) if A e J0,1[. If A =1, it follows by a similar argument
that F satisfies PO on EP whenever |P| = 2. Consequently, the proposition
holds for all P e # with |P| = 2.

Next, let Q e # with |Q] > 3 and T e 3° be given. If A e [0,1[, it
follows by B.STAB and the first part of the proof that F(T) e NA(T). If A =
1, suppose by way of contradiction that y = F(T) ¢ NA(T). Since y € PO(T) and
T contains a strictly positive vector, there exist P = {i,j} CQand xe T

such that x > vy, X, > Y and Xp > 0. Since x, > 0, the problem S = t%(T) is

P

well defined, which by B.STAB implies that F(S) = Fp(T) = yp. Since [p| = 2

P
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then F(S) e PO(S), in contradiction with the fact that Xp p Yp-

Q.E.D.

Agent 2

\\\\\\ ///7\\\ Agent 1

Agent 3
Figure 2

Having thus established a necessary condition for a solution F to satisfy
AN, HON and B.STAB, we must next show that F is well defined, i.e. that F(S)
exists and is unique for all S. We begin with the question of existence
which, according to Proposition 1, must be dealt with by showing that the
correspondence NA is nonempty-valued for all A.

To this end. we introduce the following notation and terminology. Given

Pe®and S e EP

, let vstﬁf - % be a continuous and strictly increasing
function such that vS(x) € 0 if and only if x € S. (As an example, set vS(O)
= -1, vs(x) = 0 if x e WPO(S) and vS linear on each ray). Finally, given A €

J0,1[, let Vo2 s 5 &F be defined by V?’x(x) = vs(xi(k.x)) for each i e P.
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Note that VS’A defines a continuous vector field on S such that VS'A(X) S
0 if and only if x e NA(S). Say that a vector field V on S points out at x €
S if the point x + V(x) is on or above some hyperplane of support of S at x.
If V points out at every x e 39S, say that V points out on 8S. Clearly, VS’A

points out on dS. Finally, for each P ¢ #, let EP

diff = {S e Eplvs can be

chosen to be differentiable}.

Proposition 2: For all A € [0,1], the correspondence NA is nonempty-valued.
Proof: let Pe $and S e EP be given. If A = O then NA(S) = {0} # ® and if A
= 1 then NA(S) = PO(S) # 0. Suppose that A ¢ ]JO,1[. Since VS’A is a
continuous vector field on S that points out on dS, there exists x € S such
that VS'A(S) = 0 (Varian (1981)). Any such x is in NA(S).

Q.E.D.

We next turn to the issue of uniqueness. This is easily dealt with if A
=0 or A = 1: Clearly, if A = O then F must be the disagreement solution. If
A =1 it follows directly from Lensberg’s theorem that F = N if HON is
strengthened to S.INV. In either case, there is a unique solution outcome to
every problem and the necessary conditions are obviously sufficient. It
remains to investigate the case of A € ]O,1[. First, we show that in this
case Nx is single-valued on the family of two-person problems.

Proposition 3: Suppose A ¢ ]0,1[. The correspondence NA is single-valued on
s¥ for all P e & with || = 2.

Proof: The argument is illustrated in Figure 3. Let 81 and 82 be the loci of
the points (kxl,x2) and (xl,kx2) when x runs over WPO(S). Proposition 2

1 . .
guarantees that €  and 82 intersect at some point x. We must show here that x

is unique.
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Suppose that 81 and 82 intersected more than once, at two points x and y,

with x#y. consider the two A-extensions x1 = xl(k,x) and x2 = xz(k,x) of x
and the two A-extensions yl = xl(k,y) and y2 = xz(k,y) of y. It is easy to
check that neither one of x and y can weakly dominate the other. Without loss
of generality we can assume that ¥q > 3 and Yo < Xy Therefore xl, x2 and

yl. y2 are two pairs of points of WPO(S), a concave curve, satisfying x? ; y?

and xi 2 yi, so that the slope of the segment [x2,x1] is smaller than the
slope of the segment [yz,yl]. Since the former is equal to the negative of
the slope of the segment [0,x] and the latter to the negative of the slope of
the segment [0,y]. a contradiction results with the assumed relation between x

and y.

Q.E.D.

Agent 2

Agent1

Figure 3
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The issue of singlevaluedness of NA for problems of cardinality greater
than 2 will be solved by means of an example SO involving a number of agents
that depends on A but in order to simplify notation, this dependence will not
be indicated. We will also write xi(x) for xi(R,x).... Let n be the smallest
integer n' such that

(1) IN2<n.

1
(Note that n=2 for all A e ]vé, 1[).

Let P = {1,..., ntl} and a,b,c,d € % be defined by
a = (2/(m2+1))172
b = 1 + ar(1-a)
Cc = ( 1+7\)/)\
d = (mA+1)/A

1 _ P 2 _ P
Then let S° = {x e 92+|ax1 + b max{x.} < c}, ST = {xe %+| 3 x; < d} and
i#l B P -

finally SO = S1 n S2. So is illustrated in Figure 4 for A = .8 (which gives

n=2, a=0.94, b=1.05, c=2.25 and d=3.25).



Agent 1 15

Agent 2
c/b
d
Agent 3
Figure 4
e . < wA 3

Proposition 4: For no A e ]O,1[ is N single-valued.

Proof. Let A € ]0,1[ be given and consider the problem So

defined above. It will be shown that y = (1/a, 1/b, ...,1/b) and z = ep

which are distinct, both belong to NA(SO).
First, it is shown that {y} = N'(S!). It is easily checked that if a

problem S' is invariant under permutations involving a subgroup of agents,

3An example establishing this fact for n = 3 was also constructed by H.

Moulin.
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then all members of the subgroup receive the same amount at any x e NA(S').
Since in Sl, all agents i#l are interchangeable, if x e NA(SI), then X, = xj
for all i, j e P\1. In fact x e Nx(Sl) if and only if, in addition, its first

two coordinates solve the following system of equations:

C

{ axl/R + bx2

ax1 + bx2/x

Since A e ]0,1[. this system has a unique solution. It is (xl.x2) =

C

(1/a,1/b), in the computation of which the fact that c=(1+A)/A is used. Thus
v} = Msh.

Next, it is shown that {z} = NA(Sz). Since 82 is invariant under all
permutations of agents, if x e NA(S2), then xi=xj for all i e P. The common
value of the X4 is given by solving

xi/k + nx, = d,
and since d = (nA+1)/A, it follows that x, = 1. Thus {z} = Nk(Sz).

To prove that in fact, y, z € NA(SO), it now suffices to show that for
all i e P, xi(z) lies below WPO(SI) and that xi(y) lies below WPO(Sz).
Appealing again to the symmetries of S1 and S2, it is enough to check this for

i=1,2. This gives

a/A +b <c : xl(z) is below WPO(SI)
a+ b/A < c : xz(z) is below WPO(SI)
1/aA + n/b < d : xMy) is below WPO(S)
17a + 1/bA + (n-1)/b < d :  x2(y) is below WPO(S?).

By (1) it follows that a < 1 and b > 1. Therefore the four inequalities will
hold if the middle two do. The second holds since a < 1, given the
definitions of b and c¢c. Using the definitions of b and d, the third

inequality can be written as
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(1-a)(a%nA2 - 1 - an(1-a)) > O

>
1]

and since

(1—a)(a2n7\2 -1 - a(l-a)) , because A < 1

>
v

\%

(1—a)(a2n7\2 -2+ a2) , because a< 1

(1-a) (222 + 1) - 2)

=0 . by definition of a,

we are done.

Q.E.D.

Remark 1: 1t could be shown by a similar argument that NA(SO) actually
contains a third point x. This point is such that xl(x) € PO(S2) and xl(x) 3

WPO(Sl) for all i e P\1.

Remark 2: 1t will be useful later to note that y and z are isolated members
of NR(SO) since xl(y) and xl(z) in fact lie strictly below WPO(Sg) and WPO(SI)

respectively. This is because the inequalities above are strict.

Remark 3: The problem S1 used in the proof of Proposition 4 can be used to
show that it is not in general true that NA(S), as a set, converges to N(S) as
A > 1. Moreover, NA(S) may be a singleton for all A and still not converge to
N(S) as A > 1.

Let n=2 and S be as S1 above with a=b=c=1. Then x € NA(S) if and only if

X, /A + X 1 and

1 2

X1+X2/)\= 1.

This system of equations gives NA(S) = {(R/(1+A))ep}. As A - 1, NA(S) -

{e,/2} while N(S) = (1/3,2/3.2/3).
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The reason for this lack of convergence is that the set BN(S) of points x
of S such that x,, = N(t3.(S)) for all P' C P with [P'| = 2 is not a
singleton. Indeed, BN(S) = [eP/2, (0,1,1)]. All we can say in general is
that NA(S) converges to (a subset of ) BN(S). Of course, if S e zgif’ then
BN(S) is a singleton (see e.g. Harsanyi (1977)), and convergence of NR(S) to
N(S) will occur. However, even if S e Zgif’

This can be seen by simply smoothing the example of Proposition 4.

NA(S) may not be a singleton.

Although Nx is not single-valued, there is still the hope that some
continuous single-valued selections from Nx exist. The next Proposition

dashes this hope.

Proposition 5: Let A e ]0,1[ be given. Then there is no solution F

satisfying CONT such that F(S) e NA(S) for all P e % and for all S e sF.

Proof: Let A e ]0,1[ and F be a single-valued subcorrespondence of Nx. Also,
0 2

let n, P, 7, S”. S, y and z be as in the proof of Proposition 4 and let S =
So. Since y # z, either F(S) # y or F(S) # z.
Suppose first that (i) F(S) # y, and for all a > 1, let s = S1 n aSz.

Observe that (ii) y is an isolated member of NA(Sa) for all a > 1. (Remark
2). Moreover, S% = S1 for all a sufficiently large. Since NA(SI) = {y} and F
C NA, it follows that (iii) F(Sl) =y. From (i), (ii) and (iii), we conclude
that F does not satisfy CONT.

Supposing next that F(S) # z, we establish the desired conclusion by a

similar argument, applied to ¢ = aS1 n Sz.

Q.E.D.
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From this negative result and Proposition 1, we get the following
positive one:

Theorem 1: A solution satisfies AN, S.INV, B.STAB and CONT if and only if it
is either the disagreement solution or the Nash solution.

Theorem 1 shows that the axiom of Pareto—optimality plays a very modest
role in Lensberg’s (1988) characterization of the Nash solution, the only role
of this axiom being to rule out one single alternative solution, the
disagreement solution. A variant of that characterization result uses PO, AN,
S.INV and MN.STAB instead of PO, AN, S.INV, CONT and B.STAB. There is
therefore the question of whether a similar variant to Theorem 1 above is
obtained if B.STAB and CONT are replaced by M.STAB. Proposition 6 below
answers that question in the affirmative, stating that single-valued

selections from NA are not multilaterally stable for any A e ]0,1[4

Proposition 6: Let A e ]JO,1[ be given. Then there is no solution F

satisfying M.STAB such that F(S) e NR(S) for all P e % and for all S e EP.

Proof: Let A\ e ]0,1[ and F be a single-valued subcorrespondence of Nx. Also,

let n, P, a, b, ¢ and d be as in the proof of Proposition 4. Finally, given p

> 1, let wP: %f-» % be defined by

-1/p

w(x) = x, - [(c/a - (b/a)( 3 x0)P ) Pr (a- 3x)7P]
P\l * P\l *

4Note, however, that by definition of Nx for A e ]0,1[, all single-valued

selections from NA are bilaterally stable.
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p

The function w~ is strictly increasing, convex and differentiable for all

p > 1. Therefore SP = {x e ﬁf|wp(x) £ 0} e Zg for all p > 1. Also, for

if

each x e %P, wP(x) - wm(x) as p - ®, where

wm(x) =x; - min[c/a - b/a max{xi}, d -3 xi].
P\1 P\1

O. By Proposition 4, NA(SO) contains two distinct points

and therefore, SP > S
y and z. These points are topologically stable as they are the unique

solutions to systems of linear equations. Consequently, for sufficiently

large p, Nx(Sp) contains two distinct points x1 and x2. For such a p, let w
wP and s = sP.

The proof will consist in showing that if F satisfies M.STAB, then F(S) =
x1 but also F(S) = x2, a contradiction to the assumption that F is a function.
This conclusion will be obtained by constructing a |Q|-person problem T, where
Q D P, such that NA(T) is a singleton y satisfying for each k = 1,2, yp = xk
and tg(T) = S, two statements which in view of M.STAB, imply F(S) = xk.

Choose k = 1 or k = 2. Note that, for all A, there exists a positive

integer m such that

(m-1)n/A -~ mn > O.

(If A < 1/2, the inequality is satisfied by m = 2). Let such an m be given.

Let P! = P\1 = {2,....n+1}, and for all j = 2,....m, let P = {2 +

m
(5-1)n,....n+1 + (j-1)n} and Q = {1} U PJ. Let 7:%2 -> % and vT:ﬁS-e % be
J=1

defined by
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7(x) = w(a.x) - a where x = (x ,...,xn+1), and

T N k
v)Ey + 2y ) - (m1)r(y ).
j=1 P P

Finally, let T (See Figure 5) be defined by

T={xe ﬁSlvT(x) £ 0}.

Agent 1

(m-1)y (x)

:25\ k

y Xp1
K
X Pl \/

XP1

2
Xp© Figure 5

Note that T is symmetric in xQ\1 since v is symmetric in xQ\l' Also, for
y e %Q defined by y = (xk, xk ,...,xk ). we have ty(T) = ty.(T) =S for all j
+ 1 1 1 P J
P P P
_ . k A . A
=1,....,m, and since x e N'(S), it follows that y e N (T).

We now claim that NA(T) = {y}. To prove this, let VTtT'e %Q be defined

by Vg(x) = vT(xi(x)) for all i e Q. Then x ¢ NA(T) if and only if VT(x) = 0.
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Let now Td =ETN {xe Qﬁqlxi = Xj for all i,j e Q\1}. NA(T) C Td since T

. . . . A A
is symmetric in the coordinates and N, as a correspondence, satisfies

XQ\]. »

AN. Thus, all the zeros of VT belong to Td. Also, for all x e Td, the vector

VT(x) + x lies in the hyperplane in ﬁg spanned by Td. Letting P' = {1,2} and

Tg. be the projection of Td on QE , this implies that the function V:Tg.'% QP
: — T . . d

defined by V(xl,xz) = VP.(xl,x2,..., 2) is a vector field on TP" such that

for all x e T, V(xl,x2) = 0 if and only if VT(x) = 0. Moreover, V is

differentiable and points out on the boundary of Td since VT has these

P
properties on T.

We now show that the determinant of the Jacobian J of V is positive for
all x e Tg.. Then, by the Poincare-Hopf index theorem (see e.g. Varian
(1981)), V, and hence, VT, has only one zero. Since V(yP.) = 0, by the fact
that VT(y) = O, this will establish that NA(T) = {y}.

V is now written as
V1(x1'x2) = xl/x + m(x,,..., 2) - K
V2(x1,x2) =x, + 7(x2/A,x ,...,x2) + (m-1)v(x ,...,x2) - K

where K = (m—l)v(xkl). Therefore
P

n
1/7x m.2 wi(x2,...,x2)
i=1
n
J= 11 T (XN Xy, 5) (17A) +ii27i(x2lx,x ,...,X2)
n
L + (m—l).E 7i(x ,...,x2).

i=1



where 7y is the partial derivative of v with respect to its ith argument.
Since v is symmetric and strictly increasing, 1i(x ,...,x2) = a for some a > O
and for all i = 1,...,n. Ignoring the first two positive terms of J22 and
dividing the second column by a, it follows that det J > O since (m-1)n/A - mn

> 0.

Q.E.D.

From this our main result follows.
Theorem 2 : A solution satisfies AN, S.INV, and M.STAB if and only if it is

either the disagreement solution or the Nash solution.

4. One Commodity Division Problems.

In this section, it is shown that the restriction of the correspondence
NA to the subclass of 3 of problems that are obtained from the division of a
single commodity between agents whose utility functions satisfy standard
assumptions, is single-valued and therefore constitutes a well defined
solution on that class.

First, the class is formally defined. Given P e %, let (i) UP be the set
of lists (ui)ieP where for each i e P, ui=%+'+ ﬁ+ is agent‘i’s utility
function, and (ii) Q e %++ be a social endowment. It is assumed that for each

ielP, uy is strictly increasing, concave, differentiable and satisfies ui(O)

0 and u () > 0. Let S(u,) = {x e %PIHw e &5 with o, < Q and VieP, u,(w,)
i + + pi= iti

= xi}. Note that S(u,Q) e EP. Also, since, for all a > 0, S(u.Wa) = S(u.),

where each u, is defined by ui(wi/a) = ui(mi), there is no loss of generality
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in taking ? = 1. Let then EIP, where the superscript 1 is a reference to the

fact that there is a unique commodity, be the class of problems S(u) = S(u,1).

Finally, let 3! = U 3'¥. 0Of course, if IP| = 1, then 3°F = 3%, but, if |P| >
Pe%
1, EIP is a proper subset of EP. It is therefore conceivable that solutions

behave better on 21 than on . This turns out to be the case for NA.

Theorem 2: For all A e [0,1[, for all P e &, NA is single-valued on EIP.
Proof: Let N\ e [0,1[ be given. If A = O, the proof is trivial, so let us
assume that A > 0. Let Pe ®, ue UP be given and S = S(u).

By our assumptions on the u. each u, has an inverse fi which is strictly

increasing, differentiable and convex. S can then alternatively be described

as

- P
S={xe ﬂ+|§fi(xi) < 1}

In the notation of Section 3, x e NA(S) if and only if V?(x) = fi(xi/A) +

2 f(x.,)-1=0 for all i e P.
niJJ

By differentiability of the fi’ it follows that the vector field VS is
smooth. To show that it vanishes at one point only, it suffices to show that

its jacobian J is positive for all x e S. J is given by



(I/A)fi(xl/x) fé(xz) .......... fé(xn)
fi(xl) (l/k)fé(lex) ........ fﬁ(xn)
0
fi(xl) fé(xz) ........ (l/R)fA(xn/x) |

For each i e P, fi > 0, therefore, a, = (I/R)fi(xi/R)/fi(xi)is
well-defined. Since in addition A < 1 and fi is convex, then a; > 1.
To compute the sign of J, for each i € P, multiply column i by llfi(xi) >

0 and subtract the first row from all other rows. Then for each i e P, i # 1,

a, -1
1
multiply column i by the well defined quantity ;f:;‘and add the sum to column
i
1. This yields the following matrix J' with sign |J'| = sign [J1.
a;-1 ]
a, + _2 " (a1—1)/(a2—1) (al—l)/(aB—l) R (al-l)/(an-l)
i£171
0 a1—1 O ...l 0
0 0] al—l ........ 0
J' =
L 0 0 0 ... al—l

Since det J' > O, we are done.

Q.E.D.
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