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ABSTRACT

This paper characterizes the stationary subgame—perfect equilibria of the dynamic
game that results when two or more agents simultaneously exploit a productive asset.
Previous studies have relied almost exclusively on the use of parametrized examples to
examine this problem. Our analysis is conducted in a general framework with no
functional form restrictions.

We show that despite the behavioral complexity (subgame perfection in stationary
strategies) and the lack of any restrictions on these strategies, stationary equilibria
exhibit remarkably regular dynamics. The state sequence is (eventually) monotone from
any initial state, and always converges to a steady state. When this convergence does
not take place in finite time, the steady state is strictly smaller than that resulting
from a first—best solution, i.e., overexploitation, or a "tragedy of the commons" occurs.

Turning to welfare questions, we demonstrate that stationary equilibria are strictly
(Pareto—) suboptimal from every initial state. Under a weaker welfare criterion — that
of productive efficiency borrowed from the capital theory literature — the results are
less unambiguous.

Finally, we also provide a complete characterization of differentiable equilbria, and
show that they possess all the salient characteristics previously derived in parametrized

examples.






1. Introduction and Summary

The dominant paradigm within which strategic behavior is studied in economic
theory is that of repeated games. However, by requiring that the environment of the
game be unchanging, this framework does not lend itself to meaningful analysis of
situations in which players' current actions affect future environments. This paper
studies equilibria in a more general strategic structure, that of dynamic games. A
dynamic game introduces a state variable to represent the environment of play which
moves through time in response to players' actions.

The flavor of the problem we consider in this paper is perhaps best caught by the
following "fishing game". Every season two commercial fisheries fish simultaneously
and independently in the same pool of water. The fish is sold commercially and the
next fishing season finds the two fisheries back in the same waters and so on hereafter.
The commonality of the fishing grounds implies an externality in the fisheries’ actions:
the size of the total catch in the current fishing season determines the number of fish
in the waters next season.! A unilateral decrease in the first fishery’s catch this season
is likely to imply more fish for both firms in the next season. Whether or not the
first fishery would decide on such a reduction depends of course on the subsequent
reaction of the second fishery. It is natural to assume that the fisheries behave
non—cooperatively and then ask: what are the economic consequences of such behavior?
Does the fish population oscillate as in some predator—prey models or is monotonic
growth or decline inevitable? How does the non—cooperative outcome compare with an
alternative institutional structure, a cartelization of the fisheries? Is there always
over—exhaustion of the resource, i.e. a "tragedy of the commons?" In general, what are
the welfare properties of such non—cooperative equilibria? These and other questions
are examined in this paper.2 Specifically, we provide a complete characterization of
stationary subgame-perfect equilibria in dynamic resource games.

This analysis falls under two heads: positive and normative. The positive



questions relate to the dynamic behavior of the state trajectory in equilibrium, while
the normative questions examine, under two criteria, the welfare properties of equilibria.
The benchmark dynamics and payoffs are those arising from the set of Pareto—optimal
solutions.

Regarding the positive questions, we show that the state path in any stationary
equilibrium is eventually monotone.3 Limit points of these paths are steady states
under equilibrium play. If convergence to a steady state does not occur in finite time,
then the steady state must lie (strictly) below the so—called "golden rule", (the unique
steady—state of any first—best solution) and a "tragedy of the commons" phenomenon
occurs. Sufficient conditions are provided on the equilibrium strategies under which a
"tragedy" is always witnessed.4

Turning to the normative questions, we show that consumption paths (hence,
payoffs) generated by stationary equilibria are strictly suboptimal from every initial
state, except (possibly) the golden rule itself. This suboptimality follows from either
over—consumption, a "tragedy of the commons," or, more surprisingly, from
under—consumption, a situation, so to speak of "anorexia in the commons," a high
steady state sustained since any increase in consumption by one player provokes a
sharp increase in consumption by the others.5 We further examine a weaker welfare
criterion, related to a similar criterion in the capital theory literature, the efficiency of
equilibrium consumption paths. Paradoxically enough, paths that reflect a "tragedy of
the commons" are efficient. "Anorexia in the commons" may be not only suboptimal,
but worse even inefficient.

Finally, we provide a complete characterization of differentiable equilibria, such as
those exhibited by the example in Levhari and Mirman (1980). We show that these
equilibira invariably result in a "tragedy of the commons" from all initial states, and
are thus uniformly suboptimal but generate uniformly efficient consumption paths.

Two of their results merit further comment. Given the complexity of behavior



(i.e., subgame—perfection in stationary strategies) with no restrictions whatsoever on the
shape of these strategies, it is somewhat surprising that equilibrium state paths involve
such regular behavior. This is especially so considering that the investment function in
equilbrium need not be non—decreasing in stock levels for this result to obtain.

Secondly, the uniform suboptimality of stationary equilibria appears to indicate that
they might be of use as punishment phases in trigger-strategy equilibria meant to
support more efficient paths. Although there is an obvious analogy here with the use
of inefficient stage game Nash equilibria in the analysis of repeated games, the question
is more complex: the degree of suboptimality varies with the stock level, hence for a
given set of parameters, cooperation may be enforceable from some initial states, but
not others. Indeed, Benhabib and Radner (1988) demonstrate this when payoffs are
linear in consumption for both players with restrictions on the rate at which players
may consume. For models with concave payoffs, such as ours, this appears
considerably more difficult to prove, since the bang—bang characteristic of solutions to a
dynamic optimization problem with linear payoffs does not hold.

Let us now indicate the related literature. In dynamic resource games, Lancaster
(1973) and Levhari and Mirman (1980) have studied parametrized models with
functional forms postulated for the one—period reward and transition functions. In each
case, a Nash equilibrium is computed that is uniformly suboptimal. Cave (1987) and
Benhabib and Radner (1988) examine the possiblility of enforcing cooperation through
the threat of reversion to a suboptimal equilibrium in the event of defection. Cave’s
analysis is restricted to the Levhari-Mirman example. Benhabib and Radner impose no
restrictions on the transition function but limit as mentioned above the one—period
payoff functions to being linear in consumption and impose a maximum rate of
consumption for the players. Neither restriction is present in our paper. Within this
framework, they obtain interesting results, including one on the existence of a form of

equilibrium not present in repeated games that they label "switching equilibrium". It



is unclear to what extent their analysis generalises when these assumptions are dropped.
Certainly, many of their key results appear to depend, in an essential manner, on the
linearity of payoffs. Reinganum and Stokey (1985) study a parametrized model in
which profits rather than utility from consumption is the criterion. Their focus is on
the extent of commitrrlent possible, and its effect on outcomes. Lastly, Sundaram
(1987) demonstrates the existence of stationary equilibrium in a general formulation,
identical to the one we employ in this paper but with an additional symmetry
assumption on the one-period payoffs. It is disturbing to note that there are no
existence theorems available when this symmetry assumption is dropped, although the
examples in Lancaster (1973) and Levhari-Mirman (1980) do not require it. It is

hoped that the analysis provided in this paper will help in this direction.

2.1 Notation and Definitions
The set of reals (resp. non—negative reals, strictly positive reals) is denoted by R
(resp. R+, [R++)'

Let ¢: & c R-R, where P is open. Let @ (y; x) = | 9&1)),—:4;(—’9] for x € &

The Dini Derivates of ¢ at x € & are four quantities defined as follows:

D+¢(x) = limsupy Ix o(y; x) D +¢(x) = liminfy ix@(y; X)
D ¢(x) = limsupyTxd)(y; X) D ¢(x) = liminfyTxQ)(y; X)

Note that ¢ is differentiable from the right (resp. left) at x iff D+¢(x) =D +¢(x) # o
(resp. D ¢(x) = D_¢(x) # %), and that ¢ is differentiable at x with derivative ¢’(x)
= DT¢(x) iff D¥§(x) = D, ¢(x) = D (x) = D_§(x) # #.

If ¢ reaches a (local) maximum at x, then D+q)(x) <0, D ¢(x) > 0. This result
is important in the sequel. A proof of this, and other features of Dini derivates may

be found in Royden (1968, p. 98)



Sometimes we will need to use a modified version of these derivates. Let {yt} be
a sequence in Z such that y |x. Then, define D+(|)(x; yy) = limsup,  ®(y,; x), and
D, ¢(x; y;) = liminf, &(y,; x). D ¢(x; y,) and D_¢(x; y,) are defined similarly by
congidering sequences yth.

¢ is said to be lower—semicontinuous or Isc (resp. upper—semicontinuous or usc) at
x € Zif liminf _ (x ) 2 ¢(x) resp. limsup _ ¢(x ) < §(x)) for all sequences x -x.
Further, ¢ is lsc (resp. usc) on & if it is Isc (resp. usc) at all x € & Note that ¢ is

continuous at x (resp. on %) iff it is both lsc and usc at x (rep. on 9).

2.2 The Model
The dynamic game considered in this paper is fully described by the tuple {S, N,
(Ai(y)), f, (ui), 0} where S is the set of states of the system, here the possible values

of the stock of the productive asset or resource; a generic element of S will be denoted
by y, with y; denoting the state in period t =0, 1, 2, ... . N = {1, ... n} is the
player set. Given y, player i ¢ N picks an action a; € Ai(y). This action is made
with full knowledge of the game’s history and the chosen actions of the other players,

and represents player i’s planned extraction of the resource. If plans are collectively

feasible (Eiai < y) they are carried out and player i receives an instantaneous reward or
utility u;(a;). If plans are infeasible (L,a; > y) then we assume that each player
receives an amount proportional to his bid, so that player i receives an amount
(ai/Zjaj)y, hence a reward of ui((ai/Ejaj)y).6 The transition function f then converts the

left over stock n(y,a,l, e ya ) =max (0, y — Eiai) to the available stock in the next

"
period, and the process is repeated ad infinitum. All players discount future rewards

by the factor 6 ¢ (0, 1).
The formal structure of the game we study is described by the following:
(i) S is a compact interval [0,s] of R 4 where s > 0 will be defined
shortly.



(ii) N = {1, 2}. This restriction of the player set is made purely for
notational convenience. The generic player is indexed by i. In all statements referring

to i, j will denote the other player.

(iii) A(y) = [0,y] for all y ¢ S. Thus each player is allowed to extract all
of the available stock.
(iv) f: R, - R satisfies
(F1) f(0) =0

(F2) f is continuous and strictly increasing on R +
(F3) f is strictly concave on R I and differentiable on R 4y with
f(0+) > 1, f/(0) < 1.
(v) u: R 4+ R satisfies
(U1) u is continuous, strictly concave and strictly increasing on R "

(U2) u; is continuously differentiable on R 4y with limcLO ui(c) = +w.

The assumptions (F1) — (F3) imply the existence of x > 0 such that f(x) = x.
Define 8 = x. Note that f now maps S = [0,5] into itself.7

In order to describe the play of the game, the notion of a gtrategy is required.
Let ¥ denote an arbitrary initial value of the state variable.

Let H, = (yO, gy w5 Vi1 341 yt) denote a generic history of the game upto
period t, where a  denotes the vector [als, a,2s], and let H' denote the set of all
possible histories upto t. A strategy for player i, denoted gi, is a sequence of functions

(g,t) where for each t, gé specifies the action ay to be taken by player i as a

t
(Borel-measurable) function of the history H,, satisfying gti: (Hy) <y, A strategy is
Markovian if the information structure required to implement it is Markovian, i.e., if gi
depends on Ht only through Yy for each t (so for each t, gi is a Borel-function from S
into itself). In addition a Markovian strategy (gi) is stationary if gi = g; for all t,

where g, is a Borel-function from § into itself satisfying g(y) <y foralyesS.



A pair of strategies (él, éz) determines a unique sequence of histories {H,} from
Yo € S and hence uniquely defines the total discounted reward for player i that we
denote W, (él, é2)(y0). If G; denotes the set of all admissible strategies for player i,

then gl* is a best-response of player i to éj iff
Wilg",g))(y) 2 Wi(g;,8;)(y) for all g; ¢ G; for all y €S

The function W, (éi*, éj): S -+ R is called player i’s value function from responding
optimally to g

A Nash equilibrium to the dynamic game is a pair of strategies (él, éz) such that
for each i, éi is a best-response to éj' A Nash equilibrium is said to be
subgame-perfect if the following condition holds: let g, (t, Ht) denote the continuation

of g from period t, given a history Ht upto t. Then for each t, and every possible

history upto t, (él (t,H,), éQ (t, H;)) constitutues an equilibrium to the game starting

from Ht' This paper confines attention to equilibria that are subgame—perfect.

2.3 Stationary Equilibria in the Dynamic Game

A stationary equilibrium to the dynamic game is simply an equilibrium in
stationary strategies. That is, a stationary equilibrium is a pair of Borel functions (gl,
gy) such that for i = 1, 2, g:: S-S satisfies g(y) € [0, y], and g; is a best-response to

g:. Since stationary equilibria are implementable with a Markovian information

)
structure, they are also referred to as Markov—Perfect equilibria. (Note that, by
history-independence, stationary equilbria are subgame—perfect.) Throughout this paper,
however, we use the more descriptive term Stationary Perfect Equilibria or SPE.
For the symmetric version of this dynamic game (u; = uj), Sundaram (1987)

demonstrates the existence of an SPE (g, g,) in which the functions g; are both lIsc

on S and satisfy 0 < g;(y) + 8(y) < y at all y > 0. It is disturbing to note
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however that in the assymmetric game, there are no general results available in this
direction, although the examples in Lancaster (1973) and Levhari-Mirman (1980) do not
use symmetry. The main problem is that although the lower—semicontinuity of g; on S
is a minimal sufficient condition to admit a best-response, the best—response to a Isc
strategy will not, in general, be Isc. Thus, a standard Debreu—Nash fixed—point

argument on a map taking strategies into best-responses is infeasible.

2.4 The First Best Outcomes

The benchmark payoffs and dynamics against which the SPE will be compared is
that resulting from a solution to the "Planning Problem," i.e., the set of (first—best)
outcomes that result when the players operate as a cartel. This set is completely

described by the solution to (2.1) — (2.3) as the parameter o ranges over [0,1]

(2.1) 1\{/[?:ximi€e} g 0 fomy (c) + (1 - 0) uy (cy)]
It "2t

subject to

v
o

(22) yO =Ye S; yt+1 = f(yt - Clt - c2t) ’ t
(2.3) 0 Cepy Sy + Co Sy s t > 0.

This optimization problem is a standard one in intertemporal allocation theory;
consequently, we confine ourselves to stating, without proof, its important characteristics
from this paper's point of view.

Fix « € [0, 1]. The problem (2.1) — (2.3) has a unique stationary solution. This

solution is associated with continuous policy functions and a continuous, concave value
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function. Under the optimal solution, the state sequence {yt} is monotone from any y,
€ S. Further y; converges to the unique steady—state YGR where YGR and XGR solve
f’(xqr) = 1, and f(xgp) = ygR- Note that y,p, the so—called "golden rule", is
independent of the choice of x or Yge Lastly, convergence to yop from y, # yap» Yo
# 0, is always asymptotic: Yy # YGR for any t if Yo # YGR'

3. The Ramsey—FEuler equations

This section presents the Ramsey—Euler equations for the dynamic game. These
equations constiture the first—order (necessary) conditions for a pair of strategies to be
best—responses to one another; consequently there are two sets of equations, one
corresponding to each player. Repeated use of these equations is made in the sequel to
analyze dynamic behavior under the SPE.

Since each player takes the other’s action as parametric to his own optimization
problem, the environment a player faces is in general not differentiable, and indeed may
not even be continuous. The notion of Dini derivates introduced in Section 2 is
therefore brought into play to help characterize the first—order conditions. Some
additional notation, maintained throughout this paper, will be of great help here. Let
Wy) = max {0, y — g;(y) — 8o(y)} be the "savings" function in equilibrium. Also let
§ = {;r € é|}~r = f(y(y)) for some y € S} be the "reachable set".

Lemma 3.1 Let 0 < ;r € é, and ;r = f(¢(y)). Suppose ¢(;,) > 0. If there exists a
sequence {;rn} in S with §n1§ (resp. ;rnﬁ-r) such that gj(;rn)-»gj(y), then the first (resp.

second) equation below holds:

u () 2 buy (gONE (M) - D g v,))
(3.1)

U () < duy (5 (W) (1-D (55 ¥,))-
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The proof of this result may be found in the Appendix. Clearly, D +gj(3~r; yn) >
D +gj(y), and D—gj(;r; Yy) < D—gj(;r). Thus, as an immediate consequence of equations
(3.1), we have

Theorem 3.1 Under the hypothesis of lemma 3.1, equations (3.1) hold with D +gj(y;
y,) and D gj(y; y,) Ieplaced respectively with D +gj(y) and D gj(y).

Remark 1 If 8; is continuous from the right (resp. left) at ;r, the first (resp. second)

equation in (3.1) clearly holds. However, this condition is stronger than needed.

Remark 2 If gj is differentiable at ;r , equations (3.1) collapse to the single equation

(3.2) wCa(9) = (g (W) (1857 3)).

Equation (3.2) holds at all y € S if g, and g, are cl functions, as for instance in the

example of Levhari-Mirman (1980).

4. DPogitive Behavior in Equilibrium: Dynamics under the SPE

This section examines the dynamics and asymptotic behavior of the state under an
SPE. Throughout, all statements are with respect to an arbitrary initial stock Yo € S.
For definiteness, we denote by (y,(y,)) the sequence of values taken by the state under
an SPE (gl, g2), ie., yt(yo) is defined recursively for t > 0 by yt+1(y0) =
¥y (vg))), where yo(yo) = -

Our first result is a slight generalization of Theorem 6.1 in Sundaram (1987). It
states that the equilibrium state sequence {y,(y,)} is (eventually) monotone from any

Yo € S. Throughout this section and the rest of the paper, we denote the value
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functions under the SPE by V1 and V2, ie., Vi denotes player i's value function from

a best-response to 8

Theorem 4.1: Let {yt(yo)} be the state sequence from y, € S under the SPE (81> 89)-
Let T = min {r]|y (y;) = 0}. Then, either Y41 (vg) 2 vy(yg) for t =1, ..., T-1, or
V1) € vi(yg) for t =1, ..., T-L.

Note If T = w, then Theorem 4.1 says that either y, +1(y0) < yi(yg) for all t > 1, or
yt+1(y0) > yt(yo) for all t > 1.

The proof of this theorem follows from modifications of arguments considered in
the proof of Theorem 6.1 in Sundaram (1987). Consequently, we only sketch the
outline of the proof here. For simplicity in notation, we drop the index Yor
"Proof" If Yea1 = Y4 for some t = 1, ..., T-2, then Viak = Yt for all k > 0.
Suppose Yi41 > ¥y Note that ¢(yt+1), z/)(yt) > 0. Then, we must have Vi(yt+1) >
V(yt) for i = 1, 2. For if not, some player could consume more at time t, keeping
the state at y; gaining more immediate utility and maintaining at least the same
continuation value. But for i to have a greater continuation value from Vi1 than y,
means that the net stock (i.e., after j's consumption) must be greater at Va1 than at

Yir i.e. we must have

(41) yt+1 - gJ(Yt+1) > yt - gJ(Yt)

For if not, any action feasible at Vi1 is also feasible at Yo and it cannot be the case
that V;(y, 4+1) > Vi(yy)- Now a standard argument, from the theory of optimal

growth, exploiting the strict concavity of u; in its agrument (see Sundaram (1987,

lemma I1.4) for details) shows that if (4.1) holds, then it follows that
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(4.2) Wyipp) 2 9y,

and therefore by the monotonicity of f, Yigo 2 Yigr:

A similar argument works when Vig1 < ¥y for some t = 1, ..., T-2.

Q.E.D.

A result implicitly used in this proof is invoked several times in the course of this
section. For ease of reference, we state it here:
Lemma 4.2: Suppose for y, y’ in S, it is the case that y — gj(y) >y - gj(y') > 0.
Then,

(i) Vi(y) > V(y’), and

(i)  ¥y) 2 ¥y’).

Further, for y, y* € é, with y > y- > 0, (i) and (ii) always hold. Lastly, if (ii

holds strictly, then it must be the case that y — gj(y) >y — gj(y’).

The dynamic behavior of {y(yy)} is trivial if the stock is extinct in finite time.
Therefore, in the rest of this section we concentrate on the non—trivial alternative
yt(yo) > 0 for all t.

Since S is compact and {y(y,)} is monotone it converges to a limit denoted

§(y0). Let A* represent the set of all such limit points:
A* = {y € S|y = y(yy) for some y, € S}

A steady state of the SPE is a value y € S such that f(¢(y)) = y. Let Al

represent the set of all steady-states.

A% = {y € sly = f(uy)}-
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Since f(0) = 0, so 0 € AD ang AD is non—empty. Obviously AD ¢ A* since yt(y) =y
for all y € A%, Somewhat surprisingly, it turns out that the requirement:
(LSC) g, and 8, are Isc functions on S

implies that the reverse containment also holds, so that from every initial state, the

system converges to a steady state.
Why (LSC)? Using arguments similar to those used in Sundaram (1987, Theorem

3.1) it is easilty shown that the minimal sufficient condition for a strategy g; to admit
a best-response is that g; be Isc on 5.8 Under weaker conditions, g, may fail to admit

any best response. Thus, (LSC) does not constitute a strong restriction to place on

(gl’ g2)

Theorem 4.3: If the SPE satisfies (LSC), then A* C AO.

Proof: Fix an arbitrary initial state Yo € S, and for ease of notation denote by
{y;} and y respectively, the sequence {7;(yo)} and the limit ¥(yg)- If y, is constant
beyond some point, then obviously y e A So assume that y; converges
asymptotically to y.

Let y, - y. If w(yt) -+ ¥(y), then certainly y ¢ N by the continuity of f.

Suppose, per absurdem, that this were not the case. We must have ¥(y) > limt—mo
1/)(yt) by the fact that ¢ is usc. (Note that the limit on the right is well-defined since
by the monotonicity of {y,} and f) This yields in turn, using lemma 4.2, the
existence of an i and a T such that for all t > T,Vi(y) > V,(y,), and Vi(y) > lim_
Vi(yy)® Let V = lim,_ V.(y,) and define ¢ > 0 by V(y) = V + ¢/§ and ¢, by the
solution to y = f(y, - gj(yt) - ¢,). Since y = lim__ f(y, 41) = lim,_ f(y, - &;(y,) -
g2(yt)), ¢, is well-defined and arbitrarily close to gi(yt) for large t. Further, t can be

chosen to satisfy

M) ule) - ulgly,) > - /2
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and

(ii) Vilvpoq) -V < ¢/2.

But then,
ui(ct) + Wi(f(yt - gj(yt) - ct)) - ui(ct) + ‘Wl(ﬂ

> u(g(y,)) + &V + ¢/2

> u(g;(vy) + Vi(yeyq)

= Vi(yt)’
contradicting the hypothesis that g; represents a BR to & This establishes the
theorem.

Q.E.D.

Note: From now on, throughout the paper, except where stated to the cbntrary, the
SPE will be assumed to satisfy condition (LSC).

The rest of this section is devoted to examining a generic element of A* in
relation to YGR: This analysis will simplify tremendously the process of obtaining the
answers to the two normative questions posed in the Introduction.

To this end, define y ¢ A* to be right—stable (resp. left—stable) if there exists Yo €
S such that Yo > ¥ §(y0) =y (resp. yy <, §(y0) = y). Also define y ¢ A* to be
right-asymptotically—stable or r.a.s. (resp. left—asymptotically—stable or l.a.s.) if there is
Yo € S such that Yo > ¥i(yg) > vy for all g, §(y0) =y (resp. y5 < yi(yg) » for all t,
y(vg) = ¥)-

An immediate consequence of the above definitions is the following:

Lemma 4.4: If y ¢ A* is left—asymptotically—stable then
(4.1) & (¥y)) (1-Dgy(y)) 2 1,i =1, 2.
Similarly if y ¢ A* is right—asymptotically—stable,

(4.2) & (¥(y)) (1-D_g(y)) € 1,1 =1, 2.
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Proof: Lemma 3.1 shows that the first (resp. second) equation in (3.1) requires only

the right— (resp. left—) continuity of 8 at ): along a sequence. Now, observe that the

left—asymptotic—stability of y requires the left—continuity of g, 1 =12 and the

right—stability of y requires the right continuity of &> i = 1, 2, along some sequence as

a consequence of Theorem 4.3 and the lower semicontinuity of the g;- Together with

equations (3.1) and the fact that y is a steady-state, this establishes (4.1) — (4.2).
Q.E.D.

Lemma 4.4 gives us a handle on comparing y ¢ A* and Yygr- Forify e A* satisfied
D g.(y) 2 0 for some i, then by (4.1) & (¥y)) > 1 = 8 (xgRr)» 80 ¥y) < xgg by
the concavity of f and y < Ygg by the monotonicity of f. We derive and strengthen

these inequalities now.

Lemma 4.5: Hy ¢ A* is las., then y < YGR'
Proof: For ease of notation, let x = ¢(y). Define the function H by H(y) = f(¢(y)) -
y for y € S. Since y is la.s., so H(y,(yy)) > 0 along a path y,(y,), and of course

H(y) = 0. Therefore, employing the notion of Dini Derivates again, we have

liminf _H(y) — H(z) < liminf Hiy) - H(yt)
z]y t~00

y — 2 y — Yy
where y, =y (y,); so, from the definition of H,
(4.3) f(x) (1-D g;(y) - D gy(y)) < L.

Compare (4.1) — (4.3). Some manipulation readily shows that together they imply
that it must be the case that D g;(y) > 0 for some i. Therefore, we have o (vy)) >
1 = 6 (xgg), %0 y < YgR by the concavity and strict monotonicity of f.

Q.E.D.
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The complementary result to lemma 4.8 — namely, that if y is
right—asymptotically—stable, then y < YGR involves a rather cumbersome proof, and

may be found in the Appendix to this paper:

Lemma 4.6: If y ¢ A* is right—asymptotically-stable then y < YGR:

What about those steady states to which convergence is always non—asymptotic? In
general, we find that we are unable to preclude the possibility that such steady states
may be above the golden—rule YGR- We can however show some basic properties of
this subset of AO. Partition A0 into two sets A1 and A2 defined by

Ay ={ye A0|y is r.a.s. or lLa.s.}

Ay = AN\A.

Then, one can show

Lemma 4.7: If A2 is non-empty, it contains only a finite number of points.

Furthermore, there is a critical ;r* ¢ S in_this case such that for Yo € é, §(y0) < YGR

(resp. y(yg) 2 ygg) ifand only if y, < y; (zesp. y, > y;)-

Proof: The second part of the lemma is trivial to establish: let y* = sup{y0 € Al}
0

and apply lemma 4.2.
Suppose A2 is non—-empty and non-finite. Since A2 C S, and S is compact, there
is a limit point of A2 in S. Employing appropriately modified versions of Theorem 4.3
and lemmas 4.5 — 4.6 it is straightforward to show that this limit point is a steady
state and must lie strictly below Ygr: But then it cannot be the limit of a sequence
of points all of which are at least as large (by hypothesis) as YGR:
Q.E.D.

A "tragedy of the commons" is said to occur when the dynamic game converges to



19

a steady state y that lies strictly below Yar» i€ when competition (Nash play)
results in over—exhaustion of the stock relative to a first~best outcome (the planning
solution).

In summary, this section has established the following: all SPE generate monotone
state trajectories. If policy functions are lower—semicontinuous, then the limit—points of
these trajectories form steady-states of the game under the SPE. In this case,
therefore, the set of limit—points and steady-states coincide completely. Whenever the
convergence to a steady—state is asymptotic, the steady—state lies strictly below the
unique steady state of the first—best solution, and a strict "tragedy of the commons"
obtains. This result may not hold if convergence is not asymptotic. Indeed
non—asymptotic convergence may well lead to the reverse phenomenon of
under—exhaustion under competition. In the event that there are steady-states to
which convergence is non—asymptotic, very specific dynamic behavior is called for under

the SPE: convergence to such states must take place in finite time.

5. Normative behavior under the SPE I. Optimality

We define the SPE to be (Pareto-) Optimal from an initial state y, € S, if there
is no alternate feasible sequence of actions (Clt’ C2t)ot°=0 for the players yielding
rewards R, = Zot°=0 §tui(ct) that satisfies R, > V,(y,) with strict inequality for at least
one i.

The result below provides an (almost) complete characterization of optimality under

the SPE. ("Almost" because one initial state, YGR> Poses a problem; see details

below.)

Theorem 5.1: The SPE (gl, g2) yields a strictly sub—optimal payoff vector (Vl(y),

V2(y)) from each non—zero initial state y (barring possibly yGR)'

Proof: The theorem follows from an embarrassingly simple application of lemmas 4.8 -
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49. If (gl, gz) is to result in an optimal payoff vector (Vl(y), V2(y)) from some y ¢
S, 04y +# YgRr> then (by the uniqueness of the first—best solutions) it must be the
case that the path {y (y)} generated by (81> 8y) from any y coincides with some
first—best path from y. But first—best paths are necessarily asymptotically convergent
(i.e., Vig1 * Vi for any t) and always converge to YGR- Whereas if {yt(y)} is an
asymptotically—convergent path under the SPE then by lemmas 4.8 and 4.10, we have
limt_myt(y) = y(y) < Yggr- Clearly both conditions cannot hold simultaneously.
Q.E.D.

Remark: The initial state 0 is irrelevant since it is an absorbing state under both the

SPE and the first—best problem. The initial state YGR however poses a special
problem. For each a ¢ (0, 1), YGR constitutes an absorbing state under optimal
actions in the first—best solution. Since non—asymptotic convergence to YGR 18
involved, Section 4 does not throw any light on this case. It is just possible that YGR

is a steady state under the SPE. We have been unable to rule this out.

6. Normative behavior under the SPE II: Efficiency

Optimality is a rather strong condition to require of Nash equilibria, in general.
In this section we examine the SPE against a weaker criterion, that of productive
efficiency, borrowed from the economic growth and capital accumulation literature. Let
0 <y, €S be an arbitrary initial state, and {yt(yO)}"t"=0 the state path from y,
under the SPE. For simplicity of notation, let Cp = gi(yt(yO)). i =1, 2. Then, the
path {Clt’ C2t} is defined to be production—efficient (or simply efficient) from Yo if
there is no other feasible path (c;,, c5,){_, from y, such that (i) ¢}, > ¢, 1 = 1, 2,
t =0,1, 2 .., and (ii) ¢y > ¢;; for some i and t. It is inefficient otherwise. In
the single-player case, the dynamic game reduces to the aggregative model of economic

growth. Efficiency of programs has been the object of considerable study in this
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paradigm (see, e.g., Cass (1972), or Mitra (1979)). We shall shortly have occasion to
draw on the results from this literature.

Note that efficiency of the SPE from Yo could alternatively (and equivalently) have
been defined as follows: define €1y Cop 88 above and let ¢, = Cq4 + Cor t =0.1, ..

Then, {c;;, c2t}?=0 is efficient from y, if and only if there does not exist a

sequence {c;} with yj = y,, such that ci 2 ¢ for all t and ¢ > ¢, for some t.
Thus, checking efficiency in the dynamic game is equivalent to checking efficiency of
the sequence {c,}.

Define {ct} as above. Let Xg = Yy = b > 0, and define the sequence {pt} by
Py = f’(f_l(yo)), Piyq = pt/f’(xt) for t > 0. Then, a well-known criterion for
efficiency (see, e.g., Mitra (1979)) states that {c,} is efficient from y, if lim _ = p,x, =
0. This immediately leads to:

Lemma 6.1: Let y = lim If y < YGR then {ct} is efficient.

tred t°
Proof: Since y, -y, 50 x, - x = #(y) and {'(x;) - {'(x). Since y < ygp, 80 X<
xgp and (%) 2 £(xgg) = 1/6 > 1. Therefore lim,__ (1._; f'(x,)) = . Since
Pp1 = Py/f"(xy), 50 by = pp/(ngy T(xg))- and py = 0.

Q.E.D.
Corollary 6.2: Let z* = sup {y|y ¢ AO}. If 2* < yggp, then the SPE is efficient

~from every initial state.

We obtain, therefore, the following results on efficiency under the SPE:

Theorem 6.3: Under any of the following conditions, the SPE is efficient from every

initial state:

(1) g; is_continuous and non-decreasing on S for some i.

(ii) ¥ is strictly increasing on S, or at least
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(iii) ¥ is_strictly increasing at z*.

Proof: (i) implies that the Dini~derivates of g; are non-negative everywhere, so at any
steady—state y ¢ AO, we have 8 (¥(y)) > 1 = & (xGR), 80 XgR 2 Wy), or YGR 2
f(4(y)) = y. Similarly, (ii) results in all sequences (barring those originating at a
steady—state) being asymptotically convergent, so lemmas 4.8 and 4.10 imply y < YGR
for all y ¢ Al Finally, (iii) ensures convergence to z* is asymptotic, so z* = sup Al
» YGR Apply lemma 6.1 in all three cases.

Q.E.D.

Recall from Section 4 that Al = A1 U A2 where A2 is the set of steady-states
to which all convergence is non—asymptotic (i.e., in a finite number of steps). If A2 is
non-empty and contains a point y strictly larger than YGR’ than all initial states that
converge to y (including y itself) could result in inefficient paths. This follows from a
straightforward application of the Phelps—Koopmans theorem (see, e.g., Burmeister and

Dobell (1970)).

7. Differentiable Equilibria

Many computable equilibria, such as those obtained by Levhari and Mirman (1980),
involve sfrategy functions that are continuously differentiable in their argument. In
this section we show that the added hypothesis of differentiability results in a marked
strengthening of the statements of the previous three sections, notably Section 6.

So suppose (g, g,) are continuously differentiable on S. Our first result is:

Lemma 7.1: ¢’(y) > 0 at_all y ¢ S. Further, 9 is strictly increasing everywhere on S.
Proof: Since (gl, g2) are differentiable everywhere, the Ramsey—Euler equations (3.1)
may be written as

(11) u(g() = fui(g () ©(6) (1 - &), ~
i, j=1,2,1# j, where y = f(¢¥(y)). Suppose ¥(y) = #(y’) for y, y* ¢ S. Then y =
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f(U(y) = {08()) = v/, s0 (i) g(y) = g(y"), (i) £(¥y)) = £(¥(y*)), and (i) g)(v)
= gj(y'). It follows from (7.1) that g(y) = g(y’), i = 1, 2. Since 9(y) = %(y’) by
hypothesis, y — g,(y) — 85(y) = y* — 8;(y") — 8o(v*), and therefore g,(y) = g(y’)
yields y = y’. Thus, % is one-to—one on S. Since % is continuous on S by
hypothesis, it follows that % is strictly monotone on S, so ¥ > 0 on S or ¢’ < 0 on
S. Since ¥{0) = 0 and % > 0, it must be the case that ¢’ > 0 on S.

Q.E.D.

Since ¢ is strictly increasing on S, all convergence to steady states is asymptotic.
Therefore, any steady state of a differentiable equilibrium lies strictly below the

golden—rtule yGR.IO The results of the previous sections now imply:

Theorem 7.2: Differentiable SPE are (i) efficient from every initial state, and (ii)
strictly suboptimal from every non—zero initial state.
Appendix

1. The Ramsey—FEuler equations
Suppose {}; Il} is a sequence in S such that §n1§ and gj(;rn)-agj(;r). since y , y €
S, there are y , y € S such that ;'n = f(¥y, ) ;r = f(¥(y)). For ease of notation, let

X, = w(yn), x = ¢(y). Note that X, x > 0, and (since yn—»): and f is continuous)

X K. Define

Wix,) = [y - g(3) - xg) + du(f(xy) — g(E0x)) — ¥))

Then, W is the 2—period reward accumulating to i if he deviates from the
suggested action ¢(y) in the first period but restores investment levels to ¥(y) in the
second. By the continuity of 8; along the sequence ;r , and the continuity of f and u,,

W(xn)-aW(x) as n-w. Further, it is clear that W(xn) < W(x) for all n since g is a



24

best-response to 8;: Since ynl;r, by the monotonicity of f, we must have xnlx.

Therefore, for all n,

W(x, ) - W(x)

X — X
n

S0 D+W(x; xn) < 0. This translates to the first equation in (3.1). The second

< 0

equation is analagously proved by considering §n1§.

Proof of Lemma 4.7
If y is r.a.s, then there is Yo € S such that yt(yo) > y for all t and yt(yO) ly.
Observe that it must then be the case for some i along some subsequence of yt(yo)
(henceforth denoted y; in this proof) that g(y,) > g;(y). Else, from some point on
(say T), g(y,) < g(y) for t > T. Since y, > y, player i is clearly better off
consuming a larger amount ¢y that lands the state directly in y. (Indeed, it follows
that gi(yt) > gi(y) must hold along some (possibly different) subsequences for both i.)
Fix i.
Some new notation would help in the inequalities to follow.
Define X, = Yy,), ¥, = ¥, - §(v,). and
Wiy, x) = uily, = %) + (4 = Xpp)
Wiy, ® = yly, - %) + Y - x4
where y = y — gj(§). W(yt, Xt) describes the two—period reward to player i along the
path prescribed by g; from Y while W(yt, x) describes the two—period reward i would
obtain by straying from the path in t, but restoring investment levels in (t+1), where

straying changes the investment level in t to x < x,. Since g; is a BR to 8 we have

¢
W(yt, Xt) - W(yt, x) > 0 for all t. To simplify notation further at this point, let
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po | L0 IG5 ()
Y—xt X — X,

[ v — T s re) — 5
;—xt Y—xt

For the mean-value theorem, we note the existence of 0y, ﬁt’ such that u( t) (x - Xt)

= u(yt t) ( - X). and &'(ﬂt) ( t) = 6 u(yt+1 t+1) &l(y -
X; 1), where oy lies between (yt - x;) and (yt x), and f, lies between (yt 41 -

X 4q) and (y - %, 1) Since ¥(y,) | ¥(¥), so by the lower semicontinuity of g;, i =

~

L2, (y-x)~(y-X%), (yt ~%) -+ (y - %), and (yt+1 X 1 h 0= %) 2 (v -
X), as t » o. Note that since (yt - x,) and (y - x) - (y x), so o, and B, = (y -
X).

Summing up the following obtains:
W(yta xt) - W(yt7 S(—)
= (uj(oy) + Gui(B)A)) (x —x) 2 0.
¢ > X, X, X.
ui(oy) + ful(B)A; <0

SO since x

or

4+ last - oo,

Therefore, for all ¢ > 0, there is T(¢) such that for all t > T(e), —6A, 2 (1-¢).

Employing the definition of At and invoking the earlier argument that (at least
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subsequentially) g(y,) — g(y) 2 0, we obtain!!

f(x) — f(xt) 1—e 3 gj(?) - g(yt+1)
= —5 =

X—Xt X—Xt

(A.1)

+1

This implies, taking the liminf of both sides as t-w, that

’ 1- 7 ’
@ > 550 4+ b, gy )@

or transposing terms and using the fact that this equation holds for all € > 0,
&' (x)(1 - D g;(y; yy)) 2 L.

But Yy l&', so the conditions of lemma 3.1 are met, which implies that
& ®(1 - D g(F; v,) < 1,

so we have

(A:2) & X1 - D& v,) = L.

Once again, let H(yt) = f(w(yt)) - y;- Since ytl'i so H(y,) < 0 and H(yt)—»H(§) = 0.

Therefore,

H(yt) - H(y) <0

yt—y

b
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which implies DT H(y; y)< 0. This is just

(A.3) 761 - D g;(y; ¥,) — D 8oy ¥y)) < 1.

Since i was fixed arbitrarily at the start of the proof, (A.2) holds for both i. But this
is possible in conjunction with (A.3) only if D +gi(§; y;) > O for some i. Therefore,
from (A.2), 6f’(x) > 1, or x < Xgg and y, YGR'

Q.E.D.
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FOOTNOTES
IThere is of course a second source of externality possible. If both fisheries sell in
the same market, the total catch also determines the market price. Our focus in this
paper however is only on the former (the gequential externality). The assumptions we
make are equivalent to assumiong that the fisheries sell in different markets and are
monopolists in those markets, with some additional structure on the shape of the

demand curve.

2It should be noted that the "fishing game" is a convenient expositional device.
The class of dynamic games analyzed in the sequel can equally well apply (with
appropriate modifications where necessary) to common property extraction of an
exhaustible resource like oil, the "splitting of the pie" between agents in a firm or the
economy and so on. Indeed, in a striking and novel example, Lancaster (1973) views a
modern firm as a productive asset exploited by its owners and (unionized) workers,

which is one interpretation of the framework we study.

3By "eventually" we mean that the sequence of states is monotone beyond some
finite time. The remarkably regular behavior implied by this result is substantially
more general than the result on monotonicity of capital accumulation paths in
aggregative (classical or nonclassical) growth models. In the latter, the observed
monotonicity of the state path is an immediate consequence of the non—decreasing
nature of the optimal investment function, which in turn derives from the strict
concavity of the one—period reward function (see, e.g., Dechert and Nishimura (1983)).
Our result hold regardless of whether the equilibrium investment function is

non—decreasing or not! See section 4 for details.

4These conditions include as special cases the examples computed by several
authors. In the event these conditions are not met, it is possible — although we have

been unable to show this via an example — that steady state(s) may lie above the
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golden rule, and under—consumption occurs in equilibrium. Intuitively, this could occur
because players get "locked into" sustaining too high a level of the resource:
equilibrium strategies are shaped such that a small drop in the stock level causes a
large increase in consumption by one or both players, causing the stock level to
plummet. The main difficulty with constructing an example is that computable
equilibria typcially possess well-behaved (e.g., differentiable) strategies. It is shown in
this paper that such strategies always result in over—consumption. On the other hand,
since a stationary equilibrium of a two—person dynamic game involves the simultaneous
solution to two dynamic programming problems, with the environment of each being
specified by the solution to the other, examples with highly discontinuous equilibrium

strategies seem exceptionally difficult to construct.

50f course "anorexia" really means an absence of appetite" whereas players in a
high steady state equilibrium under consume for strategic reasons. As often, style

edges out substance!

6The exact form of the allocation mechanism is irrelevant from the point of view
of this paper. Indeed, any function & S x A1 X ... X An - Al X An that (i)
allocates to each player his planned action when plans are individually and collectively

feasible, ie., &(y, ap, ..., ay) = a;, if a, € Ay(y) and Ba, <y, and (ii) exhausts the
resource through some distribution when they are not, i.e., satisfies Zi §i(y, 2y, - an)

=y if Za,i > y, would do al well for the results, while complicating notation.

"There is no loss of generality in this assumption. If the initial value of the state
Yo is greater than s then the analysis could be carried through by assuming S = [0,

Yol since f still maps S into itself.

8Indeed, this condition remains minimally sufficient, under much more general
conflict—resolution rules than the one we employ. For example, if the function § of

footnote 6 is continuous, g needs to be Isc to ensure the existence of a best—response.
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9Actually, obtaining the strict inequality requires further work. Lemma 4.2 yields
for i =1, 2, Vi(y) 2 lim__, Vi(y,). Since ¢ is discontinuous at y and g;, g, are lsc
on S, so one of g1 Or g (say gj) is discontinuous at y. From a simple modification of
the proof of Theorem 5.1 in Sundaram (1987), it can be shown that V; is continuous
from the left (right) at y iff ; is continuous from the left (right) at y; this implies
that V; is also discontinuous at y. Since 4 jumps up at y, so 8 jumps down at y,

hence V; jumps up at y. And since 8 is discontinuous along the sequence {yt}, so is

V.. QED.

10Although this follows from lemmas 4.8 — 4.9, a simple and direct proof may also
be given. Since 9 is monotone and continuous, there is a largest steady-state z*.
Defining H(y) = f(¢(y)) — y for y ¢ S, we note that H'(z*) < 0 or f'(¢(z*)) (1 —
8;(z*) - g5(z*)) < 1. Combining this with equation (7.1) implies 8 (z*) > 0, and the

result follows.

INote that (A.1) already implies (by taking limits as t -+ «) that &'(x) > 1, since

€ > 0 is arbitrary, and the second term on the RHS is non—negative for all t.
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