Rent Sharing in an Equilibrium Model of Matching and Turnover

McLaughlin, Kenneth J.

Working Paper No. 141
June 1988
Rent Sharing in an Equilibrium Model of Matching and Turnover

Kenneth J. McLaughlin

Rochester Center for Economic Research
Working Paper No.141
Rent Sharing in an Equilibrium Model of Matching and Turnover

The neoclassical model of the labor market—with a downward sloping labor demand schedule and an upward sloping labor supply schedule at the market level—is a valuable framework for analyzing the determination of wages and employment. However, the neoclassical model of labor market equilibrium is muted in the context of heterogeneous workers and firms. Analysis with heterogeneity often neglects marginal analysis to focus on the matching of workers and firms or on labor turnover. To the extent matching models fail to determine a unique wage rate and the employment levels of firms, and lack a well-defined concept of marginal productivity, valuable features of the neoclassical equilibrium are lost. Consider two points:

First, what is the content of productivity in the matching context? In the prototypical one-to-one matching model of Koopmans and Beckmann (1957), worker productivity is not a meaningful concept. A worker-firm match produces a valuable output, but the worker does not have any private contribution to output. Nevertheless, perhaps relying on an unspecified marginal analysis, the common matching variants of turnover models (e.g., Hashimoto and Yu 1980; Hall and Lazear 1984; Antel 1985) map productivity draws into wage offers and turnover decisions.

Second, how is the value of the match divided between the firm and the worker? In particular, for a given worker, is there a unique wage offer from each firm? In the prototypical matching model, the division of the match

*I thank Marcus Berliant, Eric Bond, John Boyd III, Barbara Mace, Walter Oi, Stephen Trejo, and participants in the Workshop in Applied Economics at the University of Rochester and the Labor Workshop at the University of California, Santa Barbara for their helpful comments. An earlier version of this paper was distributed under the title "Rent Sharing and Turnover in a Model with Efficiency Units of Human Capital."
value is not unique. In analyzing the market solution to the matching problem, one investigates whether a set of prices (wage and profit associated with each potential match) is capable of sustaining the optimal assignment of workers to firms. The heterogeneity inherent in the matching framework implies that the division of the match value into wage and profit in each optimal match is indeterminate: the wage offer from the optimal firm is not unique since there are rents associated with the optimal match.\(^1\) A unique split of the rents is relegated to a cooperative game based on relative bargaining strength.

One purpose of this paper is to develop a model with the following blend of neoclassical and matching features:

(a) At the firm level, the demand for labor is well defined.

(b) A worker's productivity value is well defined and varies across firms.

(c) Wages are flexible, varying with productivity in the observed match and with outside wage offers.

(d) Matching is efficient: in the market equilibrium, a worker matches with the firm in which his productivity value is highest.

The primary purpose of this paper, however, is to analyze the effect of rent sharing on equilibrium matching and turnover. Consequently, the following properties are added:

\(^1\)While this form of indeterminacy is an essential feature of the matching framework, it should be stressed that the indeterminacy is more fundamental. First, in the absence of "unmatched" reservation values, the addition or subtraction of a constant to all wage offers does not affect the competitive matching solution (Koopmans and Beckmann 1957, 60-61). Second, the set of wage offers which supports the optimal match depends on outside wage offers. Since the best alternative wage offer is not unique, an additional indeterminacy is present.
(e) A worker's wage is increasing in his relative bargaining strength.

(f) Both matching and turnover are efficient and invariant to bargaining strength.

(g) Some turnover is common to the firm and some to the industry; other turnover is frictional, that is idiosyncratic or worker specific.

Items (a) - (g) are features of an equilibrium matching model of the labor market with neoclassical properties.

In section 1, I develop an equilibrium model of matching with efficiency units of human capital which generates a meaningful concept of worker productivity. With this developed, I analyze rent sharing. Firms and workers adopt a sharing rule which divides the difference between productivity within the firm and the best outside wage offer. This implies unique wage and profit offers for each potential match, and hence a determinate solution for wage and profit in the observed matches. Furthermore, this sharing rule induces optimal matching.

Implications for turnover behavior are investigated in section 2. Turnover can result from stochastic variation in the product price or production technology of any firm, or the supply of efficiency units of any worker. With such stochastic variation, the sharing rule generates efficient turnover. Incorporating a joint wealth maximizing model of the quit-layoff distinction, the model implies that the higher the worker's share of the rents to the match, the lower the probability of a quit and the higher the probability of a layoff.

In section 3, the equilibrium model of matching and turnover is applied to analyze the effect of union status on wages and turnover. To the extent union workers capture a higher share of the rents associated with the employment
match, they are expected to exhibit higher wages, lower quit rates, and higher layoff rates than their nonunion counterparts.

Section 4 contains a summary of the principal results and several concluding comments.

1. An Equilibrium Model of Matching

In this section, I construct an equilibrium model of matching with rent sharing. The analysis begins with a single period model of a market in efficiency units of human capital.

Firm i is characterized by a neoclassical production function X_i which maps efficiency units of human capital H_i and physical capital K_i into output x_i.

\begin{equation}
 x_i = X_i(H_i, K_i), \quad i = 1, \ldots, I.
\end{equation}

Following the matching tradition, I take each firm's production technology as given, and I hold the number of firms fixed.

Central to the analysis is the input H_i. Let H_i be given by an additive function which maps the J workers' skill vectors $a_j = (a_{1j}, \ldots, a_{nj})$ into a real number.\(^2\)

\begin{equation}
 H_i \equiv \sum_{j=1}^{J} H_{ij} e_{ij} \equiv \sum_{j=1}^{J} H(a_{1j}, \ldots, a_{nj}) e_{ij}, \quad i = 1, \ldots, I.
\end{equation}

\(^2\)This feature of the model has as antecedents the work of Mandelbrot (1962), Sattinger (1975), Heckman and Sedlacek (1985), and Heckman and Scheinkman (1987). In this literature, bundles of worker skills are transformed into "tasks," which is the productive input.
where each indicator variable \(E_{ij} \) equals unity if worker \(j \) is employed by firm \(i \), and equals zero otherwise. Each worker \(j \) is a collection of skills which cannot be unbundled; thus \(a_{kj} \) is a stock variable measuring the amount of type-\(k \) skill embodied in worker \(j \). \(H_i(a_j) \), which is left unrestricted, is a firm-specific function which maps worker \(j \)'s vector of skills into efficiency units of human capital, a scalar value \(H_{ij} \). Since \(H_i(a_j) \) is indexed by \(i \), valuations of a particular skill can vary across firms.

Equations (1) and (2) incorporate the efficiency units assumption. All that matters to firm \(i \) is the total number of efficiency units of human capital it employs, not the composition among its workforce. For example, the firm is indifferent between \(N \) workers of type A each with \(H_{iA} \) units of human capital and one worker with \(N \cdot H_{iA} \) units. Similarly, the firm is indifferent between worker B with fifteen years of experience with other firms and worker C with one year of experience in its own employment if \(H_{1B} = H_{1C} \).

Neoclassical analysis derives the demands of firms for human capital efficiency units: \(H_i^* \), \(i = 1, \ldots, I \). Taking as given the price of efficiency units of human capital to firm \(i \), \(\omega_i \), and the price of firm \(i \)'s product, \(P_i \), firm \(i \) chooses \(H_i \) to satisfy

3 The efficiency units specification, mapping skills into efficiency units of human capital, is fully consistent with firm-specific and general human capital (Becker 1962). Skills at any point in time may depend on the history of employment. A subset of worker \(j \)'s skill vector contains general components which are valued equally across firms. Other skills are valued differently; in particular, some "skills" may be the stocks associated with previous firm-specific investments.

The decision to invest in human capital is ignored throughout the paper. See Murphy (1986) for an analysis of the investment decision in a model with specific capital.
(3) \[\frac{\partial X_i}{\partial H_i} (H_i; K_i) = \omega_i, \] \[i = 1, ..., I, \]

with \(K_i \) fixed. Thus equation (3) implicitly defines firm \(i \)'s short-run derived demand for human capital \(H_i^* = L_i(\omega_i/P_i; K_i) \), with \(L_i(\cdot) \) decreasing in its first argument. This specification allows for different prices of human capital across firms. I show below that this is a property of the market equilibrium.

Although neoclassical analysis is sufficient to determine the level of employment of each firm, whom to employ must be determined in the matching environment. In particular, equilibrium values of the employment indicators \(E_{ij} \) depend on each worker's productivity value in every firm.

Worker \(j \)'s productivity value in firm \(i \) is the value of the marginal product of human capital in firm \(i \) times the amount of human capital worker \(j \) has in firm \(i \).

(4) \[M_{ij} \equiv P_i \frac{\partial X_i}{\partial H_i} (H_i; K_i) \cdot H_{ij} \]
\[= \omega_i \cdot H_{ij}, \]
\[i = 1, ..., I, \]
\[j = 1, ..., J, \]

where \(M_{ij} \) denotes worker \(j \)'s productivity value in firm \(i \). Worker \(j \)'s productivity value, which is firm specific, is decomposed into price and quantity components, both of which in general can vary across firms.

Optimal Matching

In the optimal match, is worker \(j \) assigned to the firm in which his
productivity value is greatest? As a result of the efficiency units assumption, the answer is yes. By definition the optimal match maximizes the value of output in the market. Consequently, if the "maximal productivity" match were suboptimal, then it would be possible to re-assign workers and thereby increase the value of output in the market. Note that every possible re-assignment involves a transfer of efficiency units between firms. Therefore, it is sufficient to show that any transfer of efficiency units from the "maximal productivity" allocation results in a reduction in the value of output in the market: Transferring worker \(j \) (i.e., a small amount of human capital) from the firm in which he is most productive to some other firm reduces the value of output in the market: the value of the sending firm's output falls more than the value of the receiving firm's output rises.\(^4\)

\(^4\)This can be established formally using two first-order Taylor series expansions. Let firm 1 be \(j \)'s maximal productivity match and firm 2 some other firm. Hence \(M_{1j} > M_{2j} \). Let \(\Delta[P_1 X_1(H^*_1)] \) and \(\Delta[P_2 X_2(H^*_2)] \) denote the changes in the value of outputs at firms 1 and 2 respectively which result from the transfer of worker \(j \) from firm 1 to firm 2.

\[
\Delta[P_1 X_1(H^*_1)] + \Delta[P_2 X_2(H^*_2)]
\]

\[
= [P_1 X_1(H^*_1 - H^*_1j)] + [P_2 X_2(H^*_2 + H^*_2j) - P_2 X_2(H^*_2)]
\]

\[
= P_1 \frac{\delta X_1}{\delta H_1} (H^*_1) \cdot [H^*_1 - H^*_1j - H^*_1] + P_2 \frac{\delta X_2}{\delta H_2} (H^*_2) \cdot [H^*_2 + H^*_2j - H^*_2]
\]

\[
= -(M_{1j} - M_{2j}) < 0.
\]

The second step employs Taylor series expansions around \(H^*_1 \) and \(H^*_2 \), and the final step follows from the definition of productivity value. Consequently, the total value of output falls from any such re-assignment from the maximal productivity match.
Therefore, the optimal match assigns each worker to the firm in which his productivity value is highest.

The importance of this result draws in part from the absence of such a property in prototypical matching models. Consider the model of Koopmans and Beckmann (1957). A key feature of the model is that assignments are one-to-one such as in a monogamous marriage market (Becker 1973). In such a model, the optimal match does not in general assign a worker to the firm in which the output of the match is greatest for the specific worker (Koopmans and Beckmann 1957, 55; Becker 1973, 824-25).

One way to structure the Koopmans-Beckmann model is to let the match values, denoted V_{1j}, be generated by a continuous function of indices of firm and worker quality: $V_{1j} = f(k_i, h_j)$, where f is an increasing, concave function and $f_{kh} > 0$ (Becker 1973; Sattinger 1980, 98-101). This structure adds two features to the Koopmans-Beckmann model. First, worker productivity is well defined and given by f_h. Second, this is an ordered model. Matched with a firm of any quality level k, high h workers are more productive than low h workers. The optimal assignment matches the best worker with the best firm, down to the worst worker with the worst firm. In the ordered model, only the best worker matches with the firm in which his productivity value f_h is greatest.

As a consequence of relaxing the "monogamy" restriction, the matching model with efficiency units of human capital exhibits an intuitive property: in the optimal assignment, each worker is matched with the firm in which his productivity value is highest. The next step is to determine whether a decentralized labor market supports the optimal assignment. It is here that rent sharing plays an important role.
Matching, Rent Sharing, and Wage Offers

With the value of worker j's productivity at each firm i well defined and given by $M_{ij} = \omega_i \cdot H_{ij}$, one can ask: must worker j be paid his productivity value in his optimal match? The answer is no. The shadow price of human capital ω_i determines the worker's productivity value, not his wage payment. The marginal worker in firm i must be paid his productivity value, but firm i can price discriminate against the infra-marginal workers. Of course, each infra-marginal worker has bargaining power as well, so the bilateral monopoly problem inherent in the matching context supports the indeterminacy.

A simple solution to the problem of indeterminacy is rent sharing. The worker and firm divide up rents such that worker j is paid his productivity value in his best alternative match plus a fraction of the difference between the productivity values with his optimal and best-alternative matches. A problem with this rule is in its informational requirements. Firm i must know the productivity value of worker j in j's next best match. Hence wage offers follow from knowledge of the matching solution. If one is interested in how wage offers induce matching, rather than vice versa, this is a deficiency.

An alternative rent sharing scheme employs a weaker informational requirement. Let w_{ij} denote firm i's wage offer to worker j, and let $w'_{ij} = \max_{k \neq i} w_{kj}$ define worker j's best alternative wage offer. Worker j matches with firm i if his wage offer from firm i exceeds all other wage offers; that is, if $w_{ij} > w'_{ij}$. The rent sharing scheme employed in this paper requires that worker j's best alternative wage offer w'_{ij} be verifiable and that the worker's productivity value M_{ij} be verifiable.
is consummated.5 Therefore, firm i and worker j can sign a contract which pays the worker, if employed, a wage equal to his opportunity wage w'_{ij} plus a share of the rents to the match: the wage employed is a convex combination of productivity within firm i, M_{ij}, and worker j's best alternative wage offer, w_{ij}. Such a contract describes the accepted wage which depends on the wage offers of other firms. If all firm-worker pairs write such contracts, does the labor market have a unique equilibrium set of wage offers $w^*_j = (w^*_{ij}, \ldots, w^*_i)$, $j = 1, \ldots, J$? If so, what properties does the equilibrium exhibit?

The following expression formalizes the decision rules for each of the I firms bidding for worker j:

\begin{equation}
 w_{ij} = \beta_{ij} M_{ij} + (1-\beta_{ij}) \cdot \text{MIN}(M_{ij}, w'_{ij}), \quad i = 1, \ldots, I, \\
 j = 1, \ldots, J,
\end{equation}

where $0 < \beta_{ij} \leq 1$ is the rent sharing parameter.6 Consequently, the rule is to offer $w_{ij} = \beta_{ij} M_{ij} + (1-\beta_{ij}) w'_{ij}$ if $w_{ij} < M_{ij}$, and $w_{ij} = M_{ij}$ otherwise.

For each worker j, (5) is a system of I equations in I unknowns. In the appendix, I use the contraction mapping theorem to establish that a unique Nash solution exists. The solution, w_j, is the vector of offers received by worker j. For convenience index firms such that $w_{ij} \leq \ldots \leq w_i$.

5Verifiability in this context precludes bluffing or fraud in presenting alternative wage offers. I assume that once worker j reveals w'_{ij} to firm i, firm i can check its validity costlessly. In addition, firm i must know worker j's productivity value M_{ij} even if the match is not consummated. If the match is consummated, M_{ij} must be costlessly verifiable to the worker; however, verification need not be prior to production.

6At this stage, β_{ij} is parametric. Determination of β_{ij} is discussed at the end of section 1.
\[w_{ij} \leq w_{Ij} \text{ for all } i \neq I, \text{ wage offers are} \]

\[(6.1) \quad w_{ij} = M_{ij} \quad i = 1, \ldots, I-1. \]

Therefore, the accepted wage is

\[(6.2) \quad w_{Ij} = \beta_{Ij} M_{ij} + (1 - \beta_{Ij}) w_{I-1,j} \]

\[= \beta_{Ij} M_{ij} + (1 - \beta_{Ij}) M_{I-1,j} \]

\[= M_{I-1,j} + \beta_{Ij} (M_{ij} - M_{I-1,j}). \]

The resulting wage offers to worker \(j \) can be thought of in the context of an auction. Consider the wage offers of the \(I \) firms in an auction for worker \(j \). In the bidding process for worker \(j \), firm \(i \) observes both \(M_{ij} \) and \(w_{ij} \). If some firm \(k \) offers a wage greater than \(M_{ij} \), firm \(i \) offers a wage equal to \(M_{ij} \). But if \(w'_{ij} < M_{ij} \), firm \(i \) offers a convex combination of the two observables, \(M_{ij} \) and \(w'_{ij} \). Equations (6.1) and (6.2) imply convergence to \(w_j \) in two rounds of bidding. In the first round, each firm \(i \) can do no better than to offer \(M_{ij} \) to worker \(j \). In the second and final round, every firm \(i \) but the one in which worker \(j \) is most productive again offers \(M_{ij} \); firm \(I \) offers a wage which shares the rents as given in equation (6.2).

Labor Market Equilibrium

In generating the wage offers represented by equations (6.1) and (6.2), firms take the vector of prices of human capital efficiency units \(\upsilon = \)
(\(\psi_1, \ldots, \psi_I\)) as given. The next step of the analysis is to solve for the equilibrium vector of shadow prices \(\psi^* = (\psi_1^*, \ldots, \psi_I^*)\). A key result is that human capital is not perfectly elastically supplied to any firm. Hence there are well-defined demand and supply functions at the firm level resulting in equilibrium shadow prices \(\psi^*\). These in turn generate equilibrium productivity values, equilibrium wage offers, and equilibrium matching.

The supply of human capital to firm \(i\) is given as the solution to the \(J\) workers' matching choice problem. The supply of human capital is an increasing function of \(\psi_i\), since each wage offer \(w_{ij}\) is increasing in \(\psi_i\). The supply function \(H^s_i(\cdot)\) is the sum of individual supplies.

\[
(7) \quad H^s_i(\psi) \equiv \sum_{j=1}^{J} H_i(a_j) \cdot D_{ij}(\psi), \quad i = 1, \ldots, I,
\]

where each indicator variable \(D_{ij}(\psi)\) equals one if the wage offers satisfy \(w_{ij} > w'_{ij}\), and equals zero otherwise.\(^7\) Supply \(H^s_i(\psi)\) is an increasing function of \(\psi_i\) and an decreasing function of the \(\psi_k\) for \(k \neq i\); in particular, supply is an increasing step function of \(\psi_i\). Taking the \(\psi_k\) as given, firm \(i\)'s wage offers to all \(J\) workers are increasing in \(\psi_i\). This results in some marginal worker switching from some other firm to firm \(i\). A sufficiently higher \(\psi_i\) draws in another worker. Thus variation of \(\psi_i\) "sweeps out" the distribution of workers. For large \(J\), it is innocuous to abstract from the discontinuity of supply and to treat each firm's supply function \(H^s_i(\psi)\) as a continuous function of \(\psi_i\). Thus indivisibilities are ignored.

\(^7\) It is convenient at this point to relax the indexing convention which was adopted in writing equations (6.1) and (6.2).
With a rising supply price at the firm level, the competitive equilibrium solves

$$\frac{\partial X_i}{\partial H_1} (H_i^S(\omega); K_1) = \omega_i, \quad i = 1, \ldots, I,$$

with the solution vectors $\omega^* = (\omega_1^*, \ldots, \omega_I^*)$ and $H^* = (H_1^*, \ldots, H_I^*)$.\(^8\)

Consequently, efficiency units of human capital have firm-specific shadow prices. In contrast with hedonic pricing models (e.g., Tinbergen (1956) and Rosen (1974)), the underlying skills are not priced out in equilibrium.

The equilibrium shadow prices ω^* are employed directly in determining equilibrium productivity values M_{ij}^*, equilibrium wage offers w_{ij}^*, and equilibrium values of the indicator variables, E_{ij} and D_{ij}, for each firm-worker pair. Equilibrium productivity values are $M_{ij}^* \equiv \omega_i^* H_{ij}$. Again adopt the indexing convention that $w_{ij}^* \leq \ldots \leq w_{ij}^{I-1}$. Then worker j's vector of equilibrium wage offers w_j^* satisfies

$$w_{ij}^* = M_{ij}^* \quad i = 1, \ldots, I-1,$$

$$w_{ij}^* = \beta_{ij} M_{ij}^* + (1-\beta_{ij}) M_{I-1,j}^*.$$

Equilibrium wage offers are flexible as they vary with productivity values.

\(^8\)For simplicity, I work with the partial equilibrium. Establishing the existence of a general equilibrium in the labor market is entirely conventional if indivisibilities are ignored. Since the units of human capital are gross substitutes across firms, a unique, globally stable, general equilibrium is guaranteed to exist.
The observed wage, that is the accepted wage offer, is increasing in the rent sharing parameter β_{ij} and the worker's productivity value within the consummated match $M_{ij}^*; w_{ij}^*$ is also increasing in the worker's best alternative productivity $M_{i-1,j}^*$.

The equilibrium wage offers induce efficient matching. The market's allocation of labor is efficient even though each worker is paid less than his productivity value; for $i \neq I, M_{ij}^* = w_{ij}^* \leq w_{ij}^* \leq M_{ij}^*$. Since the β_{ij} govern the sharing of rents, the rent sharing parameters do not influence the market's allocation of labor.

Several additional properties of the equilibrium are neoclassical. Consider first how, in a partial equilibrium, wage rates and employment vary with product price and marginal productivity. An increase in product price P_i or the marginal product of human capital $\partial X_i / \partial H_i$ raises demand for human capital in firm i; thus the equilibrium shadow price of human capital w_i^*, as well as the equilibrium level of employment H_i^*, rises. Equilibrium wages in firm i rise as a result of the increase in each worker's productivity value.

Turn next to the determinants of supply. A neutral (across skills) technical change in firm i increases $H_i(\cdot)$ which increases the supply of human capital to firm i and reduces its equilibrium shadow price of human capital thereby. The lower equilibrium shadow price of human capital reduces the

9Equilibrium values of the indicator variables are $E_{ij}^* = D_{ij}^* = 1$ because $M_{ij}^* \geq w_{ij}^*$ and $w_{ij}^* \geq w_{kj}^*$ for all $k \neq I$; and $E_{ij}^* = D_{ij}^* = 0$ for all $i \neq I$.

10In pairwise comparisons of workers within a firm, the ratios of wages do not equal the ratios of marginal products even if the rent sharing parameters are not worker specific. Hence two non-neoclassical properties of the model are that wages do not equate to productivity values and that wage ratios do not equate to ratios of productivity values.
equilibrium accepted wage, and increases the equilibrium employment of human capital. Non-neutral technical change in $H_1(\cdot)$ has an ambiguous effect on supply, and hence on the shadow price of human capital, wage rates, and employment in equilibrium.\footnote{Analysis of the effect of an increase in the supply of skills requires general equilibrium considerations since supply shifts in every firm.}

Discussion

The function generating wage offers, equation (5), is merely postulated. An attraction of postulating such behavior is that it generates economic outcomes with desirable properties. At this point, it is valuable to clarify two features of the wage-offer generating function: the informational requirements, and determination of the rent sharing parameters.

The wage-offer generating function requires that each firm-worker pair can write a contract with the productivity value and best alternative offer of the worker as parameters.\footnote{A subtle point is that, in order to know M^*_1, each firm must know the supply of human capital which it faces.} Recent work on labor contracting emphasizes unresolved asymmetries in the information structure which would preclude such contracts (e.g., Hashimoto and Yu 1980; Hall and Lazear 1984). Realize that the current model does not preclude initial asymmetric information; it is sufficient that the firm can verify the worker's best alternative wage once the worker reveals it, and that the worker can verify his productivity value once production occurs and the firm reveals the information. In short, the contract requires information transmission with costless verification. The value of such an abstraction from unresolved asymmetric information is in...
delivering the neoclassical properties of the model.

A second issue is how each rent sharing parameter β_{ij} is determined? Following much of the applied research on efficient bargaining (e.g., Hall and Lilien 1979; McDonald and Solow 1981), I have avoided the difficult issue of how cooperative bargainers determine the split—that is, the particular bargaining solution. Since income is transferred linearly, the Nash bargaining solution (Nash 1950) yields $\beta_{ij} = 1/2$ for all firms i and workers j. Other bargaining games (e.g., Nash 1953) allow the sharing parameters to deviate from one-half with a higher β_{ij} indicating greater bargaining strength of the worker.

2. Turnover

Research in the economics of labor turnover typically takes a worker's productivities (or productivity profiles) as given (e.g., Becker 1962; Parsons 1972; Jovanovic 1979; Hashimoto and Yu 1980; Hall and Lazear 1984; Antel 1985; McLaughlin 1987, Chapter 3; Mortensen forthcoming). Indeed, the two papers in the recently published Handbook of Labor Economics which analyze job attachment and turnover take productivity values as given without reference to an equilibrium model (Mortensen 1986; Parsons 1986). In providing an equilibrium foundation, the current model supports these analyses.

To examine the effect of rent sharing on turnover, the matching model must be set in a stochastic, intertemporal setting: in a sequence of spot markets, stochastic shocks hit the market making it desirable to re-match. All the variables which effect the productivity values M_{ij} are potential sources of turnover-inducing stochastic variation. These include:
(a) the price of the product, P_i
(b) the production function, X_i
(c) the human capital function, H_i
(d) skills of the worker, a_j

for any $i = 1, \ldots, I$, or any $j = 1, \ldots, J$. Fluctuations in product prices and productivity shocks affect only the equilibrium prices of human capital \hat{w}^*_{ij}; declining firms, those i for which the value of the marginal product of human capital falls over time lose marginal workers to other firms. Shocks to supply or the functions mapping supply into efficiency units affect both the prices \hat{w}^*_{ij} and the efficiency units H_{ij}; turnover resulting from such shocks are more idiosyncratic, although a common firm-effect persists through \hat{w}^*_{ij}. Thus items (c) and (d) can induce separations from growing firms. Whatever the primary source of variation, all that matters for turnover is that the H_{ij} be stochastic. With the productivity values stochastic, optimal matches change from period to period.

An immediate result of the preceding section is that the rent sharing parameters do not affect the rate at which workers change employers. Since the rent sharing rule generates optimal matching in each period, worker j's optimal match in any period is independent of the β_{ij}. Therefore, worker j's probability of changing employers (i.e., the separation rate) is independent of the sharing parameters.13

What does the model imply regarding quits and layoffs? Since all turnover is efficient, the analysis is based on the joint wealth maximizing approach to

13Formal derivations of this result and those in the following paragraph are available from the author on request.
the quit-layoff distinction (McLaughlin 1987). In that approach, quits separate to higher paying employment, layoffs to lower paying employment. Therefore, the quit (layoff) rate is the probability that the following joint event obtains: the worker separates from his incumbent employer, and the wage offer from the new employer exceeds (falls short of) the wage the worker had been paid by the incumbent employer. For any worker j, the higher is his rent sharing parameter with his incumbent employer i, β_{ij}, the higher was the wage of worker j when employed by firm i in period t; hence the lower (higher) the probability worker j leaves to a higher (lower) paying employer in period $t+1$: the quit (layoff) rate is decreasing (increasing) in the worker’s share of the rents in the incumbent match.

The turnover model can be recast in a search environment. With endogenous intensity of on-the-job search, Mortensen (1978) indicates that "counter-offer matching" generates excessive search intensity as a form of rent seeking. The function generating wage offers, equation (5), includes a counter-offer-matching component. As such there is a force toward excessive search. More recently Mortensen (1986) argues that, with endogenous search intensity, rent sharing induces a suboptimally low level of search: the worker in failing to capture the full benefit of discovering a superior match searches insufficiently. (Also, firms recruit with suboptimal intensity.) It is conceivable that the two counteracting effects exactly offset leaving no distortion.\footnote{Magnitudes of the two search effects depend on the sizes of the rent sharing parameters. For worker j in firm i, the larger is β_{ij} the weaker is the rent-seeking incentive to generate wage offers. The larger are the rent sharing parameters of other firms, the greater the intensity of on-the-job search for the purpose of separation.} Nevertheless, the strong results regarding the efficiency of
turnover are tempered in the search environment to the extent the two effects are present and are not offsetting.

3. An Application to Unions

The equilibrium model developed in sections 1 and 2 produces implications for the effects of union status on wages and turnover. Extending the recent efficient contracting models of unionism (McDonald and Solow 1981; MaCurdy and Pencavel 1986; Brown and Ashenfelter 1986) to the matching environment, I assume that the only difference between union (u) and nonunion (n) workers is in their abilities to extract rents. In particular, unions are assumed not to redistribute rents across workers.15 To illustrate this application, also assume all firms are either fully unionized or not unionized at all. Any worker employed in a union firm receives a share β_u of the rents to his match. In a nonunion firm the share is β_n which is less than β_u. The presence or absence of a union in any particular firm is given exogenously.

With the wage rate increasing in bargaining power, a union wage premium is immediate. However, in applying the efficient contracting model of unions to the matching environment a novel feature arises. The gain to union employment exists only if the match is optimal (i.e., if rents are positive). Because only infra-marginal workers earn rents, the relative attractiveness of union employment depends on worker-specific productivity differences between union

15A redistributive union lets β_{ij} depend on rents in the i,jth match. In deriving the unique rent sharing equilibrium in the appendix, I treat β_{ij} as parametric. If β_{ij} depends on rents in the i,jth match, the analysis in the appendix is not sufficient to guarantee the existence of an equilibrium set of wage offers.
and nonunion firms. Consequently, there exists a wage premium for union workers without queueing for union employment.

Since the sharing parameters do not affect the separation decision, union status is not predicted to affect the separation rate. But if some workers leave the union sector, $\beta_u > \beta_n$ implies a lower quit rate and higher layoff rate for union workers. The union wage premium, which is present if and only if the match is optimal, reduces the probability that a subsequent separation is to a higher paying match. This result is fairly robust to the modeling of unionism. If unionization affects the marginal product of efficiency units of human capital, then unionization would affect the size of firms. If unions promote featherbedding, then unionization would reduce firm size. Alternatively, if unions increase productivity as in the collective-voice approach (e.g., Freeman and Medoff 1984), then unionization would increase firm size. However, a productivity increasing or decreasing union would have no effect on the separation rate after the transition associated with union certification. The implications of unions for turnover are robust to this modification of the effect of unions.

That union status reduces quits relative to layoffs is documented in McLaughlin (1987, Chapter 4). However, the evidence on the effect of union status on total separations is mixed. Freeman (1980a) reports evidence from a variety of sources that union status lowers the separation rate. In McLaughlin (1987, Chapter 4), I find similar evidence: "The separation rate of union members is 5.7 ... percentage points lower than" that of their

\footnote{To be consistent with the equilibrium model of rent sharing and turnover, the increased productivity which is central to the collective-voice approach cannot come from reduced turnover.}
nonunion counterparts. Although this estimate is drawn from a probit regression which controls for the usual human capital and demographic variables, the regression does not control for the workers' pre-separation wage rate. Controlling for the pre-separation wage, I find that the effect of union status on separations falls to about one-half of one percentage point. Controlling for the pre-separation wage is appropriate if it proxies for unobserved differences which are correlated with union status; it is inappropriate if the pre-separation wage captures wage differentials related to relative bargaining strength.17

The model can also be applied to analyze the effect of unions in compressing the distribution of wages (Freeman 1980b). Equation (9.2) implies that the variance of the accepted wage σ_w^2 depends on the variances and covariance of the two relevant productivity values, M_{ij}^* and $M_{i-1,j}^*$.

\[
\sigma_w^2 = \beta^2 \sigma_m^2 + (1-\beta)^2 \sigma_{m-1}^2 + 2\beta(1-\beta) \sigma_{m,m-1}^2.
\]

where β is β_u if the worker is in a union firm and β_n otherwise, and the j subscript is suppressed. Note that if variation in productivity values were due to variation in general skills alone, then there would be no compression for any value of β. ($\sigma_{m,m-1} = \sigma_m \cdot \sigma_{m-1} = \sigma_m^2$ for this case; thus $\sigma_w^2 = \sigma_m^2 = \sigma_{m,m-1}^2$.) Therefore, the interesting case is where the correlation between M_{i}^* and M_{i-1}^* is less than one: $\sigma_{m,m-1} < \sigma_m \cdot \sigma_{m-1}$. Assuming common variances, that

17Although these results are instructive, they are not structural estimates. To reach a definitive conclusion, one must control for self-selection (on the unobservables) into and out of the union sector. Such estimates are not available.
is $\sigma_{m}^2 = \sigma_{m-1}^2$. one can establish that the variance of the accepted wage is not monotonically related to the bargaining power of the worker.

$$\frac{\partial \sigma_w^2}{\partial \beta} = 2 \cdot [2\beta - 1] \cdot [\sigma_m^2 - \sigma_{m-1}^2] \geq 0 \text{ as } \beta \geq 1/2.$$

Thus for unions to increase compression, the rent sharing parameter must be less than one half.

Use of the two conditional variances of wages indicates a similar ambiguity in the analysis of wage compression by union status. First condition on the productivity value in the best alternative match. This conditional variance of wages is a fraction of the variance of productivity values in the consummated match: $\sigma_w^2 = \beta^2 \cdot \sigma_m^2$. Since $\beta_u > \beta_n$, there is less compression for union workers. Alternatively, condition on the productivity value in firm I to generate that $\sigma_w^2 = (1-\beta) \cdot \sigma_{m-1}^2$. With $\beta_u > \beta_n$, the wage of a nonunion worker is more responsive to outside productivity values, consequently unions induce greater compression.

A single rent sharing parameter for union workers does not appear to be adequate in capturing the empirical regularity of greater compression of union wages. To capture the greater compression of union wages in the context of the equilibrium rent sharing model, rent sharing in unions must include a redistributional element.
4. Summary and Conclusions

In this paper, I analyze rent sharing in the matching environment. Rents are defined as the difference between the worker's productivity value in his optimal match and the worker's best alternative wage offer. Hence the analysis requires a meaningful concept of productivity in the matching context. An equilibrium model of efficiency units of human capital is developed to give content to worker productivity and to allow each worker's human capital efficiency units to vary in number across firms.

In terms of rent sharing, I demonstrate that a simple sharing rule generates wage flexibility, and efficient matching and turnover. Using a recently developed model of the quit-layoff distinction, I find that the higher the worker's share of the rents associated with the match, the lower the quit rate and the higher the layoff rate. Furthermore, the two are exactly offsetting, leaving no effect of the worker's share on total separations.

The principal application of the model is to the effect of union status on wages and turnover. The analysis embeds a strong form of the efficient contracting model of unions in the equilibrium matching model: workers in union firms capture a larger fraction of the rents than do nonunion workers. This implies a positive union-nonunion wage differential; furthermore, unionization lowers the quit rate, and increases the layoff rate, but has no effect on matching efficiency or the total separation rate. No clear result regarding the effect of unions on wage compression is implied.

A second application is to inter-industry wage differentials (e.g., Krueger and Summers 1987 and 1988; Murphy and Topel 1987). Krueger and
Summers conclude that estimated inter-industry wage differentials are inconsistent with competitive labor markets and are indicative of rent sharing. The equilibrium model of rent sharing developed in section 1 is capable of accounting for inter-industry wage differentials through differential rents or bargaining power. For instance, some industries’ matches might be more specific, inducing greater rents and higher wages. Thus lower separation rates are predicted in high paying industries if rents are not entirely transitory. The analysis of section 1 establishes that a noncompetitive labor market with rent sharing can be fully consistent with market clearing. Indeed, the rent-sharing equilibrium efficiently allocates workers to firms. Consequently, the normative implications described by Krueger and Summers (1987, 43) do not follow from the equilibrium model.

The model is offered as a parsimonious representation of rent sharing and turnover in a matching environment. Perhaps at the expense of parsimony, a useful extension would be to allow for optimal investment in skills. Such an extension would invalidate the assumption of spot markets but might generate valuable insights for the effect of rent sharing on investment decisions.
APPENDIX

Equilibrium Wage Offers

The purpose of this appendix is to establish the existence of a unique solution to (5), a the system of I equations for each worker j. To do so, I employ the contraction mapping theorem which also guarantees convergence.

The system of I equations (5) can be written as a single functional equation. For $i \in D = \{1, \ldots, I\}$, the wage-offer function $w(i)$ maps from D into the non-negative subset of the real line:

\begin{equation}
(A.1) \quad w: D \subseteq \mathbb{R} \rightarrow \mathbb{R}^+.
\end{equation}

Consequently, the single functional equation is

\begin{equation}
(A.2) \quad w(i) = \beta(i)M(i) + [1-\beta(i)] \cdot \text{MIN}(M(i), f[v(i)])
= (Tv)(i) \quad \text{for all } i \in D,
\end{equation}

where $\beta(i) \in (0, 1]$, $M(i) \in [0, \bar{M}]$, $f[v(i)] = \max_{k \neq i} v(k)$, and T is a functional operator.

Let $S = \{w: D \rightarrow [0, \bar{M}]\}$ be the space of bounded functions w with the sup norm as its metric. Note that, in equation (A.2), T maps S into S.

Proposition: In (A.2), $T: S \rightarrow S$ is a contraction mapping.

Proof: By Blackwell (1965), it is sufficient to establish the following two conditions:

\(^{18}\) Subscripts are suppressed throughout the appendix.
(1) (monotonicity) \(w, v \in S \) and \(w(i) \leq v(i) \) for all \(i \in D \) implies that \((Tw)(i) \leq (Tv)(i) \) for all \(i \in D \).

(ii) (discounting) for \(w \in S, \sigma \in \mathbb{R}^+ \), and some \(\gamma \in [0, 1) \),
\[
[T(w+\sigma)](i) \leq (Tw)(i) + \gamma \sigma \quad \text{for all} \; i \in D.
\]

Since \(w(i) \leq v(i) \) implies \(\max_{k \neq i} w(k) \leq \max_{k \neq i} v(k) \) for all \(i \in D \), monotonicity is immediate:

\[
(A.3) \quad (Tw)(i) - (Tv)(i) \leq 0 \quad \text{as} \quad \min\{M(i), f[w(i)]\} \leq \min\{M(i), f[v(i)]\}.
\]

For discounting,

\[
(A.4) \quad [T(w+\sigma)](i) = \beta(i)M(i) + [1-\beta(i)] \cdot \min\{M(i), f[w(i)+\sigma]\}
= \beta(i)M(i) + [1-\beta(i)] \cdot \min\{M(i), f[w(i)] + \sigma\}
\leq \beta(i)M(i) + [1-\beta(i)] \cdot \min\{M(i) + \sigma, f[w(i)] + \sigma\}
\leq \beta(i)M(i) + [1-\beta(i)] \cdot \min\{M(i), f[w(i)]\} + [1-\beta(i)] \cdot \sigma
\leq (Tw)(i) + [1-\beta(i)] \cdot \sigma.
\]

With \(\beta(i) \in (0, 1] \), define \(\gamma = 1 - \max \beta(i) \equiv 1 - \bar{\beta} \) so \(\gamma \in [0, 1) \). This establishes the discounting condition. Therefore, \(T \) is a contraction mapping.

By the contraction mapping theorem, there exists a unique function \(\mathbf{w}^*: D \to \mathbb{R}^+ \) which solves the functional equation \(w(1) = (Tw)(1) \). In addition, from any initial function \(w_0 \in S \), the sequence \(w_n(i) = (Tw_n)(i) \) converges to \(\mathbf{w}^*(i) \).
REFERENCES

———. "Unionism and the Dispersion of Wages." Industrial and Labor Relations Review 34 (October 1980): 3-23. (b)

Murphy, Kevin M. "Human Capital Investment and Specialization." manuscript. January 1986.

WP#68 RECURSIVE UTILITY AND OPTIMAL CAPITAL ACCUMULATION, I: EXISTENCE, by Robert A. Becker, John H. Boyd III, and Bom Yong Sung, January 1987

WP#69 MONEY AND MARKET INCOMPLETENESS IN OVERLAPPING-GENERATIONS MODELS, by Marianne Baxter, January 1987

WP#70 GROWTH BASED ON INCREASING RETURNS DUE TO SPECIALIZATION by Paul M. Romer, January 1987

WP#71 WHY A STUBBORN CONSERVATIVE WOULD RUN A DEFICIT: POLICY WITH TIME-INCONSISTENT PREFERENCES by Torsten Persson and Lars E.O. Svensson, January 1987

WP#72 ON THE CONTINUUM APPROACH OF SPATIAL AND SOME LOCAL PUBLIC GOODS OR PRODUCT DIFFERENTIATION MODELS by Marcus Berliant and Thijs ten Raa, January 1987

WP#73 THE QUIT-LAYOFF DISTINCTION: GROWTH EFFECTS by Kenneth J. McLaughlin, February 1987

WP#74 SOCIAL SECURITY, LIQUIDITY, AND EARLY RETIREMENT by James A. Kahn, March 1987

WP#75 THE PRODUCT CYCLE HYPOTHESIS AND THE HECKSCHER-OLLIN-SAMUELSON THEORY OF INTERNATIONAL TRADE by Sugata Marjit, April 1987

WP#76 NOTIONS OF EQUAL OPPORTUNITIES by William Thomson, April 1987

WP#77 BARGAINING PROBLEMS WITH UNCERTAIN DISAGREEMENT POINTS by Youngsub Chun and William Thomson, April 1987

WP#78 THE ECONOMICS OF RISING STARS by Glenn M. MacDonald, April 1987

WP#79 STOCHASTIC TRENDS AND ECONOMIC FLUCTUATIONS by Robert King, Charles Plosser, James Stock, and Mark Watson, April 1987

WP#80 INTEREST RATE SMOOTHING AND PRICE LEVEL TREND-STATIONARITY by Marvin Goodfriend, April 1987

WP#81 THE EQUILIBRIUM APPROACH TO EXCHANGE RATES by Alan C. Stockman, revised, April 1987
WP#82 INTEREST-RATE SMOOTHING
by Robert J. Barro, May 1987

WP#83 CYCLICAL PRICING OF DURABLE LUXURIES
by Mark Bils, May 1987

WP#84 EQUILIBRIUM IN COOPERATIVE GAMES OF POLICY FORMULATION
by Thomas F. Cooley and Bruce D. Smith, May 1987

WP#85 RENT SHARING AND TURNOVER IN A MODEL WITH EFFICIENCY UNITS OF HUMAN CAPITAL
by Kenneth J. McLaughlin, revised, May 1987

WP#86 THE CYCLICALITY OF LABOR TURNOVER: A JOINT WEALTH MAXIMIZING HYPOTHESIS
by Kenneth J. McLaughlin, revised, May 1987

WP#87 CAN EVERYONE BENEFIT FROM GROWTH? THREE DIFFICULTIES
by Herve' Moulin and William Thomson, May 1987

WP#88 TRADE IN RISKY ASSETS
by Lars E.O. Svensson, May 1987

WP#89 RATIONAL EXPECTATIONS MODELS WITH CENSORED VARIABLES
by Marianne Baxter, June 1987

WP#90 EMPIRICAL EXAMINATIONS OF THE INFORMATION SETS OF ECONOMIC AGENTS
by Nils Gottfries and Torsten Persson, June 1987

WP#91 DO WAGES VARY IN CITIES? AN EMPIRICAL STUDY OF URBAN LABOR MARKETS
by Eric A. Hanushek, June 1987

WP#92 ASPECTS OF TOURNAMENT MODELS: A SURVEY
by Kenneth J. McLaughlin, July 1987

WP#93 ON MODELLING THE NATURAL RATE OF UNEMPLOYMENT WITH INDIVISIBLE LABOR
by Jeremy Greenwood and Gregory W. Huffman

WP#94 TWENTY YEARS AFTER: ECONOMETRICS, 1966–1986
by Adrian Pagan, August 1987

WP#95 ON WELFARE THEORY AND URBAN ECONOMICS
by Marcus Berliant, Yorgos Y. Papageorgiou and Ping Wang, August 1987

WP#96 ENDOGENOUS FINANCIAL STRUCTURE IN AN ECONOMY WITH PRIVATE INFORMATION
by James Kahn, August 1987

WP#97 THE TRADE-OFF BETWEEN CHILD QUANTITY AND QUALITY: SOME EMPIRICAL EVIDENCE
by Eric Hanushek, September 1987
SUPPLY AND EQUILIBRIUM IN AN ECONOMY WITH LAND AND PRODUCTION
by Marcus Berliant and Hou-Wen Jeng, September 1987

AXIOMS CONCERNING UNCERTAIN DISAGREEMENT POINTS FOR 2-PERSON
BARGAINING PROBLEMS
by Youngsub Chun, September 1987

MONEY AND INFLATION IN THE AMERICAN COLONIES: FURTHER EVIDENCE ON
THE FAILURE OF THE QUANTITY THEORY
by Bruce Smith, October 1987

BANK PANICS, SUSPENSIONS, AND GEOGRAPHY: SOME NOTES ON THE
"CONTAGION OF FEAR" IN BANKING
by Bruce Smith, October 1987

LEGAL RESTRICTIONS, "SUNSPOTS", AND CYCLES
by Bruce Smith, October 1987

THE QUIT-LAYOFF DISTINCTION IN A JOINT WEALTH MAXIMIZING APPROACH TO
LABOR TURNOVER
by Kenneth McLaughlin, October 1987

ON THE INCONSISTENCY OF THE MLE IN CERTAIN HETEROSKEDASTIC REGRESSION
MODELS
by Adrian Pagan and H. Sabau, October 1987

RECURRENT ADVERTISING
by Ignatius J. Horstmann and Glenn M. MacDonald, October 1987

PREDICTIVE EFFICIENCY FOR SIMPLE NONLINEAR MODELS
by Thomas F. Cooley, William R. Parke and Siddhartha Chib, October 1987

CREDIBILITY OF MACROECONOMIC POLICY: AN INTRODUCTION AND A BROAD
SURVEY
by Torsten Persson, November 1987

SOCIAL CONTRACTS AS ASSETS: A POSSIBLE SOLUTION TO THE
TIME-CONSISTENCY PROBLEM
by Laurence Kotlikoff, Torsten Persson and Lars E. O. Svensson, November 1987

EXCHANGE RATE VARIABILITY AND ASSET TRADE
by Torsten Persson and Lars E. O. Svensson, November 1987

MICROFOUNDATIONS OF INDIVISIBLE LABOR
by Vittorio Grilli and Richard Rogerson, November 1987

FISCAL POLICIES AND THE DOLLAR/POUND EXCHANGE RATE: 1870-1984
by Vittorio Grilli, November 1987

INFLATION AND STOCK RETURNS WITH COMPLETE MARKETS
by Thomas Cooley and Jon Sonstelie, November 1987
<table>
<thead>
<tr>
<th>WP#</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP#113</td>
<td>THE ECONOMETRIC ANALYSIS OF MODELS WITH RISK TERMS</td>
<td>Adrian Pagan and Aman Ulleh</td>
<td>December 1987</td>
</tr>
<tr>
<td>WP#114</td>
<td>PROGRAM TARGETING OPTIONS AND THE ELDERLY</td>
<td>Eric Hanushek and Roberton Williams</td>
<td>December 1987</td>
</tr>
<tr>
<td>WP#115</td>
<td>BARGAINING SOLUTIONS AND STABILITY OF GROUPS</td>
<td>Youngsub Chun and William Thomson</td>
<td>December 1987</td>
</tr>
<tr>
<td>WP#116</td>
<td>MONOTONIC ALLOCATION MECHANISMS</td>
<td>William Thomson</td>
<td>December 1987</td>
</tr>
<tr>
<td>WP#117</td>
<td>MONOTONIC ALLOCATION MECHANISMS IN ECONOMIES WITH PUBLIC GOODS</td>
<td>William Thomson</td>
<td>December 1987</td>
</tr>
<tr>
<td>WP#118</td>
<td>ADVERSE SELECTION, AGGREGATE UNCERTAINTY, AND THE ROLE FOR MUTUAL</td>
<td>Bruce D. Smith and Michael J. Stutzer</td>
<td>February 1988</td>
</tr>
<tr>
<td></td>
<td>INSURANCE COMPANIES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP#119</td>
<td>INTEREST ON RESERVES AND SUNSPOT EQUILIBRIA: FRIEDMAN’S PROPOSAL</td>
<td>Bruce D. Smith</td>
<td>February 1988</td>
</tr>
<tr>
<td></td>
<td>RECONSIDERED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP#120</td>
<td>INTERNATIONAL FINANCIAL INTERMEDIATION AND AGGREGATE FLUCTUATIONS</td>
<td>Jeremy Greenwood and Stephen D. Williamson</td>
<td>February 1988</td>
</tr>
<tr>
<td></td>
<td>UNDER ALTERNATIVE EXCHANGE RATE REGIMES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP#121</td>
<td>FINANCIAL Deregulation, Monetary Policy, and Central Banking</td>
<td>Marvin Goodfriend and Robert G. King</td>
<td>February 1988</td>
</tr>
<tr>
<td>WP#122</td>
<td>BANK RUNS IN OPEN ECONOMIES AND THE INTERNATIONAL TRANSMISSION OF</td>
<td>Peter M. Garber and Vittorio U. Grilli</td>
<td>March 1988</td>
</tr>
<tr>
<td></td>
<td>PANICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP#123</td>
<td>CAPITAL ACCUMULATION IN THE THEORY OF LONG RUN GROWTH</td>
<td>Paul M. Romer</td>
<td>March 1988</td>
</tr>
<tr>
<td>WP#124</td>
<td>FINANCIAL INTERMEDIATION AND ENDOGENOUS GROWTH</td>
<td>Valerie R. Bencivenga and Bruce D. Smith</td>
<td>March 1988</td>
</tr>
<tr>
<td>WP#125</td>
<td>UNEMPLOYMENT, THE VARIABILITY OF HOURS, AND THE PERSISTENCE OF</td>
<td>Bruce D. Smith</td>
<td>March 1988</td>
</tr>
<tr>
<td></td>
<td>"DISTURBANCES": A PRIVATE INFORMATION APPROACH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP#126</td>
<td>WHAT CAN BE DONE WITH BAD SCHOOL PERFORMANCE DATA?</td>
<td>Eric Hanushek and Lori Taylor</td>
<td>March 1988</td>
</tr>
<tr>
<td>WP#127</td>
<td>EQUILIBRIUM MARKETING STRATEGIES: IS THERE ADVERTISING, IN TRUTH?</td>
<td>Ignatius Horstmann and Glenn MacDonald</td>
<td>revised, March 1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP#128</td>
<td>REAL EXCHANGE RATE VARIABILITY UNDER PEGGED AND FLOATING NOMINAL</td>
<td>Alan C. Stockman</td>
<td>April 1988</td>
</tr>
<tr>
<td></td>
<td>EXCHANGE RATE SYSTEMS: AN EQUILIBRIUM THEORY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WP#129 POST-SAMPLE PREDICTION TESTS FOR GENERALIZED METHOD OF MOMENT
ESTIMATORS
by Dennis Hoffman and Adrian Pagan, April 1988

WP#130 GOVERNMENT SPENDING IN A SIMPLE MODEL OF ENDOGENOUS GROWTH
by Robert J. Barro, May 1988

WP#131 FINANCIAL DEVELOPMENT, GROWTH, AND THE DISTRIBUTION OF INCOME
by Jeremy Greenwood and Boyan Jovanovic, May 1988

WP#132 EMPLOYMENT AND HOURS OVER THE BUSINESS CYCLE
by Jang-Ok Cho and Thomas F. Cooley, May 1988

WP#133 A REFINEMENT AND EXTENSION OF THE NO-ENVY CONCEPT
by Dimitrios Diamantaras and William Thomson, May 1988

WP#134 NASH SOLUTION AND UNCERTAIN DISAGREEMENT POINTS
by Youngsub Chun and William Thomson, May 1988

WP#135 NON-PARAMETRIC ESTIMATION AND THE RISK PREMIUM
by Adrian Pagan and Y. Hong, May 1988

WP#136 CHARACTERIZING THE NASH BARGAINING SOLUTION WITHOUT
PARETO-OPTIMALITY
by Terje Lensberg and William Thomson, May 1988

WP#137 SOME SIMULATION STUDIES OF NON-PARAMETRIC ESTIMATORS
by Y. Hong and A. Pagan, June 1988

WP#138 SELF-FULFILLING EXPECTATIONS, SPECULATIVE ATTACKS AND CAPITAL
CONTROLS
by Harris Dellas and Alan C. Stockman, June 1988

WP#139 APPROXIMATING SUBOPTIMAL DYNAMIC EQUILIBRIA: AN EULER EQUATION
APPROACH
by Marianne Baxter, June 1988

WP#140 BUSINESS CYCLES AND THE EXCHANGE RATE SYSTEM: SOME INTERNATIONAL
EVIDENCE
by Marianne Baxter and Alan C. Stockman, June 1988

WP#141 RENT SHARING IN AN EQUILIBRIUM MODEL OF MATCHING AND TURNOVER
by Kenneth J. McLaughlin, June 1988
To order copies of the above papers complete the attached invoice and return to Christine Massaro, W. Allen Wallis Institute of Political Economy, RCER, 109B Harkness Hall, University of Rochester, Rochester, NY 14627. Three (3) papers per year will be provided free of charge as requested below. Each additional paper will require a $5.00 service fee which must be enclosed with your order. For your convenience an invoice is provided below in order that you may request payment from your institution as necessary. Please make your check payable to the Rochester Center for Economic Research. Checks must be drawn from a U.S. bank and in U.S. dollars.

W. Allen Wallis Institute for Political Economy

Rochester Center for Economic Research, Working Paper Series

OFFICIAL INVOICE

Requestor’s Name

Requestor’s Address

Please send me the following papers free of charge (Limit: 3 free per year).

WP# ______ WP# ______ WP# ______

I understand there is a $5.00 fee for each additional paper. Enclosed is my check or money order in the amount of $__________. Please send me the following papers.

WP# ______ WP# ______ WP# ______
WP# ______ WP# ______ WP# ______
WP# ______ WP# ______ WP# ______
WP# ______ WP# ______ WP# ______