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Introduction

In this paper, we extend the one-sample nonparametric estimator of the
cumulative hazard function proposed by Nelson (1972) to allow for time
varying covariates. Time varying covariates often appear in econometric
duration analyses. For example, the monthly wage rate is one of the time
varying covariates frequently found in economic duration data. Transfer
payments which vary within an unemployment spell are another example. In the
literature on parametric estimation of the hazard function, Heckman and
Singer (1984) show that ad hoc treatment of time varying covariates can
yield wildly misleading estimates. They estimate a job turnover model and
find that conventional methods such as replacing time trended variables by
their within spell average values or by the beginning of spell values
produce very different estimates. The alternative treatment they propose is
to allow the covariates to vary freely in their computation algorithm. The
importance of controlling for time varying covariates in parametric
estimation of the hazard function is also emphasized in Kiefer's (1988)
recent survey. On the other hand, little work has been done on nonparametric
estimation with time varying covariates.

In this paper, we deal with time varying covariates which satisfy two
conditions. First, they take discrete values and the number of the possible
discrete values is small compared to the sample size. One example is
categorical variables (or qualitative variables) such as several categories
of wage rates or earnings. Thus, time varying continuous covariates such as
age are not treated in this paper, unless it is judged appropriate to

discretize them into a few groups.



In the literature on parametric estimation of the hazard function, it
is frequently implicitly assumed that the time varying covariates have a
Markovian effect on the hazard function.l A simple example may be useful to
illustrate this point. Suppose a worker has a hazard rate of unemployment
A(t;w(t)) at time t, where w(t) is the wage rate at time t. Assume there are
only two wage rates, wy and wp. Suppose worker A has wage rate wj for t €
[0,T) and wage rate wyp at time T, then his hazard rates are correspondingly
A(t;wy) for t € [0,T) and A(T;wyp) at time T. Suppose an otherwise identical
worker B has wage rate wp for t € [0,T]. It follows that both workers have
the same hazard rate of unemployment A(T;wp) at time T even though they have
different wage paths before time T. The Markovian property lies in the
presumption that worker A immediately assumes the new hazard rate after the
wage rate has changed, independent of his previous wage path. His hazard
rate of unemployment at time T equals that of a person who may have been
exposed to the risk of unemployment for a long period, say [0,T], with wage
wy. This is an important assumption and needs to be checked in actual
applications. Here, we also assume that this Markovian property holds and
this is the second condition we imposed on the time varying covariates
discussed in this paper.

The paper is divided into three sections. Section 1 begins with a brief
review of the Nelson estimator, which is then extended to situations when
there are time varying discrete covariates. Section 2 shows that the
estimator we propose is consistent and asymptotically normal. The proof
itself is of independent interest. In the one-sample case, Breslow and
Crowley (1974) and Meier (1975) first prove that the Nelson estimator of the

cumulative hazard function, or equivalently the Kaplan-Meier estimator of



the survival function (Kaplan and Meier 1958), is consistent and
asymptotically normal. However, their proofs seem relatively involved,
especially on the derivation of the covariance of the estimators (Breslow
and Crowley 1974). Here we provide a simple and concise proof which makes
use of the martingale central limit theorem.? One advantage of our proof is
that it can be easily extended to handle time varying discrete covariates.
Section 3 presents some numerical results which show that the estimators we

propose perform reasonably well.

Section 1 : The Estimator

Consider the standard one-sample case without time varying covariates.
Let T = 0 be the time the event of interest occurred, which may be a death,
a birth or an unemployment, depending on the situation under study.
Throughout this paper, we use the term ‘event' and leave it unspecified.
Accordingly, the term ‘survive’ means that the ‘event’ has not yet occurred,
and the phrase ‘number at risk’ denotes the number of persons who survive.
Assume a random censoring mechanism and let C = 0 be the censoring time. The
random variables T and C are assumed to be independent. Consider a sample of
n persons. Let Ty, Ty, ..., T, be independent and identically distributed
with distribution function F(t), and C;, Gy, ..., Cﬁ be iﬁdependent and
identically distributed with distribution function G(t). We observe the data
(Y1.61), (¥9,69), ..., (¥,,8,), where Y{=min(T;,C3}, é4=1 if T; = Cj
(uncensored), and ;=0 if T; > C4 (censored); Suppose the Y;’s are ordered,

with Y] s ¥y = ... =Y,.

At time t, let us divide the interval [0,t) into
K(t) subintervals [0,tp), [to,t3), ...., [tK(t),t). Let Ap=[tg,ti+1), where

t1=0 and tR(t)+1=t- Let A(t) be the hazard function associated with F(t),



then the conditional probability that the event occurred in Ay is given by

qr = P(the event occurred in Ap | the person survived to the beginning of

Ak)

J A(y)dy
Ax

Aty) A

R

Let dy=number of events occurred in Ay and ry=number at risk at the
beginning of Ay, then qp can be estimated by ak=dk/rk. Notice that ry=number
at risk at tp = Zh_q I{m: Y, > ty), where I{A)} is the indicator function of
the set A, and it is assumed that rp > 0 for k=1,2,...,K(t). The cumulative
hazard function, which is sometimes called the integrated hazard,
t K(t) N R(t)
A(t)= A(y)dy= = qg is then estimated by A(t)= =2 qy. Let there
0 k=1 k=1
be n persons at time 0 and suppose the K(t) is chosen so large that we can
ignore the possibility of more than one event occuring in any interval. Set
q=0 if no event occurred in Ag, and qp=1/(n-i+l) if an event corresponding
to Y; occurred in Ay, then we obtain the Nelson estimator (Nelson 1972):
A 61
At) = 8 @ — —— (1)
YiSt n-i+l
Notice that the term (n-i+l) in (1) can also be written as r(Y;), where
r(s) = EE=1 I{(m: Y, = s}. The Kaplan-Meier estimator (or the product limit
estimator), which is an estimator of the survivor function S(t)=1-F(t), is

given by §(t) =HYist {1-[§;/(n-i+1)]). Although the Kaplan-Meier estimator

may be more popular in the econometrics and statistics literature [see, e.g.
Miller (1981 p.46-48)], we choose to study the Nelson estimator because, as
we shall see in Section 2, the estimator contains a martingale structure
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which plays an important role in deriving the asymptotic properties of the
estimator and in generalizing to the case with time varying discrete
covariates.

In order to highlight the main ideas, we make the following simplifying
assumptions. The whole approach and the proofs can easily be extended to
more complicated situations. Consider a situation in which there is only one
time varying discrete covariate with J possible values Xy, X9, ..., Xj,
where J is small relative to the sample size. At time O, for each
j=1,2,...,n, let Nj(O) be the number of persons whose covariates take on the
value Xj, therefore, n=Nj(0)+Ny(0)+...+N5(0) is the total number of people
at time 0. For a person with covariate value Xj at time t, let Fj(t) be the
distribution of the time the event occurred and Gj(t) be the distribution of
the censoring time. A person can switch among the Xj's before the event or
the censoring occurred. Assume that the switching time for a person with
covariate value Xj is drawn from a distribution Hj(t) which is independent
of the distributions Fj(t) and Gj(t). Given these assumptions, we would
observe the data (Yi,Si,{Xi*(t),t < Y;}) for each person i=1,2,...,n, where
Xi*(t) is the ith person’s covariate value at time t. Thus, the difference
with the case without time varying covariates is that, apart from observing
the information (Y;,6;), we also observe the covariate history {Xi*(t)}
before time Yj.

Under this setup, our problem is to estimate the cumulative hazard
function Aj(t) for each covariate valué X;, j=1,2,...,J. In other words,
there are J cumulative hazard functions to be estimated, one for each
covariate value. One may interpret Aj(t) as the cumulative hazard function

of a person who begins with covariate value Xj at time O and never changes



the covariate value after time 0. The estimation method is similar to the
previous case. For each person i, let 51j =1 if Y; is the time the event
occurred (i.e. uncensored) with covariate value Xi*(Yi) = Xj, and Sij =0
otherwise. At time t, divide [0,t) into K(t) subintervals A1, Ao, ...,
AK(t)’ where Ak=[tk,tk+l), to=0, tK(t)+l=t' Let
dkj = P(the event occurred in Ay | the person survived to the beginning of
Ay with covariate value Xj)
Then we estimate akj by axj = dkj/rkj , where dkj=number of events occurred
in Ay with covariate value Xj and rkj=number at risk at the beginning of Ay
with covariate value Xj. Notice that rkj=number at risk at ty with covariate
value Xj = ZE=1 I{m: Y, = ty and Xm*(tk) = Xj}. The estimator for the
cumulative hazard function conditional on the the jth covariate value

becomes

As;(t) = . = 3 _______6ij (2)
3 = QkJ =

=1 Y;i<t rj(Yi)

where we have defined akj=0 if no event occurred in Ay and akj=1/rj(Yi) if
an event which corresponds to Y; with Xi*(Yi)=Xj occurred in Ay, and rj(s)
is the number of people with Xi*(s)=Xj and are at risk at time s. Clearly,
rj(s) ==0 4 I{m: Y, = s and Xm*(s) = X4, which is identical to ryj except
that the time tp is replaced by time s.3

Comparing (1) and (2), one immediately notices that the only difference
between the two estimators lies in the denominator, the number of people at
risk. When there are time varying discrete covariates, the number of people
at risk at time s with covariate value X;, rj(s), comes from J sources:

people who begin with covariate value Xj at time 0 and have not switched to

any other covariate value before time s and survive to time s, and people



who have covariate value X} (k=j) before time s and have switched to the jth
covariate value before time s and survive to time s with covariate value Xj.
In the case without time varying covariates, the number of people at risk is
decreasing over time because of the occurrence of the events and censoring
over time. It follows that the denominator in (1) is decreasing over time.
However, with time varying discrete covariates, the number of people at risk
for each covariate value is not necessarily decreasing over time because
some people may switch from one covariate value to another so that the
number at risk for a certain covariate value at a certain point in time may

be larger than some time before. Nevertheless, the estimator in (2) is still

consistent and asymptotically normal.

Section 2 : Asymptotic Results

In this section we first present a simple proof of the classical result
(Breslow and Crowley 1974, Meier 1975) that without time varying covariates,
the estimator in (1) or equivalently the Kaplan-Meier estimator, is
consistent and asymptotically normal. We then show with some modifications
that our estimator with time varying discrete covariates is also consistent
and asymptotically normal.

Without time varying covariates, let n be the initial sample size at
time 0, then

n Kn
A(t)-A(t) = 2 (qg-qx) = 2 Wpg
k=1 k=1
where Wnksak'qk and K =K(t) (the subscript n on K emphasizes the fact that
the number of intervals depends on the sample size). Let Fn,k (k = 0) be

the o-field generated by the events occuring in the intervals Ay, Ap, ...,



Ay, with Fn’0={n). For each person who survives to the beginning of A,
there is a probability qp that the event will occur in Ay and a probability
1-qi that the event will not occur in Ay. Therefore, given the number at
risk at the’beginning of Ay (i.e. ry), the number of events dy occurred in
Ap follows a binomial distribution Bin(ry,qy). It follows that
A dic
E(Wnlen,k-l) = E(Qk‘QkIFn,k-l) = E(— - qk|Fn,k-1) =0 3)
Tk
because given Fn,k-l’ the number at risk rp is known so that the conditional
expectation equals (1/rk)E(dk-rquan’k_1)=0. Similarly,
Var(Wnlen,k-l) = qp(l-q)/ryx (&)
Since Fy g € Fp, ) € Fp 2 €...C Fp 1 the sequence of random variables

m
Z Wpk (m=1,2,...) forms a martingale relative to the increasing o-fields

D
Fn,k (k=0,1,2,...). We want to show that nt s Wnk — N(O,az) for some
k=1

02 > 0. This would follow from the martingale central limit theorem (see for
example Hall and Heyde 1980), provided the following two conditions are
satisfied:

K, P
(a) = Var(@WylF, 1) —— o2 (62 > 0)

k=1

Kn P
) T E( |n5Wnk|z IFn,k-l) —_— 0 for some z > 2

The P’'s in (a) and (b) denote convergence in probability, and (b) is the

conditional Lyapounov's condition. To verify (a), (4) implies that

Kn Khn 49k K, A(tR) Ay
% Var(m®glFp 1)~ T —m = T ——
k=1 k=1 1) k=1 rE/n

where we have assumed that the qi’'s are small so that 1-qy=1, and
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q=)(ty)Ay. By the Glivenko-Cantelli theorem, ryp/n converges uniformly with
probability 1 to E(ry/n), which is (1-F(ty)) (1-G(ty)), the probability of
surviving and being uncensored at tj. Let Sp(ty) = (1-F(t) ) (1-G(t)) .
Assume that for any finite tj, S(ty) is bounded below by some positive
number, then 1/(rp/n) converges uniformly with probability 1 to 1/5p(ty) . It
follows that for any positive ¢, there exists a positive number M such that
for n > M,

Kn A(tk)Ak Kn A(tk)Ak

k=1 rp/n k=1  Sp(ty)

™
[

with probability 1. Assume that A(t) and Sp(t) are continuous functions,
then the Riemann integral fg [A(x)/St(x)]dx exists. Thus, given ¢ > 0, there

exists a positive number M' such that for n > M',

K, (ty) Jt A(x)
= N .\ T dx < € (6)
k=1  Sp(ty) 0  Sp(x)

since Ay -+ 0 as n + «. Therefore, combining (5) and (6),

K, Aty Jt A(x)

= < 2e¢

k=1 rk/n

dx

with probability 1, for n > max(M,M’'}. It follows that
Kn P
z Var(n%Wnlen,k_l) —_— 02(0,t) ' ’ (7
k=1

where 02(0,t)=[5 [A(x)/Sp(x)]dx.

P

Xn 4
To verify (b), we show that 2 E(In%Wnk| IFn,k-l) —— 0.
k=1

di
E( 0’8 |4 |Fy - )=02E(|— - qxl* |Fp k1)
ry

=@2/1%) EC|op-reai|® [Fp x-1)



=(2/1*) 312 q % (1-qp)? + nqi(1-qx) [1-6qx(1-qp) 1) (8)

3[A(tg) A2 A(ty) Ay

[ry/n]2 n[ry/n]3

where (8) comes from the fourth central moment of the binomial distribution
Bin(ry,qy) and (9) is obtained by assuming that 1-6qp=1 and qp=A(ty)Ay. It

follows that

K, e K, 3[A(ty) 128y 1 Ky Atdag
= E(Jofn|* [Py k-1) = (max &) = +(—) T —
k=1 k k=1 [r}/n}? n k=1 [rp/n]3

Using similar arguments as before, it can easily be shown that

dx

> —_—

k=1  [r}/n]?

Ky, A(tp)Ap P Jt A(x)

K, 3[A(t)1%a, P Jt 3[A(x) ]2

0 [Sp(x)]2

= _— —————y

k=1 [rp/n]3

—_— dx
0 [Sp(x)]3

Assume that both integrals are bounded, then

K, P

) E(lnliwnkl4 IFn,k-l) — 0.

k=1

since maxy A =+ 0 and 1/n + 0 as n + ». Hence, from the martingale central
limit theorem, we conclude that the Nelson estimator is consistent and

asymptotically normal, i.e.

R D
' (A(t)-A(t)) ——— N(0,02(0,t))

The martingale structure also allows us to calculate the asymptotic

covariance AVAR(K(S),R(t)) (s > t) easily. From the definition of A(t), we

can write

A Jn . Ly A A Jn

A(s) = Z Wppe + 2 Wpp = A(E) + p(t,s), where @(t,s) = I Wp,, K, and
k=1 k=K +1 k=K +1

J, are the numbers of intervals in [0,t) and [0,s) respectively. Consider
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the random vector Q, = (R(t),;(t,s))', for any vector e = (ej,ej) € R2,
A A Jn Jn '
e'Q, = elA(t) + e2<p(t,s) = Z ejWpk + Z eoWpk = Z VWok where
k=1 k=K, +1 k=1
w;k=e1wnk if k = K, and Wék=32wnk if k > K. Clearly, the sequence of random

J
n
variables { = Wék} still forms a martingale relative to the o-fields

{(Fp k-1). Using the fact that E[Wnkwnj|Fn,k_1]=E[WnkE(anIFn’j_1)|Fn,k_1]=0

for j > k, we can check that (assume J, /K, + t/s as n - ©), as n + o,

2 2
In , Kn e19x Jn €24k
2 Var(n;iwnlen,k_l) = Z _  + b -
k=1 k=1 ryp/n k=K,+1 r}/n
P o [t Ax) 2 s A(x)
— e dx + ejp dx
0 Sp(x) t  Sp(x)

Similarly, we can easily check that

Iy , P
= B(|ntig |4 | Fp 1) —— O
-1

b > 2 2 _ 22 2 5
Therefore, n?e-Q, ——— N(0,6¢), where §° = ejo (0,t) + ego“(t,s),

t s
az(O,t) = fO [A(x)/ST(x)]dx and az(t,s) = ft [A(x)/ST(x)]dx. Hence, by

Cramer-Wold (1936),

At) D 02(0,t) 0
ot | — & x| o,
e(t,s) 0 o?(t,s)

It follows easily that (R(t),x(s)) is also asymptotically jointly normal
with AVAR(K(t),K(s)) = AVAR(X(t)) = az(O,t)/n. Hence, in general, for any t

and s,
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AVAR(A(t),A(s)) = AVAR(A(])), j=min(t,s) (10)
We can also derive the Greenwood formula (Greenwood 1926) as follows.

From (7), the asymptotic variance is given by

A a2(0,t) ]t A(x) Kn  a Kp gk
AVAR(A(t)) = — = X =3 — =y
n 0 nSp(x) k=1 nSp(ty) k=1 r(ty)

Hence, an estimator for the. asymptotic variance is

A A Kn 61 1
AVAR(A(t)) = 2 qp/r(t) = = ( ) ( ) (11)
k=1 Yist n-i+l n-i+l

The last equality in (11) is obtained by substituting the terms for
ak and ry respectively. By the §-method, the corresponding estimator for the
survival function S(t) is given by

81 81

AVAR(S(t))=(S(t))2 = — =~ (5(t)? = (12)
Yi<t (n-i+1)2 Yi<t (n-i+l)(n-i)

The last expression in (12) is just the Greenwood formula for the asymptotic
variance of the Kaplan-Meier estimator. [See, e.g., Miller (1981, p.65).]
Our proof not only provides a concise alternative to the traditional
proofs, but it also offers an easy extension to the case with time varying
discrete covariates. Consider the setup described in Section 1 in which

there is one time varying covariate with J possible values. For each

m m o,
j=1,2,...,J, the sequence of random variables X thj = Z (qkj'qkj)

k=1 k=1
(m=1,2,...) still forms a martingale relative to the increasing o-fields

Fn,k (k=0,1,2,...). Therefore, if we can verify conditions (a) and (b), then
the martingale central limit theorem implies that Rj(t) is a consistent
estimator of Aj(t) and is asymptotically normally distributed with some

variance aj2 > 0. For the asymptotic results to hold, we need to assume that
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Nj(0)=wjn, where wj+wo+...+w3=l, and the weights wj's are fixed as n + o,
Apart from these minor modifications, the methods we have employed to verify
conditions (a) and (b) for the case without time varying covariates are also
applicable here. However, there is one important difference. As we have
mentioned in Section 1, the expression for the number at risk with covariate
value Xj (rkj) is different from ry. More specifically, Ty

=30 1 I{m: Y, > ty and Xm*(tk) - Xj} and ry = TR I(m: Y, = ty}. Since we
have repeatedly made use of the uniform convergence of ry/n in the
verifications of conditions of (a) and (b) above, we need to show that rkj/n
is also uniformly convergent. If this is accomplished, then the
verifications of conditions (a) and (b) performed above will immediately
carry over to the case with time varying covariates. The Glivenko-Cantelli
theorem, which we have used to prove the uniform convergence of ry/n, cannot
be simply applied to prove the uniform convergence of rkj/n because the sets
{m: Y, = t) and Xm*(tk) = Xj} and {m: Y, = ty)} are different.

Since there are J covariate values and each person can switch among the
covariate values, let Zj(t) be the number of switches the ith person made in
the interval [0,t), i=1,2,...,n. The total number of switches in [O,t)
becomes Z(t) = 2?=1 Z;(t). In the appendix, we show that, if for some M,

0 <M< o, P(Z(t) < nM) converges in probability to 1 as n + », then ri/n
will converge uniformly with probability 1 to E(rkj/n). It follows that
conditions (a) and (b) are satisfied, as long as rkj/n and E(rkj/n) are
bounded below by some positive numbers.

The condition that for some finite positive npmber M, P{Z(t) < nM)
converges in probability to 1 as n -+ =, is a weak one. It is clearly weaker

than the requirement that Z(t)/n obeys the weak law of large numbers.

13



In general, the expression for E(rkj/n) will be very complicated since
one has to enumerate an infinite number of possible switches. Although it
may not be possible to write down an explicit expression for E(rkj/n), the
computation and the asymptotic properties of the estimatérs are not affected
since these results do not require E(rkj/n) to be known explicitly. Although
the asymptotic variance of Rj(t) is a function of E(rkj/n) and will
therefore also be a complicated expression, it can be consistently
estimated. Specifically, the arguments that lead to equation (11) above are
also valid here, therefore AVAR(Xj(t)) can be estimated by equation (11),
with ak’ r(ty), §;i, n-i+l replaced by akj’ rj(tk), 5ij’ rj(Yi) respectively.
On the other hand, if there is some prior information, derived from economic
theory or from the data itself, that allows one to make some restrictions on
the numbers and the directions of switches, then it may be possible to
express E(rkj/n) explicitly. Below we will provide a simple example to
illustrate how the expression E(rkj/n) can be calculated. The simulation
experiment in Section 3 is also based on this example. The simulation
experiment demonstrates that it is not necessary to know E(rkj/n) explicitly
in order to perform the estimation. We need to know E(rkj/n) explicitly
only when we have to calculate E(rkj/n) to obtain the true (theoretical)
values in order to compare with the estimates. Hence, the explicit
expression of E(rkj/n) is used only when we evaluate the performance of the
estimators.

Consider a situation in which there is only one time varying discrete
covariate with two possible values X; and Xj. Let there be N; (0) persons
with covariate value X; at time 0 and N, (0) persons with covariate value X,

at time 0. A person can switch between X; and Xy before the event or the
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censoring occurred. For. simplicity, assume each person has at most one
switch. These assumptions imply that the condition Z(t) < nM is trivially
satisfied with M=1.
Given these assumptions, the expected number of people at risk at time
t with covariate value X is given by
E[r1(t)] = N3(0)(1-F1(t))(1-G1(t))(1-Hy(t))
(1-F1(t))(1-G1(t))

t
+ Np(0) J (1-Fp (%)) (1-Gp(x)) dHj (%) (13)
Y (1-F1 (%)) (1-G1(x))

On the right-side of (13), (1-F1(t))(1-G1(t))(l-Hl(t)) is the probability
that a person begins with covariate value Xy, survives to time t and has not
switched to covariate value X9 in [0,t). The integral in the second term is
the probability that a person begins with covariate value X, has switched to
covariate value X; before time t and survives to time t with covariate value
X1. The first two terms inside the integral is the probability that neither
the event nor the censoring occurs in [0,x), for a person with covariate
value X9 in [0,x). The fraction inside the integral in (13) comes from the
Markov assumption, namely that, the conditional probability of a person
surviving at time t given that he has switched to covariate value Xj

at time x is the same as the conditional probability of a person surviving
at time t with covariate value X; given that he survives to time x with
covariate value X;. Integrating all the terms inside the integral with
respect to the density of the distribution of switching time (Hy(x)) yields
the probability that a person begins with covariate value Xp, has switched
to covariate value X; in [0,t), and survives to time t. Multiplying the
probabilities by the respective initial numbers at risk (Nj(0) and Ny (0))

and adding them up gives the expected number of people at risk at time t
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with covariate value X;. When there are no time varying covariates, Nj(0)=n,
N9 (0)=0, Hy(t)=0, E[r1(t)] becomes n(l-Fl(t))(l-Gl(t)). Therefore,
E[r1(t)/n]=(1-F1(t))(1-G1(t)), which is essentially the same as E(xry/n)
discussed before.

The above example illustrates the principle to calculate E(rkj/n), and
it is easy to see that the expression will become more complicated when less
restrictions and assumptions are made on the numbers and the directions of
switches.

Since there are J estimated cumulative hazard functions at each time t,
one may be interested in deriving the asymptotic distribution of the vector

A*(£)=(A1(£) ,Ap(t), ..., A7(E))". Let Aj(t) = E Wy where Wnpj=qyj-dkj- For
k=1

any vector e* = (e1,e9,...,e7) € RJ, e*'A*(t) =3 W , where
Y 1-€2 J n

W;k = eankj+92wnk2+--'+eJWnkJ- By the independence of the J binomial

experiments,

2 Aj(t)dg

€3

Var(n;iwglen’k_l) =
1 rkj/n

I M &

J

therefore
a D
nte¥-A¥(t) ——— N(0,4%(0,t))

2 J 22 2 t
where ¢4(0,t) = Zj=1 ejaj(O,t), aj(O,t) = fO {Xj(x)/E[rj(x)/n]}dx. Hence, by
the Cramer-Wold device (Cramer and Wold 1936), (A1(t),Ag(t),...,As(t)) is
asymptotically jointly normally distributed, and Xm(t) and Rj(t) are
asymptotically independent for any m<j. The last result looks

counterintuitive because one may expect that the estimators should be
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dependent because people may switch from one covariate value to another so
that the numbers at risk of the two groups at the same time point would be
correlated. Our theory shows that the estimators are asymptotically
independent because of the martingale structure and the independence of the
J binomial distributions.

The extension of the estimator and the asymptotic results to the case
with more than one time varying discrete covariate is straightforward
because one can simply treat each of the Xj's (j=1,2,...,J) as a vector

(instead of a scalar) and modify the above results accordingly.

Section 3 : Numerical Results

In this section, we provide some numerical results which show that the
estimator we propose behaves well. For simplicity, we exclude censoring. The
Monte Carlo experiment we performed is as follows: First, draw a random
variable ty; from the Weibull distribution Fl(t)=1-exp(-t2) and regard this
as the distribution of the time of occurrence of the event (death, birth or
unemployment etc.) for group one, then draw a random variable tjj from
another Weibull distribution Hl(t)=l-exp(-t2) and regard this as the
distribution of the switching time for group one. If tj] =< tj,, then record
t11 as the time the event occurred. Similarly for the second group: first
draw a random variable tpy from the exponential distribution
Fp(t)=1l-exp(-2t) and regard this as the distribution of the time of
occurrence of the event for group two, then draw a random variable tjpy from
another exponential distribution Hjp(t)=l-exp(-2t) and regard this as the
distribution of the switching time for group two. If tjy; =< tgy, then record

to] as the time the event occurred. If t77 > t1p, then a switching from

17



group one to group two occurred at time tyo9 and we draw a random variable Y,
from the conditional exponential distribution l-exp[-(t-tjp)] and record Yy
as the time the event occurred. Similarly, if ty; > tj9, then a switching
from group two to group one occurred at time t22 and we draw a random
variable Y{ from the conditional Weibull distribution 1—exp[-(t-t22)2] and A
record Y as the time the event occurred. In this experiment, the event
occurred for everyone and there is no censoring. The procedure is repeated
1000 times so that the initial sample size for each group is 1000. From the
data, we can use the estimator defined in (2) to estimate the cumulative
hazard functions for group one (the Weibull distribution Fq(t)) and group
two (the exponential distribution Fy(t)) respectively. For each group, we
calculate the estimated cumulative hazard at each time point at which an
event occurred. Figures 1 and 2 report the results in which we have plotted
the difference between the estimated cumulative hazard and the true
cumulative hazard against the observation. Each observation corresponds to a
time point at which the event occurred. The true cumulative hazard function
is t2 for the Weibull distribution Fi(t) and 2t for the exponential
distribution Fy(t). We see that the estimator performs very well since the
difference is very close to zero fbr all the observations, except at the
right ends of the curves.# The estimators do not perform well at the right
ends because our asymptotic results are based on the assumption that Kk j is
very small such that 1‘qkj = 1 and 1-6qkj = 1, and this assumption has been
used many times in the verification of conditions (a) and (b) in Section 2.
At the right ends of these curves, the number of events occurred is large
relative to the number at risk, so that qkj can mo longer be neglected.

Table 1 reports the mean values and standard deviations of the
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estimates at three time’points (0.4,0.8,1.2) when we replicate the
experiment 1000 times. We see that the average values of the estimates are
close to the true values and the standard deviations are relatively small.
In addition, we also calculate the covariance matrix of the estimators at
these three time points. The results are shown in Table 2. From (10), our
theory suggests that for each group, the asymptotic covariance of the
estimators at two time points s and t should equal the asymptotic variance
of the estimator at min{s,t}. We see that in Table 2,
Cov(A1(0.4),A1(0.8))=Cov(A1 (0.4),A1(1.2))~Var(A1(0.4)),

Cov(A7(0.8),Aq (1.2))=Var(A1(0.8)),
Cov(Ayp(0.4),Ay(0.8))~Cov(Ry(0.4) ,Ap(0.8))=Var (Ap(0.4)), and
Cov(Ap(0.8),Ay(1.2))=Var(Ay(0.8)). The numbers agree quite well with the
theory. In addition, our theory also suggests that the estimators of the
first and second groups at the same time point should be uncorrelated. We
see that Gov(Ap(0.4),Ap(0.4))=Cov(A1(0.8),Ay(0.8))=Cov(Ay(1.2),Ap(1.2))=0,
and again the numbers agree quite well with the theory.

We also calculate the estimates for the asymptotic variance. When there
are time varying discrete covariates, the formulas for the estimators of the
asymptotic variances have been explained at the end of Section 2. The
results are shown in Figures 3 and 4 in which we have plotted the difference
between the estimated asymptotic variance and the theoretical asymptotic

variance against the observation. The theoretical asymptotic variances are

given by a?(O,t)/n = (1/n) fg {Aj(x)/E[rj(x)/n]}dx for j=1,2. These
expressions involve double integrals which have no closed form solutions
(see the note under Table 3), hence numerical integration is used to obtain
the theoretical values. Figures 3 and 4 show that the difference is close to
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zero except at the right ends of the curves. Again, the estimators do not
perform well at the right ends of the curves because dkj is not negligible
at these regions. We also replicate the experiment 1000 times and calculate
the estimates of the asymptotic variance at three time points (0.4,0.8,1.2)
and the average values of the estimates are shown in Table 3. We see that

the average values are very close to the theoretical values.
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Footnotes

1. See, e.g., Flinn and Heckman (1983). The assumption is even more
pervasive in theoretical models of economic duration analyses, see, e.g.,
the labor turnover model in Jovanovic (1979) and the examples in Heckman and
Singer (1984).

2. The martingale central limit theorem, under the framework of point
process and stochastic integral, has been applied to survival analysis by
Aalen (1978), but he has not explicitly verified the needed regularity
conditions in the survival setting. It is our hope that the present simple
and self-contained approach may provide a more intuitive and accessible
alternative.

3. Throughout this paper, ry = r(ty) and rkj = rj(tk)- For convenience, we
will use the simpler symbols ry and rkj wherever necessary.

4. We have also performed the experiment using other distributions such as a
loglogistic distribution, and a Weibull distribution with decreasing hazard

rate, and the plots are very similar to Figures 1 and 2.
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Table 1
Means and Standard Deviations
of the estimates of the cumulative hazard
(1000 replications)

Group 1l: Weibull Distribution Fl(t)=1-exp(-t2), Cumulative Hazard=t2
Sample Size=1000
Time (t) True Value (t2) Average of Estimates Standard Deviation
0.4 0.16 0.1604 0.0119
0.8 0.64 0.6408 0.0281
1.2 1.44 1.4416 0.0612

Group 2: Exponential Distribution Fy(t)=l-exp(-2t), Cumulative Hazard=2t
Sample Size=1000

Time (t) True Value (2t) Average of Estimates Standard Deviation
0.4 0.8 0.7997 0.0399
0.8 1.6 1.5996 0.0671
1.2 2.4 2.4023 0.0897
Table 2

Covariance Matrix of
the estimates of the cumulative hazard
(1000 replications)

A1€0.4)  A7(0.8)  Ap(1.2)  Ap(0.4)  £p(0.8)  Ap(l.2)
A1(0.4)  0.000142
A1(0.8)  0.000149  0.000787
A7(1.2)  0.000172  0.000903  0.003750
Ay(0.4)  -0.000009  0.000009 -0.000022 0.001592
Ay(0.8)  -0.000019 0.000062 0.000033  0.001553  0.004497

32(1.2) -0.000032 0.000066 0.000086 0.001410 0.004299 0.008045
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. Table 3
Means and Standard Deviations
of the estimates of the asymptotic
variance of the cumulative hazard
(1000 replications)

Group 1: Weibull Distribution
Sample Size=1000

Time (t) Theoretical Value Average of Estimates Standard Deviation

0.4 0.0001394 0.0001398 0.0000112
0.8 0.0007683 0.0007707 0.0000474
1.2 0.0033777 0.0033991 0.0003024

Group 2: Exponential Distribution
Sample Size=1000

Time (t) Theoretical Value Average of Estimates Standard Deviation

0.4 0.0016755 0.0016761 0.0001272
0.8 0.0047211 0.0047278 0.0003604
1.2 0.0086205 0.0086552 0.0006521

Note: The formulas for the theoretical values of the asymptotic variances
for Group 1 and Group 2 are respectively given by:

o

1 t 2x
dx
0 exp(-2x2)+2exp(-x2)fg exp(-4y+y2)dy

1 t 2
and dx

0 exp(-&x)+2exp(-2x)fg yexp(Zy-Zyz)dy

where n=1000.

23



Appendix

In this appendix, we prove that if for some M, 0 < M < =, P{Z(t) < nM)
converges in probability to 1 as n -+ «, then rp/n will converge uniformly
with probability 1 to E(rkj/n). Our proof is partly based on the proof of
the Glivenko-Cantelli theorem in Pollard (1984 p.13-16). There are five
steps in Pollard’'s proof. It is easy to see that the first two steps (the
two symmetrizations) are also valid in our model. To save space, we will not
reproduce these steps here. Using our notations, Pollard’s equation (11)

becomes
P(sup |(rj(t)/n) - E(rj(t)/m]| > ¢}
t
- * -
< 4P{s1é.p |n"150 ) mplim: ¥y = t and X*(t) = X5}| > e/4)  for n = 8¢72,
where 7y, np, ..., m, are independent sign random variables with
* .
P{nj=+1)=P(nj=-1}=1/2. Let Amj(t)={m: Y, = t and X" (t) = Xj}. Equation (12)
of Pollard is not valid here because of the presence of the random variables
Xm*(t) and the possibility of an infinite number of switches such that the
number of intervals will not be a finite number. Therefore, we consider the
conditional probability P(supy |n"1Zf g mpltAp(e))]| > e/4 | Y,X,2(t) = n),
where Y=(Yj, Yy, ...,Yy) and X={X;*(s)}, s€[0,t). That is, given the
realizations of the observed times Y, the realizations of the covariate
values X, and the condition that the number of switches is bounded above by
nM for some finite positive number M, then supg |n'1zg=1 ﬁmI{Amj(t)}I is
e s . -1 .
reduced to finding the maximum of In ES=1 wmI{Amj(t)}| over a given set of

intervals [0, t ¥=1,2,...,T', where I' < n+nM=n(1+M). The number of

By

intervals T is less than or equal to n+nM because there are n observed times
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(Y¥1,Y9,...,Y,) and at most nM switching times (since there are at most nM
switches). This leads to the inequality
P(supe |n"13h g mpl(Apy(e))]| > /4 | Y,X,2(t) < )

< 350 PO 1shy mul(apy(e)| > e/6 | Y.X,2(t) < nM)

A

n(1+M)max, P(|n-1sD 4 I (Agy (€)Y | > ¢/4 | Y,X,2(t) < nM)

on(1+M)exp (-ne2/32)

A

The last inequality is an application of Hoeffding's inequality as described
in Pollard (p.16), since the indicator function I(Amj(ty)) < 1. Taking
expectations over Y and X, we finally get
P{supy [(rj(t)/m) - E(rj(t)/m)| > ¢ | Z(t) = nM)
< 8n(1+M)exp(-n62/32)
For any events B, Q, and Q% (the complement of Q),
P(B) = P(B|Q)P(Q) + P(B]Q®)P(Q®) =< P(B|Q) + P(Q®). Hence,
P{sup; |(rj(t)/n) - E(rj(t)/n)l > €)
< P{supy |(rj(t)/m) - E(rj(t)/m)| > e | Z(t) = nM) + P(Z(t) > nM)

8n(1+M)exp (-ne2/32) + P{Z(t) > nM)

A

———+ 0, as n =+ «,
Since supg I(rj(t)/n) - E(rj(t)/n)l converges in probability to zero, it
follows from the arguments in Pollard (p.21-22) that rj(t)/n converges to

E(rj(t)/n) uniformly with probability 1.
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