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ABSTRACT

We consider a class of symmetric stochastic games with a continuum of
states and actions. By imposing special structures on the law of motion we
prove the existence of a Nash equilibrium in non-randomized stationary

strategies.






1. Introduction

1.1 Stochastic Games; A Description

A two-person discounted stochastic game (see, e.g.,
Parthasarathy (1973), or Parthasarathy (1982) for related
references) is described by a tuple (S, Al(s), Az(s), q, rl, r2,
B) having the following interpretation: S, a non-empty Borel
subset of a Polish space, is the set of all states of the system;
Ai(s), a non-empty Borel subset of a Polish space, is the set of
actions available to player i( = 1,2), when the state is s ¢ S.
It is typically assumed that for each i = 1,2, Ai(s) et Ai for all
s € S, where the Ai's are themselves Borel subsets of Polish
spaces. q defines the law of motion of the system by associating
(Borel-measurably) with each triple (s, a, a2) e SXA, XA, a

1 2

probability measure q('Is, a;, a2) on the Borel subsets of S. r;

and r2 are bounded measurable functions on S x A1 X A2;

function r, is the instantaneous reward function for player i.

the

Lastly, B is the discount factor the players employ.

Periodically, the players observe a state s ¢ S and pick actions
a; € Ai(s), i1 =1,2; this coice of actions is made with full
knowledge of the game’s history. As a consequence of the chosen
actions, two things happen: firstly the players receive awards of
rl(s, a, a2) and r2(s, a;, a2) respectively. Secondly, the
system moves to a new state s’ according to the distribution

q(+|s, ay, a2). The process is then repeated from the states s’,

and so on ad infinitum. The objective of each player is to
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maximize expected payoffs over the infinite duration of the game.

Let ht - {so, st} denote a

#10° #20" %10 %1,e-10 %2,e-10
generic history of the game up to period t, and let Ht denote the
set of all possible histories up to t. Let P(Ai(s)) and P(Ai) be
the set of all probability distributions on Ai(s) and Ai
respectively, i = 1,2. A strategy Zi for player i is a sequence

of functions {ait}, where for each t, o t specifies an action for

i
player i by associating (Borel measurably) with each history ht’
an element of P(Ai(st))' A strategy Zi for player i is (non-
randomized) stationary if there is a Borel function ai:S-»Ai such
that ai(s) € Ai(s) for all s ¢ S, and ait(ht) - ai(st) for all ht
and for all t. We shall refer to the function o, as a policy
function, and when talking about a non-randomized stationary
strategy, we also refer to it by the associated policy function.

A pair (21, 22) of strategies for players 1 and 2
respectively, associates with each initial states s, a tth-period
expected reward rit(zl’ 22)(5) for player i determined by the
functions ry and r,. The total expected reward for player i,
denoted Ii(Zl, 22)(5) is then

> t
(S, S)(s) = = A1, (3, T,)(s)
t=0
*
A strategy 21 is optimal for player 1 (or, constitutes a
*

best-response i ’ = ,
best-response (BR) to 22) if Il(Z1 22)(5) > Il(z1 22)(5) for all

21 and s. Similarly, a BR to I, is defined for player 2. A Nash

1
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equilibrium (or, simply, equilibrium) to the stochastic game is a
* *
pair of strategies (EI, 22) such that for i = 1,2, Zi is a BR to

=, ) e 1
A )

1.2 Summary of the main results

This paper considers a special class of stochastic games
allowing for a continuum of states and actions. The sets of
states and actions are required to satisfy certain restrictions,
as is the stochastic process that determines the law of motion q.
The special structure is motivated by models in the economic
theory of non-cooperative extraction of common-property
resources.1 While a brief explanation of this link is provided
in subsection 2.2, a detailed explanation (in the context of a
deterministic game) may be found in Chapter 2 of this thesis.

The imposition of a certain symmetry in the payoff functions
(equation (R1l) below) in addition to the restrictions mentioned
above enables us to prove the following strong results: there is
an equilibrium in (non-randomized) stationary strategies to the
class of games considered in the paper. Further, the policy
functions associated with the equilibrium can be chosen to be

lower-semicontinuous functions,2 with slopes bounded above by

1This problem has been studied in a deterministic framework
quite extensively, but by using specific functional forms - see
e.g., see Levhari and Mirman (1980).

2 . . . .

A real-valued function f is lower-semicontinuous or lsc
[resp. upper-semicontinuous, or usc] at a point x in its domain if
for all xn -+ X, it is the case that liminf f(xn) = f(x) [resp. lim
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1/2. The sharpness of this result is to be contrasted with the
available results in the literature, where existence is typically
shown in randomized strategies that cannot be easily
characterized. The price paid for obtaining this result is that
the model is more restrictive than the standard models in for
example, in for example, Nowak (1985), Parthasarathy (1973), or

Himmelberg et al (1976).

2. The Model
2.1 Notation and Definitions
The set of all real numbers (resp. non-negative reals,

strictly positive reals) is denoted by R (resp. R+, R ). The n-

e
n

fold Cartesian product of R, ﬂ+, and R++ are denoted by ﬁn, R+,

and 32+, respectively. For any set X, 2x denoted the set of all
non-empty subsets of X.

Let § = Al - A2 = [0,1]. Define the feasible action
correspondences for player i = 1,2 by Ai(s) = [0,s]. Clearly, the
feasible action correspondences are continuous on S.3

Before proceeding to describe the formal structure of the
game, we present an informal interpretation of its components.

The non-negative number s denotes the available stock of a common-

sup f(x ) < f(x)]. Note that f is continuous at x iff it is both
usc and lsc at x.

For the definition of a continuous correspondence, (as well
as for those of upper-semicontinuous (usc) and lower-

semicontinuous (lsc) correspondences), the reader is referred to
Debreu (1959).
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property resource, while a, represents player i’s planned

i
extraction of the resource. (Both players are assumed to know s
and the other player’s plan.) 1If plans are feasible (i.e., if ay
+a, =< s) then they are carried out and player i received a reward
("utility” in intertemporal-economics parlance) of u(ai). If

plans are infeasible (a1 + a, > s) then we assume ad hoc that each

2
player extracts half the available stock of the resource and
receives a reward of u(s/2). We shall have more to say about this
ad hoc assumption shortly.

Given (s,

a2) the function h(s, a2) = max

4 4
{0, s - a; - az} determines the ‘'investment’ level, the amount
left over after extraction by the players. This investment is
transformed stochastically into next-period’s available stock s’,
for example, through a ‘renewal’ function f, and the realization
of a random variable r, as s’ = f(h(s, a,, az),r). The functions
f and h, combined with the distribution of r yields a
(conditional) probability distribution of s' given (s, a, a2).
We denote this conditional distribution by q and, rather than
impose assumptions on f and r, impose restrictions directly of q.
Departing from standard practice we define the transition
mechanism q as a (conditional) probability distribution function
on R+, given (s, a

1’ a2) € ﬂi, so that if s denotes next period's

realization given (s, a;, az), then q(s'ls, az) = Pr{s =< s'Is,

a;,
a;, a2). It will follow from the restrictions we place on q that

if s ¢ S, ai € Ai(s), then q(lls, al, a2) = 1, so next period’s



stock is also in S w.p.1l.

For simplicity denote the vector (s, a, az) by y € Ri and
h(s, a,, a2) by h(y). The restrictions on q are (i) a
‘boundedness’ condition that with each investment level today is
associated an upper bound on the stock available tomorrow, (ii)
strictly positive investments today yield strictly positive stocks

tomorrow and (iii) no free production.

(Ql) (i) For each y ¢ xi, there is s(y) ¢ ®_ such that a(s(y |y =
1.
(ii) If h(y) > 0, then inf(s’:q(s’'|y) > 0) e R, . Further,
in this case, q(-ly) is continuous on R.

(1i1)If h(y) = 0, then q(0]y) = 1.

We also assume that higher investments yield probabilistically

higher stock levels.
(Q2) If h(y) > h(y), then q(s'|y) < q(s’'|y) for all s' R,.

The next two assumptions are concerned with reproductivity of
the resource. Assumption (Q3) requires the existence of a maximum
sustainable stock (set equal to unity by a suitable choice of
measurement-units), while (Q4) implies that for a positive but
sufficiently small level of investment, with probability one, the
stock tomorrow is no less than the investment today (usually

referred to as a "productivity” or Inada condition). Formally:
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(Q3) If h(y) = 1, then q(h(y)|y) - 1.

(Q4) There is n ¢ (0,1) such that 1f 0 < h(y) < n, then q(h(y)ly)

- 0.
Finally, the standard weak continuity of the law of motion q:
(Q5) If yn + y, then the sequence of distribution functions
q(-lyn) converges weakly to the distribution function q(-«|y).

Example. Let A be uniformly distributed on {1,2], and let

f(x) = % JX, x 2 0. Define q(s'ly) = Pr(x £(h(y)) = s'}. 1If h(y)

v

1, M(h(y)) = 3 /h(y) < h(y), so q(h(y)|y) = 1. If h(y) < n -

£l

, then q(h(y)|y) = PrAE(h(Y)) < h(y)) = Pr(3 /h(y) < h(»)) -

Pr{ix = 2/h(y)} = 0. Similarly, the other conditions are verified.
Next, let wR >R be a function satisfying the following

condition:

(Ul) u is strictly concave, strictly increasing and continuous on
R+; u is continuously differentiable on R++ and satisfies
lim u’(¢c) = =
ci0

Example. u(c) = ca, ace (0,1).

The reward functions, like the transition mechanism, are

defined for all (s, a, a2) € 33, and are given by:
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(R1) ri(s, a;, az) - u(ai), if s - a; - a, >0

= u(s/2), otherwise

Assumption (R1l) forms the basic symmetry assumption on the
game, crucial in showing the existence of equilibrium. In what

follows, (Ql) through (Q5), (Ul) and (Rl) are always assumed.

2.2 The Main Theorem
Note that by assumption (Q3), for any s € s, and any a; e
Ai(s), it is the case that s’ ¢ S w.p.l. Further if s ¢ [0,;] for

any ; > 1, and if 0 < a, < s, then s’ ¢ [0,;] w.p.1l. The

a;, a, <

first of these observations implies that the game is well-defined.
The second observation is important to show existence of
equilibrium as we shall explain in section 4.

Futhermore, owing to the ad hoc nature of the infeasibility
rule, trivial equilibria always exist, i.e., equilibria in which
players plan to extract more than the available stock in some
period after some history.4 Indeed, it is easily checked that
the non-randomized strategies (71, 72) defined by 71(5) =g =

72(5) in each period constitutes an equilibrium to the game. The

main result in this paper is the demonstration of existence of a

4We refer to such equilibria as "trivial" since they depend
in an essential way on the infeasibility rule employed. Our
desire to find non-trivial equilibria is also motivated in part by
the question: under what conditions is it the case that resources
are not driven to extinction in finite time? For more on this and

related questions, see Clemhout and Wan (1985) and the references
cited therein.
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non-trivial equilibrium in non-randomized stationary strategies
(1;, 1;), i.e., an equilibrium in which at each s > 0, it is the
case that (1;(5) + 1;(s)) < s. This equilibrium is independent of
the infeasibility rule employed, as will be demonstrated in

section 4. Formally, we can state the main:

Existence Theorem. Under (Ql) through (Q5), (Ul) and (Rl), the

* %
stochastic game has an equilibrium (11, 72) in non-randomized

stationary strategies satisfying:

*
(1) 0 < 7y(s) + 7;(5) < s for all s > 0;
*
(ii) (71, 7,) are lower semicontinuous on S;
(iii) for i = 1,2 and for all s, s’ in S s = s’,

* *
71(5) - 1i(S')

s - s'

Nf =

The next two sections contain an outline of the proof. Some
informal remarks on the strategy we adopt may be useful: first,
the game is transformed to a "generalized game" in the sense of
Debreu (1952) by making action spaces dependent. This makes the
outcome independent of the ad hoc infeasibility rule. Most of
sections 3 and 4 is concerned with establishing an equilibrium to
the generalized game. That the equilibrium satisfies condition
(i) [hence, is independent of the ad hoc infeasibility rule, and

that the resource is not extinct in finite time] is shown in Lemma
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4.9 and leads to the conclusion that the equilibrium of the

generalized game is also the equilibrium of the original game.

3. The Best-Response Map

For simplicity of notation we omit player subscripts from
what follows. Let y:S - S be a measurable function satisfying
¥(s) € [0,s] for each s ¢ S. Each such v defines a non-randomized
stationary strategy for player i. Given vy define player j's (j =
i) feasible action correspondence by Aj(y)(s) = [0, s - v(s)].
Now note that in maximizing total expected payoff, player j faces
a stationary environment: the functions u, q, and y are invariant
with time (q is now simply q(-ls, v(s), a) from the point of view
of player j). Thus in seeking the optimal solution to such a
problem, by Lemma 2 in Blackwell (1965) player j can restrict
attention to non-randomized strategies. Let G(y) represent the
set of all such strategies. Each strategy vy ¢ G(y) must safisfy
(by the dependence of the action spaces), the condition ¥ (ht) <

(s, - 7(st)] where ht = (

t Sor 210’ %20 ' Se-1’ %1,te-10 %2,t-1°

St) is the history of the game up to period t, and the actions
(alr’ 321) for 7 < t are determined by vy and y. Each strategy v ¢
G(v) also yields an expected payoff to player j that we shall
denote by Wv(;)(s), where Sy = S (the subscript vy of W denotes the
dependence of player j’s actions - hence his expected payoffs - on
7). A strategy ;* € G(y) is optimal and 7* constitutes a

generalized best-response (GBR) to vy if Wy(;*)(s) > Wy(;)(s), for
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all s ¢ S, for all vy ¢ G(y). That is, a GBR is a strategy Y e

G(y) that solves for all s ¢ S.

P Max  W_(y) (s), given q, 7.
(¥ e 6G(m 7
~k ~%
If such a v exists (of course, it need not always), then Wg(y )
is referred to as player j’s value function from optimally
responding to y. Conditions to ensure that a GBR exists are

pPresented below.

Theorem 3.1. Suppose y:S =+ S is a lower-semicontinuous (lIsc)
function on S satisfying v(s) ¢ [0,s] for each s ¢ S and further,

for all S ™ Sy [1(51) - 7(52))/(s1 - 52)] < 1. Then, problem

*
(P) is well-defined: there is a Borel function vy :5 -+ S such that

A

v is optimal in G(vy), i.e.. player i has a stationary GBR to 7.

ok
Furthermore, the value function W1(7 ) (henceforth denoted by V7)

is upper-semicontinuous (usc) on S.

The proof of this result is in the Appendix.

4, The Existence of Equilibrium

It follows from Theorem 3.1 that if we could show that lsc
policy functions vy possessed lsc GBR functions ;, an equilibrium
to the generalized game could be obtained by using a standard
Debreu-Nash fixed-point argument on the space of lsc functions

(endowed with a suitable topology). Unfortunately, it is easy to

show the existence of lsc functions that do not possess lsc GBR
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functions.5

We employ therefore a completely different approach, one in
which the symmetry in the payoff functions is exploited to provide
the equilibrium. As the first step in the process, we expand S to
a larger space S = [0, ;] for ; > 1. The equilibrium is
constructed on [0,y), and it is shown below (Lemma (4.8)) that
the restriction of the equilibrium strategies to S is an

equilibrium on S. Note that by (Ql) - (Q5), if s ¢ S, then s’ € S

w.p.l. Consider the following space of functions on S:

¥ o= { ¢:§ +S | ¥ is usc and non-decreasing on s
$(¥) =y, and ¥(s) ¢ [0,s] for all s ¢ S )

Each ¥ ¢ ¥ defines a (non-randomized stationary) strategy y(¥) for

player 1 by the rule

1) () = 3 (s - B(s)).

Since ¥ is usc, non-decreasing, so y(¥) satisfies the conditions
of Theorem 3.1 (which of course is not affected by expanding the
state and actions spaces to S from S) and there exists a GBR

denoted by vy(y). Define ¢:§ +S by

SA trivial example is the following: 1let y(sO = s for s ¢

[0,1) and y(1) = 0. The unique GBR is y(s) = 0 for s ¢ [0,1) and

A

v(1) = 1, which is not 1lsc at s = 1.
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¥(s) = s - y(¥)(s) - v($)(s).

A

In Lemma 4.3 below, it is shown that there exists a y(¥), a unique
GBR to each (%) such that ; defined thus is in ¥. This defines a
map from ¥ into itself. Consider a fixed-point of this map. At
such a point, ; = ¥, so from the above equations, some
manipulation yields ;(¢) = y(¥) or y(¢¥) is GBR to itself on S.
Lemmata 4.8-4.10 then conclude the proof by showing that it is in
fact the case that v(y¥) is a best-response to itself when the
state space is restricted to S. By the symmetry of the payoffs
(equation R1) the argument is complete.

These ideas underlie the following results but rather than
invoke the functions vy(¥) and ;(¢), notation is simplified as
follows: player 2's actions in response to y(y¥) are now

interpreted as the investment level he chooses given player l's

action, so that if he takes an action a > 0, his instantaneous

reward is given by u(s - y(¥)(s) - a). Define R¢(S) - %(S + ¥(s))

for s € S, ¥ ¢ ¥. Note that the conditional distribution over s
of next period’s state s’ depends now only on a. Abusing notation
we denote this distribution by q(+|a). Finally, let V¢ denote
player 2's value function from a GBR to v(¥). We rewrite the
Bellman Optimality equation in this notation as:

4.1 V¢(s) - max {u(R,(s)-a) + 8 fV¢(s')dq(s'|a)}

ac[0,R ()] ¥
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A

Let V denote the function V¢ when ¥(s) = s for all s ¢ S.

Then, clearly, for any 4% ¢ ¥, V¢ < V. Define

Q = {v:S = R+ | v is usc and non-decreasing on S,

- A

vo) - 42 v@ - HO v <)

Endow ¥, 1 with the topology of weak-convergence (i.e.,
pointwise convergence to continuity points of the limit function -

see e.g., Billingsley (1968)). We can then show

Lemma 4.1: V¥ and O are convex metric spaces. Further, ¥ has the

fixed-point property.

Proof: Convexity is obvious. To see compactness of ¥ consider
the set N of finite measures v on the Borel sets of S satisfying
u(g) - ; for all v ¢ N. Since S is compact metric, a well known
result establishes that N endowed with the topology of weak
convergence (weak topology, for short) is also a compact metric
space (see, e.g., Parthasarathy (1967)). 1If Wo denotes the set of
distribution functions corresponding to measures in N, it follows
that Wo is also a compact metric space under the weak topology.
Since ¥ is a closed subset of Wo it also has this property. That
it possesses the fixed-point property follows from the Schauder-
Tychonoff theorem (see, e.g., Smart (1974)), whose conditions are

easily seen to be met.

2 is similarly a compact metric space if we can show it to be
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A

closed in the weak topology. Since V corresponds to the value
function of a one-person dynamic programming problem with

(weakly-)continuous transition and continuous payoffs, it is
A

straightforward to show that V is itself a continuous function.
By the assumptions on q, G(O) = u(0)/(1-8). Since v < G for all v
¢ Q, the result readily follows. ||

Now observe that for fixed i, the feasible action
correspondence [0, R¢(s))] is increasing in s, i.e., any action

feasible at s1 is also feasible at 52 if 52 > Sl’ Since u is

increasing in its argument, it is immediate by the upper-

semicontinuity of V, that

¥

Lemma 4.2. For each ¥, V¢ is non-decreasing and right-continuous

on S.

Now for each ¥ redefine the value of V

¥ at ; by setting V¢(§)

- E{?% . Thus defined, V¢ still satisfies the conditions of lemma

4.2, therefore V¢ e Q for each ¥ ¢ ¥,

As the second step in the proof we shall now construct a map

from ¥ into itself. To this end, we define for ¥ ¢ ¥ and v ¢ Q a

map F :S - ZS by F (;) = ;, and for 0 = s < ;,

¥,V ¥,V

F¢ V(s) - argmax {u(R,(s)-a) + 8 f v(s')dq(s'la))

ae[O,Rw(s)] ¥

If v = V¢, the we shall write F, for F

¥ ¥, v

By Lemma 2.1 and Theorem 2.1 in Parthasarathy (1973), F¢ N
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is well-defined aﬁd a measurable correspondence, and further
admits a measurable selection. (This is a consequence of the fact
that v ¢ O implies -v(s')dq(s'la) is usc as a function of a; see

Appendix, lemma A.l). In fact, we can show that

Lemma &4.3: There is a unique selection ¥ from F¢ v such that

P e ¥,
Proof: The lemma is proved in 3 steps:

Claim 1: 1If Sy > Sy, @ € F¢,v(s1), a, € F¢’v(s2), then a; > a,.

This is proved by a standard argument in intertemporal economics
that relies upon the strict concavity of u. See the Appendix for

details.

(s).

Claim 2: Ifs ¢ s, a ¢€¢F (s ), a - a, thena ¢ F
s n n P,v ' n n Y, v

Proof: Suppose, contrary to the claim, it was the case that a ¢

F¢ V(s). Since the latter is non-empty it contains a < s -
?

v¥(¥) (s) such that

(4.2) u(R‘b(s) - ;) +8 [ v(s')dq(s’lg)

> u(Ry(s) - a) + g [ v(s')dq(s'|a).

Since a { a, assumption (QS5) implies the weak convergence of

q(-|an) to q(-Ia). Since v is usc, limsup f v(s')dq(s'lan) =<
n--o

J v(s')dq(s’|a), so combining this with equation (4.2) and the
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fact the right-continuity of ¥ and continuity of u together imply

u(R¢(sn) - an) + u(R,(s) - a), we obtain the existence of a > 0

¥
such that for large n

(4.3) u(R¢(sn) -a)+p J v(s')dq(s'lan) + 2a

< u(R¢(s) -a) + 8 f v(s’)dq(s’la).

Using the additional fact that u(R¢(sn) - a) + u(R¢(s) - a) (4.3)

in turn implies that for all sufficiently large n

(4.4) u(R¢(sn) -a)+pB J v(s')dq(s’|an) + a
< u(R¢(sn) -a) + 8 f v(s')dq(s'la).

A A

But a < s = y(¥)(s) = s, - 7(¢)(sn), so a is feasible at s -
Equation (4.4) therefore contradicts the optimality of a for all

large n.

Note that by claim 2, max(F¢ v

s € [0,;). Defining %(s) = max {F¢ v(s)} for s ¢ S, we see that

claims 1 and 2 together imply that ¥ is right-continuous and non-

(s)) is well-defined at each

A

decreasing. Therefore ¥ is usc on S, and ¥ ¢ ¥, since F¢ v(§) =
y. The last step in the proof of Lemma 4.3 is

A

Claim 3: ¢ is the only usc selection from F

¥,v

Proof: Suppose there were another usc selection E. Note that J

is non-decreasing, hence right-continuous. Since y = ¥, there is
s ¢ S such that P(s) = E(s), so ¥(s) > E(s). Let s, { s. Then

E(sn) d E(s), so for large enough n, ;(s) > E(sn) e F v(Sn), but

¥,
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s < s and ¥(s) € F¢ v(s), so this contradicts claim 1. ||

Note that if v = V¢, then Lemma 4.3 implies that for each ¥ ¢
¥, there is a GBR ;(¢) to vy(¥) such that the resulting ‘savings’
function ;(s) =35 - y(¥)(s) - ;(¢)(s) is in ¥. Thus, Lemma 4.3
defines a map from ¥ into itself. A fixed-point ¢* of this map
yields a pair of functions (1*,1*) defined by 1*(5) = 1/2(s -
¢*(s)) sucht that 1* is a GBR to itself on [0,;]. Since ¥
possesses the fixed-point property (Lemma 4.1), the continuity of
the map B:¥ - ¥, B(y)(s) = ;(s) = max{F¢(s)) will provide us with

the desired fixed-point. A few preliminary results are needed

first:

A

Lemma 4.4: Let ¥ be the unique selection from F¢ - satisfying
Y e ¥, If y is continuous at s ¢ [0,;], then F¢ v is single-

valued at s.

Proof: Suppose not. Let %(s) > a ¢ F¢ ¥

By continuity of ¢ at s, ¢(sn) -+ Y(s). So for large n, w(sn) > a,

(s). Let s <s, s_ =+ s.
n n

but a ¢ F¢ v(s), and s > sy @ contradiction to claim 1 in Lemma
y

(1) limsup ¥ _(s ) =< ¥(s)

-0
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(ii) if v is continuous at s, then limn*“ ¢n(sn) = ¥(s).

Proof: See Appendix.

Lemma 4.6. Suppose v Ve O and ¢n -+ ¥ ¢ ¥. Suppose also_that

s €8S is a continuity point of ¥. Then,
J v (s)da(s’ ¥ _(s)) = [ v(s')da(s'[$(s)).

Proof: By the generalized Dominated convergence theorem (see
Hildenbrand (1974)), it suffices to show that (i) q('|¢n(s))
converges weakly to q(-|¢(s)), (ii) {vn} is a uniformly integrable
sequence, and (iii) VotV in distribution. Since, by hypothesis,
s is a continuity point of ¥, so ¢n(s) -+ ¥(s), and (i) follows
from assumption (Q5). Since vn(s’) < (l-ﬂ).1 u(;) for all s’ ¢ 5,
(1i) is immediate. Let By be the measure on S corresponding to
q(‘|¢n(s)), and p that corresponding to q(-|¢(s)). Then, we need
to show that pnv;1 converges weakly to pv'l. Since K, converges
weakly to p, it suffices by Billingsley (1968), Theorem 5.5) to
show that u(E’) = 0 where E' = (s’ ¢ §| there is sé - s’ such that
vn(sé) does not converge to v(s')}). Let E = {s’ ¢ §|v is
discontinuous at s’}). Clearly E' ¢ E (apply lemma 4.5). Further,
E’ is measurable by Billingsley (1968, p.226). Note that 0 ¢ E’,
since sﬁ =+ 0 implies by Lemma 4.5 that limsupnﬁm vn(sé) < v(0) =
(1-8) "1 u(0), while since v €8, v (s))zv (0) = (1-8) "1 w0y,
so liminfn_“I° vn(sé) > (1-,«5)'1 u(0) = v(0). We identify two cases:

(1) ¥(s) = 0, so q(s’'|¥(s)) = 1 for all s’ = 0. Since 0 ¢ E’,
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clearly p(E’) < pu(E) = 0 since in this case p(A) = 0 if 0 ¢ A for
any Borel set A. Case (ii) ¢¥(s) > 0. By Ql(ii), q(-|¢(s)) is
continuous, and its induced measure u contains no atoms, so (since

E is countable), u(E’) < u(E) = 0 in this case also. ||

Lemma 4.7: Suppose kl’ k2 are non-decreasing, right continuous

A

functions on § = [0,;]. Suppose also that D is _dense in S and kl

A

- k2 on D. Then, k., = k., on S.

1 2

Proof: Straightforward.
We are now ready for

Lemma 4.8: B:¥ - ¥ is a continuous map when ¥ is endowed with the

weak topology.

Proof: Recall that sequential arguments suffice. Let ¢n be a
sequence in ¥ converging (weakly) to ¥ e ¥. Let ¢n - B(wn) and

for notational simplicity denote V¢ by Vn’ Since ¥, I, are

n A
compact metric, we may assume without loss of generality that ¢n
- Y eV, Vn + V e Q. We are required to show that ¥ = B(¥).

As a first step, consider

F(s) = argmax  (u(R,(s) - a) + B J V(s')dq(s'|a)), s ¢ [0,y)

ac[0,R (s)] ¥

‘;' » 8 = Y.

By Lemma 4.3, there is a unique E € ¥ such that E(s) e F(s) for s
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€ S. We claim that E - ;. Note that to prove this claim, it
suffices by Lemma 4.7 to show that E - ; on a set dense in S.

Let D’ be the set of disconitnuity points of any of the
following functions: ¢n, ;n’ E, ¥, ;, Vn’ and V. Since each of
these functions is monotone (and right continuous), D’ is at most
countable. Hence, D = S - D' is dense in S.

We shall show that 5 - ; on D. Let s ¢ D. Consider first
the case E(s) < R,(s). Since p is continuous at s, ¢n(s) - P(s),

¥

SO R¢ (s) - R¢(s), and therefore, for large n, R¢ (s) > E(s). For

n n
all such n,

(4.5) R, () - ¥(s)) + 8 J v (s")da(s' [¥ (s))

2 u(Ry (s) - ¥()) + B[ V (s")das’ [h(s)).

n
By Lemma 4.6, and since s ¢ D, f Vn(s')dq(s’lan(s)) -
N )_ -
J V(s*)dq(s’|[$(s)), and [ V_(s")da(s’|# (s)) » [ V(s')da(s' |$(s)),

so taking limits in (4.9) yields
(4.6) w%@>-ww>+ﬂfwym«yww»
zu%w)-ww)+ﬂfwym«wﬂwn.

Now suppose E(s) = R, (s). Then, since

14

(4.7) Mg(@-ww»+ﬁIV@WMGWM9)

n

= u(0) + B [V (s")dq(s’ [R(s)),
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the same arguments imply that taking limits in (4.11l) we obtain

u(R, (s) - ¥(s)) + B [ V(s')dq(s’'|¥(s))

¥

+

(4.8)

v

um+ﬁfvwwmuw%@»

ugw>-&w>+ﬁfwym«vW@».

Equations (4.6) and (4.8) imply that ¥(s) € F(s) for s ¢ D, if

Y(s) € F(s) for s ¢ D. This implies that % = E on D, and by Lemma

4.6, % = % on S.

Now define V*:§ - R+ by V*(§) - 2%%% , and for s ¢ [0,;]

v¥(s) - max (u(R,(s) - a) + B J V(s')dq(s’|a)

ae[O,Rw(s)] ¥

(4.9)

-u%w)-ww>+ﬂfwym«yww».

We claim that V* = V. To see this note that (by Lemma 2.1 and
Theorem 2.1 in [15]) V* is now usc on S. It is trivial to see
that V* is non-decreasing for a ¢ [O,R¢(sl)} implies a €
[0,R¢(52)] whenever $q < S,- So clearly V* € 1. As above it
suffices to show that V* = VonD. So let s ¢ D. For each n,
(4.10) V. (s) = u(Ry (s) - $n<s)> +8/f vn(s')dq(s'IQH(s))

n

and taking limits as n + « yields ( since s ¢ D)

(4.11) V(s) = u(Ry(s) - %(s)) + 8 [ v(s')dq(s'|¥(s)).
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* * =
From (4.9) and (4.11), V=~V onD, so V="V onS. Thus, we have
shown that for s ¢ [0,;]

V(s) = max {u(R,(s) - a) + B f V(s')dq(s'la))

ae[O,R¢(s)] ¥

(4.12)

= u(Ry(s) - ¥(s)) + B J V(s |v(s)).

To complete the proof, it is shown by using similar arguments in
Strauch (1966) and Maitra (1968) that V is indeed the expected
payoff (on [0,;] from employing the stationary strategy vy(¥)(y) =

y - v (y) - ¥(y) -
30+ ) - B,

Since V satisfies the Bellman Optimality Equations (4.12),
and it ¥ yields a total expected payoff of V, it is indeed the

case that B(y) = ;. ||

*
Combining Lemmas 4.1 and 4.7, we see the existence of a ¢ ¢ ¥

A

* * * ~ %
such that B(y ) = ¥ . Therefore, there is a function v = y(¥ ),

A : -
such that vy is a GBR to itself on [0,y] for problem (P). Denote

* *
the restrictions of y to s by v .

*
Lemma 4.8: vy is a GBR to itself on S.

Proof: By our assumptions on q, if the game starts with the state
A

*
in S, the state stays in S forever. If vy 1is a GBR to itself on

* S
S, then vy must be a GBR to itself on S for what happens in (y,y)
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is now irrelevant. ||

The next two results (finally!) establish the existence of a
non-trivial Nash equilibrium in non-randomized stationary

strategies to the stochastic game of Section 2.
* -

Lemma 4.9: 2y (s) < s for all 0 < s <y.

Proof: See Appendix.

%
Lemma 4.10: 4 is a BR to jitself on or the stochastic game of

Section 2.

Proof: See Appendix.

The existence of a non-trivial equilibrium is thus
established by Lemmas 4.9 and 4.10. To see that it satisfies the
other properties outlined in Section 1, note that the ¢* that, as
a fixed-point of B, generated the 1* is non-decreasing, so for s

1
€ S,

* * * *
b (Sl) i | (52) l-_ [Sl = 52 - (sl) + Y (52)]
2

S - 8

s 1

1 %2 2
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¥ (s - ¢*<s2)]
[1-
Sl - 52

[}
N =

v
N

* * *
and finally since  1is usc on S and v 1is defined by v (s) = % (s

- ¢*(s)), 7* is 1lsc on S. ||

Appendix

Al: Proof of Theorem 3.1
Theorem 3.1 is established through several lemmata. Let Z =

{(s,a)ls €S, 0<a=x<s - y(s)}.

Lemma A.1: Let v:S - R+ be a bounded, non-negative and non-
decreasing function. Let V(s,a) = fv(s’)dq(s'ls,y(s),a) for (s,a)

€ Z. Then v:Z ~ R+ is usc on Z.

Proof: Let (sn, an) -+ (s,a) ¢ Z. Since a is lsc on S, so

limsupnam (s_ - 7(sn) - an) < (s - y(8) - a). Assume wlog that

n

1(sn) converges to a. By (Q5), q(-lsn, 7(sn), an) converges
weakly to q(-ls, a, a). Since a = q(s), this implies by (Q3) that
q(s'|s, a,a) = q(s’|s, v(s), a) for all s’ ¢ S. Together these

result in

limsupnﬁm G(sn, an) - limsupn*m fv(s')dq(s'lsn, 1(sn), an)

A

< fv(s')dq(s'ls, a, a)
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< [v(s’)dq(s, v(s), a)
- v(s, a)

where the first inequality obtains since v is usc and the second
since v is non-negative and non-decreasing. Of course, these

inequalities imply the desired result. ||

Lemma A.2: Let A(y)(s) = [0, s-v(s)] for s ¢ S. Let

v*(s) - max ;(s,a).
acA(y)(s)

*
Then, (i) v is usc on S, and (ii) there is a Borel function k:S -

S such that k(s) ¢ A(y)(s) for all s, and v*(s) = v(s) = v(s,

k(s)).

Proof: Since a is lsc, so A(vy):S »28 is a upper-semicontinuous
correspondence. Together with lemma A.1, the hypothesis of Lemma
2.1 and Theorem 2.1 in Parthasarathy (1973) are readily seen to be

met, from where lemma A.2 follows. ||

Define USC(S) to be the space of all non-negative, non-
decreasing, bounded usc functions on S, endowed with the sup-norm

topology.

Lemma A.3: USC(S) is a complete metric space.

Proof: By Maitra (1968, lemma 4.2), the space of all bounded usc
functions on S is a complete metric space, when endowed with the

sup-norm. Trivially, USC(S) is a closed subset of this space. ||
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Define an operator T on USC(S) by

Tw(s) = max {u(a) + B8 f w(s')dq(s'ls, v(s), a}
aeA(v)(s)

for w ¢ USC(S), s ¢ S. Then,

Lemma A.4: T maps USC(S) into itself and is a contraction.

Proof: By lemma A.l fw(s')dq(s'ls, v¥(s),a) is usc on Z.
Trivially so is u. Hence by lemma A.2, Tw is usc on S. Since u,
w are non-negative and bounded, so is Tw. Finally, by the
assumptions on vy, we have sy < s, implies A(y)(sl) C A(v)(sz).
Since u, w are non-decreasing, this implies that Tw also enjoys
this property.

A straightforward application of Blackwell (1965, Theorem 5)
utilizing the fact that 8 ¢ (0,1) shows that T is a contrac-
tion. ||

Lemmata A.3, A.4 and the Banach fixed-point theorem (Smart

*
(1974, p. 2)) imply that T has a unique fixed-point V ¢ USC(S),

so that

(A.1) V*(s) - max {u(a) + B8 f V*(s')dq(s'ls, v¥(s), a)}
aeA(y)(s)

%
Lemma A.2 (ii) indicates the presence of a Borel function a such

A

*
that v (s) € A(y)(s) at each s ¢ S, and

(A.2)  V(s) = u(r¥(s) + B [ Vi (s')dqs’ s, v(s), a*(s)).
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The completion of the proof of Theorem 3.1 now follows the
lines of Maitra (1968). Let WV(;) denote expected payoffs to

player i from a strategy a ¢ G(y). Stranch (1966, Theorem 5.1)
uses (A.2) to show that Wy(y*) - V*, or V* is the payoff from

Ak
using @ . From Blackwell (1965, Theorem 6), this in turn implies

*
that v 1is an optimal strategy for (P) under the hypothesis of

*
Theorem 3.1. Since V_7 =V e USC(S), V7 is usc on S. ll

A2: Proof of lemma 4.3, Claim ]

Assume to the contrary that a, < a,. Then, a, < R¢(52)’
while since Sy < sl, we also have a, < R¢(sl), so a1 (resp. a2) is
feasible at s, (resp. sl). Therefore,

(A.3) u(R¢(sl) - a) + B J v(s')dq(s'lal)

v

u(Rw(s1 - az) + B8 f v(s')dq(s'laz)

(A.4) u(R¢(s2)

a2) + B f v(s')dq(s’laz)

v

u(R¢(52) - al) + B f v(s')dq(s'lal)

Adding (A.3), (A.4), and cancelling common terms,

1]

(A.5) u(R¢(sl) al) + u(Rw(sz) - 32)

v

u(R¢(sl) - al) + u(R¢(s2) - al).

Some rearrangement readily shows that (A.5) contradicts the strict

concavity of u. ||
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A3: Proof of Lemma 4.5
Suppose (i) were violated. Then there exists a subsequence
(which we continue to denote by n), an integer N, and positive

numbers § and a such that for n 2 N

bo(s) > ¥(s) + 2a

and
Isn - s| < s,

where § > 0 is chosen so that ¥ is continuous at (s + §), ¥(s + §)

< Y(s) + a and

¥ (s ) S ¥ (s+6).

Combining these inequalities,

¢n(s+ §) = ¢n(sn) > YP(s) + 2a > Y(s + §) + a. So 11mn*w ¢n(s
+ 8§) 2 ¥(s + §) + a, while since y¥ is continuous at (s + §),
limnﬁm ¢n(s + &) = ¥(s + §), a contradiction. This establishes
(i).

A completely analagous argument exploiting the left-

continuity of ¥ establishes that if ¥ is continuous at s, then

liminf ¥ (s ) z ¥(s), proving (ii). I

A4: Proof of lemma 4.9
Suppose contrary to the lemma, there were some s > 0 at which

* * *
2 v (s) =s, or vy (s) =s/2. Then, since v is a GBR to itself,
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Vy*(s) = u(s/2) + I?; u(0).
Consider the action (s/2 - §) for small § > 0. By (Ql) S =
inf(s'|q(s'|6) > 0) is in R, for § > 0. If § is chosen less than
¢, then (Q4) implies that Sg > §. We claim that there is § ¢
(0,¢) such that the action (s/2 - §) followed by %

any realization of next period’s state) is feasible and in

s’ (where s' is

expected payoff terms dominates V1*(s).
% - — -—
Feasibility is obvious since v (s) < s/2 for all s ¢ S. Note

therefore, that it suffices to show that (since Sg = §)

(A.6) Blu(6/2) - u(0)] > [u(s/2) - u(s/2 - §)]

for § sufficiently small. By the Mean Value Theorem, the LHS of

(A.6) is equal to ﬂu'(26)6/2 for some z_ ¢ (0, §/2), while the RHS

5
is equal to u'(w8)6 for w6 € (s/2 - 6§, s/2). Thus, proving (A.6)

is equivalent to showing there exists § > 0 such that
(A.7) ﬂu'(zs) > 2u'(w8).

As 6§ V 0, zg + 0, so (Ul) implies the LHS of (A.7) tends to

infinity while the RHS is bounded. This establishes the claim
*

that there is a strategy that is feasible and dominates vy in

expected payoff terms, a contradiction establishing the lemma. II

AS5: Proof of Lemma 4.10

*
If v were not a BR to itself, then there exists s > 0 and an
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action a such that a + 1*(5) > s, and the action a at s provides
some player with a greater expected payoff than 7*(s). An
argument identical to that used above in establishing lemma 4.9

furnishes a contradiction. ||
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ABSTRACT

We consider a class of symmetric stochastic games with a continuum of
states and actions. By imposing special structures on the law of motion we
prove the existence of a Nash equilibrium in non-randomized stationary

strategies.



1. Introduction

1.1 Stochastic Games; A Description

A two-person discounted stochastic game (see, e.g.,
Parthasarathy (1973), or Parthasarathy (1982) for related
references) is described by a tuple (S, Al(s), A2(s), q, rl, r2,
B} having the following interpretation: S, a non-empty Borel
subset of a Polish space, is the set of all states of the system;
Ai(s), a non-empty Borel subset of a Polish space, is the set of
actions available to player i( = 1,2), when the state is s € S.
It is typically assumed that for each i = 1,2, Ai(s) C Ai for all
s € §, where the Ai's are themselves Borel subsets of Polish
spaces. q defines the law of motion of the system by associating
(Borel-measurably) with each triple (s, a;, az) e SXA xA, a

1 2

probability measure q(-|s, ay. a2) on the Borel subsets of S. T,

and r2 are bounded measurable functions on S x A, x A the

1 2’
function ry is the instantaneous reward function for player i.
Lastly, B is the discount factor the players employ.
Periodically, the players observe a state s ¢ S and pick actions
ai € Ai(s), i = 1,2; this coice of actions is made with full
knowledge of the game’s history. As a consequence of the chosen
actions, two things happen: firstly the players receive awards of
rl(s, a;, a2) and rz(s, al, a2) respectively. Secondly, the
system moves to a new state s' according to the distribution

q(-|s, a, az). The process is then repeated from the states s’,

and so on ad infinitum. The objective of each player is to
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equilibrium (or, simply, equilibrium) to the stochastic game is a
* % %*
pair of strategies (21, 22) such that for i = 1,2, Zi is a BR to

Z* » i
y 34 1

1.2 Summary of the main results

This paper considers a special class of stochastic games
allowing for a continuum of states and actions. The sets of
states and actions are required to satisfy certain restrictions,
as is the stochastic process that determines the law of motion q.
The special structure is motivated by models in the economic
theory of non-cooperative extraction of common-property
resources.1 While a brief explanation of this link is provided
in subsection 2.2, a detailed expianation (in the context of a
deterministic game) may be found in Chapter 2 of this thesis.

The imposition of a certain symmetry in the payoff functions
(equation (R1l) below) in addition to the restrictions mentioned
above enables us to prove the following strong results: there is
an equilibrium in (non-randomized) stationary strategies to the
class of games considered in the paper. Further, the policy
functions associated with the equilibrium can be chosen to be

lower-semicontinuous functions,2 with slopes bounded above by

1This problem has been studied in a deterministic framework
quite extensively, but by using specific functional forms - see
e.g., see Levhari and Mirman (1980).

A real-valued function f is lower-semicontinuous or lsc
[resp. upper-semicontinuous, or usc] at a point x in its domain if
for all X X, it is the case that liminf f(xn) 2 f(x) [resp. lim
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property resource, while a, represents player i’s planned

i
extraction of the resource. (Both players are assumed to know s
and the other player’'s plan.) If plans are feasible (i.e., if a;
+a, = s) then they are carried out and player i received a reward
("utility" in intertemporal-economics parlance) of u(ai). If
plans are infeasible (a1 + a, > s) then we assume ad hoc that each
Player extracts half the available stock of the resource and
receives a reward of u(s/2). We shall have more to say about this
ad hoc assumption shortly.

Given (s, al, a2) the function h(s, a,, a2) = max
(0, s - al - a2} determines the ‘'investment’ level, the amount
left over after extraction by the players. This investment is
transformed stochastically into next-period’s available stock s’,
for example, through a ‘renewal’ function f, and the realization
of a random variable r, as s’ = f(h(s, a, az),r). The functions
f and h, combined with the distribution of r yields a
(conditional) probability distribution of s’ given (s, a,, a2).
We denote this conditional distribution by q and, rather than
impose assumptions on f and r, impose restrictions directly of q.

Departing from standard practice we define the transition
mechanism q as a (conditional) probability distribution function
on R+, given (s, a, a2) € 31, so that if s denotes next period’s

realization given (s, a;, a2), then q(s'ls, az) = Pr{s < s'Is,

a,
a, a2}. It will follow from the restrictions we place on q that

if s € S, a; € Ai(s), then q(l[s, a2) = 1, so next period’'s

al,
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(Q3) If h(y) = 1, then q(h(y)|y) = 1.

(Q4) There is n ¢ (0,1) such that if 0 < h(y) < n, then q(h(y)ly)

= 0.
Finally, the standard weak continuity of the law of motion q:
(Q5) 1f yn -+ y, then the sequence of distribution functions
q(-lyn) converges weakly to the distribution function q(-|y).

Example. Let A be uniformly distributed on [1,2], and let

f(x) = % /X, x 2 0. Define q(s'|y) = Pr(x £(h(y)) =< s’'). If h(y)
= 1, AE(h(y)) = 5 /B() < h(y), so |y = 1. If h(y) <7 -

%, then q(h(y) |y) = PrOECR(Y)) = h(y)) = Pr(} Jh(y) =< h(y)) -

Pr{ix = 2/h(y)) = 0. Similarly, the other conditions are verified.
Next, let u:R+ + R, be a function satisfying the following

condition:

(Ul) u is strictly concave, strictly increasing and continuous on
R+; u is continuously differentiable on R++ and satisfies
lim u'(¢c) = =
ci0
Example. u(c) = ca, ae¢ (0,1).

The reward functions, like the transition mechanism, are

defined for all (s, a, az) € Ri, and are given by:
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non-trivial equilibrium in non-randomized stationary strategies
* % ..
(11, 12), i.e., an equilibrium in which at each s > 0, it is the
case that (1;(5) + 1;(s)) < s. This equilibrium is independent of
the infeasibility rule employed, as will be demonstrated in

section 4. Formally, we can state the main:

Existence Theorem. Under (Ql) through (Q5), (Ul) and (R1l), the

* %
stochastic game has an equiljbrium (11, 72) in non-randomized

stationary strategies satisfying:

(1) 0 < 7’{(5) + 1;(5) <s for all s > 0;
. * % .
(ii) (11, 12) are lower semicontinuous on S;
(iii) for i = 1,2 and for all s, s’ in S s = s’,

73(8) - 7 (s)

s - s’

N =

The next two sections contain an outline of the proof. Some
informal remarks on the strategy we adopt may be useful: first,
the game is transformed to a "generalized game” in the sense of
Debreu (1952) by making action spaces dependent. This makes the
outcome independent of the ad hoc infeasibility rule. Most of
sections 3 and 4 is concerned with establishing an equilibrium to
the generalized game. That the equilibrium satisfies condition
(1) [hence, is independent of the ad hoc infeasibility rule, and

that the resource is not extinct in finite time] is shown in Lemma
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all s ¢ S, for all ¥ ¢ G(y). That is, a GBR is a strategy 7 e

G(vy) that solves for all s ¢ S.

P Max  W_(¥) (s), given q, 7.
{v € G(1)}
~% ~%
If such a v exists (of course, it need not always), then Wg(y )
is referred to as player j’s value function from optimally
responding to y. Conditions to ensure that a GBR exists are

presented below.

Theorem 3.1, Suppose v:S =+ S is a lower-semicontinuous (lsc)

function on S satisfying y(s) ¢ [0,s] for each s ¢ S and further,

for all Sy * S, [7(51) - 7(52))/(51 - 52)] < 1. Then, problem

*
(P) is well-defined: there is a Borel function v :S -+ S such that

A

*
v is optimal in G(vy), i.e., player i has a stationary GBR to ~.

%
Furthermore, the value function W1(1 ) (henceforth denoted by Vy)

is upper-semicontinuous (usc) on S.

The proof of this result is in the Appendix.

4, The Existence of Equilibrium

It follows from Theorem 3.1 that if we could show that lsc
policy functions vy possessed lsc GBR functions ;, an equilibrium
to the generalized game could be obtained by using a standard
Debreu-Nash fixed-point argument on the space of lsc functions

(endowed with a suitable topology). Unfortunately, it is easy to

show the existence of lsc functions that do not possess lsc GBR
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P(s) = s - y(P)(s) - v($)(s).

A

In Lemma 4.3 below, it is shown that there exists a y(¥), a unique
GBR to each () such that ; defined thus is in ¥. This defines a
map from ¥ into itself. Consider a fixed-point of this map. At
such a point, ; = ¥, so from the above equations, some
manipulation yields ;(¢) = y(¥) or v(y¥) is GBR to itself on S.
Lemmata 4.8-4.10 then conclude the proof by showing that it is in
fact the case that y(¥) is a best-response to itself when the
state space is restricted to S. By the symmetry of the payoffs
(equation Rl) the argument is complete.

These ideas underlie the following results but rather than
invoke the functions +vy(y¥) and ;(¢), notation is simplified as
follows: player 2’'s actions in response to y(¥) are now

interpreted as the investment level he chooses given player 1l's

action, so that if he takes an action a > 0, his instantaneous

reward is given by u(s - y(¥)(s) - a). Define R¢(s) - %(s + ¥(s))

for s ¢ S, ¥ ¢ ¥. Note that the conditional distribution over s
of next period’'s state s’ depends now only on a. Abusing notation
we denote this distribution by q(-la). Finally, let V¢ denote
player 2’s value function from a GBR to vy(¥). We rewrite the
Bellman Optimality equation in this notation as:

4.1) V¢(s) - max {u(R¢(s)-a) + 8 fV¢(s')dq(s’|a))
ae[O,R¢(s)]
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A

closed in the weak topology. Since V corresponds to the value
function of a one-person dynamic programming problem with

(weakly-)continuous transition and continuous payoffs, it is

straightforward to show that V is itself a continuous function.
By the assumptions on q, G(O) = u(0)/(1-8). Since v =< e for all v
¢ O, the result readily follows. ||

Now observe that for fixed ¥, the feasible action

correspondence (0, R,(s))] is increasing in s, i.e., any action

P

feasible at s1 is also feasible at s, if s, > sl. Since u is

increasing in its argument, it is immediate by the upper-

semicontinuity of V, that

¥

Lemma 4.2. For each v, V¢ is non-decreasing and right-continuous
on S.
Now for each % redefine the value of V¢ at ; by setting V¢(;)

_u® :
16 Thus defined, V¢

4.2, therefore V¢ € O for each ¥ ¢ ¥.

As the second step in the proof we shall now construct a map

still satisfies the conditions of lemma

from ¥ into itself. To this end, we define for ¢ ¥ and v ¢ Q a

map F v:§ - ZS by F v(;r) -y, and for 0 = s <y,

F¢ v(s) - argmax (u(Rw(s)-a) + B f v(s')dq(s"a)}
E ae[O,R¢(s)]

If v = V¢, the we shall write F¢ for Fw,v'

By Lemma 2.1 and Theorem 2.1 in Parthasarathy (1973), F¢ v
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fact the right-continuity of ¥ and continuity of u together imply
u(R¢(sn) - an) - u(R¢(s) - a), we obtain the existence of a > 0

such that for large n

(4.3) u(Ry(s ) - a) +§ J v(s")dq(s'|a ) + 2a
< u(R¢(s) -a)+ 8B f v(s')dq(s'|a).

Using the additional fact that u(R¢(sn) - a) - u(R¢(S) - a) (4.3)

in turn implies that for all sufficiently large n

(4.4) u(R¢(sn) -a)+B f v(s')dq(s’lan) + a
< u(R¢(sn) -a) + 8 f V(s')dq(s'la).

A A

But a < s = y(¢¥)(s) = Sy " 1(¢)(sn), so a is feasible at S
Equation (4.4) therefore contradicts the optimality of a for all

large n.

Note that by claim 2, max(F¢ v

S € [0,;). Defining %(s) = max (F V(s)} for s ¢ S, we see that

13
A

claims 1 and 2 together imply that % is right-continuous and non-

(s)) is well-defined at each

A

decreasing. Therefore % is usc on S, and ¥ ¢ ¥, since F¢ v(§) =
;. The last step in the proof of Lemma 4.3 is

A

Claim 3: ¢ is the only usc selection from F¢ -

Proof: Suppose there were another usc selection E. Note that ¥

is non-decreasing, hence right-continuous. Since ¥ = E, there is
s ¢ S such that ¥(s) = p(s), so ¥(s) > p(s). Let s +s. Then

E(sn) { E(s), so for large enough n, ;(s) > E(sn) e F

¢,v(sn)’ but
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(ii) if ¥ is continuous at s, then limnﬁa ¢n(sn) = P(s).

Proof: See Appendix.

Lemma 4.6. Suppose v,* Ve O and ¢n -+ ¥ ¢ ¥. Suppose also_that

s €S is a continuity point of ¥. Then,
J v (s)da(s' ¥ (s)) + [ v(s')da(s’ [¥(s)).

Proof: By the generalized Dominated convergence theorem (see

Hildenbrand (1974)), it suffices to show that (i) q(-|¢n(s))
converges weakly to q(-|¢(s)), (ii) {vn) is a uniformly integrable
sequence, and (iii) v,V in distribution. Since, by hypothesis,
s is a continuity point of ¥, so ¢n(s) -+ ¥(s), and (i) follows
from assumption (Q5). Since vn(s') < (1-;9)-l u(;) for all s' ¢ 5,
(ii) is immediate. Let By be the measure on S corresponding to
q(-|¢n(s)), and u that corresponding to q(-|¢(s)). Then, we need
to show that pnv;l converges weakly to pv-l. Since B converges
weakly to u, it suffices by Billingsley (1968), Theorem 5.5) to
show that u(E’') = O where E’' = (s’ ¢ S| there is s/ = s’ such that
vn(sé) does not converge to v(s’)}). Let E = {s’ ¢ §|v is
discontinuous at s'}. Clearly E' ¢ E (apply lemma 4.5). Further,
E’ is measurable by Billingsley (1968, p.226). Note that 0 ¢ E’,
since sé -+ 0 implies by Lemma 4.5 that limsupn_mo vn(sé) < v(0) =
(1-8) "} u(0), while since v_e@, v (s))zv (0) = (1-8)"t w0,
so liminfn*w Vn(sé) > (1-/3).1 u(0) = v(0). We identify two cases:

(1) ¥(s) = 0, so q(s'|¥(s)) =1 for all s’ 2 0. Since 0 ¢ E’,
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€ S. We claim that % = ;. Note that to prove this claim, it
suffices by Lemma 4.7 to show that E - ; on a set dense in S.

Let D’ be the set of disconitnuity points of any of the
following functions: ¢n’ ;n’ E, ¥, ;, Vn’ and V. Since each of
these functions is monotone (and right continuous), D’ is at most
countable. Hence, D = S - D’ is dense in S.

We shall show that ¥ = ; on D. Let s ¢ D. Consider first
the case E(s) < R,(s). Since ¥ is continuous at s, ¢n(s) - ¥(s),

¥

so R¢ (s) - R¢(s), and therefore, for large n, R¢ (s) > E(s). For
n

n
all such n,
(4:3) u®y () - pp(e)) + B J v (s")da(s' ¥, (s))

2 u(Ry (s) - $(s)) + B [V (s")da(s’ [(s)).

n
By Lemma 4.6, and since s ¢ D, f Vn(s')dq(s'|¢n(s)) -+

A )_ =
J v(saa(s' |¥(s)), and [V (s')da(s'|$ (s)) » [ V(s")da(s' [¥(s)),

so taking limits in (4.9) yields
(4.6) u%w)-ww)+ﬁfwym«yww»
au%w>-wm>+ﬁfwym«wa».

Now suppose E(s) = R (s). Then, since

4

(4.7) u(R.y5 (s) - ¥(s)) + B [ V(s')dq(s’|$(s))

n

2u(0) +8 [ Vn(s')dq(s'IR'/’(s)),
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* % -
From (4.9) and (4.11), V=V on D, so V=V on S. Thus, we have
shown that for s ¢ [0,y]

V(s) = max {u(R¢(s) -a)+ 8 f V(s')dq(s’la))

ae[O,R¢(s)]

(4.12)

. u(R,/,(S) - ¥(s)) + B [ V(s'|¥(s)).

To complete the proof, it is shown by using similar arguments in
Strauch (1966) and Maitra (1968) that V is indeed the expected
payoff (on [O,;] from employing the stationary strategy v(¥)(y) =

y - 1) - B =
30+ - .

Since V satisfies the Bellman Optimality Equations (4.12),
and it ¥ yields a total expected payoff of V, it is indeed the

case that B(y) = ;. ||

*
Combining Lemmas 4.1 and 4.7, we see the existence of a ¥ ¢ ¥
* * Nk Ak
such that B(y ) = ¥ . Therefore, there is a function v = vy(¥ ),
" : -
such that y is a GBR to itself on [0,y] for problem (P). Denote

A

* *
the restrictions of ¥y to s by v .
* I3 .
Lemma 4.8: v is a GBR to itself on S.

Proof: By our assumptions on q, if the game starts with the state
A
*

in S, the state stays in S forever. If y 1is a GBR to itself on

— * —
S, then v must be a GBR to itself on S for what happens in (y,y)
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* *
) P (sl) -y (52)

Sl"S

[1

]

]
N

2

v
(S o

* * * 1
and finally since ¥ is usc on S and v 1is defined by v (s) = 3 (s

- ¢*(s)), 7* is 1sc on S. ||

Appendix

Al: Proof of Theorem 3.1
Theorem 3.1 is established through several lemmata. Let Z =

{(s,a)ls € S, 0<a=<s - v(s))}.

Lemma A.1: Let v:S - R+ be a bounded, non-negative and non-

decreasing function. Let V(s,a) = Jv(s’)dq(s’|s,v(s),a) for (s,a)

€ Z. Then v:Z ~ R+ is usc on Z.

Proof: Let (sn, an) <+ (s,a) € Z. Since a is lsc on S, so

limsupnam (s_ - 7(sn) - an) < (s - 7(s) - a). Assume wlog that

n

1(sn) converges to a. By (Q5), q(olsn, 7(sn), an) converges
weakly to q(-Is, a, a). Since a = y(s), this implies by (Q3) that
q(s'ls, a,a) = q(s'ls, v(s), a) for all s’ ¢ S. Together these

result in
Py - - ry v ]
11msupn v(sn, an) 11msupn fv(s Ydq(s Isn, 7(sn), an)

< fv(s')dq(s'ls, ;, a)
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Define an operator T on USC(S) by

Tw(s) = max {u(a) + B f w(s’)dq(s'ls, v¥(s), a}
aeA(v)(s)

for w ¢ USC(S), s € S. Then,

Lemma A.4: T maps USC(S) into itself and is a contraction.

Proof: By lemma A.1 fﬁ(s')dq(s’ls, 7(s),a) is usc on Z.
Trivially so is u. Hence by lemma A.2, Tw is usc on S. Since u,
w are non-negative and bounded, so is Tw. Finally, by the
assumptions on vy, we have s

< s, implies A(y)(sl) C A(y) (s

1<% 2)
Since u, w are non-decreasing, this implies that Tw also enjoys
this property.

A straightforward application of Blackwell (1965, Theorem 5)
utilizing the fact that 8 ¢ (0,1) shows that T is a contrac-
tion. II

Lemmata A.3, A.4 and the Banach fixed-point theorem (Smart

*
(1974, p. 2)) imply that T has a unique fixed-point V ¢ USC(S),

so that

(A1) V(s) = max  (u(a) + B f V(s)da(s'|s, 7(s), a))
aeA(y)(s)

A

*
Lemma A.2 (ii) indicates the presence of a Borel function a such

"
that v (s) ¢ A(y)(s) at each s ¢ S, and

(A.2) Vi(s) = u(y(s) + B [ V(s")da(s’|s, v(s), a (s)).
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A3: Proof of lLemma 4.5
Suppose (i) were violated. Then there exists a subsequence
(which we continue to denote by n), an integer N, and positive

numbers § and @ such that for n =2 N

¢n(sn) > P(s) + 2a

and
|sn - s| <&,

where § > 0 is chosen so that ¥ is continuous at (s + §), ¥(s + §)

< P(s) + a and

¥ (s) =¥ (s +6).

Combining these inequalities,

¢n(s+ §) = ¢n(sn) > P(s) + 2a > P(s + §) + a. So llmnﬁm ¢n(s
+ 8§) = ¥(s + §) + a, while since ¥ is continuous at (s + §),
lim Y (s + 68) = Pp(s + §), a contradiction. This establishes

n+o 'n

(1).

A completely analagous argument exploiting the left-
continuity of ¥ establishes that if ¥ is continuous at s, then

liminfn*Q ¢n(sn) = ¥(s), proving (ii). ||

A4: Proof of Lemma 4.9
Suppose contrary to the lemma, there were some s > 0 at which

% * *
2 v (s) =s, or vy (s) =s/2. Then, since y 1is a GBR to itself,



31
action a such that a + 7*(5) > s, and the action a at s provides
some player with a greater expected payoff than 7*(5). An
argument identical to that used above in establishing lemma 4.9

furnishes a contradiction. ||
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