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1. Introdugtign

The last twenty years have witnessed a movement in econometric work away from
time series data to that based upon "individuals", where this term should be inter—
preted broadly as a set of data for which there is no natural ordering. Such a
development is not surprising given the traditional focus of economic theory upon the
behavior of individual agents, but it is also a concomitant of the emergence of large
scale survey data that may be easily handled with modern computational and storage
devices. |

When investigators first came to analyse these data it became apparent that the
regression model, which had been the cornerstone of econometrics almost since the
beginning of the subject, was not always appropriate. For example it was frequently
the case that some of the data were only qualitative, and therefore difficult to treat
convincingly as observations associated with a continuous random variable, while in
other situations it was known that the data had been censored, either at a known
point or by the optimizing actions of agents. To deal with all of these issues of a
plethora of models arose, and it is only now with books and articles such as Amemiya

(1984,1985) and Maddala (1983) that some order has been brought to this literature.
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Most of the models advanced were easily handled by deriving the implied prob-
ability density function for the observations, whereupon estimates of any unknown
parameters could be found by maximum likelihood. Computer programs such as
LIMDEP and SST have now virtually automated estimation in this way, and applica—
tions of the techniques abound in most journals.

Even a small sampling of this literature reveals a big difference to the older
tradition of data analysis with time series, in that almost no attention is paid to the
quality of the models estimated. This lack of concern i8 quite remarkable, since it is
the hallmark of these methods that they impose over—identifying restrictions upon the
parameters, and there cannot be any presumption that such restrictions are valid.
Thus, the assumption of normality is very common, and it is known that the esti-
mators are sensitive to this assumption, yet very little attention is paid to an
examination of whether this convention is compatible with the data or not.

This sorry state of affairs is not due to a lack of methods for doing such
evaluation. Methods have been available for some time, as evidenced by the papers by
Gourieroux et al. (1987a), McFadden (1987), Chesher and Irish (1987) and Blundell
(1987). But to date these procedures have just not found widespread acceptance. Part
of the reason seems to lie in the fact that the derivation of these tests in the original
articles is quite complex, and it is easy to lose track of exactly what the test statistic
is based upon. Moreover the impression is frequently given that special programming is
required for any implementation. It is our contention that these tests are capable of
being derived in a much simpler and transparent way than they have been; in partic-
ular, we feel that the concentration upon the Lagrange multiplier approach to their
derivation, which is characteristic of the literature, makes the analysis more complex
than it should be. Moreover, the bulk of the papers is occupied with the extraction of

an asymptotic variance for the test statistic, and the simple ideas involved in the



formulation of a test get lost in the details attending the derivation of its variance.
Ideally one would want most attention paid to the désign of the test, and the
computation of a variance should be an automatic task.

In this paper we follow Newey (1985) and Tauchen (1985) and é.rgue that the
gole issue is how to formulate suitable orthogonality or conditional moment restrictions
which should hold if a model is adequate. Using a general technology supplied by
these authors, it is then possible to give a regression based procedure which enables the
computation of the asymptotic variance of the test statistic testing if the orthogonality
conditions are valid. Section 2 of the paper introduces this idea and gives a simplified
treatment of Newey's and Tauchen's results.

Having separated out the problem of determining an asymptotic variance from the
selection of a basis for a test statistic, in the remainder of the paper we are free to
concentrate upon how the latter operation is done. Unification is therefore achieved by
correlating different tests with different orthogonality conditions. These orthogonality
conditions can be broadly categorized as deriving either from analogues to tests in the
regression model or as checking the first order conditions from some estimator. In
turn, the "regression analogue" formulations frequently simplify down to a situation
involving functions of a set of "omitted regressors". _Hence the same perspective as was
used in Pagan (1984) for the regression model can also be employed here in order to
emphasize the underlying unity of the test statistics available in the literature.

Sections 3, 4, 5 and 6 use this orientation to survey existing tests for the Tobit,
discrete choice, selectivity and duration literatures. These model types account for a
large fraction of the work done with individual data, but certainly not all of it. For
example, we have ignored "event" or “count" data in which the dependent variable is
an integer. Readers interested in diagnostic tests for these models can consult Cameron

and Trivedi (1985). Our general strategy in the "regression analogue" approach is to



write down a set of first order conditions that aim to test specific aspects of the
conventions that underlie the models, and then to show that these correspond with the
Lagrange multiplier tests that have been suggested by various authors. With the "first
order conditions" method we have largely borrowed the ideas from the semi or
non—-parametric literature, which provides estimators that are robust to various aspects
of distributional mis-specification in these models.

As well as surveying theoretical work in this area we also apply the tests to a
number of published studies. Our aim in doing this is partly to emphasize the
importance of engaging in such tests, but also to show that we can perform them by
using a standard econometric package, LIMDEP. With the exception of the computa—
tion of some of the first order conditions for the non-parametric estimators, all
computational work in the paper was done using the data transformation, matrix
manipulation and econometric routines in LIMDEP (the PC version). Hence, it is hard
to argue that the construction of these tests requires any special requirements, and in

fact they can be computed reasonably simply by someone using such a package.

2. The Diagnostic Tests in a ression Framework
It is well known that tests for specification error conducted within the linear
regression model are normally based upon residuals, e.g. see Pagan and Hall (1983), but
a brief review of this literature is useful in order to motivate the methods we use later.

Suppose the regression model is
y; = x{ﬂ + y i=1,..,N (1)

and define the residuals {li =Y - x{é, where © is the OLS estimator of B. The errors
are traditionally assumed to have a number of properties.
(i) E(Zi“i) = 0 ie., the gx1 vector of variables z is incorrectly excluded from

the regression.



(i) E(zi(u% - 02)) =0 i.e., the errors are assumed to have constant

variance 02 that is unrelated to the zi's.

(iii) E(ui“i-j) =0 (j=1,...) i.e. the errors have no serial correlation.
(iv) E(u‘?) = 0, E(“li;) - 30% = 0 ie. the moments are those of a normally
2

distributed random variable with mean zero and variance o“.

Since each one of these population moments should be zero it is natural to seek
information on whether this is so by examining the magnitude of the sample analogues
of (i) - (iv) viz. (i) NSz, (ii) N'z,(u2-0?), (iii) N‘lz&iﬁi_j, (iv) N1z} and
N“lz(ﬁ‘ii-3‘4). These sample moments can then be used to test if the population
moments are zero. In fact, equivalent information is available from quantities that are
obtained as the product of the sample moments and any non-singular matrix. Thus, if
N_lzl;i{li;j is multiplied by (N"1 Eﬁ?_j)—l, ‘the outcome is the j'th order serial corre-
lation coeficient of the residuals {li’ which is the basis for most tests of j'th order
serial correlation in the u. If N Ez(u’0?) is multiplied by (N™'Szz:)™", the
resulting quantity is the regression coefficient of z, in the regression of {1?-—;2 against
z;, which is the basis of the Lagrange Multiplier test for heteroskedasticity in Breusch
and Pagan (1979) and Godfrey (1978). Obviously, from a theoretical viewpoint, it is a
matter of indifference whether the sample means or their product with some non-
singular quantity is used, and the alternatives need to be ranked by their degree of
computational ease. We will work with the raw moments as this accords with our
later use of diagnostic tests.

Each of the sample means above is a function of the variables w { = (zi,yi,xi)
and a set of p parameters §° = (ﬂ'az) and this suggests that a suitable format for
each population moment is m(wi,o). Consequently, we define m(wi,0) as a gx1 vector
with elements zu,, zi(u?—az) etc., making the restrictions (i) — (iv) have the generic
form N"IEE(m(wi,Ho)) = 0, where ¢ is the true value of 4. Then r = N"lzm(wi,b)

= N-IEmi gives the vector of sample moments.



2.1 mputing th mptotic Vari 1/2;

To build a test statistic for the population moment it is necessary to derive the

distribution for N1/27, Expanding m(wi,b) around 6 by Taylor series yields
NN em(w, 0] = NYANSmw6) +
N | p
(plim N7'5(0m;/09)(-0,)] + 0,1 )

where m, = m(wi,oo). This method of determining the asymptotic distribution of
NI/ 2;, the é—method, réli&s upon the mean of higher order derivatives converging to a
constant and that 0 is ¥N consistent, standard assumptions in most estimation contexts.
If m, was linear in 6 the linear approximation in (2) is exact.

To proceed further it is necessary to invoke a central limit theorem for the m,
and to make precise what estimator 8 is being employed. We therefore adopt two

further assumptions.

(A) The estimator g is a generalized method of moments estimator (GMM) as

described in Hansen (1982) which derives from E[g(f,)] = E[Zg;(6,)] = 0 and which

minimizes g(#)-Wg(6) with respect to #, where W is a suitable weighting matrix.

Under the conditions set out in Hansen the optimal choice of W is [E[g(ao)g(eo)']]_1

and NV/2(9 - 4.} is asymptotically distributed as ~plim Nlowe ) N2 6w,
-0

= -—Bgo where G 9= Og/00 and all quantities are evaluated at 00. If 4is the MLE,
g(6) = d(4), the scores of the log likelihood L, G g = Hpp the Hessian of the log
likelihood, while W would be the inverse of the asymptotic information matrix .700 =

I%lim N1y gp Making these substitutions for the MLE, B = -~ 00
. - y -1 -1/2
plim NG;WG, = ~Jand /%5 - 4) = 57 N4+ 0 (1),

N-o



(B) The vector of conditional moment restrictions m, = m(wi,eo) and the moments

defining b, g = gi(()o), obey a central limit theorem such that

N“lzmi q

N1/2 [N

me zm
Vem Vgg

where V =

Substituting for N/ 2(A0-00) in (2) gives

N2 = NYsm (w0 - (plimNTi5(6m,/98) BN/ 25g(0,))
N

=0

- [1 —(plimN_IE(Bmi/a&))B]

N-w

N 2gm(w, ,ao)}
N—1/22gi (6 0)

-1/2
_ 4 N1/ Em(wi,ﬂo)‘

N2sg.(4)

Applying the central limit theorem in assumption B to (4)

NYZ1 4, 40, AVA).

(4)

(5)

(6)

The covariance matrix AVA‘ in expression (6) can be evaluated fairly easily with

computer packages that do matrix manipulations, such as GAUSS, or using the matrix

languages provided in LIMDEP and SHAZAM. One could then refer (AVA’)
Nl/ 2r to an 4 (O,Iq) density. But it is frequently desirable to be able to do

calculations with a regression program. Provided 8 is the MLE, and under assumption



C, it is in fact possible to find an asymptotically equivalent form for which such

computations are possible.!
Assumption C. The observations W, are independently distributed random variables.

Assumption C means that the covariance matrix V can be consistently estimated

by the sample means N‘lznhiﬁxi', N‘lz:z}liéi, N lzéi&i',

d,(6). Similarly —H,, can be consistently estimated by N_'Ed.d; if the model is

where m, = m(wi,ﬂ), di =

adequate because then -E(H 60 = E(N"lzdidi'). This means that only the element in
A, plim N’lzami/ae, remains to be simplified. Tauchen (1985) and Newey (1985)

N-w

have done this by what Tauchen refers to as the generalized information equality which

we state and prove here as a lemma (see also Beran (1977)).
Lemma:  E(0m;/08) = -~E(m;(w;,8,)d:(6,)) (7)
Proof: Under the hypothesis of correct specification,
E(m(wi,()o)) = 0 ie.
0 , —
_f_mm(wi’ao)fi(“i’ao)dwi = 0 (8)

using independence and defining the density of W, as fi(wi,eo). Differentiating (8) gives

9 log f.(w:,0)"
0m(¥;500) taw. + [ m(w.,0) P10 ¢ gw = 0
——3—7——- 1 1 1’0 o0
-0 -0

1 1

from which (7) follows since d, = @ log fi(wi,ﬂo)/ao. o

In fact it is only necessary that the m, and di be martingale differences, but in the
context of individual data that extension does not seem important.
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The lemma means that plim N_l).“,ami/aﬂ can be consistently estimated by
N-w

~-N"'Em.d:. Al of these expressions can be given a convenient matrix form. Let M
be the Nxq matrix with m; as i'th element and D be the Nxp matrix with d; as i'th
element. Then N'Smm: = N'M‘M, N'Emd; = N"IM'D etc. and it follows that
A=[l:-MDDD) ] adV__=NIMMV,, =V, =NDMVy =
NID'D so that AVA* = N"{(M*M-M-D(D'D)"D-M). Now the standard test
statistic for the population moments being zero based on (6) will be N[;-'(AVA')"1 ;] =
N2/ (M’M-M'D(D’D) D M) r = o' M(M-M-M-D(D'D)"'D'M)"\M"¢ where . is
the (Nx1) vector of units. This version is easier to compute than AVA’ because
N1 (M'M-M’D(D’D)™!D M) is the estimated covariance matrix of the residuals from
the regression of M against D.

But further simplification is possible owing to the fact that ¥ éi = 0 making ¢'D
= 0. Consider the regression of M against ¢ and D. Clearly the fact that ¢D = 0
means that the estimated coefficient of ¢ is (L’L)_IL’M = r. From standard SUR
theory the variance of 7 will be (tre® }:T'l)_l, where T is the estimated covariance
matrix of the errors in each of the q equations that has I;Ii as the dependent variable
and the same set of regressors, unity and dl By definition L = N’l[M'(I -

(¢ D)(‘(')‘ D(']D )‘1(]‘): )M] = N}[M‘M-N7r- — M-D(D'D)"'D'M] =

N"(M‘M-M‘D(D‘D)'D'M) ~ 7. Under the null hypothesis 7 B 0 so that T can
be estimated by N—I(M'M—M'D(D'D)—ID'M) and therefore the test statistic that the
intercepts are zero in the SUR system is N27(M‘M-M-D(D-D) " D-M) 17, which is
just N[7*(AVA)"17] as required. |

Thus there is a very simple way to compute a test statistic that the conditional
moments are actually zero-regress m(wi,b) against unity and di(b) and test if the
coefficients on the intercepts are zero. Because the regressors are the same in every

equation, if a joint test is not desired the test based on 7 can be done by use of an
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OLS package. Note that this treatment splits up the problem of choosing the moment
condition, mi(ﬂ), that is to form the basis of the specification test, from the
computation of its variance, AVA’. Thus effort can be put where it should be,
namely in the design of suitable ways of assessing model adequacy.

There are both advantages and disadvantages to simplifying AVA’. The
advantage is that it provides an estimator of the covariance matrix of Nl/ 2; that is
easy to compute. But that facility incurs a potential cost, in that it has a number of
disadvantages. First, as observed by Wooldridge (1987), it is not robust to certain
types of mis-specification, e.g. heteroskedasticity in the scores and non-normality in
(say) the u, of equation (1). This is because it assumes that "E(Hgg) = E(Zd;d!) and
that E(ami/aﬂ) = —E(midi'), which is only true when the complete density is correctly
specified. To compute a robust estimator one could evaluate (6) directly, which is
reasonably easy with programs such as GAUSS or any program with a good matrix
language.

A more serious problem that has been observed by a number of authors has been
a poor correspondence between nominal and actual sizes for test statistics formed in
this simplified fashion (see Taylor (1987), Chesher and Spady (1988) and Kennan and
Neumann (1988)). The last two sets of authors have traced the problem to the
randomness induced into the test statistic by utilizing the outer product forms as
estimators of the components of A and V, i.e., to the problem of using sample
moments as estimators of population expectations. It appears from this work that the
discrepencies between these two values can be very large when higher order moments
need to be estimated, and this discrepency is magnified in the test statistic since AVA’
appears in the denominator. However, we suspect that the fact that the procedure is
so easy to compute will make it attractive to many investigators and for this reason

we have generally adopted it in the following sections of this paper.
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2.2 Formulating Suitable Conditional Moment Restrictions

Our motivating examples for choice of m,(f) above were derived from potential
errors in the moments of Y; associated with the regression model and, indeed, later
analogues of these will be employed as one procedure for generating diagnostic tests.
Another will be what we refer to as the "“first order condition" method. A popular
strategy for constructing specification tests, particularly in the literature to be surveyed
later, is to follow Hausman (1978) and compare two different estimators of 6, 8 and .0,
both of which are consistent estimators of 00 if the chosen specification is adequate,
but which will have different probability limits if it is not. To incorporate them into
the framework above let Etﬁi(.ﬂ) = 0 be the "first order conditions" defining the
estimator of §. Then define m(wi,b) = ¢j(&) - wi(-ﬂ). Clearly, N1/ 2)Dm(wi,z?) =
(N_lz o/ 60)N1/ 2(2)—.0) + op(l) after an expansion of qbi(b) around @ (under the null
of no specification error). Hence, since N—1261/)i/ 00 will generally be non-singular, a
test based on Nl/ 2(b ~ b) will be asymptotically identical, under the null, to one based
on N“l/?z(wi(b)—zpi(b)) = N/254,(6) because Tv;(8) = 0 (see Ruud(1984) for this
idea). To give an example from the regression model (1), let 0 be the instrumental
variable estimator (Ezixi)—l}:ziyi so that ¢i(b) = z(y;X{ 23). This constitutes a test
for the exogeneity of X;, as ﬂ is inconsistent if X; is not exogenous whereas b will be
consistent if the instrument is valid.

Later we will encounter first order conditions that only hold "asymptotically" in
the sense that N1/ 22:/)i does not have zero expectation in any finite sample but the
expectation converges to zero in infinite samples. Frequently these first order
conditions can be written as :/;i = 1/;} + v[a‘f where E(qb%) = 0 and N—l/ 22¢? is op(l)
when the null hypothesis of an adequate model is correct. From the derivation of the
limiting distribution above it is apparent that a test based upon 2¢i(b) will still have

the same limit distribution as described earlier.
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There is one set of diagnostic tests that cannot be immediately put into either
framework above. These focus upon the use of prediction errors for detecting a poor

model. In this case the conditional moment restrictions for (1) would be of the form

_yN+n
E[n 12.3 - 1zi(yi-xg ﬂ)] = 0, where N+1,...,N+n are the individuals whose behavior is
i=N+

being predicted — the "prediction period". In principle z; could be many possible
variables, but setting z;, to x; focuses directly upon whether the orthogonality conditions
associated with least squares hold out-of-sample. Because Exi(yi—xiﬂ) are proportional
to the scores when the u; are normally distributed, an obvious extension of this

prediction idea to models estimated by MLE is to examine the average score in the

. N+n .
prediction period, that is to form the test 7 = n-1 L di’ since the mean post—
i=N+1

sample scores should be close to zero for a good model. Defining k = n/N, and
exploiting the fact that the observations are independent, the asymptotic variance is
easily seen to be (N+n)Jp, = N(1+k)Jy4 Pagan and Hoffman (1988), and therefore
the test statistic will be (1+k)'N"'7J;l7. Notice that it is envisaged in this
approach that n tends to infinity as N does, and so n needs to be quite large. This

requirement should not pose any major problems as N is typically extremely large.

3. Diagnostic Tests for the Tobit Model

3.1 Regression Diagnostic Analogues
The Tobit model has been a popular model for the study of individual data, and
even for some time series problems, as seen from Amemiya's (1984) survey. As

normally motivated it is presumed that there exists a latent model corresponding to (1)
y; = x{f+u, (9)

* * *
but observations {y;} are made on {y,} only if y; > 0. Fory; <0,y; =0is

observed. Extensions to allow for a different censoring threshold than zero are also

possible.
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If y: was observed an interesting set of conditional moment restrictions would be
(i) — (iv) discussed in section 2 earlier. Consider the first of these —
N-IEE(zi(yl;—xi'ﬂ)) = 0. Now E[zi(y;-xiﬁ)] = E[E(zi(y;—X{B)Ui)] = E[zi(E(y:Wi) =
x{f)] = 0, and repeating this conditioning argument for each of (i) ~ (iv) in section 2
yields

N *

(i) N—liEIE[zi(E(inyi) -x:f)] = 0 (10a)
N

(ii) N-I.EIE[zi(E(u?lyi)—az)] = 0 (10b)
1=
N

(i) N—lizlE[E(uiui_jlyi,yi_j)] - 0 (10c)
N

(iv) N’l,zlE[E(u?lyi)] = 0, EE(c}|y) - 36% = 0. (104)
1=

It is well known (see Amemiya (1985, p. 367)) that E(y; |y, = 0) = x{B-0),
where A, is the ratio of ¢(x{f/0) to 1-®(x{5/0), and ¢(-) and &(-) are respectively
the density and cumulative density of the standard normal random variable. For
positive observations E(y:] yi>0) = y;- Accordingly, when testing for an omitted

regressor z;, the sample moment corresponding to (i) above would be
N - A

NIy zi{-"(l'li)’\i+liui}’ with I, being the binary variable that is zero if y; = 0 and
i=1

unity if y; > 0. By comparing this to N'IEZiﬁi in the linear regression case we are
led to describe ;’i = -;(I—Ii)“\i + Ii;li as a generalized residual (in the sense of Cox
and Spell (1968)), making specification tests for a correct conditional mean in the Tobit
model a function of the sample moments of z with the generalized residuals 771 This

is the essence of the diagnostic tests proposed by Chesher and Irish (1987) and
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Gourieroux et al. (1987a), although the latter derive it as an LM test by showing that
N"I)L‘zini is proportional to the score of the log likelihood with respect to the 4 in the
expanded model y; = x§ﬂ+zi7 +u,

The sample moments corresponding to (i) — (iv) above when f is replaced by 23
bave all been proposed as diagnostic tests for particular types of model inadequacy.
Chesher and Irish and Gourieroux et al. propose the second as a test for heteroske—

dasticity. Under the null hypothesis that u; is independent of uj; (iii) would be

N .
Ny E(uilyi)E(ui-jlyi—j) with sample analogue N-lznjni_j. Robinson et al. (1985)
i=1

used the first order serial correlation coefficient of the 7, as a test for serial correlation

in the Tobit model, and this is proportional to N'IE;)iﬁi Bera, Jarque and Lee

(1984) use (iv) as tests for normality of the errors, derivilig it from an expanded model
in which the alternative density is a member of the Pearson family. Chesher and Irish
(1987) give a different derivation but also settle upon (iv) as a test for the Tobit
assumption of mormality in the errors of the latent variable model. Perhaps the main
difficulty with implementing (i) — (iv) is the need to evaluate E(uitl y; = 0), but Lee

and Maddala (1985, p.4) give a recursion for the moments of (yi—x; f)/o which yields

Ewty=0) = % E (uf?|y=0) - o(x;p\0 2 1

All of the existing tests for omission of variables etc. described above were
generally derived from the LM or score test approach, sometimes after quite complex
argument. Our analysis shows that the same outcome could be obtained by stating the
appropriate conditional moment restriction associated with the latent model, and then
replacing it with a moment restriction based upon the observable random variables.

Application of this principle highlights the fact that all of the standard tests used in
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the basic regression model can be extended directly to the Tobit model, e.g. putting z
= (xib)2,(x§b)3 for non—zero y; and the squares and cubes of the estimated pr(yi=0)
for zero y;, would yield the analogue of Ramsey's (1969) RESET test.

Because of the connection with the LM test, diagnostic tests based upon the
moments described earlier provide an asymptotically locally most powerful test of the
alternative hypothesis that they were constructed with reference to. Thus the
generalized residuals may well be the best instrument for specification analysis. Used
as parts of a sample moment this is true, but sometimes a good deal is learned from a
graphical analysis of residuals, and a number of authors have pointed out that the
generalized residuals can be hard to interpret. For this reason it may be useful to
develop classes of residuals that resemble ordinary residuals more closely but which can
be used in the same way as generalized residuals.

There is a temptation to adopt ;/i = yi-xi'b for this purpose, but the random
variable Y= ¥iXg { does not have a zero mean, and correcting for that fact repro—
duces - Nevertheless there are other ways to obtain a series of errors that do have
the correct mean of zero (correct that is if the model is adequate). Powell (1986) has
developed a "symmetrically trimmed least squares" estimator of § for the Tobit model
that trims the original data set so that the resulting error term has an expected value
of zero provided the underlying latent density is symmetric around X{ f. He does this
by first deleting all observations for which x{;ko, producing the set of observations
i=1,...L, and secondly by setting y; = 2x;B for all y; that exceed 2x;f(i=1,..L). In
terms of the latent model, when x{ﬂ > 0, y’; > 2x§ﬂ if u,;zxiﬂ, while y: <0 if u’; <
-x{f. Hence, by deleting the negative x{3 and matching the y, = 0 with y; = 2x{/,
the resulting yi(i=l,..,L) are symmetrically distributed over (0,2x§ﬂ); that is, the errors
y;=x{B(i=1,..,L) are symmetrically distributed over ~x{B to x{B.

Formally, the symmetrically trimmed residuals are defined as § =
I(x: b>0)[min(yi,2x§ b) - x{ﬁ], where I is the indicator function. A plot of these
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residuals may be helpful in detecting model inadequacy, although it is apparent that
their utility is limited by the number of observations with X ﬂ > 0 in the sample and
the number that exceed 2x§b. If either event occurs often, a good deal of information
can be lost if the specification errors happen to be mainly manifest in those data
points. Nevertheless, the symmetrically trimmed residuals are easily computed and a
check on their patterns would seem to be worthwhile. In fact, because the fi are
beteroskedastic it is probably more informative to examine the standardized residuals.

If interest centers mainly upon distributional issues, it is possible to estimate the
distribution function of the underlying errors with the Kaplan-Meier (1958) "product
limit" estimator applied to the residuals Y; — xl,B This may then be compared with
the cumulative normal distribution and an assessment of the validity of the normality
assumption made. Chesher et al. (1985) illustrate the power of this graphical procedure
in determining departures from normality. Formal tests for the difference between the
estimated and postulated distributior functions can be done as conditional moment tests
following Heckman (1984), Andrews (1987) and Tauchen (1985).

Some other diagnostic tests for the Tobit model also appear in the literature.
Smith and Blundell (1986) were concerned with whether the regressors of the latent
model were exogenous. They add to (9) a variable w. which is related to other

variables z; in a linear fashion, making a two equation system
yi = wWir+x{f+uy (11a)

wi = z;1r+ vi, . (llb)

where the errors u; and v, are bivariate normal.

When w, is weakly exogenous E(uivi) = 0, so they propose to test for this by
adding the OLS residuals ;i = wi—zi;r to 11(a), applying the Tobit MLE and checking
if the coefficient of v; is zero. Under the null hypothesis the conditional moment

restriction E(u,v;) = 0 can be written as E[E(y,| y;)vjl = 0, exploiting the independence
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of w; and v;, i.e. a suitable test for exogeneity of w; could be constructed from the
sample covariance of the generalized residuals 7 from (11a) and the OLS residuals v,
But this is easily seen to be asymptotically equivalent, under the null hypothesis, to
the Smith and Blundell test. Since Smith and Blundell apply the Tobit MLE to (11a)
with “'i as an additional regressor, let us call their estimator of 9, § and a (the
coefficient of \.ri), 9. Their "t-statistic" is proportional to the score for a, and hence to
N-IE;ini, from which it is evident that the difference in the two approaches can only
be in the evaluation of n;- The method of this paper evaluates % with 2), the MLE of
6 under the null hypothesis, whereas Smith and Blundell use b, an estimator that is
consistent under the alternative hypothesis that E(uivi) # 0. It is worth noting that
they evaluate the variance of a by setting o = 0, so that their actual test statistic is
a mixture of § and 8 evaluations. To get the variance of Nl/ 2 = N"I/ 22;7i;i one
need only apply the regression approach detailed in section 2.1, so that both motivation
and derivation of the exogeneity test is aided comsiuerably by recognizing its Qrigins as
a conditional moment restriction.

An "omnibus" test for model inadequacy is the information matrix test formulated
in White (1982) and extensively applied to the Tobit model by Chesher et al. (1985).
This is a conditional moment restriction with m.(f) = vech(E(azLi/ 8696') + d,d:)
where L, is the value of the log likelihood and d, is the score vector at the i~th point.
Chesher et al. decompose mi(0) into three components that test for heteroskedasticity
and normality.

3.2 Diagnostic Tests from First Order Conditions

Section 2 also noted the possibility of constructing diagnostic tests by using the
first order conditions for an alternative root N consistent estimator of 4, i.e. qb(-&) =0
and NY/ 2(0 -6 is Op(l). Forming ¢(b) and testing if this is zero is equivalent to a
test for whether 0 and l~9 are different. Quite a few proposals of this type have been
made. Newey (1986) took 8 as Powell's (1986) symmetrically trimmed least squares
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estimator, for which () = N™'Ex.£(6), where ¢ were the symmetrically trimmed
errors defined earlier. Hence, we can interpret Newey's work as examining N'l}:xi%i?.
There are other sets of first order conditions from the semi-parametric estimation
literature which can be utilized as the basis of a diagnostic test. Ichimura (1987)
showed that the estimator of § which solved the first order conditions E(yi-éi)(aéi/ ap)
= 0, where éi is an estimate of g = E(yi|x§ﬂ), was asymptotically normal with
normalizing factor Nl/ 2. To get this result he estimated the conditional expectation g,

by kernel regression as EyjK((xiﬂ—xjﬂ)/h)/ EK((xiB—xjﬂ)/h), where K(.) is a
J#i J#i
function with the properties that it is non-negative, symmetric and integrates to unity,

while h is a window-width. There are many choices that could be made for K, mainly
from the class of probability density functions for continuous random variables, but h
needs to be set as proportional to a number between N3 ang NV 4, since it was
only for this range that the estimator 23 solving these first order conditions was shown
to be root-N consistent; to interpret this test as one based upon the difference between
Zi and b the window width choice needs to be circumscribed. It is also of interest to
note that the expectation of 4, = (yi—gi)(aéi/ d3) above is not zero in finite samples,
but it can be written as 2[(yi—gi)(6éi/6ﬂ) + w%], where the expectation of the first
term is clearly zero due to the i#j restriction in the construction of the kernel, while

-1/2

the second term when normalized by N is op(l). Hence, as mentioned earlier in

section 2, the distribution of the test statistic is the same as if the expectation of ¥,

N_7/ 24 4nd use

had been zero in finite samples. In later use of this test we set h =
the Gaussian kernel K(z) = (21)'1/ 2mq)(—(l/2)z'z). One advantage of Ichimura's
estimator is that it utilizes all the data and therefore it might have greater power as a

diagnostic test than that based on Powell's estimator even though it is much more

2In fact Newey also suggested obtaining 0 by solving N'lilxip(ﬁi(b)) = 0 where p(-)
is any odd function, as the conditional symmetry of §; ensures that E(xifi(()o)) = 0.
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cumbersome to compute the first order conditions. A disadvantage is that it is
consistent only under distributional mis—specification whereas Powell's estimator is also
robust to heteroskedasticity in the u,.

Nelson (1980) found a 0 from a rather odd binary formulation of the Tobit model
(see Ruud (1984) for details), and Ruud (1984) suggested that a more appropriate
procedure would be to apply the Probit estimator to the observations, i.e. replace y; >
0 by y; = 1, to find 0. Hence his test compares the Probit (b) and Tobit (b) MLE's
and can be regarded as focusing upon N’lzxi((tii(l—éi))_l(yi—ii)ti)i. Of course what
appears in the first order conditions for the Probit model is (#/o), and therefore only
(b/or) is substituted into the ¢(-) function.

The variance of each of these statistics may be found via the Newey-Tauchen
method outlined in section 2. It should be mentioned that in the case of the
conditional moment restrictions from the symmetrically trimmed least squares estimator,
neither Newey nor Tauchen's paper strictly provides the requisite asymptotic theory.
Because §i is not differentiable in #, the é~method described in section 2 does not
apply, although Tauchen showed that one could allow non—differentiability if
observations were identically distributed. However, it is not too hard to verify that
the results of section 2 apply in this instance by adapting the limit theorems in Powell

(1986).

3.3 Prediction Error Tests

Exploiting prediction errors for diagnostic purposes has not been as popular with
the Tobit model as for the basic regression model. Anderson (1987) is a notable
exception. Essentially he advocated a comparison of the log likelihood over the
sample period with that when the model was fitted using both the sample and post—

sample data. Although easy to compute, this test is not very informative in the event
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of a rejection, since it is not clear which of the first order conditions defining the
estimators has been violated by the post-sample data. Anderson (1987) tried to
implement Salkever's (1976) dummy variable technique, but ran into difficulties with
constructing a test statistic. Hoffman and Pagan (1988) applied the prediction test
based on the post-sample scores discussed earlier to Fair's (1978) Tobit model of the
number of extra-marital affairs engaged in by individuals. This is an example that we
now turn to. However before doing so it probably should be noted that the dependent

variable ¥; is integer valued and therefore a Tobit model is not really appropriate.

3.4 An Example

Fair's (1978) model explained the number of times an individual engaged in
extra-marital intercourse as determined by seven variables — sex, age, number of years
married, the presence of children, the degree of religious attachment, level of education
and occupation. He fitted this model to two data sets; we chose the 601 observation
set from Psychology Today.3 Table 1 presents the diagnostic tests in (10) for this
model, obtained by regressing the conditional moment restrictions against an intercept
and the scores. It is immediately clear from these results that the model is seriously
mis-specified.

As well as the diagnostic tests stemming from the testing of the moment
conditions reported in Table 1, Fair's model was also evaluated with the
non~parametric first order conditions described earlier. The first method employed was
to insert Fair's maximum likelihood estimates into the first order conditions for
Powell's symmetrically trimmed least squares estimator. These values were then
regressed against the scores from Fair's model and an intercept; the t-statistics on the

intercept in these regressions are tests of whether the first order conditions sum to zero

$We are grateful to Ray Fair as well as all the other authors who supplied their data.



21

TABLE 1

Test Moment Restriction t—Statistic
RESET! E(PRED?*1)=0 6.953
E(PRED%*p)=0 5.948
Heteroskedasticity2 E(zl(E(u2 | y)-oz))=0 12.238
E(zo(E(u®|y)~0%))=0 17.391
E(z4(E(u?|y)-0%))=0 13.923
E(z,(E(u?|y)-07))=0 13.685
E(z(E(u?|y)-0%))=0 16.490
E(zg(E(u?|y)-0%))=0 20.032
E(z,(E(u”|y)-0°))=0 18.052
E(zg(E(u?|y)-0%))=0 16.771
Normality E(E(u®]y))=0 14.726
E(E(u} |y)-30})=0 14.231
Prediction’ E(post-sample scores)=0 61.48 ( xg)
Notes:

1.

In the RESET test PRED are the predictions x;§ for the non—zero

observations and &(x{b) for the zero observations. # are the

generalized errors. '

2] = 8eX, Z, = 8ge, Z3 = number of years married, z, = presence of
children, 2g = degree of religious attachment, 2g = education level, zZ, =
occupation. See Fair (1978) for a complete description of these variables.

Test that the average scores for i = 541,..,601 are zero after random

- selection of observations. The test is x2 with eight degrees of freedom as

there is a score for o%. See Pagan and Hoffman (1988) for further

details.



and are reported in Table 2. An examination of this table reveals that, in many

instances, the requirement that the first order conditions have probability limit of zero

is most likely violated. The evidence for inadequacy is however much weaker than for

the parametric tests, although this might be explained by the fact that only 47

observations remain after the trimming. That there was a potential problem with the

method stemming from such a loss of information was alluded to earlier, but this

provides a dramatic illustration of the point.

First Order Conditions for the Symmetrically Trimmed

Least Squares Estimator Evaluated at
Fair's Tobit MLE's

Variable t—stat Variable t—stat

Intercept 2.538 zl 624
z2 2.065 23 1.401
z4 1.781 z5 982
z6 2.183 27 1.320
z8 2.216

Fair's model was also examined by evaluating the values of the first order condi-

tions of Ichimura's estimator implied by Fair’'s maximum likelihood estimates. As

with the symmetric least squares estimator this was done by regressing the implied first

order conditions against an intercept and the scores from the Tobit model.

The t-tests

on the intercept being equal to zero are reported in Table 3. These results support

the earlier results that the model is misspecified. In three instances the requirement

that the first order conditions is equal to zero is clearly violated. However, in
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Table 3
rder Conditions for Ichi 's Single Ind timator
t ir's Tobit M.L.E.'s
. t-stat . t-stat
Variable (abs. value) Variable (abs. value)
z 1.870 Z, 1.458
zZg 417 N 948
25 2.778 Zg 2.299
zq 802 zg 2.089

light of the earlier results it appears that this non-parametric procedure may be weak

in detecting misspecification, even with the quite large sample available here.
4. Discrete Choice Models
4.1 Univariate Models

4.1.1 Regression Diagnostic Analogues
In discrete choice models only the fact that a choice has been made in the

negative (yi = 0) or the positive (yi = 1) is available. One way to place this in the
context of the linear regression model is to proceed with the latent variable model (9)
used in the Tobit model discussion, identifying the outcomes y; =0 with y’; < 0 and
y; =1 with y; > 0. Diagnostic tests for omitted variables, heteroskedasticity then
have exactly the same format as for the Tobit model, except that E(y?]yi>0) # y; any
longer. The generalized residuals therefore differ from those for the Tobit model, but
only to the extent of the substitution of E(y’;| y;i=1) for y; in the formula. When the
latent errors are normal we get the Probit model, and E(y’;lyi=1) is given by ¢i<1>'1
(Amemiya (1985, p. 269)).
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Although the latent variable approach can be a useful way of thinking about the
origin of the data {y;}, discrete choice modeling more often proceeds by focusing
directly upon {y;} and regarding it as realizations of a binary random variable with

Pr[yi=1] = F,, Pr[yi=0] = 1-F,. With the latent variable interpretation and normality

’

of the u,F; would equal [:iﬂd)(z)dz, and this constitutes the Probit model. Other
formulations of Fi are possible, with the most popular alternative being the Logit model
which has F; = exp(x{f)/(1 + exp(x{B)).

Suppose ¥ is a binary random variable with true probability function Fi‘ It is

easily seen that E(y;) = Fj,var(y;) = F;(1-F,). By definition therefore,

y; = E(yi) + Vi == Fi + v, (12)

where E(v,) = 0, E(_v—?) = F;(1-F,). Now let F, be a function of the data, the
parameters of the chosen model #, and a set of parameters 7 that characterizes an

alternative. Setting 7 = 0 yields the chosen model, which is defined as

and v has zero mean and variance Fi(l-Fi) under the null that 9=0.

Expanding Fi in (12) around 9=0 by Taylor series givest

y; = Fi(0’7=0) + Fi'y + Fi"72 +....e +'\7i, (14)

where the primes indicate differentiation with respect to 4, and F; = F;(a,7=0), Fg ¢

= F{'(o,FO) etc. (14) embodies the conditional moment restrictions E[N"liil:’i"\'r“i

0, EINT'EF;*V]] = 0,..... . Under the null hypothesis 7=0, V; = v;, and the
restrictions are E[N'ZF;v] = 0, E[NEF; v] = 0,..... .

4We will assume 7 is a scalar in the exposition below for simplicity.
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If ¢ was known, the sample moments corresponding to the population moments
would be N"'EF{v,NZF; v.... . Now, rather than use N"'EF;v, as the basis of a
test, it was observed in section 2 that an equivalent test for whether E(N'IZF' ) =0
could be formed from [(N‘IE(Fi )2]_1[N 1ZF'v] whenever N-IE(F )° # 0. This is the
OLS estimate of the coefficient of F{ in the regression of v, against F;. But the
errors in such a regression, under the null, are heteroskedastic with variance Fi(l—Fi),
and therefore a GLS estimator of this coefficient will be more efficient. Thus it is
more appropriate to regress v'; = F;ll 2(1-Fi)"1/ 2vi against (Fi)* = ;1/ 2(1—Fi)’1/ 2F;,
pointing to E(N'E(F;) v;) = E(N'TF;(F,(1-F,))v,) as the relevant population
moment condition. Taking cognizance of the fact that # needs to be replaced by its
MLE b, the sample moment condition to be used for the construction of diagnostic

tests in discrete choice models will therefore be
o -1 -1
r = NlzF: ( e 1-F, D) (y,-F) (15)

Many diagnostic tests for the Probit and Logit model are based upon (15),
differing only in the choice of F:. To appreciate this it is useful to write Fi as a
function of a variable 4 so that F(s=-w) = 0, F;(45=0) = 1, allowing F; to be
expressed as f.0u./0y = f.z., where f; is (F;/0u;) and would be the density ¢, if 4 =
x{f+z{7 in the Probit case. Hence, r = N"IZZ f. (F (1- -F, ))—l(y F) and the elements
in the sum are —z f. (l—F )’1(1f y;=0) and z, f F ( if y;=1). For the probit model fi
= ¢x’ F <I> and 7 is seen to be the covariance between z, and the series

i(1—4I>i)"1( if y;=0) and ¢i<1>i-1( if y;=1), the last two terms being identical to the
generalized residuals E(y,|y;) - x;8. Accordingly, T = N"TE5(E(y; |y;) - x{6).
Because of this relationship in the Probit model, ii(Fi(l—Fi))-l(yi—Fi) will be termed

the generalized residuals for any discrete choice model. It is also worth noting that,
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from Davidson and MacKiﬂnon (1984) and Newey (1985), r would also be proportional
to the score vector for 7, making -r equivalent to the score test of ¥=0.

Many suggestions are available for z; and Newey (1985, p.1062) lists these for the
Probit model. When s, = x{f+z{7, z; being an omitted regressor, gu;/87 = 2; and
this tests for mis-specification in the conditional mean of the latent variable model.
When 4 = x{f(1+2{7), 9p;/87 = z;(x;08) (under the null that 7 = 0), and one has a
test for heteroskedasticity. To test for normality as the underlying distribution for the
latent variable model, one can follow Ruud (1984) and set Fi = ¢I>(p«]+'ylu?+72u?),
where 4. = x{f, whence it follows that z, = [(x;b)‘? (xi'b)3], and this would provide a
RESET-like test for normality in the Probit model (Taylor (1985) investigated the
power of this test to detect some types of mis—specification in Probit models and found
it had quite low power for conditional mean mis—specification, but he did not
concentrate upon distributional mis-specification).

One interesting feature to emerge from the above analysis is that tests for higher
order moment mis-specification in the latent variable model are capable of being
detected from the correlation of z; with the generalized residuals, and powers of them
are not needed. This is because, unlike the regression model, no strict demarcation can
really be drawn between the effects of mis—specification upon different moments of the
Y;» since a mis-specification in any part of F; affects E(y;) as well as higher order

moments.

It is patural to ask why the moment conditions E(N—IEFi'Vi) = 0 etc. were
ignored above. In fact, this broader set of orthogonality relations could be used as the
basis of diagnostic tests, but they are generally discarded because of the following "local
alternatives” argument. It is a standard procedure to compare test statistics by their
ability to detect specification errors which disappear as N-w, as this constitutes a fairly

stringent test of their quality. Under this argument v = §/yN and from (14)
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[Nllz(N—leivi)] - [N_1/22F§‘(Fi’7 + Fi'»yz ..ot _\';i)] (16)
_ N‘1/2(2(F§)2) ot N’1/2(2FgF§')72 e N-1/22F§Vi a7

indicating that terms in the expansion above first order have no asymptotic effect when
alternatives are local, thereby justifying a concentration upon the moment restriction
involving F:{ and v; only.

Essentially the diagnostic tests described above examine the residuals ¥; - F, for
specification errors, taking into account the fact that the errors are heteroskedastic.
Unfortunately, even when studentized, these residuals tend to be hard to interpfet when
plotted, as seen from the graphs in Gourieroux et al. (1987b). When a discrete choice
model can be given a latent variable interpretation, these authors have proposed a class
of "simulated residuals" which are better suited to graphical analysis. Taking the
Probit model as an illustration, they would simulate y: by adding on to x! ﬂ the first
A (0,1) random number generated on a computer that made y: <0 (if yi=0) or y’; >
0 (if y;=1). Designating the simulated y’; as ;':, they regress_;; against x; to obtain
the simulated residuals {’i‘ Of course the {li rarely look much like the u, in contrast
to the OLS residuals which at least converge to u;. Moreover the variance of ‘;i
involves a rather complicated formula, although this feature does not seem very
important unless one wished to construct test statistics from them, and it is hard to
see why such residuals would be preferred over the generalized residuals in this context.
How effective simulated residuals are in detecting specification errors remains to be
seen. One of their best uses may be in the detection of outliers in the data, and this
was an example employed by Gourieroux et al. Isolation of outliers in the Logit model

was also Pregibon's (1981) concern, and he has suggested some measures of the
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importance of the i—th point to the parameter estimates, based on the concepts of
leverage that have been popular in linear regression.

A number of other conditional moment restrictions have been proposed as a way
of generating diagnostic tests which are not functions of the generalized residuals. A
procedure that has found favor in the mode or brand choice literature is to compare
the average predicted probabilities of choosing a particular mode or brand for a class of

individuals with the observed relative frequency of that choice. Thus the test statistic

is
o n-leon -1
T = NTTF-N"Zy (19)
) il Jielj

where Ij indicates the j~th class of individuals within a sample of i=1,..,N and | N j is
the number of individuals in that class. Defining the dummy variable 6i to be the

value unity if ite and zero otherwise,

: a N . 9N 3 .

7o = Nj izl &(F, —y) =N iE_I(Nj N)&(F; - v;) (29)
and this would be the sample equivalent of the conditional moment restriction of
E[N?N&i(Fi—yi)] = 0. Because E(y;) = F, under the maintained hypothesis of an
adequate model this is indeed so.

Horowitz (1985) formalized the above test, finding its limiting distribution after a
lengthy derivation. But, because it fits into the Newey-Tauchen framework, the
variance can be found much more easily from the regression of the NJTlN&i(Fi—yi)
against a constant term and the scores for 8, as described earlier. (Note that the
asymptotic theory requires that Nj"“’ as N-«w and for Nj/N to tend to some constant.)
Horowitz found that the power of the test was fairly weak when compared to that of a
likelihood ratio test (LRT), except when the postulated alternative needed to define the
LRT departed substantially from the true model.
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Rivers and Vuong (19.88) test for exogeneity of regressors in a Probit model in
the same way as was discussed earlier in connection with Smith and Blundell's (1986)
work on the Tobit model. Their test would involve the correlation of the generalized
residuals from the Probit model with the reduced form residuals, exactly as described
earlier. Note that, if the simple method of computing the asymptotic variance of
NI/ 2; set out in section 2 is to be used, the scores for both fitted equations need to
appear as regressors.

4.1.2 Diagnostic Tests from First Order Conditions

Just as for the Tobit model one might work with diagnostic tests in which the
MLE of f is substituted into the first order conditions of another estimator which is
consistent under a wider range of alternatives than the MLE is. Hence Ichimura's
estimator discussed in the Tobit case would also generate a comsistent estimator of /
for any underlying density for the u, (although there are some restrictions on the
admissible class coming from the theory of non-parametric estimation). By examining
the first order conditions for this estimator, evaluated at the MLE, one could develop a
test that might be expected to yield some information about specification errors in the
density for u;. Note that not all semi-parametric estimators could be used in this
way. Manski's (1975) maximum score estimator does not yield a root-N consistent
estimator of 6, and therefore cannot be meaningfully compared to the MLE of # from
the maintained model.

Two recent papers have focused upon testing for exogeneity of regressors in the
probit model utilizing first order conditions. The first of these, Even (1988), adapts
the Hausman test along the lines of that suggested by Nelson for the Tobit model. In
Even's test the consistent estimator under the alternative is Amemiya's simultaneous
equation probit estimator which is inefficient compared to the standard probit estimator
under the null hypothesis of exogeneity. Application of the "first order" idea here

would see the substitution of the probit MLE's into the equations defining Amemiya's
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estimator, and this may be more appealing then the direct Hausman test since it does
not require estimation under the alternative. Rivers and Vuong (1988) find a simpler
two stage estimator under the alternative whose defining first order conditions might

also be exploited.

4.2 Multivariate Models

4.2.1 sion Diagnostic An

Consider now the situation when there is a set C of K alternative actions, and
the probability that the i—th individual will chose alternative k from this set is Fik
which becomes the equivalent of Fi in the unvariate case. The data consists of
observations on which alternative is chosen by the i-th individual. Define K variables
yik(k = 1,..,K) which take the value unity if alternative k is selected by the i-th
individual and zero otherwise. Then, exactly as for the binary alternative situation, |
E(y;) = Fik and the binary random variable has variance Fik(l-Fik)’ while if the
maintained model is adequate E(yik) = P, with variance Pik(l-Pik), where P, =

Fik(0,7=0). Consequently, the equivalent of (12) when there are multiple choices is

Vik = EOpd + vik = Py + Vik (20)
while that for (14) is

yi = Pik + Pilk‘, + ... +Vik. (21)

As in the analysis of (12) and (14) the heteroskedasticity present in the Vik(vik when

7 = 0) means that it is more efficient to look at the conditional moment restriction
E(N'lg P (P71 = P ) Y - Py)) = 0 (22)
1oy 1KV ik ik ik T Tk =

than to consider the covariance between P{, and (y; - Pik)‘
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We are interested in the question of whether some z, has been invalidly omitted

from Pik’ i.e., we wish to test if ¥+ = 0. For the multinomial logit model the
xH B+ 2.7 x:.f +
expanded probabilities are Fik = e Ik ik /@‘Ce 1
J
_ _ .x B x!.0
individuals selecting the first alternative, i ¢ Il, after substituting for Pfk in (22) and

noting that y., = 1, their contribution to (22) would be

2..7
U7) s0 that P =

-1 _

1
The same relation holds for those individuals opting for alternative 2 but with Z
replaced by Zo- Because each individual must select one alternative the data set is
composed of the union of the mutually exclusive sets 11,12,...,IK. Hence, aggregating

over all choices, (23) will be

4N K
E[N iil kzlyik(zik - Zic)] = 0, (24)
-1 N K .
which is just the score of the log likelihood N ° & kE Yiilo8P;x with respect to 7
i=1 k=1

evaluated at v = 0, allowing the interpretation that the score test for ¥ = 0 is a test
of whether P¢, is correlated with the errors Yix — Py (or y; = 1). Because of the
origin of this test in the linear relation (20), errors for the multinomial probability
models are probably best defined as (y; — P;;), or perhaps P;ll(/ 2(1 - Pik)"l/ 2(yik -
Pik) if it is desirable that they have unit variance. McFadden (1987) opts for

P;ll(/ 2(yik — P, ) as his definition of a generalized error, which seems peculiar.
Essentially, the reason for a lack of agreement about what should be termed an "error"
stems from the fact that we cannot express Pik as a product of Xi with another

quantity, the error; in the linear regression, Tobit and binary choice models the
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generalized errors were alwé,ys defined in this way. One advantage of the

interpretation and definition offered above is that it applies to any model that specifies

~ N K - -~ -~ -

-1 , (ol -1,

a form for P, , so the use of 7 = N i§=1 kgl YR ik (P (1-Py)) " (yy — Pyy) as 2
diagnostic statistic applies to the multinomial probit as well.

4.2.2 Diagnostic Tests from First Order Conditions

Perhaps the most controversial assumption in these models is that known as
"Independence from Irrelevant Alternatives" (IIA) which characterizes the multinomial
logit model. For this reason investigators have set out to test the restriction, and a
number of proposals have been made that can be interpreted as substituting estimates
from one set of first order conditions into another.

Hausman and McFadden (1984) compared the estimates of § obtained when the
"irrelevant choice" appears in the model and when it is dropped. If the IIA
assumption is correct both estimators are consistent, and under an alternative they will
generally converge to different probability limits. The "first order" approach would
therefore substitute the M.L. estimates obtained from one set of choices into the first
order conditions (24) defining the other. A related idea is Horowitz's (1981) and Small
and Hsiao's (1985) proposal that the two sets of estimates be found from different
halves of the sample and then the log likelihood ratio test be applied to test for
"structural stability". Denoting bu and &R as the unrestricted and restricted estimates
of the common set of parameters and L( ;9“) and L(&R) as the estimated log likelihoods,
Horowitz's test is based on L(bu) - L(bR). Since the estimators are formed from
different samples we can condition upon either one and then L(bu) - L(bR) will have
the standard distributional properties. This situation contrasts with the case when bu
and bR come from the same sample; Hsiao and Small (1985) point out that the
likelihood ratio test would then be biased.
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4.3 Some Examples

To illustrate the applicability of these test procedures to discrete choice models,
two empirical studies involving probit and logit models were chosen. The probit model
is that estimated by Cymrot and Dunlevy (1987) in their study of the migration
behavior of baseball players, while the logit model examined is that estimated by
Volker (1983) dealing with the use of credit cards.

The equation replicated from Cymrot and Dunlevy for this study is that reported
in their footnote 14. From that Probit equation, intended to explain moving or staying
behavior of baseball players, they calculate the Mills ratio which subsequently enters
their wage equation in order to correct for any selectivity bias. It is well known that
the auxiliary equation predicting mobility must be correctly specified, otherwise the
“selection factor" employed in the wage equation will be invalid and this will lead to
incorrect estimates of the determinants of wages (Olsen, 1982). The auxiliary equation
was estimateC for the two types of players comprising their data set, denoted "eligible"
and "ineligible" as reflecting free agency status. Diagnostic tests were performed on the
equations for each group and these are presented in Table 4.

Beginning with the "eligibles", the first two rows represent a test for omitted
regressors SAL80 and DSA79, respectively salary in 1980 and the difference between the
player's and the team's slugging average in 1979, and is the covariance between these
variables and the generalized residuals. It might be expected that these variables could
have some influence upon the decision to move teams, but neither was included in
Cymrot and Dunlevy's equation. Both variables appear to be legitimately excluded.
Rows 3 and 4 give the RESET-type test discussed earlier, which was motivated by the
possibility of a mis-specified density for the underlying latent variable governing
mobility. In this case the test is not passed at conventional levels of significance.
Tests for heteroskedasticity provide some evidence that the second moment of the

underlying density is not constant. This is important since, unlike the regression
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Table 4
ndition n r_the Probi 1
of Cymrot and Dunlevy (1987)
t—St.at.istic4
Test Moment Restriction
Eligible Ineligible
Omitted!2 E(SAL80*5)=0 1.427 1.145
Variables E(DSA79*n)=0 1.101 1.365
RESET® E(PRED?*n)=0 2.404 2.600
E(PRED>*1)=0 2.287 525
Heteroskedasticity E(SAL80*PRED*n)=0 1.364 .891
E(MOVES*PRED*p)=0  2.879 7.670
E(RACE*PRED*5)=0 1.090 1.855
E(LSA79*PRED*1)=0 1.647 1.349
E(MLE*PRED*7)=0 1.449 5.869
E(ATBATS*PRED*p)=0  2.258 1.043
E(ADJS*PRED*15)=0 2.194 .083
E(DFN*PRED*7)=0 1.981 4.626
E(BYR*PRED*5)=0 2.197 2.595
E(YSRM*PRED*7)=0 2.541 3.557

Notes:

1. For a full discussion of all variables see Cymrot and Dunlevy. Variable names
come from that article.
2. 75 denotes the generalized error.

3. PRED denotes X{ B.
4.  Absolute values.
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model, the presence of heteroskedastic errors means inconsistent estimators of the
parameters of the Probit model.

The major flaws that arise with the "eligibles" equation appear to also exist in
the “ineligibles" equation. The t-statistics on the RESET type tests imply that the
assumption of normality required by probit is unlikely to be correct. Furthermore, the
tests for heteroskedasticity show major defects in this area. Overall, the diagnostics
indicate that both equations are clearly mis—specified.

As with Fair's Tobit model of extra-marital affairs, the estimates of Cymrot and
Dunlevy's two probit equations were inserted into Ichimura‘s first order conditions and
evaluated. These are reported in Table 5. Let us again begin with the "eligibles".
Somewhat surprisingly, in the light of Table 4, on the basis of the "parametric" based
tests there are only two cases where the non—parametric first order conditions do not
seem to have their expected value of zero. An examination of the ineligible equation
also provides only a small number of rejections. Again this is unexpected given that
the earlier parametric tests identified serious difficulties with the model. The evidence
in Table 5 therefore, when combined with that in Table 4, may be revealing that these
non-parametric tests are not very powerful.

Volker (1983) fitted an equation to determine what influences the decision of an
individual to hold the credit card issued by Australian banks, Bankcard, and the
equation we subject to test is that reported in column (i) of his Table 1, although we
used thirty-seven more observations to give a complete sample of N=1547 . Results of
the diagnostic tests are reported in Table 6. The first two rows give the RESET type
tests, and the logit assumption seems satisfactory. In fact it is only in a few of the
"heteroskedasticity" tests that there is any evidence of problems with the model. In
particular, ‘it seems as if there may be different densities for females and for card
holders who live in Brisbane and Sydney. Perbaps it should be emphasised that the
tests here, although designed to look for a particular type of distributional
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Table 5
irst Order Conditions For Ichi '
ingl i r Ev
t D ! ‘

Variable Eligible Ineligible
MOVES .130 1.732
RACE .011 2.347
LSAFG .835 .781
MLE 2.409 142
ATBATS 637 2.986
ADJSA79 .760 770
DEN .328 .227
BYR 2.602 .028
YJRM .019 2.300

mis-specification, could also be picking up problems in the specification of the
determinants. It may be that multiplicative terms involving sex and geographical
location should be included amongst the x; and the ommision of these is what the

diagnostic tests are detecting.

5. Selectivity

Perhaps the most pervasive of all the problems in the analysis of individual data
sets is that coming from the self-selection of individuals into or out of a sample. The
simplest representation of self-selection is the Type 1 Tobit model (Amemiya, 1985),

z; = wia+yv i=1,....,N1 (25)

y = x{f+vy i=l,..N (26)

1
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Table 6
nditional ment Tests for th it M Volker (1
Test Moment Restriction t~Statistic?

RESET!3 E(PRED?*5)=0 330
E(PRED3*5)=0 068

Heteroskedasticity? E(AGE16-19*PRED*5)=0 377
E(AGE20-24*PRED*1)=0 354
E(AGE35-44*PRED*)=0 1.042
E(AGE45-54*PRED*5)=0 149
E(AGE55*PRED*1)=0 946
E(PROF*PRED*5)=0 1.360
E(SKIL1*PRED*15)=0 707
E(UNSKILL*PRED*p)=0 149
E(FEMALE*PRED*1)=0 2.982
E(SINGLE*PRED*1)=0 490
E(WID/DIV*PRED*5)=0 765
E(SYD*PRED*5)=0 9.572
E(BRIS*PRED*1)=0 3.707
E(ADEL*PRED*)=0 697
E(PERTH*PRED*1)=0 731

Notes:

1.

PRED denotes x; 8.
Absolute values.

n denotes the geheralized €erTors.

For a full discussion of the variables employed see Volker (1983).
The variable names are taken from that article.
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where z,; is a latent variable with associated binary indicator z;. Observations on y;
and X; are only available for those individuals i=1,...,,N who participate in the sample
(2;=1), and hence the sample is selected according to values of w; and v,. Whenever
the u, and v; are correlated the error term in (26), for i=1,...,N, will have a non-zero
mean dependent upon the level of W, Consequently, the OLS estimator of f# formed
by regressing y; against x; is inconsistent.
Estimation of the parameters has traditionally proceeded under the maintained

assumption of bivariate normality of u, and ;. From the properties of the conditional

density of u; given Vi » W = pv; + e, where E(eivi) = 0. Sustituting for Uy in (26)
y; = xgﬁ + vt e, i=1,....,N1 (27)
from which E(y;l2;=1) = x{f + PE(v;|z;=1) and (27) has the regression form

Yi = x{B + pE(v;lz;=1) + ¢ .  i=1,..,N (28)

5.1 Regression Diagnostics Analogues

Selectivity bias in the OLS estimator of B arises because of the presence of
pE(vilzi=1) in the error term of (28), being absent if p = 0. Since p is proportional
to E(uivi), repeating the same analysis as for the exogeneity of regressors in a Tobit
model given earlier indicates that a suitable moment condition to examine is
E(uE(v;|z;=1)) = E(u;m,) = 0, with 7, being the generalized errors for the Probit
model (25). The sample moment will be -r = N’lz;xi;;i, where unknown parameters [
and a are replaced with their MLE's. For the Type I Tobit models, under the null
hypothesis of p = 0, the MLE of § is the OLS estimator, while the MLE of ¢ is the
single equation Probit estimator. For generalizations of (25) such as the Type 2 Tobit
model, in which z’; is observed when positive, the MLE of § and o cannot be obtained
so easily, although one might ignore the fact that more than the sign of z’; is observed.

In fact, in order to implement the test statistic of section 2 such information could be



39

discarded without affecting the computation of the asymptotic variance of Nl/ 2;, since
the simplifications just require that a likelihood approach is being used.

The standard test in the literature for selection bias, Heckman (1979), is the
t—test that the coefficient of ;71 is zero in the regression of Y; against x, and ;7i (the
7=¢,/®;, where ¢, and &, are evaluated with wia). This t-statistic is proportional to
N'lf‘..(yi—xi ﬂ*—;)ip*);)i, and so differs from ;only in the use of the two step estimators
of B and p, ﬂ* and p*, rather than the MLE of § and p = 0. But under the null
hypothesis this substitution has no effect asymptotically.

As noted in the introduction the majority of the diagnostic tests developed in this
literature have employed the Lagrange multiplier framework and the method conse-
quently requires the evaluation of the information matrix. This is precisely the
strategy adopted by Lee and Maddala (1985) in their examination of several issues
concerning selectivity. Their approach is to estimate a relatively simple model and
then test up in the direction of selectivity. In fact, their approach is based upon
conditional moment restrictions defined by the fact that the conditional expectation of
the score with respect to p of more complex models should have zero expectation if
p=0.

As evident from the above discussion normality plays a key role in the estimation
of selectivity models, making it critical to determine how accurate the assumption of
normality is. Oddly enough there appears to be very little written upon checking this
assumption. There are a number of ways that one could proceed to a test for
normality of the Y and V- The easiest is to apply the standard diagnostic tests for
normality in the probit (or Tobit if it is'Type 2) model (25) previously set out in
sections 3 and 4, and this gives a test for the marginal density of v, being normal. It
is much harder to do a test for marginal normality of the u, since the error term in

the two-step regression is €, Dot u,

X and this is certainly not normal. For this reason
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it seems useful to borrow some insights from the semi-nonparametric literature and to
design a test that might be usefully applied.

The essence of the two-step procedure is to find E(u;|z,=1), for which a
preliminary step is to obtain E(uilvi). Hence, an expression for this conditional
expectation when the density of u, and v is not normal is needed. We borrow an

idea from Gallant and Nychka (1987) of replacing the unknown density by the approxi-

K J

. k_j . s :
mation f = ( EO J!_Zo'ykju v3)¢uv, where ¢, is the bivariate normal density of u,

and Vi and Yo = 1- With this density

B(ulv) = Jufy)ydu = Jufy,lf,)du = £ 5 b ooy ) (29)

ujv

where f ulv is the conditional density of u, given v;, ¢ulv is the conditional normal and

b=1,/4, SetingK =0,

E(u|lv) = ? b 70J(Iu¢u|vdu)v" (30)
- ? b 1.,0jpvj+1 (31)

and therefore, under the null hypothesis,
E(u;[z=1)=E( v;|z=1) + 7;E( v2|z=1) + ... + 7;E(v] [z=1), (32)

as b = 1 when the errors are distributed bivariate normal because fv = ¢ v

Testing if 7kj equals zero therefore is a test for normality. Amemiya (1973) gives
expressions for E(vllzi=1) (7=1,2,3,4), and these are proportional to ¢i/<I>i,
(1-w;a{4,/®,)), (¢,/®,)[(w;0)*+2], [3-8w;o{g,/®;)~(w; ) (4,/®,)] respectively. Hence
a test for the normality assumption is to add on the variables (wic.z)j:ﬁi/&i, =1,2,3 to
the two step estimator and test if these are jointly zero. It is interesting to observe

that this is like a RESET test in which the predictions from the selection equation are
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powered up, although they are weighted by a function of the Mill's ratio. It would
also be possible to allow K to be non—zero, and it may be that setting K and L to be
equal to one another (as was done by Gallant and Nychka) would provide a better
test. However from the viewpoint of a diagnostic test the null distribution remains the
same regardless of the value of K that is chosen. Further investigation of this question
is needed, but at least the addition of the above regressors provides a simple way to
do some testing for the normality assumption.

A similar idea to that advanced above has been put forth by Lee (1984). He
approximates the underlying bivariate density as the product of a normal density and a

series of Hermite polynomials, i.e. fov = ¢uv[1 + f § arers(u,v)], where Hrs(u,v)

are bivariate Hermite polynomials. When o = 0, one obtains normality, and Lee
tests if o, = 0 using the Lagrange Multiplier test associated with the approximating
density fuv' Because it is bivariate normality which is being tested, the scores are
quite complex and this test seems to have had little application. Moreover, the fact
that most of this literature utilizes the two—step estimator suggests that augmenting
that equation with variables as in (32) is likely to be more appealing. Lee, in fact,
restricts r+s to be a maximum of four and observes (his eq. (2.15)) that E(ulv) = pv
+ K12[(v2—1)/2] + K13[(v3—3v)/6] when his approximating density is employed. With
normality K;, and K, 4 are zero, and it is clear from (31) that one would obtain the
same test for normality following his approach as what we derived above from Gallant

and Nychka's work.

5.2 Diagnostic Tests from First Order Conditions
A final approach to generating diagnostic tests that also emphasises the question
of correct density is to use the first order conditions from Powell's recent (1987)

semi~parametric estimator for bivariate latent variable models. Powell solves for f
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‘ N
from the first order conditions y= T  (z2)K:[(v;¥;)-x{—x})B], where K;. =
j=i+1 'y J J J

h“K((w{&-w}&)/h), K(.) is a kernel, h a bandwidth, and 7 are p instruments
constructed from the W, Powell shows that the estimator of B from these first order
conditions is root-N consistent provided a is, h goes to zero as N1/ 7, and K(.) is a
kernel with moments up to third order equal to zero. To achieve the latter |
requirement it is necessary to work with a "bias reducing higher order" kernel.
Robinson's (1987) method of generating one is employed later with the base kernel
being Gaussian, and h set to the product of the standard deviation of wi(; and N"I/ 7.
The test statistic 7 = N 1T ;bi is evaluated with maximum likelihood estimates of J
and o obtained from LIMDEP. It might have been preferable to use the two-step
estimator of § but then it is not possible to adopt the general method of computing

the asymptotic variance given in section 2.

5.3 An Example

As Cymrot and Dunlevy (1987) also estimate wage equations by employing the
two step sample selection procedure we again analyze their data to estimate the
applicability of the tests discussed above. The first of these is the RESET type test
for normality discussed in 5.1 based on the null hypothesis that the powered up values
of the predictions weighted by the Mills ratio are correctly excluded from the equation.
The tests were performed for all four groups comprising Cymrot and Dunlevy's sample
and are reported in Table 7. The included variables are Pred*Mills ratio, Pred2*Mills
ratio and Preds"‘Mills ratio, and the F value reported is for the null that their
coefficients are jointly zero. The results in Table 7 are surprising as they do not
reflect any signs of serious misspecification. In fact, in only one instance, eligible
movers, was the F value even close to resulting in a rejection of the null at

conventional levels. This result is somewhat disturbing given that the parametric based
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tests revealed severe misspecification in this model earlier. The results in Table 7 may
reflect that the non-parametric tests are less powerful or may in part indicate that

larger samples than those being employed are necessary.

TABLE 7
L] TN f 1
Group Pred*W Pred?*W Ped™*W
(1) (2) (3) (4)
Ineligible Movers 1.009 1.165 211 618
Ineligible Non~Movers 654 278 413 301
Eligible Movers 171 803 529 434
Eligible Non-Movers 375 .849 .603 475

Notes:

1.  For movers W is equal to ¢(MOVSRA%MOVE) while for non-
movers W equals ~¢(MOVE)/1-&( ) where MOVE denotes
the values from the auxiliary equation.

2. Columns (1), (2), and (3) contain the absolute value of
the t—statistics for the null that the coefficient is
equal to zero. R

3. Column (4) contains the significance level of the x
value for the null that the parameters corresponding to cols 1,2,3
are zero.

4.  All tests are adjusted for heteroskedasticity.

The model reported by Cymrot and Dunlevy was also examined by evaluating the
first-order conditions of Powell's semi—pa.fametric estimator implied by Cymrot and
Dunlevy's estimates. To perform this evaluation it would be preferable to utilize
maximum likelihood estimates of the parameters, but the iterative algorithms in
LIMDEP were unable to reach a maximum of the likelihood. The two step estimates

were therefore substituted instead and the estimated first order conditions were
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regressed against an intercept. This procedure produces a bias in the estimated test
statistics since it ignores the sampling variablility in the estimated coefficients. The
absolute value of the t—test for the null that the intercept is equal to zero is reported
in Table 8. These tests were only performed for the non-movers as the large number
of regressors in this model severely reduced the degrees of freedom. The results
reported in Table 8 are consistent with the findings of section 4.3, with the model
being mis-specified for both groups.

TABLE 8
Fir rder Conditions for Powell' i— Ii im. tdr
valuated at Cymrot levy's Estimates
Variable Group
' Eligible Non-Movers Ineligible Non-Movers

MOVES 5.988 6.559
RACE 5.415 6.104
LSAT9 8.617 5.419
MLE 5.647 5.086
ATBATST79 3.040 5.802
POP3 0.483 6.424
GR3 216 6.314
W79 1.345 1.202
ADJSAT9 7.002 6.585
DSAT79 4.259 7.505
DFN 3.636 4.661
BYR 1.809 5.490

Observations 122 88
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6. Dyration Models

A further family of models which has experienced popularity with the advent of
increased availability of unit record data is that based upon duration data (see Kiefer
(1988) for example). The core of these models is the hazard function h(t) of a random
variable T, the length of time spent by an individual in a given state, that has
cumulative distribution function F(t) = 1-Pr(T>t) and density f(t). As discussed in
Amemiya (1985, p.435), this function h(t) is the conditional probability of exiting from
a specified state during an interval t+At given that the individual was in another state
at t. For an observed set of data upon completed spell lengths t i=1,...,N it is easy
to write down the likelihood as li'If(ti) provided f(t;) can be specified. Equivalently,

formulation of an h(ti) will suffice to determine an f(ti) and this literature usually
proceeds to specify the hazard function.

A popular assumption for h(ti) is that it varies with characteristics of individuals
as exp(xi p). Straightforward integration then gives ft;, = exp(x;ﬂ)exp[—exp(xi ﬂ)ti]
and the log likelihood will be

L = Exif- Etiexp(xiﬂ), (32)
where t, is the spell length experienced by individual i. Differentiating (32) with
respect to [ gives the score vector as Ix;(1-t;exp(x;f)), and arguing by an analogy
with regression, it is reasonable to claim that v, = (l—tiexp(xiﬁ)) is a generalized
error. In fact Lancaster (1985) has referred to t.exp(x;/) as the generalized error,
although it seems sensible to subtract oﬂ its expectation of unity 8o as to agree with
the notion that an error should have a zero mean. When spells are incomplete the log
likelihood in (32) has to be modified in that only the the second part of it is relevant
for those with incomplete spells. Hence, the generalized residuals for individuals with

incomplete spells are —tiexp(xi B) and the moment conditions need to be varied to

reflect this.
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6.1 Regression Diagnostic Apalogues

Although the assumption that h depends upon characteristics in the exponential
form is a convenient one, mainly because it forces mon-negativity upon estimates of h,
there is no certainty that this functional relation is correct, or that the x; capture all
of the determinants. Failure of these assumptions might be expected to show up as
patterns in the generalized errors, and this suggests that the moment conditions E(ziui)
= 0 be checked, where z, are variables chosen in light of the postulated deficiency.
Amemiya (1985, p.440) shows that, for data on completed spells, when hi = exp(x{ﬂ),
E(ti) = exp(—xi' B). It follows that a RESET-like test can be constructed by choosing
2, as the powers of exp(—x{fi).

The hazard function adopted above had the characteristic that it was not a
function of t, that is it exhibited no duration dependence. In practice an important
characteristic of actual data is the fact that the probability of exiting from a state is a
function of the amount of time spent in it, making the testing for a re'ation between

b, and t; a concern of a number of authors. Kiefer (1985), and later Sharma (1987),
* n
modified the conditional density f(t.) described above to f (t;) = f(t,)[1 +_227iji],
J:
where Lji = Lj(tiexp(xi'ﬂ)) and Lj(w) is the j'th Laguerre polynomial. Kiefer (1985,
p. 153) gives the first nine of these polynomials, but it is worth noting that Lj(w) is a

j'th order polynomial in (1-w). With this expanded density the likelihood is now
Hfzti) and a test for the absence of duration dependence is available from the Lagrange
multiplier test that Tgr+17y, 8T€ 2€T0. Since the scores for 7j’ under the null
hypothesis that 7j=0’ j=2,...,n, are L.

i

restriction E(Lji) = 0. But Lj is a j~th order polynomial in w = 1-exp(x;f)t;,

showing that this conditional moment restriction effectively tests if the moments of the

this amounts to testing the conditional moment

generalized errors have their predicted values when there is no duration dependence.

To illustrate this, take j=2, giving L, = 1/2[P~4w+2] = 1/2[{(w-1)*1}-2(-1)].
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From Lancaster (1985, p.157, eq.(10)), when there is no duration dependence E(wi) =
j!, and therefore E[(w—l)z] = 1, E(w-1) = 0.

Because the Laguerre polynomials encompass many popular specifications of
duration dependence, including the lognormal, gamma, Weibull and Pareto densities, the
specification test should be a useful one. Kiefer (1985) found that this was so when
analysing some data from the Denver Income Maintenance Experiment. Perhaps the
maifx difficulty he experienced was in deriving the variance of L;; when it is evaluated
at f. Kiefer (1985) ignores the fact that # has been estimated, arguing in footnote 12
that this yields a conservative test. Actually, this is incorrect. The situation is
exactly that analysed by Durbin (1970), and the true variance of the test statistic is
smaller than the computed variance. The method of calculating standard errors in
section 2 obviates this problem. However, closer inspection of Lij reveals that
E((?Lij/c')ﬂ) = 0 when the 7j(j=2,..,n) are all zero, since the derivative can be written
as a linear combination of the j Laguerre polynomials, and each of these has zero
expectation. This can be illustrated for j=3 when the L; = (1/6)(~uP+9uP-18w+6)
and 6L,/ 9 = (1/6)(~3u2+18w-18)(8w/3B) = (1/6)(-3uP+18w-18)x;(1~w), where we
have dropped the i subscripts from w. Now this has zero expectation if
E(~w3+6w2—6w) = 0. But the term in brackets can be written as
({~*+907-180+6}~{30°-120+6}) = (1/6)L;~(3/2)L,, and thus has zero expectation
under the null hypothesis. Consequently, the information matrix is block diagonal
between B and v and it is possible to compute the variance of the test as if the f
were known. Kiefer's formula is therefore correct and the scores could be excluded
from the regression of section 2. This result is unlikely to extend out of the
exponential hazard framework, but in other instances the effects of estimated
parameters can be allowed for as in section 2.

In fact, it is common for some assumption to be made about duration

dependence, and the relevant question is really whether the allowance made has been
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gufficient. A popular specification intended to allow for dependence is to form the

a1

proportional hazards model with function hi = m?‘lexp(xiﬂ), where the term ot

comes from a Weibull density. The log likelihood corresponding to (32) is then
Zln o + (e-1)n t+ x{f - t‘;exp(xiﬂ)]. (33)

There are now two types of scores. Those for § remain as they were earlier but there
is also one for a. Hence, there can be no unambiguous definition of a generalized
error.  Nevertheless, it should be true that E(z,d;) = 0 for suitably chosen z;, where
d; are the vector of scores with respect to § and a. When an intercept term appears
among the f this implies that the covariance of the z; and the earlier definition of
generalized errors should be zero. But clearly there is a broader set of orthogonality
conditions that must be satisfied in this expanded model. Sharma (1987) constructs
tests for duration dependence not captured in a Weibull formulation by multipling the
density for the proportional hazards model with Laguerre polynomials, just as was done

for the exponential hazard model, except that the argument in his Laguerre polynomials

is w= tiexp(xgﬂ)l/a.

A last item of concern in the duration literature has been that of neglected

heterogeneity. In this the hazard is replaced by exp(x{ﬂ+ei) where e, is an ii.d .error

term that has mean zero and variance ag and is distributed independently of the X;.

As is well known neglected heterogeneity induces duration dependence unless aﬁ is zero.

Lancaster (1985) and Kiefer (1985) both develop a test statistic by noting that,

conditional upon e,, the density of the t, is E(tilui) = exp(x;ﬂ+ei)exp(—tiexp(x§ﬂ+ei)).

They expand this around e; = 0 (implyin o2 = 0) retaining only the first two terms.
i § %

The unconditional density of ¢, is then £, = {14} 1 2)02(32f(t.|u-=0)/6u?)} and
i S Ll e i'i i

*
they propose to test if 03 is zero by evaluating the score for 02 with f, as the density

making up the likelihood. Obviously this density looks very close to the Laguerre

approximation and, indeed, Sharma (1987) shows that the second term in the curly
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brackets is in fact proportional to L;5- So, as might be expected given the connection
between heterogeneity and duration dependence, the tests found by these different
methods are actually equivalent.

Although the emphasis above was on likelihoods, in a number of the models it is
possible to regard the determinants of duration as being capable of formulation as a
regression, albeit generally censored. Horowitz and Neumann (1988) point out that one
can formulate many of these models as t, = min[exp(x{ﬂ)vi,t*], where t is the right
censoring point and v; is an error term with a density to be described. After taking
logs an equivalent form would be log t, = min[x{5 + log v;, log t*] = min[x{8 +
log t*] and this is a censored regression model of the Tobit type. To estimate, the
density of 7, must be prescribed, for example as Weibull, and it is possible to then
compare the empirical density function of the residuals ;’i = log t; - x{ ﬂ with the
postulated theoretical one using the Kaplan—-Meier estimate, just as described earlier for
the Tobit model. They illustrate the utility of this method by applying it to the
strike duration data in Kennan (1985). Of course, many of the tests of model
adequacy set out for the Tobit model can also be applied in this context as well, e.g.,
the information matrix test, RESET-type tests, etc.

6.2 Diagnostic Tests from First Order Conditions

A range of alternative estimators of § is available for the censored regression
model, and the first order conditions from each of these might be applied to give
diagnostic test statistics. Examples would be quantile estimators or Powell's (1984)
least absolute deviations (LAD) estima.tor; Horowitz and Neumann canvass these and

illustrate their use with Kennan's strike data.

7. Conclusion
This paper has attempted to survey the wide variety of tests for specification

error that is emerging for models based on individual data. Because this literature is
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very diverse, both in the type of model and the nature of the tests that are
appropriate for each, a gimplifying framework was needed in order to place some order
upon it. One approach would be to work through the Lagrange Multiplier perspective,
but we believe that this sometimes obscures the simple rationale for many of the tests.
In particular, we argued that the questions of how to formulate a basis for a test and
how to compute its variance should be divorced, as it is the tight linking of these
issues in most existing surveys of the area which is primarily responsible for their
complexity. Consequently, we borrowed an idea from work by Newey (1985) and
Tauchen (1985) which argues that the basis of all tests is the formulation of suitable
conditional moment restrictions. Their treatment of how to get the variance was also
exposited, as it can be a useful procedure in some instances.

Having disposed of the problem of determining a variance the remainder of the
paper systematically sets out the relevent conditional moment restrictions for censored
regression models (Tobit, selectivity and duration) and discrete choice models (Probit,
Logit and their multinomial versions). Three categories are used as the organising
framework. First, we argue that many of the restrictions can be thought of as
analogues of tests for specification error, heteroskedasticity, and normality in the liﬂear
regression model. A second grouping can be thought of as arising from the substitution
of the parameter estimates obtained by (say) maximum likelihood into the first order
conditions of another estimator which is consistent under certain mis-specifications.
Under this heading we propose a number of new tests derived from the burgeoning
literature on non—parametric estimation of individual data models. Finally, there is the
possibility of exploiting some of the sample for validation purposes, and we refer to this
group of tests as "prediction" tests. As well as the theoretical work we carry a
number of examples, drawn from recent literature, through the paper, in order to show

that there is a serious need to subject these estimated models to scrutiny.
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