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Abstract

This paper constructs a number of Monte Carlo studies to assess the
quality of various non-parametric estimators that have been proposed recently
for the estimation of non-linear econometric models. We consider both kernel
and Fourier series based methods of estimation, and also examine techniques
that have been suggested to improve the bias properties of the kernel
estimator. The two models examined are a production function and a model
emphasising the effects of risk. The Fourier estimator does very well in
estimating the first of these, but not the second, while the kernel estimator
shows substantial bias for the first, which is only partially alleviated by

the procedures advocated for bias correction, and good results for the second






Introduction

Many problems in econometrics are characterized by an unknown functional
form, and a wide variety of specifications has emerged to give empirical
researchers the needed flexibility when estimating relations between observed
data. For capturing production relations there are the Cobb-Douglas, CES,
transcendental log, quadratic etc., functions. For demand studies using
household data a variety of transformations such as Box-Cox, semi-log etc.,
have all emerged to estimate Engel curves. Finally, in macroeconomic models a
key variable is frequently the expectation of a random variable with respect
to an information set, in which case it is common to assume that the
expectation is a linear function of observed variables. More recently
conditional variances have assumed importance and for this quadratic
formulations such as Engle’'s (1982) ARCH have found favor.

This parametric emphasis to modeling has been challenged in recent years
with the advent of non-parametric procedures. Gallant (1982) advocated and

applied a Fourier approximation approach to the determination of production



technologies while Rilstone and Ullah (1987) estimated marginal products of
factors with the kernel estimator of Nadaraya (1964) and Watson (1964).
Deaton (1988) applied the kernel technique to the estimation of Engel curves
while Pagan and Hong (1988) employed both kernel and Fourier based methods
when modeling the conditional variance of equity yields and the excess holding
yield on Treasury bills. In all cases the studies seemed to show that
considerable gains could be had over existing parametric formulations.

The asymptotic theory justifying these estimators is now well developed.
For kernel estimators, conditions under which the estimators are consistent
and asymptotically normal are summarized in Bierens (1987), while a recent
paper by Andrews (1988) has provided a detailed treatment of consistency and
asymptotic normality of Fourier-based estimators if data is independently and
identically distributed (i.i.d), although he indicates that his results would
extend to dependent observations. Frequently, it emerges from this analysis
that the rate of convergence of the estimators is quite slow, and this raises
an issue of whether sample sizes are sufficiently large in practice that one
could take the asymptotic theory as being an accurate predictor of the
sampling distributions of the estimators. Some simulation studies have
appeared to examine this question e.g., Chalfont and Gallant (1985) for
testing production restrictions and Rilstone and Ullah (1987) for estimating
CES production functions, with generally good findings. Nevertheless, much
remains to be done before these estimators could be recommended for widespread
use.

This paper looks at a slightly different question, namely the relative
performance of kernel and Fourier based methods in estimating a number of

models that could arise in practice. Section 2 formally defines the variety



of estimators employed in the later simulation work and lists what is to be
expected of the estimators. Section 3 considers the cbmparative performance
of both estimators in estimating a CES production function, with the design of
the study being derivative from White (1980). As a special case one of the
variables (the capital stock) is fixed, leaving only an univariate relation
between output and labor to be determined, and this produces a situation
reminiscent of Engel curve studies. In section 4 we consider the estimation
of the risk premium by non-parametric methods as advocated in Pagan and Ullah
(1988). This experiment is of interest in its own right, but is also meant to
be representative of a range of situations which are "semi-parametric,” and in
which the rate of convergence of the estimators of the set of parameters of
interest is the same as for parametric models.

The range of models employed here is small and the purpose of the paper
is to try to get some insight into how well the estimators work., whether one
is superior to another in different circumstances, and what theoretical issues
arise from the results. Thus our purpose is a very modest one, but we think
that the results are of some interest and fill a gap in the existing

literature.



2. The Estimators

Consider an unknown relation between a variable Y and another variable

where u,. (i=1,...,N), is assumed i.i.d. (O, 02) and is a martingale
difference with respect to yi = {yi_l. Yi_gr---r Xy xi_l,...}. For

simplicity results are stated in terms of a scalar Xso with comments being
made, where necessary, about what modifications are needed when Xy is a vector
of variables.

The objective is to estimate m*=g(x*) i.e., the conditional expectation
E(y|x

E(y|x

.3 ¥ *
x ). If X4 took only discrete values xl,...,xp, a simple estimator of

3
xj) is the sample average

% »* —1 N
m = (Nj) 3, ¥ j=1,...,p (2)
ieSj

where S; is the set of i corresponding to x? and N% is the number in this set.
Provided N; - o this would be a consistent and asymptotically normal
estimator of g(x?) since yi(iesz) has yi~i.i.d.(g(x§), 02). Let us define the
indicator function I(zi) as being unity if —1/2gzi$1/2 and zero otherwise, and
set z, = ((xi - x?)/h), where h is chosen to be smaller than one half of the
minimum distance between any of the x?(j = 1,...,p) so that I(Zi)= 1 only when

2
X = Xy With these definitions (2) could be re-written as



N
s 1.y.. (3)

since the restriction on h ensures that only those observations corresponding
%*
to x; = xj actually appear in the sample average (all others have Ii = 0).
When Xy is a continuous random variable the indicator function approach

above cannot apply since x, assumes particular values with probability zero.

i
Nadaraya (1964) and Watson (1964) therefore suggested that I(z) be replaced by
a continuous function of z, K(z), but with the same properties that

K(z) > 0, JK(z)dz = 1 ( in fact it is also necessary that K(z) be symmetric

but the heuristic argument given here to justify the kernel estimator cannot

easily capture that requirement). (3) then becomes
N
S K.y, - (4)

Since these properties characterize density functions, there is a wide range
of possible choices for K. Popular ones are the Gaussian kernel

K(z) = (21r)_1/2 exp (-(1/2)22) and the Epanechnikov kernel K(z) = (3/4h)(1 -
22)I(|z| < 1) where I(Zi) is an indicator function and zi=((xi—x*)/h). The
former has been used in Rilstone and Ullah (1987) and Pagan and Hong (1988)
vwvhile the latter was adopted by Deaton (1988). As observed by many authors
the choice of a kernel is not as crucial as the choice of h, the bandwidth.

Of course in the discrete case it was obvious what h should be, but in the
continuous case g(x*) will need to be estimated by "borrowing” observations on
yi corresponding to x close to x*, where "closeness™ is measured by the size

of h. Clearly, if h is made too large one is getting a blurred image of g(x*)



(technically the bias will be large), whereas if h is made too small few

observations on "xf' will be available and so the variability of the estimator
will be high. For this reason the selection of h can be quite important to
the properties of an estimator.

The multivariate case where Xg is a q x 1 vector is easily dealt with by
replacing univariate densities with multivariate ones. Hence the multivariate
Gaussian kernel is (2w)-q/2|B!-1/2exp(—%(xi - x*)'H_l(xi - x*)), while the
multivariate Epanechnikov is proportional to (1-z'z)I(z'z< 1),where

|-1/2

z=(xi—x*)/h Notice from (4) that factors such as |H appear on both the

numerator and denominator of (4) and so disappear. In later work H is set to
diag(N—I/(4+q)aj), vwhere Uj(jzl,...,q) is the sample standard deviation of the
j’'th element in X - The optimal choice of bandwidth has been extensively

discussed in Bierens (1987), and found to be cN_l/(4+q)

, so that we are just
choosing c to be the sample standard deviation. There are many ways of
selecting h, either automatically (as in cross-validation) or by intervention
("eyeballing”), but the computational burdens of simulation mean that a fixed
bandwidth is necessary. Further discussion is available in Singh and Ullah
(1985).

The kernel is an easy way to estimate g(x*) and can be done by data
transformations allied with some way of computing sums. Most standard
econometric programs are therefore well designed to calculate it, and in
programs such as GAUSS it is very easily implementable.

Perhaps the major problem with the kernel estimator is that

asymptotically it is not centered at g(x ) unless special care is taken i.e.,

172
(

3¢
m

the limiting theory implies that (th) - E(m*)) is asymptotically normal



1/2

with a zero mean, but (th) (E(m*) - g(x*)) need not tend to zero. In

theory it is possible to force this latter term to converge to zero by

choosing h such that lim h2(th)1/2

Noow

- 0 (see Bierens (1987)) but, in

practice, for observations in the 200 or so range this makes no difference to
the results i.e., the bias remains.

As will be seen in the next section this bias can be a problem for the
kernel estimator, and the formulation of methods to ameliorate it need to have
high priority. A number of suggestions have been made. Schucany and Sommers

(1977) used a jacknifing method that entails the averaging of two estimators

with different bandwidths. Thus if h1 is set to cN—l/(q+4) and h2 to
cN_a/(q+4)(6e(0,1)), with corresponding estimates m and m;, the estimator
o {mT _ N—2(1—6)/(q+4)m*26}/(1 a N—2(1—6)/(q+4)} (5)

is asymptotically centered on g(x*).

An alternative proposal involves the construction of "higher order bias
reducing” kernels that are linear combinations of a basic kernel and which can
eliminate bias under certain conditions. Generally when K(z) is chosen in
this way it is not possible to ensure that it is non-negative and hence a
density function. Bartlett(1963) initiated this idea and Robinson(1987) has
recently used it in our context. To construct such a kernel let K'(z) be a

base kernel e.g., the Gaussian, and define ((=2,4,6,...)

172((-2) 2j
K(z) = 3 cjz K'(z), (6)
j=0
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vwhere cj are solutions to the system of 1/2((-2) + 1 linear equations

1/2(L-2)
>
j=0

”2j = fzzjK'(z)dz. Table 1 below gives values of cj for the Gaussian kernel

cju2(i+j) = 510' 0 < i< 1/72(L-2) (510 is the Kronecker delta) and

and a range of values for {. The idea behind this suggestion is that the
Taylor series expansion of E(m*)-m¥¢ around x* involves a power series in h,
and the coefficients of hY will be zero if all moments of the kernel up to and
including the j’th are zero. When { is the order of the first non-zero moment

172

of the kernel, (th) (E(m*)—m*) will converge to zero provided (th)1/2hbao

as N-=. Putting h=N-(1/(q+4)) will satisfy this restriction for any {(>2.
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Table 1

Values of ¢ to Construct Kernel in (6)

Lt =2 {t =4 { =6 {t =8
< 1 1.5 1.875 2.1875
< -0.5 -1.25 -2.1875
¢, 0.125 0.4375
3 -0.02083

Another variant of non-parametric estimation is the Fourier method
advocated by Gallant (1982). In this (1) is approximated by a quadratic
polynomial in xi and a linear combination of cosine and sine terms in Xy

o M

Vi =P * Pyxy + Byxy * 2

i ; 1(1j cos jxi + 6j sin jxi)+ vi.(7)

The formulation has its origins in approximation theory where it is known that
a Fourier series can approximate g(xi) arbitrarily well over the range (0,2w)
(in fact to use this method data must be scaled to be in this range). For
economic analysis the Fourier technique has the extra advantage that it also
approximates derivatives of g(xi) with respect to X, arbitrarily well, and
this is important as these derivatives correspond to economic quantities of
interest such as the marginal product. Provided M is chosen such that M - «
as N - © and g(+) is sufficiently smooth, the estimator of g(x*) formed as the
OLS predictions from (7) is consistent. Andrews(1988) shows that, if M is set

to cN', where c is a constant and 0<r<1, (Nl_r)l/z(g(x*)-g(x*)) is
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asymptotically normal. The choice of r is therefore akin to that of the
bandwidth in kernel regression. If the problem of bias is ignored or
eliminated by bias reducing methods N2/(q+4)(;*—m*) is asymptotically normal,
and writing the normalizing factor as (N.N(-q/(q+4))) suggests that r=(q/q+4)
would be appropriate when comparing kernel and Fourier estimators. It is
interesting to observe that the Fourier approach does not suffer the bias
problems of the kernel (in theory) and this makes it attractive. Eastwood and
Gallant (1987) however found that the rate of convergence to asymptotic
normality could be very slow unless M was chosen as a function of the data.
In our later experiments we have pre-assigned M, but the question of a "best
choice"” clearly deserves further investigation.

When X, is multivariate of order q the first three terms in (7) are a
quadratic form in the vector X4 i.e., they would be Bo + xiB + xini where
is a (q x 1) vector and B is a (q x q) matrix. The Fourier terms are made
functions of scalars iji where kj are (q x 1) vectors termed "multi-indexes".
The first q of these are the q elementary vectors, and an algorithm for
constructing them is described in Gallant (1982) with a computer code
available in Monahan (1981). An important feature of the Fourier procedure is
that it is asymptotically unbiased and therefore has a potential advantage
over the kernel estimator. Against this is the fact that the number of
parameters to be estimated in (7) multiply rapidly as the dimension of Xg
rises, and this may limit its use to small dimensional problems. In fact,
past users, such as Gallant, overcome this problem of a profligate number of
parameters by estimating systems of equations and imposing cross—equation

constraints from economic theory.
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The above discussion has concentrated upon estimating a conditional mean,
but there are models estimated in econometrics which demand that a conditional

variance be estimated. These are models which incorporate a risk premium and

which have the generic form

y; = ziB + 0?6 + e, (8)
where z, is weakly exogenous for 8 and & and a? represents the variance of
some random variable ¢i conditional upon an information set 3i. Pagan and
Ullah (1988) survey the ways in which it has been suggested that the
unobserved variable a? be replaced by a function of data. One popular
solution has been to assume that the conditional expectation of wi is a linear
function of some weakly exogenous variables LAY that is E(wilyi) = W7, and to

then assume a? is a function of ¢?—j’ where ¢i = wi - E(Wilgi)' Engle’s

r

+ 3 a.¢2

(1982) ARCH model for example sets a? =a -3
j=1

(0]
Pagan and Ullah (1988) advance an estimation strategy that seeks to avoid
the parameterization of a?. The basic idea advanced in that paper was to
replace a? by ¢? = (wi - E(¢i|9i))2, and to then consistently estimate 8 and &
by applying IV with instruments constructed from ﬂi (including x; as its own
instrument). Of course instrument construction needs to be done carefully,
since they must be as highly correlated with ¢? as possible. In fact, because
E(¢?|gi) e a?, U? appeals as a good instrument, making it desirable to
estimate a? for this purpose. An important facet of the IV strategy is that
it only requires m, = E(wilgi) to be estimated accurately; truncation of the
instrument set to (say) 5? = E(¢§|$i), vwhere gi € ﬂi, does not affect the

consistency of the estimators of f and 6, although efficiency might be
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affected if 5? has only a weak correlation with ¢?. Overall, there is a
trade-off between maximizing instrument correlation and restricting yi to be

small enough to get estimates 52

1 that are not "too noisy”.

Basically the IV approach requires the computation of m, = E(wilyi) and
some estimate of U? (although as noted above it is not crucial that the latter
be accurate). As described earlier, mi might be linear in the members of 91
i.e., LIS and this is a frequent assumption in VAR modeling. If so ;i can be
estimated as the predictions from the regression of wi against W However,
in some instances it may be desirable to allow m, to be a non-linear function
of %i, and then it could be estimated in the same way as g(x*) was estimated

~

earlier. Whichever way an estimate for m.. m., is generated, ;? = (¢i i
replaces Ui and an instrument ;? is used for ;?. In section 4 we use as
instruments the non-parametric estimate of the conditional variance of wi
given ?i.

Now although neither ;i nor ;? is likely to be estimated very precisely
unless dim(%i) is small or the number of observations is large, these
quantities are only being used as "regressors” in (8), and so the IV estimator
of B and 6 should be root-N consistent and asymptotically normal. To get this

result, following Pagan and Ullah (1998) it is necessary to show that Nul/2

3
zi(;? - ¢?) B 0, where z, are the chosen instruments. When the conditional
mean is parameterized as WY this is true, as discussed in Pagan(1984) and
exploited in tests for heteroskedasticity, but no general proof currently
exists when ¢i is estimated non-parametrically,particularly when wi is a time

series. An alternative estimator, if 9{ = 91. might be to regress Y against

~

Xg and a?. as this would give a consistent estimator of 6, B, but the standard

errors would need to be adjusted because of a ''generated regressor' bias
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~

arising from the use of ;? rather than a?. Just as in the case when a? is
constructed parametrically from gi' Pagan (1984), the appropriate adjustment
may be difficult to do directly, but is easily done with the IV procedure.
Hence, estimation and inference is naturally performed within the IV
framework.

The final issue to be addressed concerns which non-parametric method
should be used to construct ;i and ;?. In section 4 we employ both the kernel
based approach and the Fourier method. Both are easy to apply and have
advantages and disadvantages. It should be noted that for the Fourier
technique, ;? is estimated as the predictions obtained by fitting a Fourier

~ N2 2

approximation to (wi - mi) , since E(\pi - mi) = a? is the basis of such a

regression.
3. Kernel and Fourier Estimation of a CES Production Function

White (1980) set up a simulation experiment to evaluate the ability of
flexible functional forms to adequately approximate unknown regression

functions. He simulated data from a C.E.S. production function
_ (P pP\1/p
yi = (Li + 2K ) + ui . (9)

In our first experiment K was fixed at the value 1.71, log Li was distributed
uniformly over [0, 1], u, was i.i.d. (0, 0.01) and p was set to be -5. This
gives an unknown functional relation between A and Xg = Li' The variance of

u, was chosen so as to get an R2 of around .9 when (9) is fitted with both Li

and K. .
i
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Our aim is to estimate the functional relation g = (L;5 +
-(1/5)

2(1.71)_5) at selected points 1* = 1.284, 1.568, 1.852, 2.136, 2.420. A
variety of estimators was applied. Because of the bias problem the kernel
estimator was computed with jack-knifing (6 = .25, .5 and .75) as in (5) and
higher order kernels ({ = 4, 6, 8) as in (6). The number of terms in the
Fourier approximation (7) (M) was set to 2, making it independent of sample
size. Three sample sizes N = 60, 100 and 200 were used and 500 replications
performed.

Fig. 1, 2 and 3 graph g evaluated at the five points L™ detailed above
along with the average estimates provided by the standard kernel({=2),
jack-knifing (6 =.75), a higher-order kernel ({ = 8) and Fourier series
estimators; the values of 6 and { represented the choices with smallest
average bias. The bias problem with standard kernel estimators is immediately
apparent, but neither of the bias reducing procedures is particularly
successful in samples of size 60 , with noticable bias at the lower end of the
grid. As the sample grows the higher order kernel approach improves but the
jacknifed estimator does not. Of course for this set of parameters the
relative magnitude of the bias is small: what is important is its resilience
to an increase in sample size. With other parameter combinations the
magnitude of the bias could probably be made much greater.

In contrast to the poor performance of the kernel estimators the Fourier
method exhibits very small bias at all points in the L-space. In fact,
simulations with N as low as 30 did not change this conclusion. Hence, for

problems characterized by a single regressor in x,, the Fourier estimator

il
%
would seem to produce estimates of m that are much closer to the true values

than any of the kernel based procedures. Of course one might improve upon the
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kernel estimates by using variable bandwidths or selecting these by
cross-validation: what the experiment emphasises is that bias is a potentially
serious problem for kernel methods.

When the complete production function is estimated, results are rather
similar. In this instance log Ki is distributed uniformly over [0, 1] and a
grid of 25 points was taken corresponding to all bivariate combinations of the
points (1.284, 1.568, 1.852, 2.136, 2.420) for L* and K'. Tables 2, 3 and 4
show the average estimates of m*obtained for three of the combinations (L*,
K*) = (1.284, 1.284), (1.852, 1.852) and (2.420, 2.420). A complete
tabulation is available on request. Generally, the Fourier approximation does
reasonably well, although it is noticeable that the bias does not reduce very
much with the sample size and it may be that M should have been increased.

The basic kernel estimator ({ = 2) is not dominated by the Fourier estimator
as much as it was when x; was a scalar, while the bias reduction methods
perform well for large values of K and L but remain very poor at the left end
of the grid. Indeed the best strategy might well be to stay with the raw
kernel, as some of the higher-order kernel estimators ({ > 2) are incredibly
variable, with extreme outliers in a number of replications.

These limited experiments emphasize the problem of asymptotic bias in the
kernel estimator and, at least for a small number of conditioning variables,
suggest that Fourier methods may well be the best way to approximate g(°).
What is very disappointing in the results is the relatively poor performance
of methods that have been proposed to reduce the bias of standard kernel
estimators. Perhaps these methods would work better in larger sample sizes,
but it is obvious by comparing the first columns of Tables 2 and 4 that the

improvement seems very slight,even when the sample size tripled. A much more
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detailed comparison between the estimators as well as investigation of other

ways to reduce bias is therefore warranted.

4. Risk Estimation and ARCH Models

In these experiments the parameter 6 in equation (8), with 8 = O and so
z, excluded, was estimated by non-parametric methods . The conditional
variance of wi, a? , followed variants of Engle's (1982) ARCH model, while ¢i=
o+ ¢i. The density of the error term ¢i’ conditional upon past information,
was taken to be N(O, a?), with 6 , the location parameter p , and ai all being
set to unity. Two experiments were performed ,with a? being either an ARCH

(1) or an ARCH (4) of the type used by Engle et al (1987) when modeling the

excess holding yield on U.S. Treasury Bills.

2 2

%y =% *t o %5 (10)
& 2

o/ =ay+a j§1 ((5 - j)710) ¢i-j (11)

Four estimators of 6 were considered.
. 2 . . Soe e :
A. Estimate o5 by a kernel estimator, with conditioning variables

wi—l ...... ’wi-r ,r being the order of the ARCH process, and regress

. ain s
y1 ag st a1

B. Replace U? in (8) by ¢? = (wi - p)z, 1 being the sample mean of wi,

. . . ~2 . ~2
and then do instrumental variables with o, as instrument for ¢i.
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C. Fit the Fourier approximation to (7) with Y replaced by ¢?, take

the predictions, oy, as an estimator of a?, and regress ¥ against
~2
a..
i
D. Fit the parameters ag. @y in (10) and (11) and p using M.L.E.,
-2 . =2
compute o and regress y; against o).

Estimator D is meant to be a benchmark since it would be as efficient as
any two-stage estimator could be, in that it exploits the fact that the
conditional variance is generated by an ARCH process and the conditional
density is normal. The Fourier approximation might be expected to be a good

. 2 2 2
one when r = 1 since oy = a, + a (wi_l -u)" = aq + ay ¢i—1 2 aluwi_l +
a1u2, and therefore the quadratic terms that lead the Fourier approximation
are all that is needed to estimate a?. However, it will lose something owing
to the addition of unnecessary trigonometric terms. Because of this feature M
was varied with the sample size, being 1 for N = 30, 2 for N = 60, 100, and 3
for N = 200. In the case of equation (11) only the diagonal terms in the
quadratic form derived from (wi—l’wi-2’¢i—3'¢i—4) were retained.

Table 5 gives the mean and standard deviations (in parentheses) of the
estimated 6 from the four estimators for a, = .2 and °5, a? as in (10), and
for sample sizes N = 60, 100 and 200. Table 6 gives comparable results when
o is from (11). The kernel based estimators do quite well in estimating 0,
although it is noticeable that there is a small sample bias which is declining
only slowly and that this worsens as oy rises. However, the move from a
single (wi_l) to four conditioning variables (Wi—l' Coe wi_4) did not affect

the performance of the estimator at all. This is to be expected from the

theory, arising from the fact that the non-parametric estimators are
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effectively being averaged, and therefore root-N consistency should hold. It
is hard to be certain if this prediction is correct or not, but the ratio of
the standard error of 8 at N = 100 to that at N = 200 is generally around 1.2
- 1.3, so that the variance would be in ratio 1.4 - 1.7, compared to the
theoretical requirement of V2. It is also noticeable that the benchmark
estimator D gives good results and it is certainly more efficient than any of
the kernel methods, although the efficiency loss might be acceptable given the
gretaer robustness of the kernel procedures to specification errors in a%.

Perhaps the most disappointing result from Tables 5 and 6 was the poor
performance of the Fourier based estimator. When r=4 this might be expected
since a very large number of terms appear in the expansion. But the fact that
6 is poorly estimated when r=1, relative to that from the kernel and ARCH
methods, when r=1 is surprising, as it has already been noted that
performance might have been expected to be good in this context, in that one
is merely adding on superflous trigonometric regressors in the first stage
when estimating a?. In fact, if the trigonometric terms are dropped i.e. a?
is estimated by regressing ;i against a constant, ¢i—1 and W?—l’ the average
values of,S for the three sample sizes were 1.0102, .995 and .996 (a1=.2) and
1.1079, 1.0922 and 1.0837 (a1=.5). Hence the bias stems directly from the
addition of the Fourier terms. No simple explanation of this outcome could be
found and it clearly will repay further study.

5. Conclusion

This paper has tried to present some evidence upon the relative

performance of kernel and Fourier based non-parametric estimators. When

estimating a conditional mean theoretical considerations point to an

asymptotic bias problem for kernel methods, and this was borne out in our
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experiments with a production function. More disturbing however was the fact
that some of the methods suggested to overcome this problem were not very
effective, and in some instances the bias in the estimated mean could be worse
than if no adjustment was made at all. The bias problem afflicting the kernel
estimator was not present for the Fourier method and this must make it a
strong candidate when the context requires the estimation of a conditional
mean. If kernel methods are to be used better procedures for bias correction
will need to be developed.

In contrast to this outcome, when the non-parametric estimators of a
conditional variance were "averaged" by their employment in a regression to
estimate the effects of risk, the kernel estimators were much superior to the
Fourier ones. It is significant that, in this semi-nonparametric setting, the
OLS estimator of the risk coefficient exhibits no asymptotic bias, even when
the kernel method is used to generate a conditional variance for use as a
proxy for the missing true variance. Hence, kernel procedures look attractive
in this situation, although a wider range of specifications will need to be
examined before one could confidently recommend them.

Our experiments show that non-parametric estimation may be a useful tool
in econometric analysis, even in relatively small sample sizes. We have also
found that there are differences in performance between the different
non-parametric estimators and it will be important to determine the most
effective one in any particular case. Certainly a lot more needs to be done
so as to attain a good understanding of the performance of various estimators

before one is likely to see them in widespread application.
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Table 2

Average Estimates of g(-) for (9), Various Estimators, N = 60.

L =K' =1.284 L =K' = 1.852 1* = K = 2.420

g(*) 1.0307 1.4867 1.9426
Fourier 1.0207 1.4758 1.9479
5= .25 1.0000 . 1.4634 1.9303
5=.5 .9979 1.4713 1.9339
& = .75 .9964 1.4776 1.9364
L=2 1.0264 1.4231 1.8520
L =4 .9871 1.6257 2.0040
L =6 .0814 1.4980 1.9603

{t =8 3.4396 1.3363 1.5865



Table 3

Average Estimates of g(+) for (9), Various Estimators, N = 100

L =K' =1.284 L* =K =1.852 L =K' =242

g(+) 1.0307 1.4867 1.9426
Fourier 1.0197 1.4777 1.9336
& = .25 1.0005 1.4680 1.9413
5 = .5 .9989 1.4753 1.9446
& = .75 .9980 1.4805 1.9470
L =2 1.0225 1.4317 1.8735
L =4 .9917 1.6828 1.9871
Lt =6 . 9950 1.4701 1.9456
{t =8 1.0056 1.5267 1.8561



Table 4

Average Estimates of g(+) for (9), Various Estimators, N = 200

g(*)

Fourier

L =K =1.284 L =K =1.852 ¥ = K = 2.42
1.0307 .4867 .9426
1.0196 4747 .9376
1.000 .4728 .0498
.9989 .4789 .9532
.9991 .4822 L9556
1.0176 .4421 .8939
.9957 .5635 .9935
1.0053 .5706 .9862
1.0287 .5497 .9336
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Table 5

Mean and Standard Deviation of Estimators of & in (8)

2 2
Oy =%t ¥

Estimator
A B C D
al = .2
N = 60 1.0728 1.1223 .8749 1.0235
(.2392) (.2578) (.2459) (.1827)
N = 100 1.0458 1.0718 .8902 1.0124
(.1782) (.1940) (.2117) (.1393)
N = 200 1.0269 1.0388 .9012 1.0126
(.1246) (.1351) (.1626) (.0986)
al = .5
N = 60 1.2076 1.1960 .8963 1.0570
(.2435) (.2923) (.2734) (.2047)
N = 100 1.1589 1.1433 .8939 1.0364
(.1984) (.2630) (.2599) (.1748)
N = 200 1.1223 1.0901 .8606 1.0305

(.1600) (.1882) (.2341) (.1304)



@ = .2
N = 60

N = 100
N = 200
al = .5
N =60

N = 100
N = 200
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Table 6

Mean and Standard Deviation of Estimators of & in (8)

2 4 2
of =ay + a; 1§1 ((5 - j)710) ¢i—j .
Estimator
A ’ B C D

1.0497 1.1176 .6978 .9954
(.2818) (.2943) (.2027) (.1914)
1.0181 1.0603 .T7T758 1.0015
(.2036) (.2169) (.1780) . (.1404)
.9980 1.0274 .8521 1.0048
(.1378) (.1418) (.1302) (.0930)
1.1686 1.1442 .7016 .9991
(.2793) (.2927) (.2023) (.1847)
1.1344 1.0786 . 7648 1.0074
(.2009) (.2135) (.1892) (.1420)
1.1008 1.0346 .8234 1.0157

(.1460) (.1553) (.1649) (.0975)
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