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ABSTRACT

In this study we test the efficiency of asset markets at intervals as
short as thirty seconds. We also describe the properties of a simple new
stochastic process as a potential model of the behavior of asset prices and
test it on intradaily Deutsche Mark futures prices. According to this
process, asset prices are constant between economically relevant events, which
occur at the random times generated by a Poisson process. At the moments of
.these events, prices jump to new values; the size of the jump is drawn from a
normal distribution. Tests of this process indicate that it cannot be
rejected for almost all days in the sample.
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1. Introduction

A key issue in the study of asset markets has been the speed at which
market prices reflect new information, or "news." Many studies have
investigated the efficiency of a multitude of asset markets using daily,
weekly, and monthly data, with the conclusion that they efficiently
incorporate publicly available information. Only a few studies have pursued
the question of market efficiency within the day (see, for example,
Wasserfallen and Zimmerman, 1981), despite the fact that it is only possible
to see if the release of news has an immediate impact on market prices if one
is very precise about the timing.

A simultaneous and related line of finance literature has pursued the
stochastic process generating asset prices. Here again there are few studies
using intradaily data (see, for example, Niederhoffer and Osborne, 1966),
despite the obvious advantage that can be gained by using continuous time
asset price series.

In this study, we propose to extend the study of the efficiency of asset
markets to intradaily data, envisioning a floor trader or an individual who
follows the market during the day. Although this study is univariate in that
only one price series is examined, the data set contains explicit information
about the times of trades. This allows us to perform an improved version of a
filter rule test, autocorrelation tests at intervals as short as 30 seconds,
and particularly extensive tests concerning the price process. It alsoc sheds
light on one previously unexamined aspect of the nature of news: namely that
the market knows as little about when the news will occur as it knows about

the content of the news.

In order to carefully confront the greater precision afforded by an



intradaily data set, we explore an intuitively simple stochastic process as a
model of the behavior of asset prices. This process is an attempt to
resuscitate the properties of normality and continuity that appealed to
Bachelier (1900) and other economists because of the likelihood of eventually
providing underlying models. While it is an example of the much larger class
of subordinated processes proposed by Clark (1973), it is an economically
appealing variant because it explicitly incorporates the effect of news.
According to this process, new economically relevant events occur randomly
over time. When the information about the event is revealed, prices jump
instantaneously to reflect that information; between events, since there are
no economic forces impinging on prices, prices are constant.

A formal model is provided by postulating that events are generated by a
Poisson process, while the price jumps at the times of the events are drawn
from a normal distribution. Hence the name for this process —— the compound
Poisson-normal process, or CPN. Both assumptions of the CPN process are
tested below; we cannot reject either the hypothesis that the timing of events
is Poisson or the hypothesis that the price jumps at the times of occurrence
are normally distributed. The evidence for normality is particularly
strong —— on only one day in the month-long sample is normality rejected.

That the jump process just described is a random walk that is continuous
only almost always is a satisfactory feature of this model, as it will also be
shown that the data are inconsistent with the hypothesis that the price
process is a random walk that is continuous everywhere. That is, the
{continuous) Wiener process is rejected as generating the observed prices,
because we find that price changes over intervals of uniform length are not

normally distributed, while the evidence strongly supports the hypothesis that



prices are not autocorrelated.

Some properties of stochastic price processes can have major implications
for the behavior of price-taking market participants, although sometimes the
properties of greatest economic interest are not the properties that are
directly tested. For example, if an asset’s price is a Wiener process, a
market participant can be perfectly sure (with probability 1) that any stop or
limit order he places will not be passed through before it can be executed,
because prices move continuously almost always. According to a jump process
such as the CPN, stop and limit orders will occasionally be ineffective in
preventing large capital losses. Knowledge of the parameters of the process
would allow us to work out the probability of such occurrences. Only by
testing both the autocorrelation properties and the distributional properties
can we distinguish between these possibilites.

Finally, it has been noticed that rates of return in many asset markets
have sample distributions that have been leptokurtic (sharply peaked and
fat-tailed) relative to a normal distribution with the sample mean and
variance. This is at odds with the Wiener hypothesis, and has led to the
study of the stable Paretian distribution (e.g. Mandelbrot, 1963 and Fama,
1963). However, the stable Paretian distribution has infinite variances of
prices over any finite time interval and generates sample paths that are
almost all discontinuous at almost every moment of time. These implications
for the behavior of prices are at the opposite extreme from the properties
that drew Bachelier to study the Wiener process. The returns generated by the
CPN process, which has finite variances and is continuous except at discrete
moments, are leptokurtic. Moreover, the extent of the leptokurtosis

diminishes as the length of the sampling interval increases, a fact which has



also been observed.

The CPN process requires the estimation of extremely few parameters (in
this study, only two are required; the maximum would be three). Although this
is an appealing feature of the CPN process, the nature of intradaily data
makes difficult the comparison of the CPN process to alternatives which
require more parameters to be estimated. Thus, in this study the chief
alternative is the Wiener process.

The data set used in this study consists of Deutsche Mark futures prices
provided by the Chicago Mercantile Exchange, of which the International
Monetary Market (IMM) is a division. Futures prices have the advantage of
representing open outcry bidding, unaffected by the role of market specialists
as in the stock market. 1In addition, unlike for forward prices, the data are
actual sales prices rather than bid and ask spreads. Finally, the question of
market efficiency and the role of news has been particularly vigorously
pursued in the literature on exchange rates (Frenkel, 1981).

In section 2 of this paper we briefly explore the CPN process, discussing
its properties and deriving the various testable density functions that it
implies. We consider the special case of its application to intradaily data
and to futures prices, both of which require minor modifications. 1In section
3 we provide the empirical tests of market efficiency, of the Wiener process,

and of the CPN process. The conclusions are in section 4.



2. The CPN Process
2.1 Randomly Timed Events

Suppose that economically relevant events occur at random times. If the
market is efficient at evaluating this information, we will observe prices
changing instantly at the revelation of these events. The randomness of the
timing of events or of price jumps can be captured by positing that the number
of events per unit time interval is an independent drawing from a Poisson
distribution. That is, let

x(t) = the number of events prior to time t, x(t)e{0,1,2,...} Vt.

Then {x(t)} is a Poisson process if

(1) prix(s)—x(t)=j} = (1751) e S Vd(s-t)d, s>t, je(0,1,2...}.

Here c represents the average number of events per minute. The Poisson
process is purely random in the sense that, although knowledge of c allows an
individual to predict that the number of events in a time interval of length
s-t is c¢-(s-t), the individual still will not be able to predict when in the
interval the events are most likely to occur.

If {x(t)} is a Poisson process, then for any fixed interval of
observation, h>0, the first differences of {x(t)}, i.e. the number of events
in each interval of length h, will be stationary independent random variables
with the Poisson density function
(2) £05) = (1/De M(eh)d, jef0,1,2,...),
where ch = the expected number of events per interval of length h.

Suppose that at the times of the events, price jumps of size p are drawn
from an underlying normal distribution with mean v and variance 12. Normality
of price movements is appealing because the central limit theorem provides the

possibility of supplying underlying models with large numbers of agents (see,



for example, Telser, 1981). It is fundamental because of its formal
simplicity and its long history of study as a distribution relevant to asset
markets (e.g. Bachelier, 1900). Nevertheless, it is an independent assumption
from the assumption that the timing of events is randomly generated by a
Poisson process.

"We will refer to the combined process generating prices that is described
here as the compound Poisson-normal process, or CPN. It is a particularly
simple example of a subordinated process (Clark 1973). Not only does it have
only three parameters (c, v, and 12), but the driving process, the Poisson, is
both formally easy to work with and intuitively easy to motivate. Although
some economically relevant events (such as weekly money supply announcements)
do not occur randomly over time, most events (war in Iran, greater production
in a particular steel factory, changes in the demand for money) are
unpredictable in timing as well as in magnitude. Such is the nature of news.

With sufficiently detailed data these two hypotheses about the timing of
events and the distribution of price jumps can be independently tested. 1In
particular, an intradaily data set such as a ticker tape would contain the
times at which prices moved, allowing computation of the number of such
movements per minute, as well as the size of each movement. Moreover, it is
possible to jointly test both hypotheses with any ordinary time series of
asset prices observed only at intervals of uniform length. Such a test would
allow direct comparison with other processes that have been suggested for
asset price movements. To do this joint test, we need the distribution of
changes in prices (or rates of return) that would be generated by observing
the CPN process at intervals of uniform length. We turn next to the

derivation of that distribution.



2.2 The Distribution of Price Changes

Suppose a particular interval of length h contains exactly zhz 0 events,
i.e. prices jump exactly N times in that time interval. At each such event,
the price Jjump pj, jzl,...,zh, is drawn independently from the distribution
N(O,Tz). We restrict the mean to zero both for simplicity and because it is

an interesting economic hypothesis that we will later test —— none of the

results in this section depend on this restriction. Now the total price

zhpj if zp > 0

J=1

change for that interval is

Py =

|

Next, recall that 2y is itself a random variable whose distribution
function is Poisson (with density function f(zh) given by equation (2)). That
is, price changes p, are sums of normally distributed random variables, where
the number of terms in the sum is distributed Poisson. Since the sum of j
random variables distributed N(0,12) is distributed N(O,jrz), we can write the
probability that a price change is Sph as the product of the probability that
there is one jump per interval times the probability that a normal density
function with variance 172 generates a value Sph, plus the product of the
probability of two jumps per interval times the probability that a normal
density function with variance 212 generates a value Sph, etc. In the case
that phZO, we must also add the discrete probability that there are no events
in the interval at all, which according to the Poisson density function is

e_Ch. This can be summarized in a density function with the following form:



© 2
p _ .
} t 1 exp{— __th [(1/J‘z)e Ch(ch)J] if p_# 0
1 T;Eﬂj 237
(3)  op) = {° o
e <h E [ 1 ] [(l/j!)e_Ch(ch)‘j] if p = 0.
=1 T;%ﬂj

It is because of equation (3) that we call this process a compound
Poisson-normal. A compound distribution, or mixture, is the distribution that
results when a parameter of some distribution is itself a random variable. In
our case, the variance of the normal distribution, ZhTz, is a itself a random
variable whose distribution is Poisson. Using obvious notation, we will
sometimes refer to the above process as the CPN(U,Ch,Tz); in the above
derivation we restricted v=0.

Properties of the CPN distribution function and ¢(ph) are derived and
discussed in Feinstone (1984). 1In particular, it can be shown that its mean
is v, its variance is chrz, and its kurtosis is

L . )
That is, it is leptokurtic, or sharply-peaked and fat-tailed relative to a
normal distribution with the same mean and variance. Moreover, like the
well-known Wiener process, the CPN process is a continuous time random walk:
because of the independent draws from the underlying Poisson process, it is
infinitely divisible, which is to say that increments in prices are
independent over any disjoint time intervals. Unlike the Wiener process,
however, the sample paths followed by prices under a CPN process are
frequently discontinuous, exhibiting discrete jumps at events.

In the remainder of the paper, we present a variety of tests of the CPN

process using an intradaily data set which contains sale prices and the times

of sales. We test the infinite divisibility of the process using



autocorrelation tests and filter rules; as is well-known, these tests
simultaneously bear on the efficiency of the asset market in question. We
separately test to see if the number of events per time interval is consistent
with the Poisson process, and if the rates of return at the times of the
events are normally distributed. We also perform a joint test to see whether
the returns are distributed according to the CPN density function ¢(ph).
Finally, we also test the alternative hypothesis that the intradaily prices
are generated by the Wiener process, according to which the returns or price
changes observed at intervals of uniform length h would be distributed
normally with mean u and variance ozh. Because of the large number of
parameters involved, we are unable to test several other alternative
hypotheses that have been presented elsewhere, such as the stable Paretian
process (Mandelbrot, 1963} or the compound ln—normal-normal process (Clark,
1973).

Before we can turn to the empirical evidence, we must discuss how we
account for two features of the particular data set, which has been supplied
by the Chicago Mercantile Exchange and contains data from the futures market
in the Deutsche Mark (DM). The first of these features is the effect of
rounding the data to the nearest point, which is quite constraining on asset
prices within a single day. The second concerns the appropriate way to

measure asset prices in a futures market.

2.3 The Effect of Rounding the Price Data
Consider first the price changes or rates of return generated by a Wiener
process. According to the Wiener process, for any interval h>0, the net

change in price over that interval, Py is drawn independently from a normal
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distribution with constant mean, and variance proportional to h. If these
price changes are observed only after being rounded to the nearest point, then

the observed price changes P, are drawn from a distribution with discrete

density function

_ ph+.5
@) g, (p,) = Ip B0 @ D0, pel0slez, ),

h
where gh(x) is the normal density function with mean u and variance ozh.

In the case of the CPN process, it is price jumps at the time of
occurrence rather than the accumulated changes in prices over an interval that
are normally distributed. In the particular data set provided by the CME,
trades that give rise to no price change are not recorded. Because of the
effect of rounding, price jumps within half a point of 0 are thus truncated

from the sample. Thus, under the CPN hypothesis, we expect observed price

Jumps, p, to be drawn from the truncated and rounded distribution function

(5) g(p) = Uer.zg(x)dx] / [1 - J.55g(x)dx] , pe{tl,12,...},
p-. -.

where g(x) is the normal density function with mean v and variance 72, and
where the denominator acts to spread the unobserved probability weight
associated with the interval (-.5,.5) proportionately over all observable
values of p.

Finally, the density function that results when price changes over

intervals of length h are generated by the CPN density function ¢(ph) but are

observed only after rounding is

2 .
[ exp{— -f—z}dx] [(l/j!)e_Ch(ch)‘)],ph:il,iz,...
P~ .5 T 2371

) . 2 .
—ch 1 X . -ch J _
+ expq —, rdx (1/3")e (ch)“|, p,=0.
JZI[J_.STJQnJ { 2372} ] [ ] h

(6) #(p,) = -
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2.4 Asset Prices in the Futures Market

In this section we discuss the ways to appropriately measure asset prices
or rates of return using intradaily futures market data.

In the absence of transactions costs or collateral, the buyer of a
futures or forward contract in a commodity does not pay for the commodity
until the maturity date, T, of the contract.1 Just as the seller has no claim
on the buyer’s money until date T, the buyer has no claim on the commodity
until date T. However, at any time after t, when the future is bought, and
prior to T, the buyer has a current claim on the contract itself —-- that is,
on the right (and obligation) to take delivery of the commodity in exchange
for the agreed upon price when date T arrives. This distinction is
economically non—trivial: it is the difference between a commodity and an
asset, and allows us to derive the market price of the asset associated with
the commodity’s future price.

If an individual buys a futures or forward contract for a unit of the
commodity deliverable at date T>t, we call the price at which the exchange
will take place at time T the "commodity futures prices,”" and denote it FT(t).
(The word "commodity will hereafter frequently be suppressed.) If the futures
price happens to rise at a later time t1<T, the buyer will find that he can
sell his contract in the market at a price equal to the difference
FT(t1)~FT(t), because a buyer at time tl is indifferent between the prospect
of surrendering FT(tl) dollars at time T for the commodity, and the prospect

of surrendering FT(tl)—FT(t) dollars at time t. and FT(t) at time T. (In

1

1

It is convenient to consider foreign currency to be a commodity when
discussing futures markets in foreign exchange. This classification is purely
taxonomic and does not preclude the economic function of money as an asset.
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theory, at time t1 the agent’s asset would only be worth the discounted

present value of the change in the futures price. 1In practice, traders in
futures agree to neglect discounting. This is enforced by the Clearing House
of the futures market, which daily transfers the full face value of the price
change from the margin accounts of the holders of contracts on which there has
been a capital loss to the accounts of the holders of contracts on which there
has been a capital gain. This is one potential source of the small price
difference between futures and forward contracts, since the latter must be
discounted to be resold.) Thus the individual who bought the contract at time
t is in possession of an asset; the asset price at time tl is

(7) p(t) = F (t)) - F (1)

Note that the value of the asset consists entirely of accumulated capital
gains and losses.

It is possible to extend the uniformity of contracts by a process known
as "marking." Two individuals buying (or selling) futures contracts at
different times, tO and tl’ such that FT(tO) # FT(tl), are holding assets that
differ in asset price as well as futures price. If the contracts are
identical in size and delivery date, however, an accounting intermediary can
perform the following service at time tlz for each party to the earlier, tO’
contract, it can issue a new contract at futures price FT(tl), simultaneously
requiring the surrender of the old contract along with payment made by the
party who incurred the capital loss (for example, the seller, if FT(tl) )
FT(tO), ) to the party who received the capital gain. Thus at time tl’ all
outstanding contracts are made identical not only in size and maturity date

but in futures and asset prices as well.

This extended uniformity can be achieved amongst futures contracts, but
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not amongst forward contracts. Forward contracts in the organized forward
market are not necessarily identical in size (although blocks traded in round
numbers are common), or maturity date (except on the first date of purchase).
The day after a forward contract with maturity date T is sold, the organized
market no longer trades contracts of that maturity date, but of date T+l. A
forward contract can be resold after the purchase date, but not without direct
contact between the parties involved. 1In contrast, the futures market
continues to trade contracts of maturity date T until date T arrives, and all
contracts are for identical quantities of the commodity.

The Clearing House of the futures market is able to perform the
accounting of marking by requiring margin deposits for all parties involved in
transactions. While in practice it "marks" its customers to the market only
at the end of each day, it may equivalently be viewed as recrediting and
redebiting the accounts of its trading members with each price change.2 Thus
a buyer need not ask if the seller with whom he is matched on the trading
floor bought his contract ten minutes or ten days ago. All contracts on the
market are identical at each moment.

A consequence of this is that asset prices in the futures market are
equal to zero at all times except at the moments when prices actually change.
Thus, rates of return do not exist. The implications of this for mudels of
asset price behavior have been explored by Black (1976). In general the

changes in commodity futures prices rather than their rates of return can be

2 Black (1976) described the daily rewriting of the contracts, but did not

note that the Clearing House actually provides this service continuously. He
wrote that this "applies only to the end of the day, after the futures
contract has been rewritten. During the day, the futures contract may have a
positive or negative value, and its value will be equal to the value of the
corresponding forward." Black (1976), p.170.
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expected to exhibit the same sort of behavior as rates of return on unmarked
assets. Thus, in the following sections we measure asset prices in the

futures market as the changes, rather than the percentage changes, in the

futures prices.

3. Empirical Evidence
3.1 The Data Set

The data set used throughout this study consists of intradaily futures
prices on the Deutsche Mark (DM) as traded at the IMM during July 1977 for
maturity in September 1977. The sale price data are reported with the times
of the sales within ten second intervals. Only sales which give rise to a
change from the last recorded price are reported, and the number of contracts
traded are not reported. That is, the data are not what are called
"transactions data," even though the data set is unusually detailed in its
timing information.

In Table 1. we present a summary of the data. The average price of a DM
during the month was $.44, giving a contract (125,000 DM) an average value of
$55,000. Prices are reported in points, with one point equaling $.0001.
Thus, a one point change in the price of a DM represents $12.50 in capital
loss or gain for each contract owned. Of the 19 trading days in the month,
only the first day had a volume of fewer than 200 contracts traded; the
average number of contracts exchanging hands on a given day was 839. Each
trading day lasts 4.5 hours, from 8:48 a.m. to 1:18 p.m. (Chicago time); the
prevailing futures price moved, or jumped, on average 69 times per day, or
about once every four minutes. Despite the close match between settlement

prices and the averages of daily prices sampled at thirty second intervals, it
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is seen that prices exhibit wide swings during the day.

Price movements on two fairly typical days are plotted in Figures 1 and
2. The data points are connected for ease of viewing. For some purposes in
this study we create data sets consisting of the set of prices that would be
observed if observations were taken at intervals of uniform length h (in
particular, h = thirty seconds and h = three minutes). The price at any time
of observation is taken to be the last recorded price in the raw data set,
which does not contain observations on trades that give rise to no price
change, even though such trades frequently occur. The first differences of
these recreated price time series will be called price "changes," while the

set of changes in prices at the times of occurrence will be called price

" jumps. "

3.2 Tests of Efficiency and Infinite Divisibility

In this section we report on autocorrelation tests to see if the data are
consistent with the economic hypothesis that the market is efficient in its
use of the information contained in past prices. Because the data set
contains timing information, we are also able to perform filter rule tests
that improve on previous filter rule tests of market efficiency. All these
tests can equivalently be viewed as testing the formal hypothesis that the
process generating the data is infinitely divisible or has independent
increments.

The autocorrelation tests can be performed for any fixed observation
interval h. Two particular time intervals have been chosen for analysis here:
h = 3 minutes and h = 30 seconds. Longer intervals were examined with a

concomitant reduction in sample size. The results did not differ.
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In Tables 2 and 3 we present the autocorrelation functions obtained by
recreating the daily price change series that would have been observed by
sampling at these intervals. As may be seen, few autocorrelation coefficients
are significantly different from zero, and we cannot reject the hypothesis
that prices are a random walk for any observation interval h>0. Even where
such non—zero coefficients occur, no outstanding patterns are evident,
although some regularity does appear on days 18, 19, and 28. To use this
regularity, the chartist must be able to predict these days or recognize them
early in the day. A chartist with no transactions costs who not only receives
price information with a delay, but also takes the time to analyze its
conformation to patterns such as "heads and shoulders," would profit only by
coincidence in this market. Nevertheless, the tests most appropriate for
testing the chartist’s hypothesis are filter rule tests conducted on all data
points (as opposed to only those sampled at fixed time intervals).

We now consider these filter rules. A day trader —— one who holds a net
non—-zero position only during the day —— can use the information contained in
all prices. 1If price rises are correlated, he can profit by buying at the
start of an upswing, and selling as close to the peak as possible. We cannot
study a trader who uses information other than that contained in the price
series itself to judge the tioughs and peaks. However, we can model a trader
who is a univariate chartist.

Alexander (1961) considered the following sort of filter rule. Suppose
that a trader chooses an arbitrary number of points (or an arbitrary
percentage), n. 1If the price rises by n points, he buys a contract and waits.
When the price then falls by n points from a subsequent peak (the peak could

be the price at which he bought if he is unlucky), he sells out, and also
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sells another contract. He then holds this short position until the price
rises by n points, buys, and continues this process. At the end of the day,
he closes out his position.

An n-point filter like that described above will generate many
transactions if n 1s small. This will result in high brokerage fees, and more
physical exhaustion. {(Anyone who has seen the floor of an exchange knows that
continuous—-time trading is a strenuous activity.) On the other hand, if n is
high, the turning points may be missed completely.

Alexander’s filter rule has been criticized on the grounds that a trader
is unlikely to always be able to trade at the price that triggers his desire
to trade. Not only does time elapse before his bid or offer is presented, but
his bid or offer is new information to the other floor traders about the
quantities available, and may itself affect the price.

We can consider a more sophisticated n-point filter or "trigger" rule.
Suppose the price rises by n points, triggering a desire to buy at that price.
Let the trader immediately bid at that price. Several things can happen. One
is that an offer is tendered at his bid price, and he does buy at that price.
In this data set, such an action is not marked because the price would not
change. We assume arbitrarily that if 60 seconds pass with no price jump
after the trigger then the trader was able tc conclude his deal at the trigger
price.

Possibly, however, all offers are higher than his bid. 1In this case,
though the trader was right that the price would rise, he cannot take the
whole rise as a capital gain. We assume that he immediately takes the lowest
of the offers, so that the next observation of a higher price (lower, if he

desired to sell) is the price at which he is assumed to have concluded his
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deal. That is, if we observe that within 60 seconds of the n-point trigger
the price jumped in the same direction, we assume that the trader traded at
that price rather than the trigger price.

Finally, it is possible that someone is willing to sell at a price lower
than the trader’s bid because the market price has actually fallen in the
interim. Since the bid is outstanding, the seller gladly accepts it; since
the market price is now less than that, he immediately buys at the lower
price, reaping his capital gain.3 That is, if we observe that within 60
seconds of the n-point trigger the price jumped in the opposite direction, we
assume that the trader did actually trade at the triggerlprice.

In Table 4 we present the results of 2-point and 3-point Alexander-type
filter rules, and the results of the 2-point trigger rule described above.
Note that a 3-point filter rule would have generated a loss for the trader for
the month even in the absence of transactions costs. The smaller 2-point
filter does generate positive returns for the month —— at $12.50 per point, a
Z2-point filter would have resulted in $525 per contract; a trader dealing in 1
million DM would have made $2100 for the month. However, his 264 round trip
transactions would have generated substantial transactions costs. The costs
for a trader who was not a member of the exchange would have been prohibitive:
a minimum of $20 per round trip transaction in coumissions, plus $1.50 per
round trip as the fee to the Clearing House. A member trading on the floor on

his own account would pay no commission and only $.50 per round trip for the

3 In actuality, our trader can cancel his outstanding bid, which he would

like to do if his information is the same as the seller’s. Whether he is
successful or not depends on whether he or the seller is quicker. 1In any
event, our test strictly deals with a univariate chartist who is not concerned
with the seller’s non-price information.
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Clearing House fee. We may also assume that as a member, he could hold his
margin deposit as Treasury Bills, so that the margin does not generate a
substantial interest loss to him. However, the lost interest on the price of
his seat on the exchange must be counted as a cost: in July 1977 interest
rates were about 5.5% and a seat on the IMM cost about $50,000.4 Thus, the
costs to a member trading four contracts for the month were about $757, just
over a third of his potential gain —— if he could actually achieve his desired
price on each of his actions.

Finally, under the 2-point trigger rule, the trader executes the same
number of transactions as under the 2-point filter rule, but at prices
sufficiently less favorable for him to incur a loss for the month even without
transactions costs.

It appears that univariate information is insufficient to generate
consistent profits in this market. However, we cannot rule out the
possibility that outside information or news that reaches the traders on the
floor before it reaches the public can create a profit opportunity. A floor
trader who receives information at the same time as outsiders also has time to
profit because he need not take the time to place a phone call to his broker.

Also, the price transmission delay from the floor can give floor traders an

edge over outsiders.

3.3 The Price Process

We turn now to the distributions of events, price jumps (measured at the

time of occurrence), and price changes (measured at intervals of uniform

4 Seat prices and Clearing House fees for July 1977 were provided by Matt
Jackson and the research department of the CME.
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length h). The tests in this section consist primarily of x2 goodness-of-fit
tests, which are appropriate for hypotheses about discrete distributions.
Because the prices are rounded to the nearest point, the price data are
discrete; the data on events per interval (i.e. the number of price jumps per
interval) are naturally discrete. Thus, tests of the Kolmogorov-Smirnov type
cannot be used.

The x2 statistic is computed as

X2 = } _J_J . xz(k—r—l)
m.

1Y
where k = the number of cells into which the density function is broken,
z .= the number of observations per cell,
m.= the expected number of observations per cell, based on the

hypothesized density subject to any estimated parameters, and the

total number of observations in the sample, N,

r = the number of estimated parameters of the hypothesized density.

If the parameters are estimated using the (ungrouped) microdata rather than
using the zj, then X2 is bounded between a xz(k—r—l) and a xz(k—l). That is,
critical values from the xz(k—r—l) will produce a more stringent test than
necessary. All parameters in this paper are estimated from microdata, and all
of the x2 statistics are bounded below by the xz distribution with the
reported degrees of freedom.

For the x~ test to be reliable it is desirable for each expectation, mj,
to be greater than 5 or 6, and that k-r-1 be greater than 2. For h smaller
than 3 minutes, the expectations and degrees of freedom conditions were

generally difficult to meet. To remedy this, in some cases we use a related

test suggested in Heckman (1985). Heckman derives an alternative statistic,
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G, whose distribution is xz(k—l) whenever the parameters are maximum
likelihood estimates taken from the microdata. For given k, this statistic is
numerically greater than the traditional goodness—of-fit statistic. Instead
of reducing the degrees of freedom, this test adds a function of the
covariance matrix of the parameters to the traditional x2 statistic. This
test is particularly useful when the number of estimated parameters equals or
barely exceeds the number of cells. It is also useful when the traditional x2
statistic is ambiguous —- that is, when it exceeds the critical value of the
xz(k—r—l) but falls short of the critical value of the xz(k—l). These
conditions will be met in the test of the joint CPN hypothesis.

We turn first to the distribution of events. A test of equation (2)
based on the 3 minute sample is given in Table 5. The estimated parameter is
allowed to vary by day; the data are then pooled. As can be seen, the null
hypothesis that the daily timing of events, or price jumps, is a Poisson
process 1is rejected at the 5% level on only four days.

That these days are all days for which the random walk hypothesis for
prices at 3 minute intervals was rejected (or almost so for day 28) is a
curious feature. It suggests that certain days have characteristic patterns
of both price movements and their timing that may be recognizable to floor
traders or those market participants who choose to spend time watching the
intradaily market. It is not clear whether these characteristics signal
profit opportunities. Although a trader engaging in a 2-point trigger rule
would have done very well for the month had he traded only on these four days,
the price and timing patterns must be recognizable in advance in order to use
them. One possibility is that these four days were days of heavy Federal

Reserve or Bundesbank intervention in spot exchange markets. Central banks
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attempt to hide their currency purchases by spreading them out over the day;
the times of their trades may not be statistically random and might be
anticipated by the traders.

On the basis of the pooled sample we reject the hypothesis that the
parameter does not vary over the course of the month. (We do not difference
across days — we simply omit those observations from the sample.) Finally,
in order to rely on these tests we must satisfy ourselves that the obser-
vations on the first differences of {x(t)} are independent. Autocorrelation
functions computed for the differenced series failed to reject this
hypothesis.

We next consider the distributions of the price changes and jumps. In
order to proceed with the tests of equation (5) (the truncated and rounded
density consistent with price jumps being normally distributed, and hence
generated by a CPN process) and equation (4) (the rounded density consistent
with price changes being normally distributed, and hence generated by a Wiener
process), we must first provide maximum likelihood estimates of the various
parameters. We restrict the means of both densities to be 0, leaving us with
univariate estimation problems for the variances 12 and 02.

It is not obvious that the maximum likelihood estimators of either 12 or
o~ can be computed from simple sample statistics such as the sample variances
of the price changes. 1In fact it is clear that the sample variance of the
price jumps will always be larger than 12 under the truncated and rounded CPN
hypothesis, because the observed sample will contain no price jumps of size
zero. It is less obvious whether the sample variances of the price changes,
appropriately corrected for N rather than N-1 degrees of freedom, are perhaps

the maximum likelihood estimators of ozh. However, the range of observed
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price changes in the data set is small as well as discrete, so it is not
obvious that we can treat the sample as if it is large.

The estimates of the maximum likelihood estimates of 02 and 12 and the
details of the estimation procedure are described in the Appendix.

In Table 6 we present various tests of normality. Looking first at the
studentized ranges, we see that the hypothesis that the price changes are
normally distributed is rejected on all but two days (at the 5% level) for the
3 minute sample and on all days at 30 second intervals. The test done by
pooling the data for all days indicates a rejection for both observation
intervals. On the other hand, the studentized range is in fact consistent
with the hypothesis that the price jumps are normally distributed for each day
independently and for the pooled sample. However, because of the truncation
near 0 discussed above, the sample variances are too large and thus these
studentized ranges artificially small. Note that the studentized range test

does not restrict the mean to be zero.

The x2 statistics to test the hypothesis that the price changes are
generated by an underlying Wiener process with parameters u=0 and 02282, which
are observed only after rounding, are performed only for the 3 minute sample.
This is because the degrees of freedom condition was violated on almost all
days for the 30 second sample. For the 3 minute sample, this null hypothesis
1s rejected independently for each day at the 5% level, and also for the
pooled sample.

Two x2 tests are performed on the price jumps. The first tests the
hypothesis that price jumps are drawn from an underlying distribution that is

N(0,1), and then rounded and truncated. There is no particular reason to

restrict the variance of the underlying distribution to equal one, but this
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restriction does improve the degrees of freedom condition because it requires
no estimated parameters. As can be seen, this null hypothesis is rejected on
days 11, 13, 27, 28, and 29, and for the pooled sample. However, we note that
this rejection is not inconsistent with the more general hypothesis where 12
is not necessarily equal to one, because these are in fact days when ;2 is
very far from one.

The second test allows the variance of the underlying normal distribution
to be determined by the sample, i.e. it tests for an underlying distribution
that is N(O,;z), which is observed after rounding and truncating.5 The null
hypothesis cannot be rejected at the 5% level for any day except day 27; it is
not rejected at the 1% level on that day. The pooled sample is not consistent
with the null hypothesis. This can be viewed as a rejection that the variance
72 is constant for the entire month.

The G statistic proposed by Heckman was also calculated for the N(O,;z).
The inference was the same as under the x2 for all days and for the pooled
sample.

A xz test based on equation (6) using price changes at intervals of
length h would jointly test the hypotheses that the timing of events is
Poisson and that the jumps are normally distributed. Each of these hypotheses
has been tested independently above. Thus, such a test does not yieid

independent evidence about the CPN hypothesis; it is an alternative to the

previous tests. It does, however, present a useful summary of the evidence on

5

Note that it is not the case that the x2 statistic must improve when 7 1is
chosen by the sample. First, the number of degrees of freedom change.
Second, an increase in T causes increases in the expectations of some cells

and decreases in other cells, with an ambiguous effect on the combined
statistic.
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the CPN hypothesis, as well as providing a fairly stringent test that can be
rejected for any number of reasons.

In order to perform a test based on ;(ph) we must have maximum likelihood
estimates of ¢ and 12 based on the null hypothesis. The maximum likelihood
estimates of 12 took account of the fact that true events which resulted in
very small price changes are not recorded. The estimates of the speed of

~

events ¢ (Table 5) did not take this into account and thus are not appropriate
for use with ; . There is no directly comparable method for finding an
estimator of ¢ that includes an adjustment for events which produce price
Jjumps of less than half a point. However, an indirect approach is available.
Note that the variance of Py under the CPN hypothesis is the same as the
variance of the Py if they are normally distributed. The latter has already
been estimated: 3;2 is the maximum likelihood estimate of the variance of
prices at 3 minute intervals under the hypothesis that they are normally
distributed. According to the CPN hypothesis that variance also equals 3072.

Thus we can estimate the speed of occurrence inclusive of unmeasured events,

5, by

(8) 3 = 302/7% .

Note that this method assumes that c and 12 are independent.

In Table 7 we present the estimates of c as well as the xz and G
statistics to test the joint hypothesis for the 3 minute sample. Because two
parameters were estimated, it was very difficult to satisfy the degrees of
freedom condition for the xz statistic, despite the fact that the improved fit
tended to increase the number of cells for which the expectations condition

was satisfied. For completeness, these statistics are presented even when
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there is only one degree of freedom, but we will not draw any inference from
them. The G statistics have satisfactory degrees of freedom in all cases.

Of the twelve days with x2 statistics of 2 or more degrees of freedom,
six surpass the 5% critical value of the xz(k—r—l). However, for only two of
these days is the null hypothesis rejected if the G statistic is used. Note
that on the other four days, the x2 statistic is below the 5% critical value
of the xz(k—l) distribution, so that these four days are precisely those for
which the traditional xz test is ambiguous.

Both of the two days for which the CPN hypothesis is rejected are days
when the Poisson distribution for events was rejected on the basis of the
non-joint tests (Table 5). Several other days are consistent with the joint
hypothesis despite the fact that the non—joint hypotheseé were rejected. It
is reassuring that in no case for which the x2 test unambiguously failed to
reject the joint hypothesis did the G test result in a rejection. The joint
CPN hypothesis is rejected for the pooled sample, as it had been for each of

the non-joint tests.

Measures of the sample kurtosis are also presented in Table 7. A sample

~

kurtosis that is higher than 3/3c roughly indicates a sample distribution that
is sharply peaked and fat-tailed relative to the CPN.

The statistics of Table 7 represent a striking improvement of fit of the
CPN relative to the Wiener hypothesis, particularly at the central peak. The
distribution N(O,BSZ) of Table 6 underpredicted the number of observations
with no price change by an average of 19 observations for the daily samples,

so that on average 19/89=21% of each daily x2 statistic is due to error at the

peak. It underpredicted the pooled sample’s peak by over 500 observations.
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~

In contrast, the distribution CPN(0,3E,12) underpredicted the daily peak by an
average of 4.2 observations, and by 136 observations for the pooled sample.
The two rejections of the joint CPN hypothesis in Table 7 are still
associated with tails too fat and peaks too high relative to the expectations.
However, because we performed independent tests of the Poisson and normal
components of the CPN, we are able to go further. In particular, because on
the days when the joint hypothesis was rejected, price jumps appeared to be
normally distributed, it appears to be more likely that the kurtosié problem

is due to our inability to adequately model the timing of events than to an

innate non-normality of price movements.

4.1 Conclusions

Our tests of market efficiency indicate that the futures market in
foreign exchange functions almost instantaneously to absorb new price
information. Both autocorrelation tests and trigger rule tests indicate that
a chartist would have a difficult time making a profit from this market, and
even a floor trader may not be able to profit.

The compound Poisson—normal process was empirically contrasted with the
Wiener process. We could not reject the hypothesis that the distribution of
daily events was Poisson, or the hypothesis that the distribution of price
Jjumps at the time they occurred was normal, although in both cases we reject
the hypothesis that the parameters of the distributions were constant. The
Wiener process was rejected at the usual significance levels.

A joint test of the CPN process was provided by the derivation of the

price changes generated by this process. The implied distribution of price
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changes is leptokurtic. The CPN process cannot be rejected by the evidence,
and results in a dramatically better fit than the normal distribution, which
is rejected. Rejections of the joint hypothesis are accompanied by even
greater kurtosis than that already implied by the CPN hypothesis, and by
rejections that the events associated with those days were distributed
Poisson. This suggests that we must delve deeper into the timing of economic

responses to shocks before we will unravel the kurtosis question.
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APPENDIX

By restricting u=0, we can estimate 02 in the following manner: using the
3 minute sample of price changes, choose the ; that maximizes the likelihood
function resulting from density éh(ph) with h=3 and u=0. This is a univariate
problem because of the restriction, and can be done by a grid search.
Similarly, the maximum likelihood estimate of 12 is found by choosing the ;
that maximizes the likelihood function resulting from density é(p) with v=0.

In Tables A.1 and A.2 we present the sample means, ranges, and a variety
of estimated variances. Note first that the means for price changes over both
3 minute and 30 second intervals, and for the price jumps, are close to zero
for all days and for the pooled samples. 1In every case a T-test failed to

reject the hypothesis that the mean is zero. Thus, the restrictions of u,v=0

are not unreasonable.

The maximum likelihood estimates 3;2 and .582 are all very close to the
corrected sample variances (i.e. the maximum likelihood sample variances if
the underlying distributions were unrounded normal distributions). This is
very reassuring, but was by no means a necessary result in a small sample.

As expected, the corrected sample variances for the price jumps are

~

uniformly greater than the maximum likelihood estimates, 12.



SAMPLE MEANS AND RANGES OF PRICES

TABLE Al

Price Changes Price Jumps

Day 3 Minutes 30 Seconds -
ﬁ Range 1 Range Y Range
1 -0.01 -2 to 3 0.00 -2 to 3 0.00 -2 to 3
5 -0.01 -2 to 2 0.00 -2 to 2 -0.02 -2 to 3
6 0.04 -2 to 6 0.01 -2 to 6 0.14 -2 to 6
7 -0.01 -3 to 3 0.00 -4 to 3 -0.03 -4 to 3
8 0.21 -2 to 7 0.03 -2 to 4 0.38 -2 to 4
11 0.16 -2 to 5 0.03 -3 to 5 0.27 -3 to 5
12 0.13 -5 to 4 0.02 -3 to 4 0.10 -3 to 4
13 -0.11 -4 to 5 -0.02 -4 to 4 -0.14 -4 to 4
15 0.34 -2 to 3 0.01 -2 to 3 0.08 -2 to 3
18 0.35 -3 to 6 0.06 -2 to 4 .22 -3 to 3
19 -0.06 -6 to 3 -0.01 -3 to 2 -0.08 -3 to 3
20 -0.13 -4 to 5 -0.02 -4 to 4 -0.12 -3 to 4
21 ~0.06 -4 to 3 -0.01 -4 to 3 -0.10 -3 to 3
22 0.09 -2 to 3 0.02 -2 to 3 0.18 -2 to 3
25 0.08 -3 to 3 0.01 -2 to 3 0.09 -2 to 3
26 0.03 -4 to 3 0.01 -4 to 3 0.06 -4 to 3
27 0.20 -4 to 9 0.03 -4 to 4 0.19 -4 to 6
28 -0.27 -8 to 7 -0.04 -4 to 4 ~-0.24 -4 to 4
29 -0.01 -6 to 9 0.01 -5 to 6 -0.01 -4 to 6
pooled 0.03 -8 to 9 0.01 -5 to 6 0.04 -4 to 6

NOTES

: There are 89 observations per day in the 3-minute

sample, 535 observations per day in the 30-second sample, and the
number of observations per day in the sample of price jumps is one
less than the number .of events on that day.
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TABLE A2

ESTIMATED VARIANCES OF PRICES

Price Changes Price Jumps
Day 3 Minutes 30 Seconds
52 v22 352 y22 EFEIE 22
1 0.11 0.37 0.34 0.07 0.06 2.55 1.69
5 0.16 0.55 0.48 0.12 0.08 1.63 0.88
6 0.27 0.85 0.81 0.15 0.14 2.75 1.80
7 0.21 0.71 0.64 0.13 0.11 1.97 1.19
8 0.38 1.16 1.14 0.17 0.19 2.01 1.37
11 0.43 1.35 1.30 0.25 0.22 3.47 2.59
12 0.76 2.34 2.28 0.33 0.38 2.00 1.23
13 0.62 1.92 1.85 0.36 0.31 2.79 1.93
15 0.21 0.71 0.64 0.13 0.11 1.87 1.10
18 0.78 2.32 2.34 0.37 0.33 1.78 1.06
19 0.64 2.01 1.893 0.25 0.32 1.71 0.96
20 0.64 2.00 1.83 0.29 0.32 1.97 1.2
21 0.38 1.22 1.14 0.20 0.18 2.09 1.32
22 0.26 0.85 0.77 0.20 0.13 1.50 0.81
25 0.27 0.88 0.81 0.16 0.14 1.41 0.69
26 0.45 1.43 1.35 0.28 0.22 1.96 1.18
27 0.92 2.79 2.76 0.45 0.46 3.15 2.28
28 1.25 3.75 3.76 0.54 0.63 3.10 2.25
29 1.13 3.47 3.39 0.51 0.56 3.83 2.96
pooled 0.52 1.63 1.56 0.26 0.26 2.32 1.51

NOTES: There are 89 observations per day in the 3-minute
sample, 535 observations per day in the 30-second sample, and the
number of observations per day in the sample of price jumps is one
less than the number of events on that day.

%The corrected sample variance is defined by V2 = (1/N)-(sum
of squared deviations from the sample mean), where N = the number
of observations.
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TABLE 1

SEPTEMBER 1977 DM FUTURES DURING JULY 1977

July 1977 Daily Number Settlement Average Standard
Trading Volume? of Price Price? Price Deviatiog
Date Jumps of Price
1 187 23 4294 4294 1.44
5 400 47 4338 4338 2.03
6 376 36 4338 4336 2.64
7 2391 37 4354 4354 2.47
8 400 46 4365 4357 6.76
11 512 45 4335 4392 6.01
12 1456 88 4395 4384 5.41
13 996 85 4396 4402 4,25
15 554 40 4397 4393 2.33
18 1689 140 4433 4421 10.42
19 1294 101 4426 4427 2.48
20 880 87 4429 4436 3.40
21 716 49 4426 4429 2.90
22 1133 66 4447 4445 3.86
25 682 58 4464 4460 3.01
26 1202 88 4459 4463 2.52
27 1126 97 4443 4439 3.43
28 1267 106 4393 4404 12.13
29 77 72 4385 4380 5.14
Total 15,938 1,311
Average 839 63 4399 4398

aSource: 1977-1978 Yearbook, International Monetary Market,
Chicago Mercantile Exchange. Prices are reported in points/DM; 1 point
= $.0001; 1 contract = 125,000 DM.

bAverage prices and their standard deviations are computed from
the data set resulting from observations taken at 30-second intervals.
The number of observations is 535 per day.
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TABLE &4

FILTER AND TRIGGER RULES

3-point Filter 2-point Filter 2-point Trigger
Day No. of Round-trip Net Gain No. of Round-trip Net Gain Net Gain
Transactions (in points) Transactions (in points) (in points)

1 3 -9 6 -10 -10

5 3 -1 -2

6 3 -12 13 -29 -30

7 4 - 8 - -1

8 5 8 0
11 4 20 10 15 15
12 13 -14 17 - 6 -9
13 10 10 18 12 12
15 6 -2 8 4 3
18 15 3 19 18 8
19 15 -15 18 3 0
20 12 -9 17 -7 - 8
21 8 -2 9 5 0
22 3 17 -10 -17
25 -14 14 -3 -3
26 11 -4 13 3 2
27 17 -14 23 6 -9
28 12 20 21 22 11
29 9 19 17 13 6

Total 167 -15 264 42 -32




TABLE 5

GOODNESS-OF-FIT TESTS FOR EVENTS

Number of Events

2
Day Per Day Per 3 Minutes Range x“(k=2) : Poisson with

(38) Parameter 3¢
1 23 0.26 0-4 0.69(1)
5 47 0.52 0-3 3.17(2)
6 36 0.40 0 -3 3.57(2)
7 37 0.41 0-3 1.75(2)
8 46 0.51 0 -3 8.23(2)2
11 45 0.50 0-5 1.48(2)
12 88 0.98 0-5 3.73(3)
13 85 0.94 0-5 3.51(3)
15 40 0.44 0 -3 0.38(2)
18 140 1.56 0 -8 21.59(4)°
19 101 1.12 0-5 19.15(3)°
20 87 0.97 0-5 4.05(3)
21 49 0.54 0-3 3.64(2)
22 66 0.73 0-5 1.22(2)
25 58 0.64 0-4 5.45(2)
26 88 0.98 0 -6 2.52(3)
27 97 1.08 0 -10 2.89(3)
28 106 1.18 0 -8 10.32(3)2
29 72 0.80 0-5 5.19(2)
pooled 1311 0.77 0 -10 264.87(1)P

NOTES: There are 90 3-minute intervals on each day, and 1,710
for the month.

%The 5 percent critical values are 3.83(1), 5.99(2), 7.81(3),
9.49(4).

°The 1 percent critical values are 6.63(1), 9.21(2), 11.30(3),
13.30(4).



TABLE ¢

TESTS OF NORMALITY OF PRICES

40

Price Changes Price Jumps
Day 3 Minutes 30 Sec. -
sor.? x2-2:800,352 )P 6.r.°  s.r.d ¢ 2(k-1)1N(0,1)® x%(k-2):8(0,7%)°
1 8.17 22.07(1) 18.27 3.06 3.04(2) 0.29(1)
5 5.36 12.82(1) 11.65 3.87 0.60(3) 0.15(2
6 8.62 38.93(2) 20.42 4.75 1.32(2) 2.21(2)
7 7.08 31.03(2) 19.76 4.92 1.09(2) 2.69(2)
8 8.32 52.44(3) 14.58 4.18 3.73(3) 3.97(2)
11 6.00 57.00(3) 15.899 4.25 21.89(3) 1.75(2)
12 5.85 22.21(2) 12.17 4.92 0.52(3) 2.79(2)
13 6.46 33.77(2) 13.31 4.76 8.28(3) 3.09(2)
15 5.91 21.97(2) 14.12 3.61 0.06(3) 0.32(2)
18 5.88 25.33(3) 3.80 4.48 3.77(3) 3.76(2)
19 6.32 27.87(3) 9.91 4.57 1.49(3) 1.23(2)
20 6.32 30.42(3) 14.81 4.96 1.86(3) 1.44(2)
21 6.30 35.25(3) 15.79 4.11 1.44(3) 2.36(2)
22 5.41 18.06(2) 11.24 4.05 2.75(3) ©1.34(2)
25 6.35 24.30(2) 12.46 4.17 2.51(3) 0.57(2)
26 5.83 10.67(3) 13.25 4.97 2.59(3) 3.46(2)
27 7.74 25.84(5) 11.94 5.60 7.94(3) 11.28(4)
28 7.70 56.06(5) 10.88 4.52 25.25(3) 2.62(4)
29 8.00 74.71(5) 15.33 5.01 26.45(3) 2.75(4;
pooled 13.30 763.839(5) 21.51 6.56 158.95(5) 36.13(4)
NOTES: There are 89 observations per day in the 3-minute sample, 535

observations per day in the 30-second sample, and the number of observations

per day in the sample of price jumps is one less than the number of events
on that day.

#The critical values for the daily samples are 5%: 5.81 and 17%: 6.26.

b .
The critical values

c C
The critical values

d'I'he critical values

are 5%7: 5.99(2), 7.81(3), 9.49(4), 11.10(5),
and 1%: 9.21(2),11.30(3),13.30(4),

15.10(5).

for the daily samples are 5%Z: 7.15 and 1%: 7.62.

vary by day.



TABLE 7

JOINT TESTS OF THE COMPOUND POISSON-NORMAL PROCESS ON PRICE CHANGES
OBSERVED AT THREE MINUTE INTERVALS

Day ceN(0,38,7%) Sample Kuiéizis of
38 2 (k=3) . G(k-1) Kurrosis CPN(0,3%,7%)2
1 0.20  [0.27(1)] 0.61(2) 10.19 15.00
5  0.54  [2.50(1)] 0.78(2) 2.61 5.56
6 0.43  [1.72(1)] 0.06(2) 19.35 6.98
7 0.54  [7.27(1)] 1.57(2) 3.84 5.56
8 0.8  7.38(2)° 7.43(4) 17.78 3.57
11 0.50 1.78(2) 1.88(4) 6.06 6.00
12 1.8  4.79(2) 4.94(4) 2.65 1.62
13 0.96  6.39(2)° 6.43(4) 2.67 3.13
15 0.58  [0.51(1)] 0.15(2) 4.49 5.17
18 2.21  11.54(2)¢ 11.54(4)° 2.69 1.36
19 2.01 8.64(2)P . 8.73(4) 3.29 1.49
20 1.60 7.24(2;7 7.35(4) 2.56 1.88
21 0.87 2.38(2) 2.42(4) 2.79 3.45
22 0.96  [1.50(1)] 0.73(2) 1.38 3.13
25  1.18  [3.95(1)] 4.71(2) 2.83 2.54
26 1.13 0.73(2) 0.75(4) 1.78 2.65
27 1.21 2.22(4, 2.25(6) 8.22 2.48
28 1.67  16.11(4)° 16.29(6)" 4.11 1.80
29 1.14 9.38(4) 9.50(6) 7.28 2.63
pooled 1.03  50.86(6)¢  50.87(8)° ' 7.56 2.91

NOTES: There are 89 observations per day. [Bracketed statistics
violate the degrees of freedom condition and may not have distribu-
tions that are well-approximated by a Xz(l).]

aPositive values of the kurtosis indicate a distribution that is
leptokurtic (sharply peaked) relative to a normal distribution with the
same mean and variance.
The 5% critical values are: 3.84(1), 5.99(2), 7.81(3), 9.49(4),
11.10(5),12.60(6),15.50(8).

“The 1% critical values are: 6.63(1), 9.21(2), 11.30(3), 13.3(4)
15.10(5), 16.80(6), 20.10(8).
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