SPECIALIZATION, TRANSACTIONS TECHNOLOGIES, AND MONEY GROWTH*

Harold Cole
University of Pennsylvania

and

Alan C. Stockman
University of Rochester and NBER

Working Paper No. 153

August 1988

*The authors would like to thank Michael Dotsey, Robert Townsend, Neil Wallace, and members of the University of Pennsylvania Macro lunch group for helpful comments. The usual caveat applies. Cole's participation in this research was supported by the University of Pennsylvania Research Foundation, and Stockman's by the National Science Foundation; both authors gratefully acknowledge this support.
ABSTRACT

This paper develops a differentiated product model with money (similar to a parable told by Lucas to motivate exchange in a representative-agent model), a cash-in-advance constraint for market purchases, and endogenous specialization. Monetary exchange involves differentiated goods at a point in time, so a nonzero balance of trade is not required for monetary equilibrium. Consumption of goods not purchased with money (analogous to leisure services or credit goods) can either rise or fall with the money growth rate. We discuss the implied nominal-interest elasticities of the money demand in the general equilibrium.
1. Introduction

There is no standard model of money in an individual optimization problem. Money-in-utility specifications, overlapping generations models, and cash-in-advance models are perhaps the three most popular optimizing models of money that are tractable in a general equilibrium context. One difficulty with the cash-in-advance setup in a representative-agent model is that there is no explicit reason for trade. If all individuals are alike, they can consume their own production, and money would be worthless. Lucas (1980) tried to get around this problem with a parable about differentiated products of different colors: each individual produces only one color but consumes many colors, so if the number of colors is large then he would consume almost entirely goods purchased on the market. While this parable has great appeal, it was not developed formally in the model. In particular, the choice decisions of individuals regarding which color(s) to produce and consume were not developed.

Subsequently, Lucas and Stokey (1983, 1987) developed a model with two types of goods, "cash goods" and "credit goods." The former require money for purchase, but the latter do not: they may be purchased on credit, i.e. they are analogous to goods that are both produced and consumed by a particular individual. A positive nominal interest rate is shown to distort decisions in their model, as it does investment decisions in Stockman (1981) and Abel (1985) and labor supply decisions in Aschauer and Greenwood (1983). But Lucas and Stokey took the identification of goods with the transactions technology (cash versus credit, or alternatively market purchase versus consumption out of one's own production) as exogenous.

This paper incorporates Lucas's "color parable" into an explicit model that permits specialization to be chosen optimally by individuals. We
develop a differentiated product model with money, a cash-in-advance constraint (motivated by technology) for market purchases, and an endogenous specialization decision. Consequently, the choices of which goods to produce, which to consume, and which goods to buy on the market (using money) are endogenous.

In the overlapping generations (OG) model of money, individuals are differentiated by generation, and money is used for transactions between generations. Our model shares with OG monetary models the feature that individuals can consume their own endowments (or, in our model, the goods they produce), and money is used for transactions involving other goods. In our model, individuals are differentiated by which goods they choose to produce, and they choose to differentiate themselves in equilibrium. Unlike the OG model, these differences are not assumed exogenously. King and Plosser have recently developed a cash-in-advance model in which, as in our model, individuals who are alike ex ante choose to specialize to achieve gains in production. In the King-Plosser model, individuals choose human capital that gives them a comparative advantage either in goods in even-number periods or goods in odd-number periods, so individuals trade to smooth consumption over time.\(^1\) Money is used for trades in the OG models and the King-Plosser model, but all trade is intertemporal. In contrast, our trade" each period, because our model generates endogenous differences among individuals that create nontrivial intratemporal trade that uses money.

We show that the effects of an increase in the rate of money growth with endogenous specialization may differ from the results predicted by the Lucas-Stokey model with exogenously fixed specialization. An increase in the nominal interest rate raises the relative price of "cash goods" in terms of "credit goods" in their model, because the former (but not the latter)
involve holding cash and paying the opportunity cost of the nominal interest rate. In our formalization of Lucas's color parable, this translates into the proposition that a higher nominal interest rate raises the cost of consuming goods purchased on the market relative to the cost of consuming goods produced by the individual himself, "home-produced goods" (which he can simply eat, and need not buy with cash). With a fixed degree of specialization, an increase in the nominal interest rate reduces consumption of market goods and raises the consumption of home-produced goods. Similarly, a higher nominal interest rate raises the quantity of leisure (a home-produced good) consumed as in the Aschauer–Greenwood model. However, we show that when the degree of specialization is endogenous, an increase in the nominal interest rate can reduce the consumption of each type of home-produced good, reduce rather than raise total leisure, and either reduce or raise the degree of specialization. We discuss properties of our model using simulations, and discuss the implied nominal–interest elasticities of the (real) demand for money in the general equilibrium.

Finally, we extend our model to include an alternative transactions method (ATM). Innovations in financial markets have created and will continue to create new methods of transacting, such as credit cards, debit cards, etc. We introduce into our model not only the distinction between purchasing goods on the market and producing them at home (for one's own consumption or for sale), but also the distinction between alternative payment methods for purchased goods. As before, we do not impose any exogenous requirement that certain goods must be purchased with money while others may be purchased with the ATM. Instead, we allow individuals to choose the method of payment for each good. In particular, we assume that individuals may either pay with cash or may barter. Paying with cash
involves an opportunity cost related to the nominal interest rate. Barter involves other real expenditures to complete a transaction: search costs due to the "double coincidence of wants" problem would be the most natural cost here, but for simplicity we model the costs of barter as a labor cost of transporting goods. The key distinction between he costs of using money and the costs of barter is that while the former are related to the nominal interest rate and so involve nominal variables directly, the latter are purely real. The ATM will be introduced in Section 4; we first turn to the basic model in Sections 2 and 3.

2. The Basic Model

We examine a simple differentiated product model with money. We assume there is a continuum of types of goods on the interval \([0,1]\). There is also continuum of individuals on a circle with unit circumference. Goods and individuals are each indexed by \(i\) on this unit interval (or circle). Individuals have identical preferences given by

\[
V = E_0 \sum \beta^t \left[\int U(C_t(i)) di - h\left(\int L_t(i) di \right) \right], \quad 0 < \beta < 1,
\]

where \(U()\) is strictly concave and satisfies \(U'(0) = \infty\), \(h()\) is strictly convex, \(C_t(i)\) is consumption of the good of type \(i\) at date \(t\), and \(L_t(i)\) is labor effort used in producing the good of type \(i\) at date \(t\).

We assume that technology developed by the society has resulted in the invention of vending machines, which are able to protect goods from being stolen until a payment is made for the goods. In addition, the vending machine has the name of the company that made it on the front, and the company's reputation would suffer if the machine failed to deliver goods (or
a refund) after money was inserted. Finally, the machine is able to recognize money so that people are not able to put counterfeit coins or bills in the machine. Technology has not developed yet that would allow the machine to evaluate whether a consumption good is "real" or "counterfeit," so only money can be used to buy goods from vending machines: they cannot be made to sell goods in exchange for other goods. Each individual owns a vending machine that he uses to sell goods. The machine is located on the circle.

At the beginning of each period t, each individual receives a transfer of money τ_t from the government. The individual also observes the current state of the economy, to be specified below. He then chooses his desired labor effort on each of the continuum of goods on $[0,1]$. Labor effort is nonnegative, so in making this decision the individual is also choosing his degree of specialization by allocating positive labor effort to a certain set of goods. Define

$$e_t(i) = \begin{cases}
1 & \text{if } L_t(i) > 0 \\
0 & \text{otherwise.}
\end{cases} \quad (2)$$

Then define the degree of specialization by $1-\alpha_t$ where α_t measures the fraction of goods that the individual produces at date t, i.e.

$$\alpha_t = \int e_t(i) \, di. \quad (3)$$
The individual's production of each good i is denoted

$$y_t(i) = f(\alpha_t)L_t(i)$$

(4)

where $f()$ is positive, decreasing, and concave. Equation (4) shows that there are gains to specialization, but the gains may be subject to diminishing returns. If there were no differential costs of buying goods on the market rather than consuming home-produced goods, then it would be optimal for individuals to specialize completely by setting $\alpha_t=0$. However, there are costs of buying goods on the market as a result of the monetary nature of exchange. These costs will work against specialization and lead to an interior solution for α_t.

We will see below that in equilibrium, the relative price of goods i and j is unity for all i, j on $[0,1]$. This fact is useful for defining the individual's gross output,

$$\int y_t(i) \, di = f(\alpha_t) \int L_t(i) \equiv f(\alpha_t)\alpha_tL_t$$

(5)

where the last equality defines α_tL_t as total labor effort by the individual at date t. We assume perfect competition in product markets. (Even if $\alpha_t = 0$, there may be an infinity of individuals producing each type of good.) It is harmless to treat each individual's labor effort for those goods he chooses to produce as equal for each good, i.e. $L_t(i)=L_t(j)=L_t$ for all i, j for which his labor effort is nonzero.

After producing goods, each individual consumes some of them and sells the rest on the market. The individual places the goods he wishes to sell in his vending machine, and (with full information about the current state of
the economy) adjusts the machine to emit goods in response to a sum of money equal to the current equilibrium nominal price of the good. He then rides a tram (provided by nature) around the unit circle, using the money he had on hand in his vending machine at the beginning of period t (from sales at date t-1) and the transfer he received at the beginning of period t, to buy goods from other individual's vending machines. Goods are consumed on the spot as they are purchased. When the individual arrives home the period ends. The tram ride takes a full "period," so there is not time for another ride. The next period then begins with vending machines emptied of money and transfers from the government. There is no possibility of communication between individuals because all are at different spots on the tram. The exchange system does not require individuals to meet, but it does require that individuals allocate some wealth to "money" accepted by the vending machines. This induces a cash-in-advance constraint on goods acquired on the market.

Let \(c_t(i) \) denote an individual's consumption \((C_t(i)) \) out of his own production of good i. Let \(c_t^*(i) \) denote consumption of goods of type i purchased from other individuals' vending machines. Obviously

\[
c_t(i) \leq y_t(i) \quad \text{for all } i.
\]

(6)

Purchasing from vending machines requires money, so

\[
\int p_t(i)c_t^*(i) \, di \leq M_{t-1} + \tau_t.
\]

(7)

where \(M_{t-1} \) denotes money placed into the individual's vending machine at date \(t-1 \) and emptied at the beginning of period t, and \(p_t(i) \) denotes the nominal
price of good i at date t, which must be placed in vending machines at date t to buy the good.

The money supply growth rate is given by a stochastic process,

\[M_t = \mu_t M_{t-1} \] \hspace{1cm} (8)

where \(\mu_t \) is a nonnegative random variable and is identically and independently distributed with density function \(\Phi() \). Each individual gets at date t the transfer

\[(\mu_t - 1)M_{t-1} = \tau_t. \] \hspace{1cm} (9)

We can simplify the individual's optimization problem by making several observations. First, preferences and opportunities are symmetric with respect to all goods. This implies a unit equilibrium relative price of goods due to production arbitrage, i.e. \(p_t(i) = p_t(j) \) for all \(i, j \). So we can define a price level \(p_t = p_t(i) \) for all \(i \). Second, all individuals are identical in tastes and opportunities; they differ only by their names and the types of the goods they produce. But all will choose the same \(\alpha_t \) and the same \(L_t = L_t(i) \) in equilibrium. Diminishing marginal utility of consumption (and the absence of any increasing returns) guarantees that total output of each good will be identical in equilibrium. This observation also implies that no borrowing and lending, or other asset trade, will occur in equilibrium. However, in writing the budget constraint (10) below, we will include a term for nominal bond holdings because we will want to discuss the nominal interest rate on those bonds (at which zero trade is the equilibrium quantity).
The individual's budget constraint can then be written as

\[\frac{[B_t - (1 + R_{t-1})B_{t-1} + M_t - (M_{t-1} + \tau_t)]}{p_t} \]

\[\leq f(\alpha_t)\alpha_t L_t - \int c_t(i) + c_t^*(i) \, di \]

where \(B_t \) denotes nominal bond holdings by the individual at date \(t \), where a bond is an asset that costs one unit of money at date \(t \) and pays \(1 + R_t \) units of money at date \(t+1 \).

The cash-in-advance constraint (7) can be rewritten, using the observation that all relative prices are unity, as

\[\int c^*_t(i) \, di \leq (M_{t-1} + \tau_t)/p_t. \] \hspace{1cm} (11)

The state of the world at time \(t \) is \((\tau_t, M_{t-1})\). The equilibrium nominal price and interest rates will be defined below as functions of the state \(p(\tau_t, M_{t-1}) \) and \(R(\tau_t, M_{t-1}) \) such that individuals choose \(c_t(i) \) and \(c_t^*(i) \) for all \(i \), and \(L_t, \alpha_t, B_t, \) and \(M_t \), for all \(t \), to solve Problem One: maximize

\[V = E_0 \sum \beta^t [\int U(c_t(i) + c_t^*(i)) \, di - h(\alpha_t L_t)], \quad 0 < \beta < 1, \] \hspace{1cm} (12)

subject to

\[c_t(i) \leq f(\alpha_t)L_t(i) \text{ for all } i \text{ in } [0, \alpha_t), \] \hspace{1cm} (13)
\[c_t(i) = 0 \text{ for all } i \text{ not in } [0, \alpha_t), \] (14)
\[
[B_t - (1 + R_{t-1})B_{t-1} + M_t - (M_{t-1} + \tau_t)]/P_t \leq f(\alpha_t)\alpha_tL_t - \int c_t(i) + c^*_t(i) \, di,
\]
\[\int c^*_t(i) \, di \leq (M_{t-1} + \tau_t)/P_t, \text{ and} \]
\[c^*_t(i) \geq 0 \text{ for all } i. \] (16)

The equilibrium will also require that markets clear, i.e.
\[B_t = 0 \text{ and } M_t = M_{t-1} + \tau_t. \] (18)

Necessary conditions are sufficient in this convex maximization problem, and these conditions yield (13), (15) and (16) with equality, (17) with strict inequality, (18), and
\[U'(c_t(i) + c^*_t(i)) = \Gamma_t \text{ for all } i \text{ in } [0, \alpha_t), \] (19)
\[U'(c_t(i) + c^*_t(i)) = \Gamma_t + \delta_t \text{ for all } i \text{ not in } [0, \alpha_t), \] (20)
\[\Gamma_t/P_t = (1 + R_t)\beta E_t(\Gamma_{t+1}/P_{t+1}), \] (21)
\[\Gamma_t/P_t = \beta E_t[(\Gamma_{t+1} + \delta_{t+1})/P_{t+1}], \] (22)
\[\Gamma_t f(\alpha_t) = h'(\alpha_t L_t), \quad \text{and} \]

\[\Theta_t(\alpha_t) c_t^*(\alpha_t) + \Gamma_t f'(\alpha_t) \alpha_t L_t = 0, \quad (24) \]

where \(\Theta_t(i), \Gamma_t, \) and \(\delta_t \) are the Lagrange multipliers on constraints (14), (15), and (16).

Equations (19) and (20) imply that the individual consumes the same amount of all goods that he produces, and the same amount of all goods that he does not produce. He may consume different amounts of these two classes of goods, however. We drop time subscripts when there is no confusion. Let \(c \) denote \(c(i) \) for all \(i \in [0, \alpha_t) \), and \(c^* \) denote \(c^*(i) \) for all \(i \in [\alpha_t, 1] \).

Then (13), (15), and (18) imply that \(c(i) < f(\alpha_t)L(i) \) for all \(i \in [0, \alpha_t) \), so \(c^*(i) = 0 \) for all \(i \in [0, \alpha_t) \). This means that if an individual produces good \(i \), he does not buy that good on the market. Instead, he sells some of each of the goods he produces in order to obtain money for future purchases of those goods that he does not expect to produce in the future. Consequently, (19) and (20) imply

\[U'(c) = U'(c^*) - \delta. \quad (25) \]

Equations (21) and (22) imply

\[R_t = E_t[\delta_{t+1}/P_{t+1}] / E_t(\Gamma_{t+1}/P_{t+1}), \quad (26) \]

which shows that the shadow price of the cash-in-advance constraint is positive if and only if the nominal interest rate is positive. The return on nominal bonds dominates the pecuniary return on money (zero), so
individuals choose to hold money only if its liquidity services, measured by \(\delta \), compensate for the difference in pecuniary returns.

Equation (21), with (19) substituted for \(\Gamma \), is the standard first-order condition of the permanent income model or the consumption-based capital asset pricing model,

\[
U'(c_t) = (1 + R_t) \beta E_t \{U'(c_{t+1}) \frac{p_t}{p_{t+1}}\}. \tag{27}
\]

There is no monetary wedge in this case because equation (19) applies only to goods produced by the individual. However, substitution of (20) into (11) yields an analogous equation, for goods purchased on the market, in which a monetary wedge appears (in the form of the multiplier \(\delta \)). Alternatively, this wedge may be seen by substituting (20) into (22); the result is

\[
U'(c_t) = \beta E \{U'(c^*_t) \frac{p_t}{p_{t+1}}\}. \tag{28}
\]

Equations (27) and (28) imply that the expected marginal utility per dollar of consumption of goods purchased on the market is less than the expected marginal utility per dollar of own-produced goods whenever the nominal interest rate is positive. This highlights the analogy between a positive nominal interest rate and a tax on market purchases of goods.

Equation (23) shows that a positive nominal interest rate also creates a wedge between the marginal utility of consumption of market goods and the ratio of the marginal disutility of labor to the marginal product of labor:

\[
h'(\alpha_tL)/f(\alpha_t) = U'(c) < U'(c^*). \tag{29}
\]
This wedge has been discussed in previous papers by Aschauer and Greenwood (1983), and a similar wedge in a model with investment appears in Stockman (1981) and Abel (1985).

The optimal degree of specialization, i.e. the choice of the number of goods to which an individual should devote positive labor effort, is determined by equation (24). Given total labor effort \(\alpha_t L \), a small increase in \(\alpha_t \), which corresponds to a fall in the degree of specialization, lowers total output by \(Lf'(\alpha_t) \), with utility cost \(\Gamma \alpha_t Lf'(\alpha_t) \). The marginal benefit of raising \(\alpha_t \) must be equated to its marginal cost. That benefit is the ability to consume an extra type of good (type \(\alpha_t \)) out of home production, without having to use money to buy it from other individuals' vending machines. Previously, \(c^* \) units of the good of type \(\alpha_t \) were purchased from these machines. The marginal utility of relaxing the constraint (14) — which prevented consumption out of home production when there is no home production of this good — is \(\Theta(\alpha_t^+) \). So the marginal benefit of increasing \(\alpha_t \) is \(\Theta(\alpha_t) c^* \). Notice that \(\Theta(\alpha_t) = \delta \), because (given total consumption of the good, \(c^* \)) the inability to consume out of home production adds to purchases on the market, which require money. So

\[
(\delta/\Gamma) c^* = f'(\alpha_t) \alpha_t L. \tag{30}
\]

The rate of monetary growth was assumed to be drawn independently over time from a fixed distribution function, and always strictly positive. There is no other source of randomness in the model. Define real money balances,

\[
m_t = (M_{t-1} + \tau_t)/p_t. \tag{31}
\]
3. Properties of Equilibrium in the Basic Model

An equilibrium is a set of functions \(m \) or \(p, R, c, c^*, \alpha_t, L, \Gamma, \delta \), that solve problem one and satisfy the market-clearing conditions (18). Clearly there is a time-invariant real equilibrium in this model with a strictly positive nominal interest rate. Note that (15) and (18), along with our results that consumption is the same for all goods produced at home and also is the same for all goods purchased on the market, imply

\[
\alpha c + (1-\alpha)c^* = f(\alpha)aL. \tag{32}
\]

The equilibrium of the model can now be summarized as (32) and the following equations, where we drop time subscripts for time-invariant real variables:

\[
P_{t+1}/P_t = \mu_t, \tag{33}
\]

\[
m = (1-\alpha)c^*, \tag{34}
\]

\[
1+R = 1/\beta E(\mu) > 0, \tag{35}
\]

\[
(1+R)U'(c) = U'(c^*), \tag{36}
\]

\[
f'(\alpha)aL = -Rc^*, \text{ and} \tag{37}
\]

\[
h'(\alpha L) = f(\alpha)U'(c). \tag{38}
\]

Equations (32) and (36)-(38) implicitly give equilibrium solutions for \(c, c^* \),
\(a \), and \(L \). Equation (35) determines the nominal interest rate, while equation (34) with the definition (31) determines the price level.

We have only to complete the description of the equilibrium by giving an example of an assignment function that determines which individuals produce which sets of goods. Obviously, there are infinitely many assignment functions that will work. One is that agents of type \(j \) choose:

\[
\begin{align*}
\text{if } j + a & \leq 1 \text{ then } \\
& \begin{cases}
1 \text{ if } i \text{ is in } [j, j+a) \\
0 \text{ otherwise }
\end{cases} \\
\text{if } j + a > 1 \text{ then } \\
& \begin{cases}
1 \text{ if } i \text{ is in } [j,1] \text{ or } [0,a+j-1) \\
0 \text{ otherwise.}
\end{cases}
\end{align*}
\]

(39)

An increase in the mean growth rate of money would, according to equation (35), translate into a higher nominal interest rate. In order to determine the effects of greater money growth on equilibrium allocations, we consider some special cases of the model, and then report on results of simulations of the general model.

First, suppose that \(L \) and \(a \) are exogenously determined. Then \(c \) and \(c^* \) are determined by (32) and (36). We find that an increase in the nominal interest rate (brought about by an increase in mean money growth) raises an
individual's consumption of home-produced goods and reduces consumption of goods he purchases on the market:

\[\frac{dc}{dR} = (1-\alpha)U'(c)/\Omega > 0 \quad \text{and} \]

\[\frac{dc^*}{dR} = -\alpha U'(c)/\Omega < 0, \quad \text{(40)} \]

where

\[\Omega = -\{\alpha U''(c^*) + (1-\alpha)(1+R)U''(c)\} > 0. \quad \text{(42)} \]

These results reflect the higher relative cost of buying goods purchased on the market when the nominal interest is higher. This substitution from market goods to home goods resembles the results in Aschauer and Greenwood, where home goods are analogous to leisure (which can be thought of as productive time in the household) and the substitution out of "cash goods" into "credit goods" in Lucas and Stokey (1983, 1987), where "cash goods" are analogous to goods purchased on the market in our model and "credit goods" play the role of home-produced goods in our model. Indeed, if we allow labor services \(L \) to be endogenous then our model consists of equations (31), (36), and (38) which implicitly give \(c, c^*, \) and \(L \). The results are then

\[\frac{dc}{dR} = (1-\alpha)h''(\alpha L)U'(c)/\Omega > 0, \quad \text{(43)} \]

\[\frac{dc^*}{dR} = [(f(\alpha))^2U''(c) - \alpha h''(\alpha L)]/\Omega < 0, \quad \text{and} \quad \text{(44)} \]
\[
d(\alpha L)/dR = (1-\alpha)f(\alpha)u'(c)U''(c)/\Omega' < 0, \quad (45)\]

where

\[
\Omega' = -((1-\alpha)h''(\alpha L)U''(c)(1+R) - U''(c^*)(f(\alpha))^2U''(c) - \alpha h''(\alpha L)) > 0. \quad (46)
\]

The result for total labor supply, \(\alpha L \), is the same as in Aschauer and Greenwood; that for consumption of the two types of goods is the same as in Lucas and Stokey.

The comparative statics results just discussed require an exogenously fixed degree of specialization. In fact, we will show that results differ when the degree of specialization is chosen optimally by individuals. The simplest case to consider is the choice of \(\alpha \) when total labor effort \(\alpha L \) is exogenously fixed. Let

\[
x \equiv c - c^* - \alpha L f'(\alpha) > 0 \quad (47)
\]

where the sign follows from (29), concavity of \(U() \), and \(f' < 0 \). Then

\[
dc/dR = \{xR + U''(c^*)c^*x - \alpha L f''(\alpha)(1-\alpha)U'(c)\}/\Omega^*, \quad (48)
\]

\[
dc*/dR = \{\alpha L f''(\alpha)\alpha U'(c) + U''(c)c^*(1+R)x\}/\Omega^* < 0, \quad \text{and} \quad (49)
\]
\[\frac{d\alpha}{dR} = - \frac{U''(c)(1+R)(1-\alpha)c^* + U''(c^*)\alpha c^* + \alpha RU'(c)}{\Omega^*}, \] (50)

where

\[\Omega^* = \alpha f''(a)U''(c^*)aL - (1+R)U''(c)[xR - (1-\alpha)f''(a)aL] > 0. \] (51)

While an increase in the nominal interest rate reduces consumption of each type of good purchased on the market, its effects on consumption of each type of good produced at home and on the degree of specialization are indeterminate in sign. Consider a special case in which

\[f(a) = F - qa, \] (52)

where \(F \) and \(q \) are positive constants. Then \(c^*, c, \) and \(\alpha \) are given by

\[c^* = qaL/R, \] (53)

\[c = U'^{-1}((1+R)U'(qaL/R)), \] \text{ and} \hspace{1cm} (54)

\[\alpha = \{FaL - qaL/R\}/\{c+qaL-qaL/R\}. \] (55)

If also the utility function is \(U(c) = \ln(c) \), then \(c^* \) is given by (53), and \(c \) and \(\alpha \) are given by

\[c = (1+R)qaL/R, \] (56)

\[\alpha = (F - q/R)/2q. \] (57)
In this case, a higher nominal interest rate causes less specialization (higher α), and, in contrast to the results for fixed α, reduces consumption of each type of home-produced good, c.

This example shows that the type of results obtained in a model like the one discussed by Lucas and Stokey, on the effects of changes in conditional expectations of money growth on demands for "cash goods" and "credit goods," is sensitive to the assumption of exogenous specialization (which translates in their model to exogeneity of the matching of types of goods with the type of payment required for them). Intuitively, a higher nominal interest rate raises the wedge between the costs of goods produced at home and goods purchased on the market. Given the degree of specialization, individuals respond to a higher wedge by buying less on the market and consuming more home-produced goods (selling less of them). But individuals can also respond by reducing the degree of specialization in order to reduce the set of goods purchased on the market. A reduction in the degree of specialization involves costs of forgoing the benefits of specialization, and this "wealth effect" leads to a fall in consumption of each type of good produced at home. If α is fixed exogenously, the individual consumes less of each market-purchased good and more of each home-produced good. In contrast, with α rising in our example, the individual consumes less of all goods that were previously produced at home, less of all market goods, and possibly more of goods previously purchased on the market and now produced at home. The loss from the higher nominal interest rate is "spread out" across a wider range of goods rather than concentrated on market goods alone. One might suspect that a similar argument would imply that results on the effects of a higher nominal interest rate on the labor/leisure choice can also be altered by
allowing individuals to choose optimally the degree of specialization, and this suspicion is right.

Returning to the general case — but with fixed total labor effort aL — we can see that a higher nominal interest rate definitely raises α if it lowers c or leaves c unchanged. If $dc/dr < 0$, then

$$x[R+c*U''(c*)] \leq aL(1-\alpha)f''(\alpha)u'(c).$$

(58)

But then

$$\frac{da}{dr} = -U''(c)(1-\alpha)(1+R)c* - U''(c*)ac* - aRU'(c)$$

(59)

$$\geq -U''(c)(1-\alpha)(1+R)c* - U''(c*)ac*$$

$$- aRx[R+c*U''(c*)]/aL(1-\alpha)f''(\alpha)$$

$$= -U''(c)(1-\alpha)(1+R)c* - R^2x/Lf''(\alpha)(1-\alpha)$$

$$- U''(c*)ac*[1 - xR/aL(1-\alpha)f''(\alpha)]$$

$$> 0.$$

So, although a higher nominal interest rate has an ambiguous effect on α, in order for it to reduce α we would require parameter values such that the higher nominal interest rate also raises c, the consumption of each type of home-produced good.
We now turn to the general model, and report results from simulations. For purposes of the simulations, we assumed the following functional forms:

\[U(c) := \left[\frac{1}{1 - \Gamma} \right] c^{1-\Gamma}, \]
\[F(\alpha) := 1.1 - \left[\frac{.1}{1.0901 - \alpha} \right], \]
\[H(L) := L^j. \]

We then solved the model for \(c, c^*, \alpha, L = \alpha L \) (= total labor effort), and \(m \) for various parameter values, \(\Gamma \) and \(j \), and for various nominal interest rates \(R \). The nominal interest rate can be treated as the exogenous variable because, given \(\beta \) and equations (33) and (35), it is simply a transformation of the rate of money growth. In each case, we varied the nominal interest rate from .10 to 5.00.

For \(\Gamma = 1 \), that is, the case of \(U(c) = \log(c) \), and \(j = 2 \), we found that an increase in the rate of money growth (i) reduces total labor effort, \(L \), (ii) reduces consumption of each type of good that continues to be purchased on the market, \(c^* \), (iii) reduces consumption of each type of good produced by the household, \(c \), and (iv) increases the number of different types of goods (strictly speaking, the measure of the set of goods) produced by the household, \(\alpha \). (Recall the \(\alpha \) is inversely related to the degree of specialization.)

The real demand for money falls with increases in the nominal interest rate. The implied interest-elasticity of the demand for money in the general
equilibrium with these parameters is reasonable in magnitude and is a function of the level of the nominal interest rate. At R= -0.10, the elasticity is -0.60, and rises in absolute value along with the level of R; at R= 5.00 the elasticity is -0.90. Our result on the behavior of the elasticity as R rises differs from that of Svensson (1985), in which the response of real money demand to the nominal money growth rate is negative for sufficiently small money-growth rates, but rises to zero (and the transactions velocity rises to unity) as the growth rate increases. In contrast, our model implies that the interest-elasticity of money demand may rise as the money growth rate rises.

For \(\Gamma = 0.50 \) and \(j=2 \), we found that an increase in the money growth rate (i) reduces total labor effort and (ii) reduces consumption of each type of good purchases on the market. But we also found some nonmonotonic behavior of \(c \) and \(\alpha \): (iii) for money-growth rates such that the nominal interest rate is smaller than 0.25, an increase in the growth rate lowers consumption of each type of good produced by the household and raises the number of goods produced by the household. For \(0.25 < R < 1.50 \), an increase in the money growth rate raises consumption of each type of good produced by the household, and continues to raise the number of different goods each household produces. Finally, for \(R > 1.50 \), an increase in the money growth rate raises consumption of each type of good produced by the household but reduces the number of different types of goods that the household produces, leaving more goods to be purchased on the market. Despite the fact that the household then purchases more types of goods on the market, the decline in consumption of each type is sufficiently large that increases in the money growth rate always lowers the real demand for money. The implied interest-elasticity of money demand, in equilibrium with these parameters, is
-0.65 at an interest rate of \(r = 0.10 \), and rises in absolute value as \(r \) rises, reaching \(-1.03\) at \(r = 1.00 \) and \(-1.13\) at \(r = 3.00 \).

For smaller values of \(\Gamma \), the response of \(c \), the level of consumption of each type of good produced at home, also changes. For \(\Gamma = 0.10 \) and \(j = 2 \), we found that an increase in the money growth rate (i) lowers total labor effort, (ii) lowers consumption of each type of good purchased on the market, but (iii) raises consumption of each type of good produced by the household. Finally, (iv) an increase in the money-growth rate raises the number of types of goods produced by the household if \(r < 0.20 \), but reduces this number of types if \(r > 0.20 \). The implied interest-elasticity of money demand varies monotonically from \(-0.82\) at \(r = 0.10 \) to \(-1.46\) at \(r = 1.00 \).

For \(g = 2 \) and \(j = 2 \), we found that an increase in the rate of money growth raises total labor effort. This differs from the results in Wilson (1979) and Aschauer and Greenwood (1983), where higher inflation leads households to substitute away from market goods into leisure, which — like the "credit goods" of Lucas and Stokey (1983, 1987), is not purchased with money. In our model, in contrast, there are two opposing effects on labor effort: the substitution effect that reduces it and also a wealth effect associated with the reduction in output when households optimally vary the degree of specialization. With these (and other) parameter values, greater rates of inflation can be associated with more, rather than less, labor effort. In addition, greater rates of money growth reduce consumption of each type of good (whether produced by the household or purchased on the market) and raises the number of types of goods the household produces. Implied interest-elasticities of money demand range from \(-0.59\) at \(r = 0.10 \) to \(-0.90\) at \(r = 5.00 \).
We also examined the effects of variations in \(j \), the disutility-of-labor parameter. An increase in \(j \) corresponds to more curvature of the implied utility-of-leisure function at each level of labor effort. With \(\Gamma = 2 \) and \(j = 20 \), for example, an increase in the rate of money growth reduces consumption of each type of good, reduces total labor effort, and raises the number of types of goods produced by the household if \(R < 1.50 \) or lowers this number if \(R > 1.50 \).

These results show that a variety of responses of real variables to the money growth rate are possible in this model, despite the simplicity, and that these responses are not always even monotonic.

4. Alternative Transactions Methods (ATMs)

We now alter the model to permit an alternative transactions method, ATM. Individuals may barter goods. Barter involves transporting goods to a central market (in the middle of the circle where individuals live), participating in centralized exchange there at Walrasian prices, and returning home. Transporting goods requires \(e \) units of labor per good carried to the central market. Individuals are also permitted to use money in the central market, but they would not choose to do so because it involves the extra cost of the nominal interest rate and has no benefits because the costs of transacting in the central market are zero.

Assume, as before, that there is a stationary rational expectations equilibrium. Let \(z(i) \) denote the number of goods of type \(i \) that the individual acquires through barter. The maximization problem is the same as before (12), except the instantaneous utility function is now
\[
\int [U(c(i)+c^*(i)+z(i))] \, di - h[\alpha L + \sigma \int z(i) \, di]
\]
(63)

and the budget constraint (15) becomes

\[
[B_t - (1+R_{t-1})B_{t-1} + M_t - (M_{t-1} + \tau_t)]/p_t
\leq f(\alpha_t)\alpha_t L_t - \int c_t(i) + c_t^*(i) + z(i) \, di,
\]
(64)

and we have a nonnegativity constraint on \(z(i)\),

\[
z(i) \geq 0 \quad \text{for all } i.
\]
(65)

The necessary conditions for each individual's maximization problem are now the same as in Section 2, but with the following changes:

1. \(U(c^*)\) and its derivatives replaced by \(U(c^*+z)\), where \(z = z(i)\), for all \(i\) not in \([0, \alpha]\), is the consumption of goods acquired through barter.

2. \(h(\alpha L)\) and its derivatives are replaced by \(h[\alpha L + (1-\alpha)\sigma z]\) and its derivatives.

3. Equation (24) becomes

\[
\Theta_t(\alpha)[c_t^*(\alpha)+z(\alpha)] + \Gamma_t f'(\alpha_t)\alpha_t L_t = 0.
\]
(66)

4. The new condition associated with the optimal choice of \(z(i)\) is

\[
U'(c(i)+c^*(i)+z(i)) - \Gamma - \sigma h' - w(i) = 0
\]
(67)

where \(w(i)\) is the multiplier on the new constraint (65).
The real labor cost associated with the barter system drives a wedge between the costs of consuming home-produced goods and market-purchased goods, as before. Obviously, barter and monetary exchange can coexist in equilibrium only if $\delta = \alpha h'(\cdot)$.

The form of (66) reflects the choice that an individual has if he chooses a smaller α. A smaller α implies more specialization, which means that more types of goods are purchased on the market. Unlike the model in Sections 2 and 3, the model with an ATM permits the individual to choose the best method of buying goods on the market. The form of (66) reflects this option. If the economy is at an interior equilibrium where both money and barter are used to purchase market goods, then in the (stochastic) steady state equilibrium we have $R = \delta/\Gamma$ and (66) implies

$$(\delta/\Gamma)(c^*+z) = R(c^*+z) = -f'(\alpha)\alpha L. \quad (68)$$

An equilibrium is a set of functions that now includes $z(\cdot)$ and $w(\cdot)$. There are three types of possible equilibria in the model, associated with which of the two systems of transactions are used. Two of these types involve corner solutions, either without the ATM (as in Sections 2 and 3) or without money. Assuming barter and monetary exchange are both used in equilibrium, then we have

$$P_{t+1}/P_t = \mu_t, \quad (69)$$

$$m = (1-\alpha)c^*, \quad (70)$$

$$1+R = 1/\beta \mathbb{E}(\mu) > 0, \quad (71)$$
\[(1+R)U'(c) = U'(c^*+z), \quad \text{(72)}\]

\[U'(c^*+z) - sh' \left[aL + (1-a)sz \right] = U'(c), \quad \text{(73)}\]

\[h' \left[aL + (1-a)sz \right] / f(a) = U'(c), \quad \text{(74)}\]

\[f'(a) aL = -R(c^*+z), \quad \text{and} \]

\[ac + (1-a)(c^*+z) = f(a) aL, \quad \text{(75)}\]

which determine \(c, c^*, z, \alpha,\) and \(aL.\) Given total labor effort, \(aL,\) we have the system excluding equation (79).

If monetary growth is low, then (71) implies that the nominal interest rate will be low. In that case, the costs of monetary exchange are sufficiently low that no barter occurs. Then the model collapses to that of Section 2. At a higher rate of monetary growth, both barter and money are used to acquire market goods. Then, for a range of nominal interest rates, there are equilibria with both barter and monetary exchange. While the per-unit leisure cost of barter is constant, diminishing marginal utility of leisure (\(h''\) positive) implies that the utility cost of barter rises in the volume of barter exchange. This prevents individuals from suddenly switching from an equilibrium in which all market exchange is monetary to an equilibrium in which all market exchange is through barter as the nominal interest rate rises. In this range, \(z,\) consumption of each type of good acquired by barter, rises with the nominal interest rate \(R,\) and \(c^*,\) consumption of each type of good purchased with money, falls with \(R.\) As in the model of Section 2, consumption of each type of home-produced good, \(c,\)
may rise or fall with \(R \) depending on the parameters. The ability to trade with the ATM also affects the responsiveness of consumption of each type of good, and the degree of specialization, to a change in the nominal interest rate. Obviously, a greater cost of barter \(\sigma \) reduces the amount of barter and the consumption of each type of barter good. Clearly, shifts in \(\sigma \) over time due to financial innovations would alter the demand for money, the degree of specialization in production, and the total volume of market exchange. We believe that extensions of this model may be useful in obtaining predictions about changes in other variables that would accompany shifts in the money demand function in response to financial innovation.

Finally, if the nominal interest rate is very high then monetary exchange vanishes and all market exchange is through the ATM. In this case the equilibrium is described by the set of equations above with \(c^* = 0 \), without equation (63), and with equation (6) replaced by

\[
U'(c)f'(a)aL = -\sigma h'[aL+(1-a)\sigma]z. \tag{77}
\]

4. Conclusions

We have examined a model of differentiated products with monetary exchange in which individuals may consume their own output, buy other individuals' output with money, or use an alternative transactions method, barter, to acquire other individuals' output. With a low nominal interest rate or a high cost of the ATM, technological considerations dictate that the use of money is the lowest-cost alternative for market transactions. With lower costs of the ATM or a higher nominal interest rate, some or all market transactions may occur with the ATM. In contrast to previous models,
individuals are identical ex ante but choose to differ ex post in equilibrium to take advantage of gains from specialization, the specialization choice is endogenous, and monetary exchange occurs for market transactions that involve exchange of differentiated gods at a point in time (so that a nonzero balance of trade for an individual is not a prerequisite for monetary exchange). In contrast to models that exogenously tie certain types of consumption goods to certain methods of exchange, and in contrast to models with a fixed degree of specialization, we find that consumption of home-produced goods may actually fall rather than rise with a rise in the nominal interest rate. Finally, our model can be used to obtain implications regarding the effects of a decrease in the cost of using alternative transactions methods, i.e. to technical innovations of the kind that have accompanied recent changes in financial markets and information technology.
References

Footnotes

1. The cash-in-advance constraint in the King–Plosser model requires that a commodity they call "gold coin" be exchanged for goods; gold coin is money in their model because it is assumed that buyers can verify its value at a lower cost than they could verify the value of other goods that might be used as payment. In our model, fiat money is recognized by the vending machines as legitimate payment at a much lower cost than if the vending machines had to be built to recognize the value of various goods that might be offered as payment.

2. Some features of our model are shared by Schreft (1987), who allows trade credit as an alternative to monetary transactions in an overlapping-generations model with spatially separated agents.

3. These costs could also be interpreted as resulting from explicit taxes on market transactions, costs of shopping, etc.

4. We assume goods are consumed at the central market, as at each vending machine, so we do not include costs of carrying goods back home.
WP#68 RECURSIVE UTILITY AND OPTIMAL CAPITAL ACCUMULATION, I: EXISTENCE, by Robert A. Becker, John H. Boyd III, and Bom Yong Sung, January 1987

WP#69 MONEY AND MARKET INCOMPLETENESS IN OVERLAPPING-GENERATIONS MODELS, by Marianne Baxter, January 1987

WP#70 GROWTH BASED ON INCREASING RETURNS DUE TO SPECIALIZATION by Paul M. Romer, January 1987

WP#71 WHY A STUBBORN CONSERVATIVE WOULD RUN A DEFICIT: POLICY WITH TIME-INCONSISTENT PREFERENCES by Torsten Persson and Lars E.O. Svensson, January 1987

WP#72 ON THE CONTINUUM APPROACH OF SPATIAL AND SOME LOCAL PUBLIC GOODS OR PRODUCT DIFFERENTIATION MODELS by Marcus Berliant and Thijs ten Raa, January 1987

WP#73 THE QUIT-LAYOFF DISTINCTION: GROWTH EFFECTS by Kenneth J. McLaughlin, February 1987

WP#74 SOCIAL SECURITY, LIQUIDITY, AND EARLY RETIREMENT by James A. Kahn, March 1987

WP#75 THE PRODUCT CYCLE HYPOTHESIS AND THE HECKSCHER-ÖHLIN-SAMUELSON THEORY OF INTERNATIONAL TRADE by Sugata Marjit, April 1987

WP#76 NOTIONS OF EQUAL OPPORTUNITIES by William Thomson, April 1987

WP#77 BARGAINING PROBLEMS WITH UNCERTAIN DISAGREEMENT POINTS by Youngsub Chun and William Thomson, April 1987

WP#78 THE ECONOMICS OF RISING STARS by Glenn M. MacDonald, April 1987

WP#79 STOCHASTIC TRENDS AND ECONOMIC FLUCTUATIONS by Robert King, Charles Plosser, James Stock, and Mark Watson, April 1987

WP#80 INTEREST RATE SMOOTHING AND PRICE LEVEL TREND-STATIONARITY by Marvin Goodfriend, April 1987

WP#81 THE EQUILIBRIUM APPROACH TO EXCHANGE RATES by Alan C. Stockman, revised, April 1987
WP#82 INTEREST-RATE SMOOTHING
by Robert J. Barro, May 1987

WP#83 CYCLICAL PRICING OF DURABLE LUXURIES
by Mark Bils, May 1987

WP#84 EQUILIBRIUM IN COOPERATIVE GAMES OF POLICY FORMULATION
by Thomas F. Cooley and Bruce D. Smith, May 1987

WP#85 RENT SHARING AND TURNOVER IN A MODEL WITH EFFICIENCY UNITS OF HUMAN CAPITAL
by Kenneth J. McLaughlin, revised, May 1987

WP#86 THE CYCLICALITY OF LABOR TURNOVER: A JOINT WEALTH MAXIMIZING HYPOTHESIS
by Kenneth J. McLaughlin, revised, May 1987

WP#87 CAN EVERYONE BENEFIT FROM GROWTH? THREE DIFFICULTIES
by Herve' Moulin and William Thomson, May 1987

WP#88 TRADE IN RISKY ASSETS
by Lars E.O. Svensson, May 1987

WP#89 RATIONAL EXPECTATIONS MODELS WITH CENSORED VARIABLES
by Marianne Baxter, June 1987

WP#90 EMPIRICAL EXAMINATIONS OF THE INFORMATION SETS OF ECONOMIC AGENTS
by Nils Gottfries and Torsten Persson, June 1987

WP#91 DO WAGES VARY IN CITIES? AN EMPIRICAL STUDY OF URBAN LABOR MARKETS
by Eric A. Hanushek, June 1987

WP#92 ASPECTS OF TOURNAMENT MODELS: A SURVEY
by Kenneth J. McLaughlin, July 1987

WP#93 ON MODELLING THE NATURAL RATE OF UNEMPLOYMENT WITH INDIVISIBLE LABOR
by Jeremy Greenwood and Gregory W. Huffman

WP#94 TWENTY YEARS AFTER: ECONOMETRICS, 1966–1986
by Adrian Pagan, August 1987

WP#95 ON WELFARE THEORY AND URBAN ECONOMICS
by Marcus Berliant, Yorgos Y. Papageorgiou and Ping Wang,
August 1987

WP#96 ENDOGENOUS FINANCIAL STRUCTURE IN AN ECONOMY WITH PRIVATE INFORMATION
by James Kahn, August 1987

WP#97 THE TRADE-OFF BETWEEN CHILD QUANTITY AND QUALITY: SOME EMPIRICAL EVIDENCE
by Eric Hanushek, September 1987
WP#98 SUPPLY AND EQUILIBRIUM IN AN ECONOMY WITH LAND AND PRODUCTION
by Marcus Berliant and Hou-Wen Jeng, September 1987

WP#99 AXIOMS CONCERNING UNCERTAIN DISAGREEMENT POINTS FOR 2-PERSON
BARGAINING PROBLEMS
by Youngsub Chun, September 1987

WP#100 MONEY AND INFLATION IN THE AMERICAN COLONIES: FURTHER EVIDENCE ON
THE FAILURE OF THE QUANTITY THEORY
by Bruce Smith, October 1987

WP#101 BANK PANICS, SUSPENSIONS, AND GEOGRAPHY: SOME NOTES ON THE
"CONTAGION OF FEAR" IN BANKING
by Bruce Smith, October 1987

WP#102 LEGAL RESTRICTIONS, "SUNSPOTS", AND CYCLES
by Bruce Smith, October 1987

WP#103 THE QUIT–LAYOFF DISTINCTION IN A JOINT WEALTH MAXIMIZING APPROACH TO
LABOR TURNOVER
by Kenneth McLaughlin, October 1987

WP#104 ON THE INCONSISTENCY OF THE MLE IN CERTAIN HETEROSKEDASTIC REGRESSION
MODELS
by Adrian Pagan and H. Sabau, October 1987

WP#105 RECURRENT ADVERTISING
by Ignatius J. Horstmann and Glenn M. MacDonald, October 1987

WP#106 PREDICTIVE EFFICIENCY FOR SIMPLE NONLINEAR MODELS
by Thomas F. Cooley, William R. Parkes and Siddhartha Chib, October 1987

WP#107 CREDIBILITY OF MACROECONOMIC POLICY: AN INTRODUCTION AND A BROAD
SURVEY
by Torsten Persson, November 1987

WP#108 SOCIAL CONTRACTS AS ASSETS: A POSSIBLE SOLUTION TO THE
TIME-CONSISTENCY PROBLEM
by Laurence Kotlikoff, Torsten Persson and Lars E. O. Svensson, November 1987

WP#109 EXCHANGE RATE VARIABILITY AND ASSET TRADE
by Torsten Persson and Lars E. O. Svensson, November 1987

WP#110 MICROFOUNDBATIONS OF INDIVISIBLE LABOR
by Vittorio Grilli and Richard Rogerson, November 1987

by Vittorio Grilli, November 1987

WP#112 INFLATION AND STOCK RETURNS WITH COMPLETE MARKETS
by Thomas Cooley and Jon Sonstelie, November 1987
WP#113 THE ECONOMETRIC ANALYSIS OF MODELS WITH RISK TERMS
by Adrian Pagan and Aman Ullah, December 1987

WP#114 PROGRAM TARGETING OPTIONS AND THE ELDERLY
by Eric Hanushek and Roberton Williams, December 1987

WP#115 BARGAINING SOLUTIONS AND STABILITY OF GROUPS
by Youngsub Chun and William Thomson, December 1987

WP#116 MONOTONIC ALLOCATION MECHANISMS
by William Thomson, December 1987

WP#117 MONOTONIC ALLOCATION MECHANISMS IN ECONOMIES WITH PUBLIC GOODS
by William Thomson, December 1987

WP#118 ADVERSE SELECTION, AGGREGATE UNCERTAINTY, AND THE ROLE FOR MUTUAL
INSURANCE COMPANIES
by Bruce D. Smith and Michael J. Stutzer, February 1988

WP#119 INTEREST ON RESERVES AND SUNSPOT EQUILIBRIA: FRIEDMAN´S PROPOSAL
RECONSIDERED
by Bruce D. Smith, February 1988

WP#120 INTERNATIONAL FINANCIAL INTERMEDIATION AND AGGREGATE FLUCTUATIONS
UNDER ALTERNATIVE EXCHANGE RATE REGIMES
by Jeremy Greenwood and Stephen D. Williamson, February 1988

WP#121 FINANCIAL DEREGULATION, MONETARY POLICY, AND CENTRAL BANKING
by Marvin Goodfriend and Robert G. King, February 1988

WP#122 BANK RUNS IN OPEN ECONOMIES AND THE INTERNATIONAL TRANSMISSION OF
PANICS
by Peter M. Garber and Vittorio U. Grilli, March 1988

WP#123 CAPITAL ACCUMULATION IN THE THEORY OF LONG RUN GROWTH
by Paul M. Romer, March 1988

WP#124 FINANCIAL INTERMEDIATION AND ENDOGENOUS GROWTH
by Valerie R. Bencivenga and Bruce D. Smith, March 1988

WP#125 UNEMPLOYMENT, THE VARIABILITY OF HOURS, AND THE PERSISTENCE OF
"DISTURBANCES": A PRIVATE INFORMATION APPROACH
by Bruce D. Smith, March 1988

WP#126 WHAT CAN BE DONE WITH BAD SCHOOL PERFORMANCE DATA?
by Eric Hanushek and Lori Taylor, March 1988

WP#127 EQUILIBRIUM MARKETING STRATEGIES: IS THERE ADVERTISING, IN TRUTH?
by Ignatius Horstmann and Glenn MacDonald, revised, March 1988

WP#128 REAL EXCHANGE RATE VARIABILITY UNDER PEGGED AND FLOATING NOMINAL
EXCHANGE RATE SYSTEMS: AN EQUILIBRIUM THEORY
by Alan C. Stockman, April 1988
WP#129 POST-SAMPLE PREDICTION TESTS FOR GENERALIZED METHOD OF MOMENT
ESTIMATORS
by Dennis Hoffman and Adrian Pagan, April 1988

WP#130 GOVERNMENT SPENDING IN A SIMPLE MODEL OF ENDOGENOUS GROWTH
by Robert J. Barro, May 1988

WP#131 FINANCIAL DEVELOPMENT, GROWTH, AND THE DISTRIBUTION OF INCOME
by Jeremy Greenwood and Boyan Jovanovic, May 1988

WP#132 EMPLOYMENT AND HOURS OVER THE BUSINESS CYCLE
by Jang-Ok Cho and Thomas F. Cooley, May 1988

WP#133 A REFINEMENT AND EXTENSION OF THE NO-ENVY CONCEPT
by Dimitrios Diamantaras and William Thomson, May 1988

WP#134 NASH SOLUTION AND UNCERTAIN DISAGREEMENT POINTS
by Youngsub Chun and William Thomson, May 1988

WP#135 NON-PARAMETRIC ESTIMATION AND THE RISK PREMIUM
by Adrian Pagan and Y. Hong, May 1988

WP#136 CHARACTERIZING THE NASH BARGAINING SOLUTION WITHOUT
PARETO-OPTIMALITY
by Terje Lensberg and William Thomson, May 1988

WP#137 SOME SIMULATION STUDIES OF NON-PARAMETRIC ESTIMATORS
by Y. Hong and A. Pagan, June 1988

WP#138 SELF-FULFILLING EXPECTATIONS, SPECULATIVE ATTACKS AND CAPITAL
CONTROLS
by Harris Dellas and Alan C. Stockman, June 1988

WP#139 APPROXIMATING SUBOPTIMAL DYNAMIC EQUILIBRIA: AN EULER EQUATION
APPROACH
by Marianne Baxter, June 1988

WP#140 BUSINESS CYCLES AND THE EXCHANGE RATE SYSTEM: SOME INTERNATIONAL
EVIDENCE
by Marianne Baxter and Alan C. Stockman, June 1988

WP#141 RENT SHARING IN AN EQUILIBRIUM MODEL OF MATCHING AND TURNOVER
by Kenneth J. McLaughlin, June 1988

WP#142 CO-MOVEMENTS IN RELATIVE COMMODITY PRICES AND INTERNATIONAL CAPITAL
FLOWS: A SIMPLE MODEL
by Ronald W. Jones, July 1988

WP#143 WAGE SENSITIVITY RANKINGS AND TEMPORAL CONVERGENCE
by Ronald W. Jones and Peter Neary, July 1988

WP#144 FOREIGN MONOPOLY AND OPTIMAL TARIFFS FOR THE SMALL OPEN ECONOMY
by Ronald W. Jones and Shumpei Takemori, July 1988
WP#145 THE ROLE OF SERVICES IN PRODUCTION AND INTERNATIONAL TRADE: A THEORETICAL FRAMEWORK
by Ronald W. Jones and Henryk Kierzkowski, July 1988

WP#146 APPRAISING THE OPTIONS FOR INTERNATIONAL TRADE IN SERVICES
by Ronald W. Jones and Frances Ruane, July 1988

WP#147 SIMPLE METHODS OF ESTIMATION AND INFERENCE FOR SYSTEMS CHARACTERIZED BY DETERMINISTIC CHAOS
by Mahmoud El-Gamal, August 1988

WP#148 THE RICARDIAN APPROACH TO BUDGET DEFICITS
by Robert J. Barro, August 1988

WP#149 A MODEL OF NOMINAL CONTRACTS
by Bruce D. Smith, August 1988

WP#150 A BUSINESS CYCLE MODEL WITH PRIVATE INFORMATION
by Bruce D. Smith, August 1988

WP#151 ASYMPTOTIC LIKELIHOOD BASED PREDICTION FUNCTIONS
by Thomas F. Cooley, August 1988

WP#152 MORAL HAZARD, IMPERFECT RISK-SHARING, AND THE BEHAVIOR OF ASSET RETURNS
by James A. Kahn, August 1988

WP#153 SPECIALIZATION, TRANSACTIONS TECHNOLOGIES, AND MONEY GROWTH
by Harold Cole and Alan C. Stockman, August 1988

WP#154 SAVINGS, INVESTMENT AND INTERNATIONAL CAPITAL FLOWS
by Linda L. Tesar, August 1988
To order copies of the above papers complete the attached invoice and return to Christine Massaro, W. Allen Wallis Institute of Political Economy, RCER, 109B Harkness Hall, University of Rochester, Rochester, NY 14627. Three (3) papers per year will be provided free of charge as requested below. Each additional paper will require a $5.00 service fee which must be enclosed with your order. For your convenience an invoice is provided below in order that you may request payment from your institution as necessary. Please make your check payable to the Rochester Center for Economic Research. Checks must be drawn from a U.S. bank and in U.S. dollars.

W. Allen Wallis Institute for Political Economy

Rochester Center for Economic Research, Working Paper Series

OFFICIAL INVOICE

Requestor's Name

Requestor's Address

Please send me the following papers free of charge (Limit: 3 free per year).

WP# ______ WP# ______ WP# ______

I understand there is a $5.00 fee for each additional paper. Enclosed is my check or money order in the amount of $___________. Please send me the following papers.

WP# ______ WP# ______ WP# ______
WP# ______ WP# ______ WP# ______
WP# ______ WP# ______ WP# ______
WP# ______ WP# ______ WP# ______