Self-Fulfilling Expectations, Speculative Attacks and Capital Controls

Dellas, Harris and Alan C. Stockman

Working Paper No. 138
June 1988
SELF-FULFILLING EXPECTATIONS, SPECULATIVE ATTACKS AND CAPITAL CONTROLS

ABSTRACT

This paper examines the endogenous implementation of capital controls in the context of a fixed exchange rate regime. It is shown that if there exists a non-zero probability that the policymaker's response to a speculative attack on official foreign reserves will be the introduction of controls, such an attack may occur even when current and expected monetary policy is consistent with a permanently viable, control-free fixed exchange rate regime. Consequently, capital controls may be the outcome of self-fulfilling expectations rather than the result of imprudent economic policies.

Harris Dellas
Department of Economics
Vanderbilt University
Nashville, TN 37235
(615) 385-0174

Alan Stockman
Department of Economics
University of Rochester
Rochester, NY 14627
(716) 275-7214
INTRODUCTION

The last few years have witnessed a revival of interest in the removal of economic restrictions that are so extensively being used in most developing countries. The presence of such controls is considered to be one of the main obstacles to achieving sustained economic growth. A voluminous literature on economic liberalization now exists which deals with a wide variety of issues, like the optimal order of liberalization of the foreign accounts, its relation to domestic stabilization policies, etc. (for a survey of some of these issues as well as references, see Edwards, 1983). However, despite widespread agreement on the merits of economic liberalization, few such attempts have so far been undertaken. Moreover, most of these attempts failed at one stage or another, which led to the complete abandonment of economic reform.

The reason for the failure of liberalization experiments can be traced either to the adoption of economic policies which proved inconsistent with the permanent removal of controls; or to the lack of credibility of government policy. In the first case it is the current behaviour of the policymakers that undermines the viability of the reform. In the latter case, reform failure is the result of the ("destabilizing") behaviour of the public which acts on expectations of future policy reversals (even when current policies seem prudent).

In this paper we deal with the second source of failure in the context of the choice of the exchange rate system. We analyze how the choice of the exchange rate regime influences the probability of success of a balance-of-payments liberalization attempt. We argue that if current economic (monetary) policy is identical across alternative exchange systems, a fixed regime is more likely to lead to a reimposi-
tion of controls even when monetary authorities behave responsibly; that is even when monetary policy is consistent\(^1\) with the permanent maintenance of a control-free environment. What lies behind this result is the fact that, in general, pegged and flexible exchange rates are expected to be associated with different future economic policies.\(^2\) Pegged exchange rate systems are subject to possible balance-of-payments crises that involve endogenous speculation against a currency and associated capital flows. If people expect that, as a result of a speculative run, governments will impose capital controls to maintain the fixed regime, self-fulfilling expectations may cause such an attack to take place and the subsequent failure of the liberalization experiment. Note that the behaviour of individuals is absolutely rational as their expectations are validated by subsequent policy actions.

We also argue that if a third party (like the IMF) stood willing to lend foreign reserves to the domestic policymaker at a fixed rate in the case of a speculative run, on the condition that "responsible" monetary policy is maintained, no runs occur and a fixed exchange rate regime without capital controls is viable (and no actual loans are made).

Our analysis is applicable not only to the choice of the exchange rate regime during a liberalization attempt but also to other policy situations. For instance, it can explain why the effects of policy threats may be diametrically opposite from their intended objectives. As demonstrated in the paper, the threat of capital controls ignites speculative attacks instead of serving to deter them. A similar analysis can be applied to issues such as the effects of a variable investment tax credit on investment and output fluctuations.
THE MODEL

We employ a variant of the standard balance-of-payments--crisis model (see Flood and Garber, 1984, Obstfeld, 1986) to analyze the case of a small open economy. During a liberalization experiment, domestic residents can hold domestic money, domestic bonds, foreign money and foreign bonds. Foreign money is not held because its return is dominated by the return on bonds. Domestic money pays no interest but it is held because of the existence of trading frictions (such as a cash-in-advance constraint). If capital controls are imposed, domestic residents can no longer legally transact in foreign assets. Under a fixed regime, the domestic government has a stock of foreign reserves that is used to support the fixed exchange rate.

The following assumptions describe the behaviour of policy:

(a) Actual and expected domestic monetary policy is the same across different exchange rate regimes; it does not change following the occurrence of a speculative run; and is such that if a speculative attack did not cause the introduction of capital controls, the fixed regime could be viable indefinitely. Hence, only runs induced by the expectation of future controls can cause the collapse of the fixed regime.

(b) If official reserves are brought below a certain critical value by a speculative attack, then the government imposes capital controls (to be described shortly).

The model is built around the following equations:

\[\frac{M^d_t}{P_t} = a - b \cdot i \] \hspace{1cm} (1)

\[M^s_t = R_t + D_t \] \hspace{1cm} (2)
\[D_t = \bar{D} + u_t \]
\[E u_t = 0, \ E u_t^2 = \sigma^2 \]
\[P_t = S_0 \ p_t^* \]
\[i = i^* + E [(S_{t+1} | S_t) - 1] \]

where \(M^d_t, M^s_t, D_t, R_t, S_t, P_t \) and \(i_t \) are the domestic nominal demand for money, supply of money, domestic credit, foreign reserve holdings, exchange rate, price level and nominal interest rate respectively; an asterisk indicates "foreign"; and \(E \) is the expectations operator (we assume rational expectations). To simplify the exposition, we set \(P_t^* = 1 \) and \(i^* = 0 \).

We will assume that there are two critical values of \(R_t, \bar{R} \) and \(\bar{R} \). As long as official reserves exceed \(\bar{R} \), there are no restrictions on transactions involving foreign assets. If, however, \(R_t \) slips below \(\bar{R} \), a tax is imposed on purchases of foreign assets by domestic residents. When the level of reserves hits \(\bar{R} \), then the government withdraws from the foreign exchange market and lets the exchange rate float. One can justify this specification by arguing that the domestic government faces a perfectly elastic foreign supply of reserves up to \(\bar{R} \), an upward sloping curve from \(\bar{R} \) to \(\bar{R} \) and a perfectly inelastic one from \(\bar{R} \) and on. The fixed exchange rate is subject to capital controls in the interval \((\bar{R}, \bar{R}) \). An alternative specification could have been to have assumed that once reserves reach \(\bar{R} \), the government imposes strict quantitative capital controls that prohibit domestic residents from acquiring new foreign assets; the demand for foreign assets is then satisfied in the black market at a price that includes a premium.
To ensure that capital controls are not the outcome of excessive monetary expansion, but rather the result of self-fulfilling expectations about controls we will restrict the permissible behaviour of domestic credit. We will require that, if the policymaker announced that no capital controls would ever be imposed, monetary policy is such that no run ever takes place and foreign reserves suffice to maintain the fixed regime indefinitely. The required restriction \(R_T > \bar{R} \) implies that \(u_T \) is such that

\[
\text{Prob} \ (u_T < a\bar{s} - D - R) = 1
\]

(7)

where \(\bar{s} \) is the fixed exchange rate.

To highlight the interaction between self-fulfilling expectations and future possible policies we will consider two alternative policy scenarios. Under the first, the government announces that she will abandon the fixed regime when a balance-of-payments crisis occurs (reserves decline below \(\bar{R} \)) and will let the exchange rate float freely. It is easy to show\(^4\) that under this policy, a speculative attack will lead to an exchange rate appreciation. Consequently, people who participate in the attack—and exchange domestic for foreign assets—will experience a capital loss. As participation in an attack violates individual rationality, no run takes place.

Under the second option, the domestic government threatens (credibly) that she will impose a tax, \(r \), on acquisition of foreign assets if a run against the domestic currency causes foreign reserves to sink below \(\bar{R} \). We will now demonstrate that the existence of this threat makes a speculative run a non-zero probability event, and that the likelihood of a run depends on the interest elasticity of the demand
for money and the probability distribution of the shock to domestic credit \(u_t\). What makes an attack possible is the fact that while the domestic credit shock is not sufficient to wipe reserves out on its own (condition 7), a substantial drop in foreign reserves becomes possible when one includes the effect of the change in the domestic nominal interest rate on the demand for money. The interest rate changes because the threat of capital controls leads to an expected (implicit) currency devaluation which requires that the nominal interest rate rise to compensate holders of domestic currency denominates assets for potential capital losses.

The expected exchange rate for period \(t+1\) as of period \(t\) is

\[
\text{ES}_{t+1}^t = q(1+r)\bar{S} + (1-q)\bar{S} = (1+qr)\bar{S} > \bar{S},
\]

(8)

where \(q\) is the probability that \(u_t\) exceeds some critical level \(u\), and \(u\) is determined by

\[
u = (a-b\cdot i)\bar{S} - \bar{D} - \bar{R}
\]

(9)

(8) says that the expected exchange rate is the weighted sum of the fixed exchange rate that will prevail if no run takes place and the fixed cum tax rate if a run takes place. In (9) any \(u_t > u\) causes an excess supply of money which cannot be satisfied with an outflow of reserves (given \(\bar{R}\)) but requires an exchange rate depreciation. Hence for any \(u_t > u\) a speculative attack occurs and capital controls are imposed.

(8) and (6) imply that \(i = qr\) and substituting into (9) we have that \(q\) satisfies the condition

\[
q = \text{prob} \ (u_t > u) - \text{prob} \ [u_t > (a-bqr)\bar{S} - \bar{D} - \bar{R}]
\]

(10)
We can think of q as the probability of a balance-of-payments crisis. Since u_t is an i.i.d. random variable and the nominal interest rate is a constant, the probability of an attack is the same for all time periods. Capital controls are imposed the first time u_t exceeds \bar{u}. Notice that if the interest elasticity of the demand for money were zero, expression (10) would reduce to (7) with $q = 0$, that is no attack would ever occur.

Up to this point we have assumed that controls are known to be imposed with certainty when reserves slip below \bar{R}. Our analysis, however, can be extended to deal with situations in which the policymaker's response to a speculative attack is uncertain. For instance, suppose that the public believes that, following a run, controls will (will not) be imposed with probability y $(1-y)$. Then the expected exchange rate is

$$ES_{t+1} = \tilde{q}(y \cdot (1+r)\bar{S} + (1-y)[a^{-1}(\bar{R} + \bar{D}) + (a + b)^{-1} u_t] + (1-\tilde{q})\bar{S}$$

(11)

where \tilde{q} is the probability that u_t exceeds a new critical level \bar{u}. If $ES_{t+1} < \bar{S}$ no attack ever takes place. If, however, the exchange rate is expected to depreciate following a run ($ES_{t+1} > \bar{S}$), a run may take place if the realization of u_t is sufficiently high. The probability of an attack is lower now and it depends on the probability distribution of the domestic credit shock (q), the probability the public attacks to government intentions to impose capital controls (y), the interest elasticity of the demand for money and on the level of reserves, domestic credit and the exchange rate. Note that if the policymaker
could credibly choose the probability of imposing controls (which depends on things like the publicly perceived importance she attaches to a fixed regime relative to a flexible), the optimal choice involves setting \(y = 0 \). If, however, announcements of future policies are not credible, and no precommitment technology is available, then the public will assess the value of \(y \) by evaluating the policymaker’s objective function under the two policy options. The higher \(y \), the higher the possibility that a run will take place.

Before concluding this paper it is worthwhile making one remark that seems to have relevance for real world liberalization reforms. If an outside party (like the IMF) credibly promises to provide loans at a fixed rate, conditioned on the domestic policymaker’s following responsible monetary policies (which the policymaker does in our model because of condition 7), then the fixed regime could be maintained indefinitely with no attacks and capital controls. In such a case the choice of the exchange rate regime is of no consequence for the probability of success of an economic liberalization attempt. Moreover, in equilibrium, no actual loans need to be made. Whether such an IMF policy would be welfare-improving, or even feasible, is a more difficult issue that we do not address here.
Notes

1Proponents of a fixed exchange system believe that a fixed regime imposes discipline on the behaviour of monetary authorities (by endogenizing the money supply). In our case we assume that policymakers are already disciplined, and that the choice of exchange systems does not matter for the domestic credit component of the money supply.

2Stockman (1988) has emphasized the importance of these issues in the context of the behaviour of relative prices across exchange rate systems.

3If it did, it could fuel crisis expectations as it does in Obstfeld (1986).

4If, as a result of a speculative attack, the government switches to a floating exchange rate regime, the exchange rate will be determined by the following stochastic difference equations (which is derived by combining equations (1), (2), (5) and (6)):

\[-bES_{t+1} + (a+b)S_t = \bar{R} + D_t \]

which can be solved for \(S_t \) and when combined with equation (4) gives

\[S_t = a^{-1}(\bar{R} + D) + (a+b)^{-1}u_t \]

(A2) and condition (8) imply that \(S_t < \bar{S} \), i.e., the exchange rate appreciates.

5It could vary over time if \(u_t \) was an autocorrelated stochastic process.

6\(u \) is defined in a way similar to \(u \) in (9). The only difference is that the nominal interest rate will now be calculated using (11)
rather than (8). Notice that $\bar{q} \leq q$, so a run is more likely to occur when controls are expected to be imposed with certainty.
References

RECURSIVE UTILITY AND OPTIMAL CAPITAL ACCUMULATION, I: EXISTENCE, by Robert A. Becker, John H. Boyd III, and Bom Yong Sung, January 1987

MONEY AND MARKET INCOMPLETENESS IN OVERLAPPING-GENERATIONS MODELS, by Marianne Baxter, January 1987

GROWTH BASED ON INCREASING RETURNS DUE TO SPECIALIZATION by Paul M. Romer, January 1987

WHY A STUBBORN CONSERVATIVE WOULD RUN A DEFICIT: POLICY WITH TIME-INCONSISTENT PREFERENCES by Torsten Persson and Lars E.O. Svensson, January 1987

ON THE CONTINUUM APPROACH OF SPATIAL AND SOME LOCAL PUBLIC GOODS OR PRODUCT DIFFERENTIATION MODELS by Marcus Berliant and Thijs ten Raa, January 1987

THE QUIT-LAYOFF DISTINCTION: GROWTH EFFECTS by Kenneth J. McLaughlin, February 1987

SOCIAL SECURITY, LIQUIDITY, AND EARLY RETIREMENT by James A. Kahn, March 1987

THE PRODUCT CYCLE HYPOTHESIS AND THE HECHEISCHER-OHLIN-SAMUELSON THEORY OF INTERNATIONAL TRADE by Sugata Marjit, April 1987

NOTIONS OF EQUAL OPPORTUNITIES by William Thomson, April 1987

BARGAINING PROBLEMS WITH UNCERTAIN DISAGREEMENT POINTS by Youngsub Chun and William Thomson, April 1987

THE ECONOMICS OF RISING STARS by Glenn M. MacDonald, April 1987

STOCHASTIC TRENDS AND ECONOMIC FLUCTUATIONS by Robert King, Charles Plosser, James Stock, and Mark Watson, April 1987

INTEREST RATE SMOOTHING AND PRICE LEVEL TREND-STATIONARITY by Marvin Goodfriend, April 1987

THE EQUILIBRIUM APPROACH TO EXCHANGE RATES by Alan C. Stockman, revised, April 1987
WP#82 INTEREST-RATE SMOOTHING
 by Robert J. Barro, May 1987

WP#83 CYCLICAL PRICING OF DURABLE LUXURIES
 by Mark Bils, May 1987

WP#84 EQUILIBRIUM IN COOPERATIVE GAMES OF POLICY FORMULATION
 by Thomas F. Cooley and Bruce D. Smith, May 1987

WP#85 RENT SHARING AND TURNOVER IN A MODEL WITH EFFICIENCY UNITS OF HUMAN
 CAPITAL
 by Kenneth J. McLaughlin, revised, May 1987

WP#86 THE CYCLICALITY OF LABOR TURNOVER: A JOINT WEALTH MAXIMIZING
 HYPOTHESIS
 by Kenneth J. McLaughlin, revised, May 1987

WP#87 CAN EVERYONE BENEFIT FROM GROWTH? THREE DIFFICULTIES
 by Herve' Moulin and William Thomson, May 1987

WP#88 TRADE IN RISKY ASSETS
 by Lars E.O. Svensson, May 1987

WP#89 RATIONAL EXPECTATIONS MODELS WITH CENSORED VARIABLES
 by Marianne Baxter, June 1987

WP#90 EMPIRICAL EXAMINATIONS OF THE INFORMATION SETS OF ECONOMIC AGENTS
 by Nils Gottfries and Torsten Persson, June 1987

WP#91 DO WAGES VARY IN CITIES? AN EMPIRICAL STUDY OF URBAN LABOR MARKETS
 by Eric A. Hanushek, June 1987

WP#92 ASPECTS OF TOURNAMENT MODELS: A SURVEY
 by Kenneth J. McLaughlin, July 1987

WP#93 ON MODELLING THE NATURAL RATE OF UNEMPLOYMENT WITH INDIVISIBLE LABOR
 by Jeremy Greenwood and Gregory W. Huffman

WP#94 TWENTY YEARS AFTER: ECONOMETRICS, 1966–1986
 by Adrian Pagan, August 1987

WP#95 ON WELFARE THEORY AND URBAN ECONOMICS
 by Marcus Berliant, Yorgos Y. Papageorgiou and Ping Wang, August 1987

WP#96 ENDOGENOUS FINANCIAL STRUCTURE IN AN ECONOMY WITH PRIVATE
 INFORMATION
 by James Kahn, August 1987

WP#97 THE TRADE-OFF BETWEEN CHILD QUANTITY AND QUALITY: SOME EMPIRICAL
 EVIDENCE
 by Eric Hanushek, September 1987
SUPPLY AND EQUILIBRIUM IN AN ECONOMY WITH LAND AND PRODUCTION
by Marcus Berliant and Hou-Wen Jeng, September 1987

AXIOMS CONCERNING UNCERTAIN DISAGREEMENT POINTS FOR 2-PERSON
BARGAINING PROBLEMS
by Youngsub Chun, September 1987

MONEY AND INFLATION IN THE AMERICAN COLONIES: FURTHER EVIDENCE ON
THE FAILURE OF THE QUANTITY THEORY
by Bruce Smith, October 1987

BANK PANICS, SUSPENSIONS, AND GEOGRAPHY: SOME NOTES ON THE
"CONTAGION OF FEAR" IN BANKING
by Bruce Smith, October 1987

LEGAL RESTRICTIONS, "SUNSPOTS", AND CYCLES
by Bruce Smith, October 1987

THE QUIT-LAYOFF DISTINCTION IN A JOINT WEALTH MAXIMIZING APPROACH TO
LABOR TURNOVER
by Kenneth McLaughlin, October 1987

ON THE INCONSISTENCY OF THE MLE IN CERTAIN HETEROSKEDASTIC REGRESSION
MODELS
by Adrian Pagan and H. Sabau, October 1987

RECURRENT ADVERTISING
by Ignatius J. Horstmann and Glenn M. MacDonald, October 1987

PREDICTIVE EFFICIENCY FOR SIMPLE NONLINEAR MODELS
by Thomas F. Cooley, William R. Parke and Siddhartha Chib, October 1987

CREDIBILITY OF MACROECONOMIC POLICY: AN INTRODUCTION AND A BROAD
SURVEY
by Torsten Persson, November 1987

SOCIAL CONTRACTS AS ASSETS: A POSSIBLE SOLUTION TO THE
TIME-CONSISTENCY PROBLEM
by Laurence Kotlikoff, Torsten Persson and Lars E. O. Svensson, November 1987

EXCHANGE RATE VARIABILITY AND ASSET TRADE
by Torsten Persson and Lars E. O. Svensson, November 1987

MICROFOUNDATIONS OF INDIVISIBLE LABOR
by Vittorio Grilli and Richard Rogerson, November 1987

FISCAL POLICIES AND THE DOLLAR/POUND EXCHANGE RATE: 1870–1984
by Vittorio Grilli, November 1987

INFLATION AND STOCK RETURNS WITH COMPLETE MARKETS
by Thomas Cooley and Jon Sonstelie, November 1987
WP#113 THE ECONOMETRIC ANALYSIS OF MODELS WITH RISK TERMS
by Adrian Pagan and Aman Ullah, December 1987

WP#114 PROGRAM TARGETING OPTIONS AND THE ELDERLY
by Eric Hanushek and Roberton Williams, December 1987

WP#115 BARGAINING SOLUTIONS AND STABILITY OF GROUPS
by Youngsub Chun and William Thomson, December 1987

WP#116 MONOTONIC ALLOCATION MECHANISMS
by William Thomson, December 1987

WP#117 MONOTONIC ALLOCATION MECHANISMS IN ECONOMIES WITH PUBLIC GOODS
by William Thomson, December 1987

WP#118 ADVERSE SELECTION, AGGREGATE UNCERTAINTY, AND THE ROLE FOR MUTUAL INSURANCE COMPANIES
by Bruce D. Smith and Michael J. Stutzer, February 1988

WP#119 INTEREST ON RESERVES AND SUNSPOT EQUILIBRIA: FRIEDMAN´S PROPOSAL RECONSIDERED
by Bruce D. Smith, February 1988

WP#120 INTERNATIONAL FINANCIAL INTERMEDIATION AND AGGREGATE FLUCTUATIONS UNDER ALTERNATIVE EXCHANGE RATE REGIMES
by Jeremy Greenwood and Stephen D. Williamson, February 1988

WP#121 FINANCIAL DEREGULATION, MONETARY POLICY, AND CENTRAL BANKING
by Marvin Goodfriend and Robert G. King, February 1988

WP#122 BANK RUNS IN OPEN ECONOMIES AND THE INTERNATIONAL TRANSMISSION OF PANICS
by Peter M. Garber and Vittorio U. Grilli, March 1988

WP#123 CAPITAL ACCUMULATION IN THE THEORY OF LONG RUN GROWTH
by Paul M. Romer, March 1988

WP#124 FINANCIAL INTERMEDIATION AND ENDOGENOUS GROWTH
by Valerie R. Bencivenga and Bruce D. Smith, March 1988

WP#125 UNEMPLOYMENT, THE VARIABILITY OF HOURS, AND THE PERSISTENCE OF "DISTURBANCES": A PRIVATE INFORMATION APPROACH
by Bruce D. Smith, March 1988

WP#126 WHAT CAN BE DONE WITH BAD SCHOOL PERFORMANCE DATA?
by Eric Hanushek and Lori Taylor, March 1988

WP#127 EQUILIBRIUM MARKETING STRATEGIES: IS THERE ADVERTISING, IN TRUTH?
by Ignatius Horstmann and Glenn MacDonald, revised, March 1988

WP#128 REAL EXCHANGE RATE VARIABILITY UNDER PEGGED AND FLOATING NOMINAL EXCHANGE RATE SYSTEMS: AN EQUILIBRIUM THEORY
by Alan C. Stockman, April 1988
WP#129 POST–SAMPLE PREDICTION TESTS FOR GENERALIZED METHOD OF MOMENT ESTIMATORS
 by Dennis Hoffmar and Adrian Pagan, April 1988

WP#130 GOVERNMENT SPENDING IN A SIMPLE MODEL OF ENDOGENOUS GROWTH
 by Robert J. Barro, May 1988

WP#131 FINANCIAL DEVELOPMENT, GROWTH, AND THE DISTRIBUTION OF INCOME
 by Jeremy Greenwood and Boyan Jovanovic, May 1988

WP#132 EMPLOYMENT AND HOURS OVER THE BUSINESS CYCLE
 by Jang–Ok Cho and Thomas F. Cooley, May 1988

WP#133 A REFINEMENT AND EXTENSION OF THE NO–ENVY CONCEPT
 by Dimitrios Diamantaras and William Thomson, May 1988

WP#134 NASH SOLUTION AND UNCERTAIN DISAGREEMENT POINTS
 by Youngsub Chun and William Thomson, May 1988

WP#135 NON–PARAMETRIC ESTIMATION AND THE RISK PREMIUM
 by Adrian Pagan and Y. Hong, May 1988

WP#136 CHARACTERIZING THE NASH BARGAINING SOLUTION WITHOUT
 PARETO–OPTIMALITY
 by Terje Lensberg and William Thomson, May 1988

WP#137 SOME SIMULATION STUDIES OF NON–PARAMETRIC ESTIMATORS
 by Y. Hong and A. Pagan, June 1988

WP#138 SELF–FULFILLING EXPECTATIONS, SPECULATIVE ATTACKS AND CAPITAL
 CONTROLS
 by Harris Dellas and Alan C. Stockman, June 1988
To order copies of the above papers complete the attached invoice and return to Christine Massaro, W. Allen Wallis Institute of Political Economy, RCER, 109B Harkness Hall, University of Rochester, Rochester, NY 14627. Three (3) papers per year will be provided free of charge as requested below. Each additional paper will require a $5.00 service fee which must be enclosed with your order. For your convenience an invoice is provided below in order that you may request payment from your institution as necessary. Please make your check payable to the Rochester Center for Economic Research. Checks must be drawn from a U.S. bank and in U.S. dollars.

W. Allen Wallis Institute for Political Economy

Rochester Center for Economic Research, Working Paper Series

OFFICIAL INVOICE

Requestor's Name

Requestor's Address

Please send me the following papers free of charge (Limit: 3 free per year).

WP# ______ WP# ______ WP# ______

I understand there is a $5.00 fee for each additional paper. Enclosed is my check or money order in the amount of $__________. Please send me the following papers.

WP# ______ WP# ______ WP# ______
WP# ______ WP# ______ WP# ______
WP# ______ WP# ______ WP# ______
WP# ______ WP# ______ WP# ______