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COOPERATIVE MODELS OF BARGAINING

1. INTRODUCTION.

The axiomatic theory of bargaining originated in a fundamental paper by J.F. Nash
(1950). There, Nash introduced an idealized representation of the bargaining problem and
developed a methodology that gave the hope that the undeterminateness of the terms of
bargaining could finally be resolved.

Two agents have access to any of the alternatives in some set S. If they agree on a
particular alternative, that is what they get. Otherwise they end up at a prespecified
alternative in S, called the disagreement point, d. Both S and d are given directly in utility
space. Nash's objective was to develop a theory that would help predict how the agents
would establish a compromise among their conflicting preferences. He specified a natural
class of bargaining problems (S,d), to which he confined his analysis, and he searched for
solutions, that is, rules to associate with each (S,d) in the class a point of S, to be
interpreted as this compromise. He achieved this by formulating a list of properties, or
axioms, that he thought solutions should satisfy and establishing the existence of a unique
solution satisfying all the properties. It is after this first aziomatic characlerization of a
solution that much of the subsequent work has been modelled.

Alternatively, solutions are meant to provide a recommendation that an impartial
arbitrator could make. There, the axioms may embody normative objectives.

Although criticisms were raised early on against some of the properties Nash used, the
solution he identified, now called the Nash solution, remained the dominant solution until the
mid-seventies. Then, other solutions were introduced and given appealing characterizations.
These results spurred a revival of the theory which since underwent a considerable
development. In this chapter we review its current state.

Remark 1. The most complete earlier survey is Roth (1979c). Partial surveys are

Schmitz (1977), Kalai (1985), Thomson (1985a), and Peters (1987). Thomson and



Lensherg (1988) analyze the case of a variable number of agents. Thomson (1988) is

intended as an up-to—date and detailed review.

2. DOMAINS. SOLUTIONS.

An n—person bargaining problem, or simply a problem, is a pair (S,d) where S is a
subset of the n—dimensional euclidean space, and d is a point of S. Ez is the class of
problems such that (Fig.la):

S is convex, bounded, and closed (it contains its boundary),

there is at least one point of S strictly dominating d.

Uy Uy

y

5 8
1 Uy u
d=0 d=0
An element of 2(21. An element of Eg. A strictly comprehensive
()
element of 26.
(a) (b) (c)
Figure 1

Each point of S gives the utility levels, measured in some von Neumann—Morgenstern
scales, reached by the agents through the choice of one of the physical alternatives, or
randomization among those alternatives, available to them. Convexity of S is due to the

possibility of randomization; boundedness holds if utilities are bounded; closedness is assumed



for mathematical convenience. The existence of at least one x ¢ S with x>d is postulated
10 avoid the somewhat degenerate case when only some of the agents stand to gain from the
agreement.  In addition, we will usually assume that

(S.d) is d-comprehensive: If x € S and x > y > d, thenl y ¢ S.

This property of (S,d) follows from the natural assumption that utility is freely
disposable (above d). It is sometimes useful to consider problems satisfying the slightly
stronger condition that the part of their boundary that dominates d not contain a segment
parallel to an axis. Along that part of the boundary of such a strictly d-comprehensive
problem, "utility transfers" from one agent to another are always possible. Let 85 be the
boundary of S.

In most of the existing theory the choice of the 0 of the utility scales is assumed not
to matter, and for convenience, we choose scales so that d=0 and ignore d in the notation
altogether. However, in some sections, the disagreement point plays a central role; it is then
explicitly reintroduced. When d=0, we simply say that a problem is comprehensive instead
of d-comprehensive.

Finally, we often require that

S ¢ RL.
This is on the grounds that alternatives at which any agent receives less than what he is
guaranteed at d=0 should play no role in the determination of the compromise. (This
requirement, is given a formal statement later on.)

In summary, we usually consider the class ZZ of problems S as represented in Fig. 1b —
¢. We occasionally consider degenerate problems, that is, problems whose feasible set

contains no point strictly dominating the disagreement point. Let I‘Z and I‘Z be the classes

Wector inequalities: given x, X’ € an, X > X’ means X, > X for all i; x > x’ means x >

x’ and X # X’; X > X’ Imeans X; > xi for all 1.




of degenerate problems associated with Eg and Zg.

Sometimes, we assume that utility can be disposed of in any amount: if x ¢ S then
any y € R" with y<x is also in 5. We denote by d En FS’_ the classes of such
fully comprehensive problems corresponding to e & Eg, 1’3, Fn

Given ACR" L cch{A} denotes the "convex and comprehensive hull” of A: it is the
smallest convex and comprehensive subset of IR_I; containing A.

Remark 2. Other classes of problems have been discussed in the literature. In some

studies, no disagreement point is given (Harsanyi 1955, Myerson 1977, Thomson 1981c).

In others, an additional reference point is specified; if it is in S, it can be interpreted

as a status quo (Brito, Buoncristiani and Intriligator 1977 choose it on the boundary of

S), or as a first step towards the final compromise (Gupta and Livne 1988); if it is

outside of S, it represents a vector of claims (Chun and Thomson 1988).

A solution defined on some domain of problems associates with each element (S.d) of
the domain a unique point of S interpreted as a prediction, or a recommendation, for that
problem.

Remark 3. Some authors have considered multivalued solutions (Thomson 1981a;

Peters, Tijs and de Koster 1983), and others probabilistic solutions (Peters and Tijs

1984b).

Three solutions play a central role in the theory as it appears today. We introduce
them first, but we also present several others so as to show how rich and varied the class of
available solutions is. Their definitions, as well as the axioms to follow shortly, are stated
for an arbitrary S ¢ 28, (or (S,d) € Eﬁ)

Nash solution N (Fig. 2a): N(S) is the maximizer of the product IIx; over S. (N(S,d) is
the maximizer of II(x,—d;) for x ¢ S with x>d.)
Kalai-Smorodinsky solution K (Fig. 2b): K(S) is the maximal point of S on the segment,

connecting the origin to a(S), the ideal point of S, defined by a,i(S)Emax{xilx ¢ S} for all i.
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(K(S.d) is the maximal point of S on the segment connecting d to a(S,d) where ai(S.d) =
max{x;|x € 3, x>d} for all 1)

Lqalitarian solution E (Fig. 2c): E(S) is the maximal point of S of equal coordinates.
(Ei(S,d)—diEEJ(S,d)—dj for all i,j.)

Dictatorial solutions Di and D*i (Fig. 2d): Di(S) is the maximal point x of S with xj:O for
all {41 (Similarly, D}(S,d):dj for all j #1.) If n=2, D (8) is the point of PO(S) of
maximal it oordinate. (If S is strictly comprehensive, Di(S)zD*i(S)). If n>2, the
maximizer of X; in PO(S) may not be unique, and some rule has to be formulated to break
possible ties (a lexicographic rule is often suggested).

The (discrete) Raiffa solution RS (Fig. 2e): Rd(S) is the limit point of the sequence {zt}
defined by: x0=DI(S) for all i; for all t ¢ N, z'=(Sx"")/n, and it ¢ WPO(S) is such that
ixg = Z; for all j#i. (On X4, start from the Di(S,d) instead of the Di(S). A continuous
version of the solution is obtained by having z(t) move at time t in the direction of
(Eix(t))/n where ix(t) ¢ WPO(S) is such that jxj(t):zj(t) for all j#i.)

Equal Area solution A (Fig. 2f): For n=2. A(S) is the point x ¢ PO(S) such that the area
of S to the right of the vertical line through x is equal to the area of S above the
horizontal line through x. (There are several possible generalizations for n>3. On Sg
ignore points that do not dominate d.)

Utilitarian solution U (Fig. 2g). U(S) (or U(S,d)) is a maximizer in x ¢ S of Ix.

This solution, which has played a major role in other contexts, presents some
difficulties here. First, the maximizer may not be unique. To circumvent this difficulty a
tie—breaking rule has to be specified; for n=2 it is perhaps most natural to select the
midpoint of the segment of maximizers (if n>2, this rule can be generalized in several
different ways). A second difficulty, is that as defined here for Eg, the solution does not
depend on d. A partial remedy here is to search for a maximizer of Exi among the points
of S that dominate d. In spite of these limitations, the utilitarian solution is often used.

At the very least, it has the merit of being a useful limit case.
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Perles—Maschler solulion PM (Fig. 2h): For n=2. If S is polygonal, PM(S) is the common

1(8), yO:D*Q(S); for each t ¢ N,

«'v' € PO(S) are such that xggy‘;, the segments [xtﬂl,xt},[yt‘_l,yt] are contained in PO(S)

and the products —(xi_l—x‘;)(xgl—x;) and —(yi_l—yi)(yg—l—y;) are equal and maximal.

(Equality of the products implies that the triangles of Fig. 2h are matched in pairs of equal

limit point of the sequences {xt}, {yt‘}, defined by: V=D

areas.) If 05 is not polygonal, PM(S) is defined by approximating S by a sequence of
polygonal problems.

The solution can be given the following equivalent definition when 0S is smooth.
Consider two points moving along d5 from D*l(S) and D*Q(S) so that the product of the
components of their velocity vectors in the uy and U, directions remain constant: The two
points will meet at PM(S). The differential system describing this movement can be
generalized to arbitrary n; it generates n paths on the boundary of 4S that meet in one
point that can be taken as the desired compromise. (On TH start from the Di(S,d) instead
of the D(S).)

Yu solutions YP (Fig. 2i): Given p € |1, YP(S) is the point of S for which the p-distance
to the ideal point -of S, (E]ai(S)—xi\p)l/p, is minimal. Also, Y®(S) is the maximal point of
S such that ai(S)—xi:aj(S)~xj for all i,j. (On Eg, use a(S,d) instead of a(S).)

Remark 4. Versions of the Kalai-Smorodinsky solution appear in Raiffa (1953), Crott

(1971), Butrim (1976), but the first axiomatization is in Kalai and Smorodinsky (1975).

A number of variants have been discussed, in particular by Kalai and Rosenthal (1978)

and Salonen (1985, 1987). The Egalitarian solution cannot be traced to a particular

source but egalitarian notions are certainly very old. The Equal Area solution is
analyzed in Dekel (1982), Ritz (1985), and Anbarci and Bigelow (1988); the Yu

solutions in Yu (1973) and Freimer and Yu’(1976); the Raiffa solution in Raiffa (1953)

and Luce and Raiffa (1957). The utilitarian solution dates back to the mid 19th

century. The 2-person Perles—-Maschler solution appears in Perles~Maschler (1981) and

its n—person extension in Kohlberg, Maschler and Perles (1983).
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3. THE MAIN CHARACTERIZATIONS.

Here we present the classic characterizations of the three solutions that occupy center stage

in the theory as it stands today.

3.1 The Nash solution.
We start with Nash's fundamental contribution. Nash considered the following axioms:
Pareto—optimality (p.0): F(S) ¢ PO(S)={x € S|3Ix’ ¢ S with x">x}.

All gains from cooperation should be exhausted.

u3
uz
T
N(S)=N(S") "
S’ u 45° 5 45° "
N satisfies contraction independence Characterization of N
(a) (b)

The Nash solution.

Figure 3

symmetry (sy): If S is invariant under all exchanges of agents, Fi<S) = Fj(S) for all i,j.
If the agents cannot be differentiated on the basis of the information contained in the
mathematical description of S, then the solution should treat them the same.
Let AI(;:[Rn 5 R™ be the class of independent person by person, positive linear

transformations ("scale transformations"): A ¢ Ag if there is a ¢ lel_ n such that for all x ¢



R®, A(x)=(a;x;,..a.x ). Given A ¢ Ay and S ¢ R®, A(S)={x’ ¢ R"|3x ¢ S with x’=\(x)}.
scale invariance (s.inv):  A(F(S))=F(A(S)).

The solution should be independent of which particular members in the families of
utility functions representing the agents' preferences are chosen to describe the problen.
contraction independence (c.i): If S’cS and F(S) ¢ S’, then F(S7)=F(S).

If an alternative is thought to be the best compromise for some problem, then it
should still be thought best for any subproblem that contains it.

In the proof of the first result we use the fact that for n=2 if x=N(S), then S has at
x a line of support whose slope is the négative of the slope of the line connecting x to the
origin (Fig. 2a).

Theorem 1 (Nash 1950): The Nash solution is the only solution on Eg satisfying p.o, sy,
s.anv, and c.i.

Proof (for n=2): Tt is easy to verify that N satisfies the four axioms (that N satisfies c.2 is
illustrated in Fig. 3a). Conversely, let F be a solution on Eg satisfying the four axioms.

To show that F=N, let S ¢ Tp be given and let x=N(S). Let X ¢ A7 be such that x'=A(x)
be on the 450 line. Such a A exists since x>0, as is easily checked. The problem S’=A(S)
is supported at x’ by a line of slope -1 (Fig. 3b). Let T={y ¢ [R_%IEyéExi}. T is a
symmetric problem and x” ¢ PO(T). By p.o and sy, F(T)=x". Clearly, S'CT and x* ¢ 57,
so that by e.i F(S7)=x’. The desired conclusion follows by s.inv.

Q.E.D.

Each of the axioms used by Nash has been the object of some criticism. To the
extent that the theory is intended to predict how real-world conflicts are resolved, p.o is
certainly not desirable, since such conflicts often result in dominated compromises. Likewise,
we might want to take into account differences between agents pertaining to aspects of the
environment that are not explicitly modelled and differentiate among them even though they

enter symmetrically in the problem at hand; then, we violate sy. Axiom s.inv prevents
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basing compromises on interpersonal comparisons of utility, but such comparisons are made
in a wide variety of situations. Finally, if the contraction described in the hypotheses of ¢
is skewed against a particular agent, why should the compromise be prevented from moving
against him? In fact, is seems that solutions should be allowed to be responsive $0 the
geometry of S, at least to its main features. (It is precisely considerations of this kind that
underlie the characterizations of the Kalai—Smorodinsky and Egalitarian solutions reviewed
later.)
Remark 5. Nash's theorem has been considerably refined by subsequent writers.
Without p.o, only one other solution becomes admissible: it is the trivial disagreement
solution, which associates with every problem its disagreement point, here the origin
(Roth 1977a, 1980). Dropping sy, we obtain the following family: given «a ¢ An_l,

the weighted Nash solution with weights a is defined by maximizing over S the product

-
Hx.ll (Harsanyi and Selten 1972); the Dictatorial solutions and some generalizations also

become admissible (Peters 1983b). Without s.iny, many other solutions, such as the
Egalitarian solution, are permitted. The same is true if e.i is dropped; however, let us
assume that a function is available that summarizes the main features of each problem
into a reference point to which agents find it natural to compare the proposed
compromise in order to evaluate it. By replacing in c.i the hypothesis of identical
disagreement points (implicit in our choice of domains) by the hypothesis of identical
reference points, variants of the Nash solution, defined by maximizing the product of
utility gains from that reference point, can be obtained under weak assumptions on the
reference function. (Roth 1977b, Thomson 1981a.) Axiom c.i bears a close relation to
the axioms of revealed preference of demand theory (Lensberg 1987, Peters and Wakker
1987).

We close this section with the statement of a few interesting properties satisfied by the

Nash solution but by many others as well.
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The first is a consequence of our choice of domains: N(S) always weakly dominates
the disagreement point, here the origin. On En, the property would of course not necessarily
be satisfied, so we write it for that domain.
individual rationality (i.r): F(S,d) ¢ I(S,d)={x € S|xx>d}.

In fact, the Nash solution (and again many others) satisfies the following stronger
condition: all agents should strictly gain from the compromise.
strong individual rationality (st.i.r): F(S,d)>d.

The requirement that the compromise depend only on I(S,d) is implicitly made in much
of the literature:
independence of non—individually rational allernatives (i.n.i.r): F(S,d)=F(I1(5,d),d).

Most solutions satisfy this requirement. A solution that does not, althoug;h it satisfies
st.i.r, is the Kalai—-Rosenthal solution (Remark 7).

Another property of interest is that small changes in problems do not lead to wildly
different solution outcomes.
continuity (cont): If S” 4 S in the Hausdorff topology, and d” - d, then F(s¥,d") - F(S.d).

All of the solutions of Section 2 satisfy coni, except for the dictatorial solutions D*i
and the Utilitarian and Perles—Maschler solutions.

Remark 6: Other continuity properties of solutions are formulated and studied by

Jansen and Tijs (1983). A property related to cont, which takes into account closeness

of Pareto—optimal boundaries, is used by Peters (1986a) and Livne (1987a).

3.2 The Kalai-Smorodinsky solution. We now turn to the second one of our three central
solutions, the Kalai-Smorodinsky solution. Just like the Egalitarian solution, examined last,
the appeal of this solution lies mainly in its monotonicity properties. Recall that
a;(S)=max{x; |x € 5}.

individual monotonicity (i.mon): For n=2. If 5’25, and a.j(S’):a.j(S) for j#i, then

Fy(S")2Fy(S).
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If the range of utility levels attainable by agent j remains the same as S expands to
S/, while for each such level, the maximal utility level attainable by agent i increases, then

agent i1 should not lose.

uz 9
a(S) a(S") a(S)
X
K(S) K(S*)
S
S/
S S uy 45° uy
K satisfies indiv(z'dual monotonicily Characterization of K.
a) (b)

The Kalai—-Smorodinsky solution.

Figure 4

Theorem 2 (Kalai—Smorodinsky 1975): The Kalai-Smorodinsky solution is the only solution
on Eg satisfying p.o, sy, s.inv, and i.mon.

Proof Tt is clear that K satisfies the four axioms (that K satisfies imon is illustrated in
Fig. 4a). Conversely, let F be a solution on Eg satisfying the four axioms. To see that
F=K, let S ¢ Eg be given. By s.inv, we can assume that a(S) has equal coordinates (Fig.
4b). This implies that x=K(S) itself has equal coordinates. Then let
S’Ecch{(al(S),O),x,(O,aZ(S))}. S’ is a symmetric problem and x ¢ PO(S") so that by p.o
and sy, F(S/)=x. By imon applied twice, we conclude that F(S)>x, and since x ¢ PO(S),

that F(S)=x=K(S).

Q.E.D.
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Before presenting variants of this theorem, we first note several difficulties concerning
its possible generalization to classes of not necessarily comprehensive n—person problems for n
> 9. On such domains the Kalai-Smorodinsky solution often fails to yield Pareto—optimal
points, as is shown by the example S = convex hull{(0,0,0),(1,1,0),(0,1,1)} of Fig. 5: there
K(S)(=(0,0,0)) is in fact dominated by all points of S (Roth, 1979d). However, by requiring
comprehensiveness of the admissible problems, the solution satisfies the following natural
weakening of p.o:
weak Pareto-optimality (w.p.0): F(S) ¢ WPO(S)={x ¢ S|Ix” ¢ S, x">F(5)}.

The other difficulty in generalizing Theorem 2 to n>2 is that there are several ways of
generalizing i.mon to that case, not all of which permit the result to go through. One
possibility is to write "for all j#'" in its earlier statement. The following will also do (Roth
1979d, Thomson 1980):
restricted monotonicity (r.mon): If S’2S and a(S’)=a(S), then F(S7)>F(S).

To emphasize the importance of comprehensiveness, we note that w.p.o, sy, and r.mon

are incompatible if that assumption is not imposed (Roth 1979d).

g

a(S)

K(S)

u3
A difficulty with the Kalai-Smorodinsky solution for n>2.

I S is not comprehensive, K(S) may be strictly dominated by all points of S.
Figure 5
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Remark 7: A lexicographic (see Section 3.3) extension of K that satisfies p.o has been
characterized by Imai (1983). Deleting p.o from Theorem 2, a large family of solutions
becomes admissible. Without sy, the following generalizations of K are permitted:
Given « € An_l, the weighted Kalai-Smorodinsky solution with weights a, K% I{OI(S)
is the maximal point of S in the direction of the a—weighted ideal point
aa/(S)E(arlal(S),...,anan(S)). These solutions satisfy w.p.o but not p.o. There are other
solutions satisfying only w.p.o, s.iny, and i.mon; they are normalized versions of the
"monotone path solutions", discussed later on in connection with the Egalitarian
solution (Peters and Tijs 1984a; 1985b). Salonen (1985, 1987) characterizes two
variants of the Kalai-Smorodinsky solution. These results, as well as the
characterization by Kalai and Rosenthal (1987) of their variant of the solution, and the
characterization by Chun (1988a) of a variant of the Yu solution for p=w, are also

close in spirit to Theorem 2.

3.3 The Egalitarian solution. The Egalitarian solution performs the best from the viewpoint
of monotonicity and the characterization that we will offer is based on this fact. However,
the price paid for these strong monotonicity properties is that this solution involves
interpersonal comparisons of utility (it violates s.inv). Note that it satisfies w.p.o only,
although E(S) ¢ PO(S) for all strictly comprehensive 5.

strong monotonicity (st.mon): If S’2S, then F(S’)>F(S).

All agents should benefit from expanding opportunities; this is irrespective of whether
the expansion may be biased in favor of one of them, (for instance, as described in the
hypotheses of imom). Of course, if that is the case, nothing prevents the solution outcome
from "moving more" in favor of that agent.

Theorem 3 (Kalai 1977): The Egalitarian solution is the only solution on 218 satisfying

w.p.o, sy, and st.mon.
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Proof (for n=2): Clearly, E satisfies the three axioms. Conversely, to see that if a solution
2 . : 2 -

F on Za satisfies the three axioms, then F=E, let S ¢ 26 be given, x=E(S), and S =cch{x}

(Fig. 6a). By w.p.o and sy, F(57)=x. Since S3S’, st.mon implies F(S)>x. Note that x ¢

WPO(S). If, in fact, x ¢ PO(S), we are done. Otherwise, we conclude by a continuity

argument involving a sequence of strictly comprehensive problems approaching S from above.

Q.E.D.

It is clear that comprehensiveness of S is needed to obtain weak Pareto—optimality of
E(S) even if n=2. Without comprehensiveness, w.p.o and st.mon are incompatible (Luce and
Raiffa 1957).

Remark 8: Deleting w.p.o from Theorem 3, we obtain solutions defined as follows:

Given k ¢ [0,1], Ek(S) = kE(S). However, there are other solutions satisfying only sy

and st.mon (Roth 1979a, 1979b). Without sy the following solutions become admissible:

Given a € An—l, the weighted Egalitarian solution with weights a, E% Ea(S) is the

u2
Uz

G

Gc,

%=E(S) E™(S)

£9(S)
S S
45° o S 5 Uy

Characterization of the Monotone Path solutions.

Egalitarian solution
(a) (b)

Egalitarian) and Monotone Path solutions

Figure 6
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maximal point of S in the direction a (Kalai (1977). The axioms w.p.o and st.mon

essentially characterize the following more general class: Given a strictly monotone

path G in IR?_, the monotone path solution relative to G, E'G: G(S) is the maximal

point of S along G (Fig. 6b, Thomson and Myerson 1980).

It is clear that st.mon is crucial in Theorem 3 and that without it, a very large class
of solutions would become admissible. However, this axiom can be replaced by other
interesting conditions that still produce characterizations of the Egalitarian solution (Kalai
1977h). |
decomposability (dec): 1f S’2S and S"={x" ¢ [Ri\ﬂx’ ¢ S’ such that x" =x"+F(S5)} ¢ 28,
then F(S’)=F(S)+F(S").

Imagine that opportunities expand over time from S to S’. The axiom says that
F(S’) can be indifferently computed in one step, ignoring the initial problem 3 altogether, or
in two steps, by first solving S and then taking F(S) as starting point for the distribution of
the additional opportunities.

Remark 9: The weakening of dec obtained by restricting its application to

cases where F(S) is proportional to F(S") can be used together with p.o,

sy, i.n.ir, s.inv, and cont to characterize the Nash solution (Chun 1988b).

As already noted, the Egalitarian solution does not satisfy p.o, but there is a natural
extensioﬁ of the solution that does (a similar operation can be used to define a version of KX
that satisfies p.o. on Eg for all n). Given z € R, z ¢ R is obtained from z by writing its

coordinates in increasing order. Given x, y ¢ R™, z is lezicographically greater than y if

>~cl>y1 ~or [xl:y1 and x2>y2], or, more generally, for some k [xlzyl,...,xk:yk, and

X 1>V +1]. Now, given S ¢ Eg, its lezicographic solution outcome EL(S) is the point of S
that is lexicographically maximal. It can be reached by the following simple operation (Fig.
7): let x' be the maximal point of S with equal coordinates; if X e PO(S), then xleL(S);
if not, identify the greatest subset of the agents whose utilities can be simultaneously

increased from " without hurting the remaining agents. Let <% be the maximal point of S
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. . . . . 2 . :
at which these agents experience equal gains. Repeat this operation from x“ to obtain xg,

etc.,..., until a point of PO(S) is obtained.

This algorithm produces a well—defined solution satisfying p.o even on the class of
problems that are not necessarily comprehensive. Given S in that class, apply it to its
comprehensive hull and note that taking the comprehensive hull of a problem does not affect

its set of Pareto—optimal points.

U2 uz
xzz‘L(S)
S
XIZE(S) XZ:EL(S)
x!1=E(S)
S
45° Uy u
A two—person example U3 A three—person example
(a) b

The Lexicographic Egalitarian solution.

Figure 7

Remark 10: For characterizations of EL based on monotonicity considerations, see lmai
(1983) and Chun and Peters (1987a). Lexicographic extensions of the Monotone Path
solutions are defined, and characterized by similar techniques for n=2, by Chun and

Peters (1987b).

A. OTHER PROPERTIES. THE ROLE OF THE FEASIBLE SET.

Here, we change our focus, concentrating on properties of solutions.
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4.1. Symmetry and related properties. The symmetry axiom used so far applies to problems
that are "fully symmetric", that is, are invariant under all permutations of agents. But
some problems may only exhibit partial symmetries that one may want solutions to respect.
anonymity (an): Let m{l,...n} - {1,...n} be a bijection. Given x ¢ R™, let
W(X)E<X7r(1)""’x7r(n))' Then, F(7(S)) = =(F(S)).

Consider also the following (Thomson 1988).
responsiveness to asymmetries (res.a): If for all x ¢ S such that X2 Xg, there exists y ¢ S
with Yi=Xp Y= and y,=x, for all k # i, j, then Fj(S)gFi(S).

Most solutions satisfy these properties (the Dictatorial solutions obviously do not satisfy
an; the Perles—Maschler solution does not satisfy reé.a).
4.2. Mid-point domination. A minimal amount of cooperation among the agents should
allow them to do at least as well as the average of their preferred positions. Accordingly,
consider the following two requirements (Sobel 1981, Salonen 1985, respectively), which
correspond to two natural definitions of "preferred positions".
mid—point domination (m.p.d): F(S)g[EDi(S)]/n.
strong mid-point domination (st.m.p.d): F(S)g[ED*i(S)]/n.

Many solutions satisfy m.p.d (notable exceptions are the Egalitarian and Utilitarian
solutions), yet we have (compare with Theorem 1):
Theorem 4 (Moulin 1983). The Nash solution is the only solution on 28 satisfying m.p.d
and c.1.

Few solutions satisfy st.m.p.d (the Perles~Maschler solution is an example; Salonen 1935

defines a version of the Kalai-Smorodinsky solution that does too).

4.3 Invarience properties. The theory presented so far is a cardinal theory, in that it
depends on utility functions, although the extent of this dependence varies, as we have seen.
Are there solutions that are invariant under all monotone increasing, and independent agent

by agent, transformations of utilities? Let AB be the class of these transformations: A ¢ AS
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if there is for each i, a continuous and monotone increasing function A;:R - R such that
given x ¢ R", )\(x):(/\l(xl),...,/\n(xn)).
Ordinal invariance (ord.inv): For all A ¢ /18, F(A(S)) = AF(9)).

Since convexity of S is not preserved under transformations in /~\8, we consider the

domain ES obtained from EIS by dropping this requirement.

Theorem 5 (Shapley 1969; Roth 1979). There is no solution on ég satisfying st.i.r and
ord.inv.

Proof Let F be a solution on i% satisfying ord.inv and let S and S’ be as in Fig. Sa. Lct
A, and Ay be the two transformations from [0,1] to [0,1] defined by following the horizontal
and vertical arrows of Fig. 8 respectively. (The graph of Ay 18 given in Fig. 8b; somewhat
more explicitly, /\2(x2), the image of Xq under )\2, is obtained by following the arrows {rom
Fig. 8a to Fig. 8b). S is globally invariant under the transformation /\E(/\l,/\Q), with only
three fixed points, the origin and the endpoints of PO(S). Since none of these points is
positive, F does not satisfy st.i.r.

Q.E.D.

Theorem 6 (Shapley 1984; Shubik 1982). There are solutions on the subclass of ig of
strictly comprehensive problems satisfying p.o and ord.inv.

Proof Given S ¢ ég, let F(S) be the limit point of the sequence {xt} where: x© is the
point of intersection of PO(S) with [R{1’2} such that the arrows of Fig. 9a lead back to xl;
X2 is the point of PO(S) such that x%:x% and a similarly defined sequence of arrows leads
back to x2; this operation being repeated forever (Fig. 9b). The solution F satisfies ord.inv
since at each step, only operations that are invariant under ordinal transformations are

performed.

Q.E.D.
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Remark 11: There are other solutions satisfying these properties and yet other such
solutions on the class of smooth problems (Shapley 1984).
Instead of allowing the utility transformations to be independent across agents, require

now that they be the same for all agents:

weak ordinal invariance (w.ord. inv): For all A ¢ /~\8 such that /\i:/\j for all i, j;

F(A(S))=A(F(8))-
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A solution on Eg satisfying Pareto—optimalily, strong individual rationality,
and ordinal invariance.

Figure 9

This is a significantly weaker requirement than ord.inv. Indeed, we have:
Theorem T (Roth 1979c; Nielsen 1983). The Lexicographic Egalitarian solution is the only
solution on the subclass of ‘;’% of problems whose Pareto—optimal boundary is a connected set

to satisfy w.p.o, sy, c.i, and w.ord.inv.
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4.4. Independence and monotonicity properties. Here we formulate a variety of conditions
describing how solutions should respond to changes in the geometry of S.

One of the most important conditions we have seen is e.i. A significantly weaker
condition which applies only when the solution outcome of the initial problem is the only
Pareto—optimal point of the final problem is:
weak contraction independence (w.c.i): If S=cch{F(S)}, then F(5)=F(5").

Dual conditions to ¢.i and w.c.i, requiring invariance of the solution outcome under
expansions of S, provided it remains feasible, have also been considered. Useful variants of
these conditions are obtained by restricting their application to smooth S The Nash and
utilitarian solutions can be characterized with the help of these conditions (Thomson
1981b,c). The smoothness restriction implies that utility transfers are possible at the same
rate in both directions along the boundary of S. If S is not smooth at F(S), an agent who
had been willing to concede along 9S up to F(S) might have been willing to concede further
if the same rate at which utility could be transferred from him to the agent had been
available. It is then natural to think of such compromises as somewhat artificial. A
number of other conditions that explicitly exclude kinks or corners have been formulated
(Chun and Peters 1987a, 1987b; Peters 1986; Chun and Thomson 1987).

A difficulty with the two monotonicity properties used earlier, i.mon and si.mon, as
well as with the independence conditions, is that they preclude the solution from being
sensitive to certain changes in S that intuitively seem quite relevant. What would be
desirable are conditions pertaining to changes in S that are defined relative to the
compromise initially established. Consider the next conditions (Thomson and Myerson 1980),
written for n=2, which involve twisting the boundary of a problem around its solution
outcome (#w), only adding (add), or only subtracting (cut), alternatives on one side of the

solution outcome (Fig. 10).
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Twisting (tw): 1f x e S’\S implies [x;>F,(S) and XjéFj(S)] and x ¢ S\S” implies [x,<I.(5)
and xngj(S)], then Fi(S/)E—Fj(S)'

Adding (add): If S'2S, and x € S’\S implies x,>F.(S), then F.(S)2F,(5).

Cutting (cut): 1f S’cS, and x ¢ S\S implies ijFi(S)’ then Fi(S’)éFi(S).

The main solutions satisfy fw, which is easily seen to imply aedd and cut. However,
the Perles—Maschler solution does not even satisfy add. Axiom tw is crucial to understanding
the responsiveness of solutions to changes in agents' risk aversion (Section 5.3).

Finally, we have the following strong axiom of solidarity. Note that no assumptions
are made on the way S relates to S’.

Domination (dom): Either F(S’)>F(S) or F(S)>F(S").

A number of interesting relations exist between all of these conditions. In light of

w.p.o and cont, dom and st.mon are equivalent (Thomson and Myerson 1980) and so are add

and cut (Livne 1986a). Axiom c.i implies tw and so do p.o and i.mon together (Thomson
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‘and Myerson 1980). Many solutions (Nash, Perles-Maschler, Equal area) satisfy p.o and tw
but not i.mon. Finally, w.p.o, sy, s.inv and tw together imply m.p.d (Livne 1985a).
The axioms tw, i.mon, add, and cut can be extended to the n—person case in several

alternative ways.

4.6 Uncertain feasible set. Suppose that bargaining takes place today but that the feasible
set will be known only tomorrow: It may be S1 or 82 with equal probabilities. The agents'
expected utilities today from waiting until the uncertainty is resolved is xlz[F(Sl)+F(82)] /2
whereas if they were to solve the "expected problem" (Sl+82) /2 they would be
F[(Sl+82)/2]. Since x* is in general not Pareto-optimal in (81+SQ) 2, it would be
preferable for them to agree on a compromise today. We require of F that it gives all
agents the incentive to solve the problem today: <} should dominate F[(81+SQ) /2].  Slightly
more generally, we formulate:

concavity (cav): For all A ¢ [0,1], FOAS'+(1-0)8H)2AF(Sh)+(1-\F(S?).

Alternatively, we could imagine that the feasible set is the result of the addition of
two component problems and formulate the closely related condition:
super—additivity (sup.add): F(Sl+82)_>_:F(Sl)+F(S‘2).

Neither the Nash nor Kalai-Smorodinsky solution satisfies these conditions, but the
Egalitarian solution does. Are the conditions compatible with s.inv? Yes. However, only
one solution satisfies them together with a few other minimal requirements.

Theorem 8 (Perles and Maschler 1981): The Perles-Maschler solution is the only solution on
E(Q)Ul‘g satisfying p.o, sy, s.inv, sup.add, and cont on the subclass of Zg of strictly
comprehensive problems. (Recall that Fg is the class of problems satisfying all the

properties required of the elements of Zg, but violating the requirement that there exists x ¢

S with x > 0.)
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Remark 12: Deleting p.o from Theorem 8, the solutions PM’\ defined by
PM’\(S)E/\PM(S> for A € [0,1] become admissible. Without sy, we obtain a
two—parameter family (Maschler and Perles 1981). Cont is indispensable (Maschler and
Perles 1981) and so are s.inv (again, consider E) and obviously sup.add. Theorem 8
does not extend to n > 2: In fact, p.o, sy, s.inv, and sup.add are incompatible on Eg
(Perles 1982).

Deleting s.inv from Theorem 8, a joint characterization of Egalitarianism and
Utilitarianism can be obtained (note however the important change of domains). In fact, cav
can then be replaced by the following strong condition.
lincarity (lin): F(S'+5%) = F(SH)+F(S?).

Theorem 9 (Myerson 1981): The Egalitarian and Utilitarian solutions are the only solutions

11 . . . o1e . . .
on SO _ satisfying w.p.o, sy, c.i, and cav. The Utilitarian solutions are the only solutions on
b
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28,_ satisfying p.o, sy, and lin (provided appropriate tie-breaking rules are applied in the
case of the Utilitarian solution).

On the domain E(Q),_, the following weakening of ln (and sup.add) is compatible with
s.anw.
weak linearity (wlin): If F(S)+F(S2) ¢ PO(S'+5%) and S' and % are smooth at F(S')
and F(S2) respectively, then F(S'+5%)=F(sh)+F(s?).

The significance of the smoothness restriction has been discussed earlier (Section 4.4).
Theorem 10 (Peters 1986): The weighted Nash solutions are the only solutions on E?l,—
satisfying p.o, st.i.r, s.inv, cont, and w.lin.

Remark 13: The Nash solution can be characterized by an alternative weakening of lin

(Chun 1988b). Randomization between all the points of S and its ideal point, and all

the points of S and its solution outcome have been considered by Livne (1988) and

used by him to formulate invariance conditions that can be used to characterize the

Kalai-Smorodinsky and continuous Raiffa solutions.

4.7. Separability. In Section 4.6 we defined the "addition" of two problems; here, we
formulate a notion of "multiplication". Then, we require invariance of the solutions under

multiplication.
2
+

for some x ¢ S and y ¢ T}. The domain 2(2) is not closed under the operation *.

separability (sep): If S*T e Eg, then F(S*T) = F(S)*F(T).

Given x, y € [R?}_, let x*y = (xlyl,x2y2); given S, T ¢ 22, let S*T={z ¢ R} |z = x¥y

Theorem 11 (Binmore 1984): The Nash solution is the only solution on Eg satisfying p.o, sy,

and sep.

5. OTHER PROPERTIES. THE ROLE OF THE DISAGREEMENT POINT.
In our exposition so far, we have ignored the disagreement point altogether. Here, we

study its role in detail, and, for that purpose, we reintroduce it in the notation: a bargaining
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problem is now a pair (S,d) as originally specified in Section 2. We consider first increases
in one of the coordinates of the disagreement point; then, situations when it is uncertain. In
each case, we study how responsive solutions are to these changes. We also study how

solutions respond to changes in the agents' risk aversion.

5.1. Disagreement point monotonicily. Here, we formulate monotonicity properties of
solutions with respect to changes in d (Thomson 1987). To that end, fix S.
disagreement point monotonicity (d.mon): 1If di>d, and for all j # i, dj = dj’ then
Fi(S,d’)gFi(S,d).

If agent i's fallback position improves, it is natural to expect that he will gain, or at
least not lose.

This property is satisfied by all of the solutions that \lve have encountered. Even the
Perles—Maschler solution, which is very poorly behaved with respect to changes in the
feasible set, as we saw earlier, satisfies d.mon.

Strong disagreement point monotonicity (st.d.mon): Under the same hypotheses as d.momn,
Fi(S7d') > Fi(S,d) and in addition for all j ¢ i, Fj(S,d')éFj(S,d).

The gain achieved by agent i should be at the expense (in the weak sense) of all the
other agents.

Most solutions, in particular the Nash and Kalai-Smorodinsky solutions and their
variants, violate st.d.mon. However, the Egalitarian solution does satisfy the property and so
do the monotone path solutions.

5.2 Disagreement point concavity. Next, we imagine that there is uncertainty about d.
The situation is very similar to that described when we introduced cav. Suppose that the
disagreement point will take one of two positions d1 and d2 with equal probabilities and
that this uncertainty will be resolved tomorrow. Waiting until tomorrow and solving then
whatever problem has come up results in the expected payoffs today xlz[F(S,d1)+F(S,d2)] /2,

which is typically Pareto dominated in S. Taking as new disagreement point the expected
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cost of conflict, and solving the problem (S,(d1+d2) /2), results in the payoffs
X2EF(S,(d1+d2)/2). If x! > x2, the agents will agree to solve the problem today. If
neither Xq dominates X, nor x, dominates x;, a conflict may result as to whether to wait or
not. The following requirement prevents any such conflict:

disagreement point concavity (d.cav): For all A ¢ [0,1], F(S,/\d1+(1~/\)d2) >
AF(S,dN)+(1-NF(S,d2).

Of all the solutions seen so far, only the weighted Egalitarian solutions satisfy this
requirement. Axiom d.cav is indeed very strong as indicated by the next result which is a
characterization of a family of solutions that further generalize the Egalitarian solution:
Given &I = An—l, the directional solution relative to 0, . E(S(S,d) is the maximal point
of S of the form d-+té(S).

Theorem 12 (Chun and Thomson 1987). The directional solutions are the only solutions on

Eg__ satisfying w.p.o, cont, and d.cav.
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This result is somewhat of a disapointment since it says that d.cev is incompatible with
full optimality and permits s.inv only when &(S) is a unit vector (then the resulting
directional solution is a dictatorial solution). The following weakening of d.cav allows
recovering full optimality and s.inwv.
weak disagreement point concavity (w.d.cav): If [F(S,dl),F(S,dQ)] ¢ PO(S) and PO(S) is
smooth at F(S,d}) and F(S,d°), then for all A ¢ [0,1],

(S, A +(1-A)d2) = AF(S,d 1)+ (1-0)F(S,d2).

The boundary of S is linear between F(S,dl) and F(S,dz) and it seems natural to
require that the solution should respond linearly to linear movements of d between d1 and
d2. This "partial" linearity of the solution is required however only when the compromise is
not forced by sudden changes in the rates at .which utility can be transferred.

Theorem 13 (Chun and Thomson 1988). The Nash solution is the only solution on 33,_
satisfying p.o, sy, s.inv, cont, and w.d.cav.

A condition related to w.d.cav is the following:
star—shaped inverse (star): F(S,\d+(1-\)F(S,d)) = F(S,d) for all A ¢ ]0,1].

This says that a move of the disagreement point in the direction of the desired
compromise does not call for a revision of this compromise.

Theorem 14 (Peters and vanDamme 1988). The weighted Nash solutions are the only
solutions on 23’__ satisfying st.i.r, i.n.ir, s.inv, d—cont, and star.

Remark 14. Conditions related to d.cav, w.d.cav and star have been explored. Chun

(1987b) shows that a requirement of disagreement point gquasi—concavity can be used to

characterize a family of solutions that further generalize the directional solutions.

Characterizations of the Kalai-Rosenthal solution are given in Peters (1986c) and Chun

(1987b). Finally, the continuous Raiffa solution for n=2 is characterized by Livne

(1987b), Peters (1986¢) and Peters and van Damme (1988). They use the fact for that

solution that the shape of the sets of disagreement points leading to the same

compromise for each fixed S has differentiability, and certain monotonicity, properties.
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Livne (1988) considers situations where the disagreement point is uncertain but

information can be obtained about it and characterizes a version of the Nash solution.

5.3 Risk-sensitivity. Here we investigate how solutions respond to changes in the agents'
risk aversion. Other things being equal, is it preferable to face a more risk-averse opponent?
To study this issue we need explicitly to introduce the set of underlying physical
alternatives. Let C be a set of certain options and L the set of lotleries over C. Given
two von Neumann—Morgenstern utility functions u, and uf: L - R, u; is more risk-averse
than u; if they represent the same ordering on C and for all ¢ ¢ C, the set of lotteries that
are ui’—preferred to ¢ is contained in the set of lotteries that are ui—preferred to c¢. If ui(C)
is an interval, this implies that there is an increasing concave function k: ui(C) - R such
that uf = k(ui). An n—person concrele problem is a list (C,e,u), where C is as above, e ¢
C, and uz(ul,...,un) is a list of von Neumann—Morgenstern utility functions defined over C.
The abstract problem associated with (C,eu) is the pair (S,d) = ({u(f)|( ¢ L}u(e)).
risk-sensitivity (ri.sens): Given (C,e,u) and (C’,e’,u’), which differ only in that uf is more
risk-averse than u;, and such that the associated (S,d), (S7,d”) belong to Eg, Fi(S,d)z_ui(f’)
where u’(£)=F(S",d").

strong risk-sensitivity (st.ri.sens): Under the same hypotheses as ri.sens, Fi(S,d) > ()
and in addition, Fj(S,d)§uj(€’) for all j # i.

(C,e,u) is basic if the associated (S,d) satisfies PO(S) C u(C). Let B(ﬁg) be the class
of basic problems. If (C,e,u) is basic and u{ is more risk-averse than u, then (C,e,ui,u_i)
also is basic.

Theorem 15 (Kihlstrom, Roth and Schmeidler 1981, Nielsen 1984). The Nash solution
satisfies ri.sens on B(‘éﬁ) but it does not satisfy st.ri.sens. The Kalai-Smorodinsky solution
satisfies st.ri.sens on B(fgg).

There is an important logical relation between risk—sensitivity and scale invariance.
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Theorem 16 (Kihlstrom, Roth and Schmeidler 1981). If a solution on B(ﬁg) satisfies p.o
and ri.sens, then it satisfies s.inv. If a solution on B(?gg) satisfies p.o and st.ri.sens, then it
satisfies s.inw.

For n=2, interesting relations exist between ri.sens and tw (Tijs and Peters 1985) and
between ri.sens and m.p.d. (Sobel 1980).

Remark 15: TFor further studies of the risk—sensitivity of solutions see de Koster,

Peters, Tijs and Wakker (1983), Peters and Tijs (1981, 1983, 1985a).

For the class of non-basic problems, twb cases should be distinguished. If the
disagreement point is the image of one of the basic alternatives, what matters is whether the
solution is appropriately responsive to changes in the disagreement point.

Theorem 17 (Roth and Rothblum 1982, Thomson 1988). Suppose C = {Cl,cz,e}. Suppose I
is a solution on 2(21 satisfying p.o, s.inv, and d.mon. Then, if u is replaced by a more
risk—averse utility uf, agent j gains if ui(lf) > min{ui(cl),ui(CQ} and not otherwise.

Remark 16: The n—person case is studied by Roth (1988). Situations when the

disagreement point is obtained as a lottery are considered by Safra and Zilcha (1988).

An application to insurance contracts appears in Kihlstrom and Roth (1982).

6. VARIABLE NUMBER OF AGENTS.

Most of the axiomatic theory of bargaining has been written under the assumption of a
fixed number of agents. Recently however, the model has been enriched by allowing the
number of agents to vary. Axioms specifying how solutions could or should respond to such
changes have been formulated and new characterizations of the main solutions as well as of
new solutions generalizing them have been developed. A detailed account of these
developments can be found in Thomson and Lensberg (1988).

We need extra notation. There is an infinite set of "potential agents", indexed by the
positive integers. Any finite group may be involved in a problem. Let £ be the set of all

such groups. Given Q ¢ £ RQ is the utility space pertaining to that group, and 2(02 the
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class of subsets of [R% satisfying all of the assumptions imposed earlier on the elements of
28. Let ZOEUE%. A solution is a function F: 20 - U[R% associating with every Q ¢ £ and
every S ¢ 2%2 a point of S. All of the axioms stated earlier for solutions defined on 28 can
be reformulated so as to apply to this more general notion by simply writing that they hold
for every P ¢ &£ As an illustration, the optimality axiom is written as:
PARETO-OPTIMALITY (P.O): Given Q ¢ £and S ¢ EQ, F(S) ¢ PO(S).

Some axioms, such as anm, take a slightly more complicated form however.

ANONYMITY (AN): Given P, P~ ¢ Pwith [P|=|P’|, S ¢ 5 and S ¢ £y, if there

exists a bijection 1:P - P/ such that S'={x" ¢ RY |3x ¢ S with xi:x7(i) Vi ¢ P} then
F.(S")=F_,~(S) for all i ¢ P.
{(5)=F 5y(8)
Two conditions specifically concerned with the way solutions respond to changes in the
number of agents have been central to the developments repezited in the section. One is an

independence axiom, and the other a monotonicity axiom.

6.1. The Nash solution. We start with the independence axiom. Given Q ¢ Land T ¢

Q
z5

all, it should be acceptable to all subgroups of Q. Assume then that it has been accepted

consider some point x € T as a candidate compromise for T. For x to be acceptable to

by the subgroup P, and that the members of P’ are indifferent through which one of the
points of T their utilities Xp, are achieved. Then, from the viewpoint of the
members of P=Q\P~, it is as if they really had access to all of these points. If this set is a
well-defined member of EP, does the solution recommend for them the utilities xP? If yes,
the solution is consistent (Fig. 12a). Given P, Q ¢ £ with PcQ, T ¢ E% and x ¢ T, let
BTy € R (vxgp) € T).
POPULATION CONSISTENCY (POP.CONS): Given P, Q ¢ £ with PcQ, if S ¢ Eg and T
€ 2%2 are such that Szté(T), where x=F(T), then xp=F(5).

POP.CONS is satisfied by the Nash solution (Harsanyi, 1959) but not by the

Kalai-Smorodinsky solution nor by the Egalitarian solution. Violations are usual for the



33

Kalai-Smorodinsky solution but rare for the Egalitarian solution; indeed, on the class of
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Figure 13

strictly comprehensive problems, the Egalitarian solution does satisfy the condition, and if
this restriction is mot imposed, it still satisfies the slightly weaker condition obtained by
requiring XP§F(S) instead of xP:F(S). Let us call this weaker condition Weak Population
Consistency (W.POP.CONS). The Lexicographic Egalitarian solution EL satisfies POP.CONS.
Theorem 18 (Lensberg 1988). The Nash solution is the only solution on X satisfying P.O,
AN, S.INV, and POP.CONS.
Proof (Fig. 13b): It is straightforward to see that N satisfies the four axioms. Conversely,
let F be a solution on ZO satisfying the four axioms. We only show that F coincides with
N on Eg if |P|=2. Let S ¢ 218 be given. By S.INV, we can assume that S is normalized
so that N(S)=(1,1).

In a first step, we assume that PO(S)J[(3/2,1/2),(1/2,3/2)]‘ Let Q ¢ &£ with PcQ and
|Q|=3 be given. Without loss of generality, we take P={1,2} and Q={1,2,3}. (In the
Figure, S = cch{(2,0),(1/2,3/2)}). Now, we translate S by the third unit vector, we replicatc

the result twice by having agents 2, 3 and 1, and then agents 3, 1 and 2 play the roles of
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agents 1, 2, and 3 respectively; finally, we define T € E(g to be the convex and
comprehensive hull of the three sets so obtained. Since T (=
cch{(1/2,1,0),(0,1/2,1),(1,0,1/2)}) is invariant under rotations of the agents, by AN, F(T) has
equal coordinates; then, by P.O, F(T)=(1,1,1). But, since ts111(T) = s, by POP.CONS
F(S)=(1,1)=N(S), and we are done.

In a second step, we only assume that PO(S) contains a non—degenerate segment
centered at N(S). Then, we may have to introduce more than one additional agent and
repeat the same construction by having the problem faced by agents 1 and 2 replicated
many times, but if the order of replication is sufficiently large, T is indeed such that
tl(jl""’l)(T)z‘S and we conclude as before. If S does not contain a non—degenerate segment

centered at N(S), a continuity argument is required.

Q.E.D.

Remark 17:  The above proof requires having access to groups of arbitrarily large
cardinalities, but the Nash solution can still be characterized when the number of
potential agents is bounded above, by adding CONT (Lensberg 1988). Unfortunately,
two problems may be close in the Hausdorff topology and yet sections of those
problems through two points that are close by, parallel to a given coordinate subspace,
may not be close to each other. A weaker notion of continuity recognizing this
possibility can however be used to obtain a characterization of the Nash solution, even
if the number of potential agents is bounded above (Thomson 1985b). Just as in the
classic characterization of the Nash solution, P.O turns out to play a very minor role
here: without it, the only additional admissible solution is the disagreement solution
(Lensberg and Thomson 1988).

Deleting §Y and S.INV from Theorem 18, the following solutions become admissible:

For each i, let fi:[R L7 R be an increasing function such that for each P, the function fP:[RE:
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- R defined by fP(x)-—— X fi(x) be strictly quasi—concave. Then, given P ¢ Pand S ¢ SIO).
ieP
Ff(S)zargmax{fP(xHx ¢ S}. The separable additive solutions Fl are the only ones to satisfv

P.O, CONT, and POP.CONS (Lensberg 1987; Young 1988 proves a variant of this result).

6.2. The Kalai-Smorodinsky solution. Instead of allowing some of the agents to leave with
their payoffs, we will now imagine them not to be there at all. When some agents leave
the scene without this affecting the opportunities of the agents that remain, do all of these
gain? The Nash solution does not satisfy this requirement but both the Kalai-Smorodinsky
and Egalitarian solutions do.
POPULATION MONOTONICITY (POP.MON): Given P, Q ¢ 2 with PcQ, if 5 ¢ .‘ZE and
T ¢ 59 are such that S=Tp, then F(S)2Fp(T).

by

Theorem 19 (Thomson 1983c). The Kalai-Smorodinsky solution is the only solution on X,

satisfying W.P.O, AN, S.INV, CONT, and POP.MON.

g

Ug

1 a(s)

K(S)=(a,a)

: K(T)=(a,a,a)

ug

ug

The axiom of POP.MON. Characterization of the
Kalai—-Smorodinsky solution.
(a) b

Population Monotonicity and the Kalai-Smorodinsky solution.

Figure 14
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Proof (Fig. 14b): Tt is straightforward to see that K satisfies the five axioms. Conversely.
let F be a solution on EO satisfying the five axioms. We only show that F coincides with
K on Sg if |[P|=2. Solet S ¢ ES be given. By S.INV, we can assume that S 1
normalized so that a(S) has equal coordinates. (In the Figure 5 = cch{(1,0),(1/2,1)}.) Let
Q ¢ 2 with PcQ and |Q]=3 be given. Without loss of generality, we take P={12} and
Q={1,2,3}. Now, we construct T ¢ 2%2 by replicating S in the coordinates subspaces lR{Q’B}
and [R{B’l}, and taking the comprehensive hull of the resulting problems and of the point x ¢
RQ of coordinates all equal to the common value of the coordinates of K(S). Since all
agents enter symmetrically in the definition of T and x ¢ PO(T), it follows from AN and
W.P.O that x=F(T). Now, note that Tp=5 and XP:K(S) so that by POP.MON,
F(S)=K(S). Since |P|=2, K(S) ¢ PO(S) and equality holds.

To prove that F and K coincide for problems of cardinality greater than 2, one has to

introduce more agents and CONT becomes necessary.

Q.E.D.

Remark 18: Each of the axioms of Theorem 19 is indispensible. Solutions in the spirit
of the solutions EY described in remark 19 satisfy all of them except W.P.O. Without
AN, we obtain certain generalizations of the weighted Kalai-Smorodinsky solutions. For

?

the role of S.INV, see the next result.

6.3. The Egalitarian solution. All of the axioms used in the next theorem have already
been discussed.

Theorem 20 (Thomson 1983d). The Egalitarian solution is the only solution on EO satisfying
P.O, SY, C.I, CONT, and POP.MON.

Proof It is easy to verify that E satisfies the five axioms (see Fig. 15b for POP.MON).
Conversely, let I be a solution on satisfying the five axioms. To see that F=E, let P ¢

Pand S ¢ Eg be given. Without loss of generality, suppose E(S) = (1,...,,1) and let
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frargmax{Ix;|x ¢ S} (Fig. 15b). Now, let Q ¢ #be such that Q2P and |Qf>J+1: finally.
et T ¢ =% be defined by T={x ¢ R|Tx;2]Q[). (In Fig. 150, [P[=2 and [Q] = 3.) By
W.P.O and SY, F(T)=(1.....1). Now, let T zcch{S,F(T)}. Since T'CT and F(T) ¢ T, it
follows from C.I that F(T/)=F(T). Now, FP(T’)gF(S), so that by POP.MON, F(S)zvp-
If E(S) ¢ PO(S) we are done. Otherwise we conclude by CONT.

Q.E.D.

Remark 19: Without W.P.O, the Truncaled Egalitarian solutions become admissible:
Let az{&PIP ¢ A be a list of non-negative numbers such that for all P, Q ¢ 2 with
PcQ, anaQ; then, given P ¢ #Land S ¢ EP, let Ea(S)zaP(l,...,l) if this points
belongs to S and E®(S)=E(S) otherwise (Thomson 1984b). The monotone path
solutions encountered earlier, appropriately generalized, satisfy all the axioms of
Theorem 20, except for SY: Let GE{GPIP ¢ 2} be a list of monotone paths such
that GPC[R_I; for all P € Zand for all P, Q ¢ £ with PcQ, the projection of GQ onto
RY be contained in af. Then, given P ¢ £and S ¢ EP, EG(S) is the maximal point
of S along the path af (Thomson, 1983a).
The next result involves considerations of .both congistency and monotonicity.
Theorem 21 (Thomson 1984c): The Egalitarian solution is the only solution on X, satisfying
W.P.O, SY, CONT, POP.MON, and W.POP.CONS.
In order to recover full optimality, the extension of &.mon to the variable population
case can be used.
Theorem 22 (Lensberg 1985a, 1985b): The Lexicographic Egalitarian solution is the only
solution on 20 satisfying P.O, SY, LMON, and POP.CONS.

6.4 Opportunities and Guaraniees. Consider a solution F satisfying W.P.O. When new

agents come in without opportunities enlarging, as described in the hypotheses of POP.MON,
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The Egalitarian solution does not iy Characterization of the
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Variable population axioms and the Egalitarian solution.

Figure 15

one of the agents originally present will lose. We propose here a way of quantifying these
losses and of ranking solutions on the basis of the extent to which they prevent agents from
losing too much. Formally, let P, Q ¢ & with PcQ, S ¢ Eg, and T ¢ 2(8‘ with 5=Tp.
Given i ¢ P, we study the ratio Fi(T)/Fi(S) of agent i's final to initial utility: let a'éi’P’Q)
¢ R be the greatest number such that Fy(T) JFy(S)>a for all S, T as described earlier. This
is the guarantee offered to i by F when he is initially part of P and P ezpands o @ agent
i's final utility is guaranteed to be at least al(;i’P’QLtimes his initial utility. If F satisfies
AN, then the number depends only on |P| and |Q\P|, denoted m and n respectively, and
we can write it as a%m. Let ap = {a%mlm, n ¢ N} be the guarantee structure of I

We now proceed to compare solutions on the basis of their guarantee structures.

Solutions offering greater guarantees are of course preferable.

Theorem 23 (Thomson and Lensberg 1983): The guarantee structure oy of the



39

Kalai-Smorodinsky solution is given by an}\}nzl/(xwl) for all m.n ¢ N If F satisfies W.P.0O

and AN, then O 2 O In particular. C}KZON. In fact.

- m(n+2)—ymn (mn+4m—4 )
N T 2 (m+n)
Remark 20: Theorem 23 says that the Kalai-Smorodinsky solution is best in a large

for all m. n ¢ .

class of solutions. However, it is not the only one to offer maximal guarantees and to

satisfy S.INV and CONT.

However, solutions could be compared in other ways. In particular, protecting
individuals may be costly to the group to which they belong. To analyze the trade—off

. . . . . . - nn
between protection of individuals and protection of groups, we introduce the coefficient 'B]F

F.(T)
= inf{ X SelX,, Te ZQ PcQ, S=T,, |P|=m,|Q\P|=n}}, and we define fg =
I Frgls e b [P]=m,|Q\P|=n}} X

{ﬁ%ﬂ l{m, n ¢ N} as the collective guarantee structure of F. Using this notion, we find that
our earlier ranking of the Kalai-Smorodinsky and Nash solutions is reversed.

Theorem 24 (Thomson 1983b): The collective guarantee structure N of the Nash solution is
given by ﬂlﬁn:n/(n—kl) for all mpn ¢ N. If F satisfies W.P.O and AN, then f\>fp. In
particular, ﬁNzﬁK. In fact, ﬁn m—aK for all m,n € N.

Remark 21: The Nash solution is not the only one to offer maximal collective

guarantees and to satisfy S.INV and CONT.

Solutions can alternatively be compared on the basis of the opportunities for gains that
they offer to individuals (and to groups). Solutions that limit the extent to which
individuals (or groups) can gain in spite of the fact that there may be more agents around
while opportunities have not enlarged may be deemed preferable. Once again, the
Kalai-Smorodinsky solution performs better than any solution satisfying W.P.O and AN when
the focus is on a single individual, but the Nash solution is preferable when groups are

considered. However, the rankings obtained here are less discriminating (Thomson 1987b).
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P, 1 ¢ 39, Peq, S=Tp, [P|=m, [Q\P|=n} and e={}"|(m,n) ¢ (N\1)sN}, and solutions
are required to prevent agents from being too differentially affected, then we find

Theorem 25 (Chun and Thomson 1988). The relative guarantee structures ep and ¢ of the
Kalai-Smorodinsky and Egalitarian solutions are given by e%m:erémzl for all (myn) ¢
(N\1)xN. The Kalai-Smorodinsky solution is the only solution on EO to satisfy W.P.O, AN,
S.INV and to offer maximal relative guarantees. The Egalitarian solution is the only

solution on EO to satisfy W.P.O, AN, C.I and to offer maximal relative guarantees.

6.5. Replication and Juztaposition. Now, we consider the somewhat more special situation
where the preferences of the new agents are required to bear some simple relation to those of
the agents originally present, such as when they are exactly opposed or exactly in agreement.
There are several ways in which opposition or agreement of preferences can be formalized.
And to each such formulation corresponds a natural way of writing that a solution respects
the special structure of preferences.

Given a group P of agents facing the problem S ¢ Zg, introduce for each 1 ¢ P, n;
additional agents "of the same type" as i and let Q be the enlarged group. Given any
group P with the same composition as P (we write comp(P’) = comp(P)), define the
problem SP/ faced by P’ to be the copy of S in [RP/ obtained by having each member of
P’ play the role played in S by the agent in P of whose type he is. Then, to construct the
problem T faced by Q, we consider two extreme cases. One case formalizes a situation of
maximal compatibility of interests among all the agents of a given type:

gmax reP gQP”1p Q. comp(P’) = comp(P)}.
The other formalizes the opposite:

Smin = cch{SP,lP/CQv comp(P’) = comp(P) }.
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These two notions are illustrated in Fig. 16 for an initial group of 2 agents and one
additional agent (agent 3) being introduced to replicate agent 2.
Theorem 26 (based on Kalai 1977a): In SMaX a1l of the agents of a given type receive
what the agent they are replicating receives in S if either the Kalai-Smorodinsky or
Egalitarian solutions is used. However, if the Nash solution is used, all of the agents of a
given type receive what the agent they are replicating would have received in S under the
application of the weighted Nash solution with weights proportional to the orders of

replication of the different types.

u2 Ug
S
S
gmax Smin
Uy Uy
5 S
o u3
Maximal compatilibity Minimal compatibility
(a) | (b)

Two notions of replication.

Figure 16

Theorem 27 (Thomson 1984a): In SMIN - the sum of what the agents of a given type
receives under the replication of the Nash, Kalai-Smorodinsky, and Egalitarian solutions is
equal to what the agent they are replicating receives in S under the application of the

corresponding weighted solution for weights proportional to the order of replication.



7. APPLICATIONS TO ECONOMICS.

Solutions to abstract bargaining problems, most notably the Nash solution, have been
used to solve concrete economic problems, in particular, management-labor conflicts, on
numerous occasions; in that application, S is the image in utility space of the possible
divisions of a firm's profit, and d the image of a strike. Problems of fair division have also
been analyzed in that way; given some bundle of infinitely divisible goods £, S is the image
in utility space of the set of possible distributions of £, and d is the image of the 0
allocation (or of equal division). Alternatively, each agent may start out with a share of {1,
his initial endowment, and choosing d to be the image of the initial allocation may be more
natural.

Under standard assumptions on utility functions, the resulting problem (S,d) satisfies
the properties typically required of admissible problems in the axiomatic theory of bargaining.
Conversely, given S ¢ 28, it is possible to find exchange economies whose associated feasible
set is S (Billera and Bixby 1973).

When concrete information about the physical alternatives is available, it is natural to
kuse it in the formulation of properties of solutions. For instance, expansions in the feasible
set are often the result of increases in resources or improvements in technologies. The
counterpart of st.mon, (which says that such an expansion would benefit all agents) would be
that all agents benefit from greater resources or better technologies. How well-behaved are
solutions in this domain? The answer is that when there is only one good, solutions are
better behaved than on abstract domains, but as soon as the number of goods is greater
than 1, the same behavior should be expected of solutions on both domains (_Chun and
Thomson 1988).

The axiomatic study of solutions to concrete allocation problems is currently an active
area of research. The transposition of the axioms that have been found most useful in the

abstract theory of bargaining has been attempted. They have resulted in characterizations of
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the Walrasian solution (Binmore 1987) and of egalitarian-type solutions (Roemer 1986a,

1988).

8. STRATEGIC CONSIDERATIONS.

Analyzing a problem (S,d) as a strategic game requires additional structure: Strategy
spaces and an outcome function have somehow to be associated with (S,d). This can be
done in a variety of ways. We limit ourselves to describing formulations that remain close
to the abstract model of the axiomatic theory and this brief section is only meant to
facilitate the transition to chapters in this volume devoted to strategic models.

Consider the following game: each agent demands a utility level for himself; the
outcome is the vector of demands if it is in S and d otherwise. The set of Nash (1951)
equilibrium outcomes of this game of demands is PO(S)NI(S,d), a typically large set, so that
this approach does not help in reducing the set of outcomes significantly. However, if S is
known only approximately (replace its characteristic function by a smooth function), then as
the degree of approximation increases, the set of equilibrium outcomes of the resulting
smoothed game of demands shrinks to N(S,d) (Nash 1950, Harsanyi 1956, Zeuthen 1930,
Crawford 1979, Anbar and Kalai 1978).

If bargaining takes place over time, agents take time to prepare and communicate
proposals, and the worth of an agreement reached in the future is discounted, a sequential
game of demands tesults. Its equilibria (here some perfection notion has to be used, see
Chapter 1) can be characterized in terms of the weighted Nash solutions when the time
period becomes small: it is N(S(S,d) where 0 is a'vector proportional to the logarithms of the
agents’ discount rates (Rubinstein 1982, Binmore 1987; see Chapter 11 for an extensive
analysis of this model. Livne 1987a contains an axiomatic analysis of this model).

Imagine now that agents have to justify their demands: there is a family & of
"reasonable" solutions such that agent i can demand ﬁi only if ﬁi = Fi(S,d) for some F ¢ &

Then strategies are in fact solutions in & Let F! and F? be the strategies chosen by
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agents 1 and 2. If Fl(S,d) and FQ(S,d) differ, eliminate from S all alternatives at which
agent 1 gets more than F%(S,d) and agent 2 gets more than F%(S,d); one could argue that
the truncated set S1 is the relevant set over which to bargain; so repeat the procedure:
compute Fl(S.l,d) and FQ(Sl,d) Lo It Fl(SV,d) and FQ(SV,d) converge to a common point,
take that as the solution outcome of this induced game of solutions. For natural families 7
convergence does occur for all F1 and F2 ¢ & and the only equilibrium outcome of the
game so defined is N(S,d) (Van Damme 1986, Chun 1985 studies a variant of the procedure).

Thinking now of solutions as normative criteria, note that in order to compute the
desired outcomes, the utility function of the agents will be necessary. Since these functions
are typically unobservable, there arises the issue of manipulation. To the procedure is
associated a game of misrepresentation, where strategies are utility functions. What are the
equilibria of this game? In the game so associated with the Nash solution when applied to
a one—dimensional division problem, each agent has a dominant strategy which is to pretend
that his utility function is linear. The resulting outcome is equal division (Crawford and
Varian 1979). If there is more than one good and preferences are known ordinally, a
dominant strategy is a least concave representation of one's preferences (Kannai 1977).
When there are an increasing number of agents, only one of whom manipulates, the gain
that he can achieve by manipulation does not go to zero although the impact on each of the
others vanishes; only the first of these conclusions holds, however, when it is the
Kalai—-Smorodinsky solution that is being used (Thomson 1988). In the multi—commodity
case, Walrasian allocations are obtained at equilibria, but there are others (Sobel 1981,
Thomson 1984) .

Rather than feeding in agents' utility functions directly, one could of course think of
games explicitly designed so as to take into account strategic behavior. Given some
objective, embodied in some bargaining solution, does there exist a game whose equilibrium
outcome always yields the desired utility allocations? If so, the solution is implementable.

The Kalai-Smorodinsky solution is implementable by stage games (Moulin 1984). Recent
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results indicate that much can be achieved by such games (Moore and Repullo 1988; see

Chapter 10 for a review of implementation questions).
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