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The Consistency Principle

L. General introduction

The objective of this paper is to describe the role played recently in the
comparative study of solutions by a fundamental principle, which we will call
the consistency principle. This principle unifies important developments in
diverse areas ranging from abstract game-theoretic models to concrete taxation
and apportionment problems.

Although most of the literature reviewed here appeared in the last five
years, the principle itself is a very old one. In fact, it is likely at the root of
a solution proposed in the Talmud more than 2000 years ago for the
adjudication of conflicting claims.

A decision problem is given by a list of agents together with a set of
alternatives available to them, and their preferences defined over this set.
These preferences conflict. A solution is a rule that associates with every
decision problem D in some admissible class & an outcome x in the feasible set
of that problem; x is the solution outcome of D. Depending upon the context,
the rule may be seen normatively, as a recommendation that an impartial
arbitrator could make on how the problem should be solved, or, it may be
intended as a description or as a prediction of the way the problem would be
solved by the agents on their own.

Bargaining problems and bargaining solutions on the one hand, resource
allocation problems and allocation rules on the other, are canonical examples
illustrating these general notions.

Two main methodologies have been adopted in the study of solutions.
One is aziomatic. Appealing properties of solutions, or azioms, are formulated,

and the existence of solutions satisfying all the axioms is investigated. Such



studies often result in characterization theorems, that is, theorems identifying a
particular solution as being the only one to satisfy a given list of axioms.
According to this methodology, the primary concepts are the properties of
solutions. These properties are used as building blocks in the construction of
desirable solutions. Bargaining has been studied in this way to a very large
extent.

The other methodology proceeds in the opposite direction, starting with
solutions, which are taken as primary concepts. Solutions are chosen on the
basis of their intuitive appeal, sometimes as formal representations of schemes
actually used in practice, and it is asked whether each particular solution
satisfies properties of interest. The study of resource allocation rules has as a
whole been conducted in this manner.

However, the last few years have seen a considerable expansion of the
axiomatic methodology. Significant progress has been made in the study of
problems to which it had been traditionally applied, and a variety of new
classes of models for which this methodology was discovered to be equally
powerful have been identified. Our purpose here is to review the role played in
these developments by the consistency principle.

Contrarily to most studies, in which a specific class of problems is first
chosen and the restrictions forced on solutions by various combinations of
axioms are determined, we will examine here a wide range of models and
present results unified by the common application of a specific principle. Of
course, other properties will be involved but consistency will always be the
central one.

In Part II, we give a general statement of the consistency principle and
we discuss several natural variants. In Part III, we examine a sequence of

models: bargaining problems, games in coalitional form, bankruptcy and taxation



problems, quasi-linear cost allocation problems, resource allocation problems in
private good economies, and apportionment problems. We show how the
consistency principle has been adapted for each of these models, how it has
permitted the characterization of some existing solutions, and how it has led to
the discovery and the characterization of new solutions. Part IV contains some

concluding comments.

II. The Consistency Principle
We start with a very general statement of the consistency principle, and

we discuss several useful variants.

1. General concepts.

Let 7= N be an infinite list of pofential agents.! Let 2 be the collection
of all finite subsets of JJ with generic elements P, Q,... . For each group Q ¢
2 there is an outcome space relative to (), XQ, that is, a space from which
the alternatives available to the group Q are taken. ,@Q is the class of
problems that the members of Q could conceivably face. Each element of @Q
is given by a feasible set, a certain subset of XQ satisfying some regularity
assumptions, together with the preferences of the members of Q over this
feasible set. How rich is the class of admissible problems is a modelling choice
whose importance should be quite clear by the end of this article.

Given a group Q ¢ £ and a problem D ¢ @Q, we would like to identify
which alternative of D will be the compromise reached on their own by the
agents in Q, or the recommendation made to them by some impartial

arbitrator. However, instead of considering each problem separately, we will be

IN is the set of natural numbers.



more ambitious and look for a general rule that would be applicable to all the
problems that any admissible group could face.

Therefore, let = U ,@Q and X = U XQ.
Qe? Qe?

Definition. A solution on & is a function F: P - X that associates with every
Q ¢ Zand with every D ¢ 9 an alternative F(D) in the feasible set of D C

XQ. This alternative is called the solution outcome of D.

2. The Fundamental Definition.

A solution satisfies consistency if whenever it recommends x as solution
outcome for some admissible problem involving some group Q, then it
recommends the restriction of x to any subgroup P as solution outcome of the
subproblem, faced by this subgroup, obtained from the original problem by
attributing to the members of the complementary subgroup Q\P their
components of x.

To formally state the principle, we need first to clarify what is meant by
a subproblem.

Definition. Given two groups P, Q ¢ P with P C Q, a problem D ¢ ,@Q, and
finally an alternative x in the feasible set of D, the subproblem of D with
respect to P and z is the problem comprising all the alternatives of D at which
the members of the complementary subgroup Q\P achieve their components of
x.  We denote it tl:g(D).

Note that tg(D) may or may not satisfy all the properties that are
required of the members of ,@P .

We are now ready to state the fundamental definition.

Fundamental Definition: A solution F: % - X satisfies Consistency if for all

groups P, Q ¢ £ with P ¢ Q and for all problems D e @Q, if x is the



solution outcome of D, then the restriction of x to the subgroup P is the
solution outcome of the subproblem of D with respect to P and x, provided
this subproblem belongs to 9F: for all P, Q ¢ Pwith P ¢ Q, for all D ¢ 2%,
if x = F(D) and t5(D) ¢ &, then xp = F(t3(D)).

Once the problem D ¢ .,@Q has been solved at some point x by applying
the solution F, how does the situation appear to the subgroup P? Assume that
the members of the complementary subgroup Q\P have accepted the payoffs
specified for them by F. From their viewpoint, all alternatives in D yielding
them the payoffs XQ\P are equivalent. Therefore, from the viewpoint of the
members of P, this set of alternatives, if it constitutes a well-defined problem,
really is the problem that has to he solved. Will solving it produce the payoffs
Xp initially assigned to them? A solution for which the answer is always yes,
as stated in the Fundamental Definition, has a sort of internal consistency that
might greatly help in ensuring that agents respect agreements.

Consider also ﬁhe not uncommon situation when the alternatives to be
selected from are the result of contributions made by agents in a naturall
temporal sequence. Then, the agents who are done first might want to receive
their payoffs and leave the scene. A consistent solution would prevent some of
the remaining agents to want to renegotiate among themselves on the basis that
now they really face a different problem.2

Note that in the above discussion we considered groups of "named"
individuals. Two groups P and P’ may be composed of the same number of
individuals with the same characteristics, and yet be treated differently by a
solution. Although the assumption is made in most of the models reviewed

here that all agents are fundamentally equal and, in particular, that identical

2This motivation is due to Lensberg (1985).



agents should be treated identically, our formalism is chosen so as to
accomodate the possibility of treating agents differently simply on the basis of
who they are. This will provide us with useful flexibility. For example, in
voting bodies, some voters may have more power than others (e.g. the Security
Council of the United Nations). Similarly, in bankruptcy court, some claims

may have higher priority than others.

3. Variants of the Fundamental Definition.

At various points in the preceding definitions other choices could have
been made. We discuss next the nature of these choices.
(a) Single-valuedness of solutions. We require solutions to associate with every
admissible problem a wunique outcome ("the solution outcome of D..."). Whether
a solution is meant to dffer predictions or recommendations, uniqueness of the
solution outcome is of course greatly desirable. Fortunately, there are
interesting classes of problems for which a large number of appealing
single—valued solutions can be defined; then, it is natural to limit one's search
to such solutions. The axiomatic theory of bargaining has developed with the
almost universal requirement of single—valuedness for that reason. However, in
many branches of economics and game theory, single-valuedness is virtually
impossible to obtain or comes at a very high price. (For instance, most of the
solutions discussed in economic theory, such as the Walrasian solution and the
core, are multi-valued.) Domain restrictions occassionally exist that guarantee
single-valuedness (gross substitutability guarantees single-valuedness of the
Walrasian solution,) but they are often too strong to be of much use.

To permit multi-valued solutions, replace the statements "if x = F(D)"
and "then xp = F(t;(D))" of the Fundamental Definition by "if x ¢ F(D)"

and "then xp ¢ F(t%(D))" respectively.



(b) Number of potential agents. We have assumed the set of potential agents
Jto be countable infinite. In a number of applications, it is more natural to
draw agents from a finite list. Alternatively, modelling the set of potential
agents as a continuum may have mathematical advantages. On occasions, these
alternative choices for Jhave significant implications for the theorems. Some
of the results that we will present require that indeed there be a fair amount
of flexibility in the specification of the class of admissible groups Q; for
instance, one may have to have access to Q's of arbitrarily large cardinality.
For others, a limited class of Q's suffices; in some cases, it in fact suffices to
have access to Q's of cardinality 3.

To deal with these cases, write "JC N" or "= R"3 instead of "J = N".
(c) Restrictions on the subgroup. Starting from some group Q ¢ £ and
having solved at x some problem D that it faces, the Fundamental Definition
asks us to investigate how the subproblems tg(D) faced by each of the
subgroups P of @ would be solved. However, in some situations, it may be
natural to limit one's attention to subgroups of small cardinality. In particular,
when we are concerned with modelling non—cooperative behavior and the
principle is meant to express the stability of a compromise under challenges by
subgroups, it makes sense to require that only small subgroups can form since
coordinated action may be difficult for large groups. In fact, the consistency
principle is sometimes written with the restriction that only subgroups of
cardinality 2 can form. Usually, but not always, excluding subgroups of
cardinality greater than 2 weakens the axiom in some minor way, and many

characterization proofs still go through, although with some extra work. It is

3R is the set of real numbers.




also natural to exclude degenerate subgroups of cardinality 1. This weakening
has the same sort of consequence.

The size of the subgroups is not the only relevant consideration however.
The set of agents may be endowed with some additional structure, and the
admissibility of a subgroup may be decided so as to reflect this structure. For
instance, if the situation under study is intertemporal allocation, agents can be
indexed by time; then, allowing only subgroups consisting of successive
generations, perhaps with overlapping lifespans, is quite natural.

Alternatively, the set of agents may have a graph structure, representing
channels of communication or some other relevant aspect of social organization,
such as hierarchies or family structures, and only connected components of the
graph may be considered admissible subgroups.

To allow for these various possibilities, let a:? -~ £ be a correspondence
associating with every Q ¢ 2a list a(Q) of admissible subgroups of Q. Then,
adjust the Fundamental Definition by replacing "for all P, Q ¢ £ with P ¢ Q"
by "for all P, Q ¢ 2with P ¢ o(Q)".

(d) Definition of the subproblem. Describing how the original problem appears
to be subgroup P after the members of the complementary group Q\P have
received their components of the outcome is not always straightforward. In
some cases (the class of games in coalitional form is the most prominent
example), several specifications make sense. The crucial point however is the
dependence of the subproblem on the original problem and the compromise that
is being evaluated. The notion of a subproblem discussed here should therefore
be contrasted with notions that depend only on the original problem. (For
instance, a subgame of a game in coalitional form is simply the restriction of

the vector giving the worths of all the coalitions in the original game to the



coordinate subspace corresponding to the list of coalitions that are subsets of a
particular subgroup of the set of players.)

The subproblem could also be made to depend on the solution itself.
Hart and Mas—Colell (1989) propose such a notion and Suematsu (1988)
explores a general formulation in that spirit. This specification has proved
useful too, and in fact has permitted the characterization of other solutions.
But, in order to preserve the unity of this review, we will not pursue it here.
(e) Relation between the solution outcomes of the original problem and of its
subproblems. The Fundamental Definition requires coincidence of the restriction
to the subgroup of the initial compromise with the solution outcome of the
subproblem faced by this subgroup. More generally, we could request that a
certain relation between the two outcomes holds. The weaker requirement of
Pareto—domination of one outcome by the other has been convenient in
bargaining theory. |

To formalize this choice, replace "then xp = F(tg(D))” of the
Fundamental Definition by "then xp < F(‘%(D))”.4
(f) Admissibility of the subproblem. The Fundamental Definition applies only if
the subproblem is in the admissible domain. A stronger version can be
obtained by requiring the subproblem to be in the admissible domain.
Although in some applications, the subproblem is automatically admissible, for
some others this is far from being the case.

To so strengthen the Fundamental Definition, replace "if x = F(D) and

P

t5(D) ¢ DY, then xp = F(13(D))" by "if x = F(D) then t5(D) ¢ D* and xp

= Ftp(D))".

4Vector inequalities x > y, x 2 y, X > y.
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III. Applications.

Together, the models described below cover a very broad range of problems
commonly studied. At one extreme is our first canonical example, the class of
bargaining problems; no information about the physical features of the
alternatives among which a choice has to be made is retained in the
specification of a bargaining problem. At the other extreme is our second
canonical example, the class of resource allocation problems. There, the set of
alternatives is endowed with vector space and topological structures.

It i3 useful to distinguish between models on the basis of their
informational content. Indeed, how much information is available is relevant to
the way conflicts are resolved in practice and has clear normative implications.
The first point is strongly supported by experimental work. Yaari and
Bar—Hillel (1984) confronted a group of subjects with several problems involving
different sets of physical alternatives having the same representation in utility
space and found systematic differences in the way the problems were solved,
depending on the interpretation given to these alternatives. The position that
only utility information is relevant is termed "Welfarism" by Sen (1979).
Welfarism, intended as a descriptive theory, is in clear violation of these
results. The second point, that from a normative perspective, welfarism is
inadequate as well, is forcefully made by Roemer (1986a), who argues in favor
of a "resourcist" position, calling for a precise description of the concrete
features of the alternatives available.

Of course, the acceptance of these views does not imply rejection of all
abstract formulations. Indeed, the advantage of such formulations is their wide
- applicability. For instance, the Shapley value, a solution concept originally
developed for coalitional form games, has been very successfully applied to a

variety of concrete problems, from the computation of power indices in voting
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bodies to cost allocation and distribution of goods in economics. On the other
hand, when extra information is available, it can be used to enrich the class of
admissible solutions, as illustrated by the example of exchange economies; there,
the set of available physical choices has a very special structure (it is a convex,
compact subset of a vector space); preferences can be meaningfully required to
satisfy properties that would not be well defined otherwise (such as
monotonicity, smoothness, convexity); finally, allocation rules can be constructed

that make use of this special structure (an example is the Walrasian solution).

We will consider the following classes of problems:
1) Bargaining problems,
2) Games in coalitional form,
4) Quasi-linear cost allocation problems,

5) Resource allocation problems in exchange economies, and

(1)
(2)
(3) Bankruptcy and taxation problems,
(4)
(5)
(6) Apportionment problems.

For each of these classes, we restate the Fundamental Definition when applied
to the class and we present the main results that have been based on the

principle.

1. Bargaining problems.

Ezamples. A typical bargaining problem, involving a group of three agents Q
= {1,2,3}, is represented in Figure la: there is a feasible set T, which is a
subset of the three-dimensional utility space, and a disagreement point d = 0.
The points of T represent choices available to the agents. What compromise
will they reach? Nash (1950) predicted the point x maximizing over T the

product of utility gains from d. Assuming agent 3 to be content with Xg, let
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us consider the subset of T consisting of all points where his utility is Xg- S

represents the options open to agents 1 and 2 once agent 3 has received Xg.

Now, we note that (x;,X,) is the maximizer of the product of their utility

gains in S, an observation illustrating the fact that the Nash solution satisfies

n

consistency.
uz
uz
a(S)
K(S) (T)
S=t3(T) S=tX(T)
T y *=K(T)
u
=0
*3
%3 T ]
ug /
_ The Nash solution The Kalai-Smorodinsky solution
satisfies consistency does not satisfy consistency
(a) (b)

Consistency in bargaining theory

Figure 1

Another popﬁlar solution was introduced by Kalai and Smorodinsky

(1975): these authors proposed to select the maximal feasible point proportional

to the ideal point, the point whose ith coordinate is equal to the maximal
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feasible utility for agent i. Figure 1b shows that this solution does not satisfy
consistency. Indeed, calling x the Kalai—-Smorodinsky solution outcome of the
three—person problem T, we note that the Kalai—-Smorodinsky solution outcome

of the subproblem of T relative to P = {1,2} and x is not xp!

General definitions. A bargaining problem is a pair (S,d) e Z[RQx[RQ: there is a
group of agents Q who can attain any of the points of the feasible set S, a
subset of their utility space [RQ, by unanimously agreeing on it. If they fail to
reach an agreement, they get d, the disagreement point.. We assume, as is
standard, that S is convex and compact, and that there exists at least one
point of S that strictly dominates d. We also require S to be d—comprehensive,
(if a point is feasible, then any point that it dominates and dominates d is also
feasible). This is to guarantee that the solutions that we will want to consider
always select outcomes that are at least weakly Pareto—optimal. Finally, and
to simplify the exposition, we assume d = 0 and we write S instead of (S,0).
Let EQ be the class of problems satisfying all of the above assumptions, ¥ =

U EQ, and X = U [RQ. A solution is a function that associates with
Qe? Qe?

every Q ¢ 2 and every S ¢ EQ a unique point of S.

Definition. The solution F: ¥ - X satisfies Consistency if for all P, Q ¢ 2

with P c Q, for all S ¢ 2% and T ¢ 89, if § = t3(T) = {x* ¢ R |3y ¢ T

with YQ\P = *Q\p and yp = x’} where x = F(T), then xp = F(5).
Geometrically, t}Pf(T) is simply the section of T through x parallel to RY.
Among the bargaining solutions commonly studied, only two satisfy

Consistency. They are the Nash solution N (N(S) is the maximizer of IIx; for

x € S), and the Lezicographic Egalitarian solution L (L(S) is the point of S
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that is maximal in the lexicographic order). Now consider a list {fili ¢ N},
where fi: R 4 R is strictly monotone, continuous, and such that for each Q,

the function % [R% -+ R defined by fQ(x) = Xfi(x;) is strictly quasi—concave.

Then, given Q ¢ Land S ¢ EQ, let F(S) = argmax{fQ(x)|X ¢ S}: any such
separable additive solution F also satisfies Consistency.6 The FEgalitarian solulion
E (Kalai, 1977: E(S) is the maximal point of S of equal coordinates) does not
satisfy Consistency but it satisfies the slightly weaker condition obtained by
requiring "xp < F(tg(T))” instead of "xp = F(t%(T))”. This requirement will
be called Weak Consistency.

In bargaining theory, Consistency was first used by Harsanyi (1959).7
Harsanyi felt that the Nash solution was the appropriate solution for
two—person problems and he asked whether one could deduce in some natural
way how n—person problems should be solved. He showed that if a solution is
consistent and coincides with the Nash solution for two—person problems, then it
coincides with the Nash solution for all cardinalities. Lensberg (1985), who
recently rediscovered the condition, is the author of the most general theorems

involving it. In particular, he showed that Harsanyi's hypothesis that

5Given X, X’ € [RQ, let x, x* be obtained from x and x’ by rewriting their
coordinates in increasing order. We say that x is lexicographically greater than

x’ if either x; > x7 or [x; = x{ and xo > x3] ..., or for some k, [x, = x{ for

all i < k and Xpeq1 > Xl/<+1]'

6The Nash solution is the member of this family obtained by choosing fi(xi) =
log x for all i and for all x; ¢ R I

7"Under the name of the Bilateral Equilibrium condition.
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two—person problems be solved according to the Nagh solution could be replaced

by elementary axioms, as detailed below.

Results. 'To present the results we need to formulate a few other requirements
on solutions. Pareto—optimality. the solution does not select a semi-strictly
dominated outcome; Weak Pareto—optimalily. the solution does not select a
strictly dominated outcome; Amnonymity: the solution is invariant under
exchanges of the names of the agents; Scale invariance: the solution is invariant
under positive linear rescaling, independent agent by agent, of the utilities;
Individual Monotonicity: an expansion of the feasible set along the ith axis
benefits agent i; Continuity. small changes of problems do not produce large
changes in solution outcomes; Population Monotonicity. the arrival of additional
agents unaccompanied by an expansion of opportunities i costly to all agents
initially present.8

Theorem 1 (Lensberg 1988): The Nash solution is the only solution satisfying
Pareto—optimality, Anonymity, Scale Invariance, and Consistency.

Theorem 2 (Lensberg 1985): The Lexicographic Egalitarian solution is the only
solution satisfying Pareto—optimality, Anonymity, Individual Monotonicity, and

Consistency.

8 Pareto—optimality. if x > F(S), then x ¢ S; Weak Pareto—optimality. if x >
E(S), then x ¢ S; Anonymity: F(n(S)) = n(F(S)), where mQ - Q’ with |Q]
= |Q’| is any one-to-one function exchanging the names of the agents; Scale

invariance: F(A(S)) = A(F(S)), where ARQ 5 RY s any positive linear
rescaling, independent agent by agent, of the utilities; Individual Monotonicity:
if S 5 S and SQ\i = SQ\i’ then F.(S) > F,(S) (notation: Sp, is the
projection of S on RY );  Continuity: if {S"} is a sequence of elements of =Q
such that S¥ - § ¢ EQ, then F(SV) - F(S); Population Monotonicity. if P C
Q, 8¢5, T e 3% and Ty = S, then Fp(T) < F(S).
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Theorem 3 (Thomson 1984): The Egalitarian solution is the only solution
- satisfying Weak Pareto—optimality, Anonymity, Continuity, Population
Monotonicity, and Weak Consistency. |
Theorem 4 (Lensberg 1987): The separable additive solutions are the only

solutions satisfying Pareto—optimality, Consistency, and Continuity.?

2. Games in coalitional form.

Ezample. Consider a group of three differently skilled agents. - The productivity
of each subgroup S depends on the complementarities between the skills of the
agents composing it, and is measured by a single number Vg Let v be the list
of all these vg given in Figure 2. We would like to reward agents as a |
function of what they can contribute to the various subgroups. A well-known
method is the core: pick a payoff vector x = (Xl,XQ,X3) that cannot be
"improved upon" by any subgroup: for all S, vg < é) X;. The vector x =
(10,10,30) is in the core. Now, assuming agent 3 to have accepted Xg = 30,
how does the situation appear to the remaining agents P = {1,2}. Agent 1 on
his own can achieve 0; by cooperating with agent 3 and paying him X3, he
can achieve 0 = V{LS} ~Xg = 30 — 30. In either case, he obtains 0. A
similar computation for agent 2 involves comparing 0 and 10 (= v (23} ~ Xg =
40 — 30), for a maximum of 10. Finally, together, agents 1 and 2 can achieve
Vg T Xg = 50 — 30 = 20. Is (x{,X,) in the core of the 2-person game so

defined? The answer is yes. This illustrates that the core is consistent.

9Refinements of Theorem 1 appear in Lensberg and Thomson (1988) and
Thomson (1985b). A version pertaining to a domain of non—convex problems is
given by Foster and Vohra (1988). A result related to Theorem 4 is given by
Young (1988b). ,
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On the other hand, the equally well=known solution due to Shapley (1953)10

is not consistent, as also illustrated in Figure 2. Shapley recommends the

payoff vector (70/6, 100/6, 130/6) for v, and (55/6, 115/6) for the resulting

subgame.

Game The core Subgame The core The Shapley Subgame
of v of v with of sub—  value of v of v with
contains  respect to game sy = respect to

X = {1,2} and x contains {1,2} and y

v;=0 10 0 10 70/6 50/6

Vo= 10 10 10 100/6 110/6

vg=0 30 130/6

v15=20 20 170/6

V13=30

V23=40

V123=50

Consistency for coalitional form games
Figure 21

Q4

General definitions. A game in coalitional form is a vector v ¢ R : there

is a group Q of agents whose members can gather in coalitions.’2 What each
coalition can achieve on its own is measured by a number, its worth, which is
given as one of the coordinates of v. Restrictions may be imposed on v

making, for instance, the game monotonic (if S > T, then Vg 2 VT), or

10The solution is defined below. As we noted earlier, this solution does satisfy
consistency for a definition of the subgame involving the solution itself (Hart
and MasColell, 1989).

UIn this Figure, we write vy for: V{l}, V19 for V{l 2} and so on.

12A coalition is a non—emply subset of Q.

The Shapley
value of
subproblem
is game

55/6
115/6
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super—additive (the worth of a coalition is greater than the sum of the worths
of the coalitions comprising a partition, no matter what that partition is). Let

yQ be a class of admissible games for the group Q, ¥ = U }Q, and X =
Qe

U [RQ. A solution is a correspondence that associates with every Q and every
Qe?

Vo€ ?Q a non—empty set of vectors x in [RQ such that Yx. < Q- The ith

Q

coordinate of such a vector represents one of the possible payments to agent i
for being involved in the game.
Definition: The solution F: ¢ - X satisfies Consistency if for all P, Q ¢ &2
with P ¢ Q, for all v ¢ g and for all x ¢ F(v), t3(v) ¢ g and xp ¢
F(t;(v)) where t;(v) is the game w ¢ ?P defined by

Wp = VQ - Q‘\;Pxi

wg = max{vg o, ~ iiels/inS’ C Q\P} otllerwise.

The definition of the subgame is illustrated in Figure 3. Given the payoff
vector x € [RQ, the worth of the coalition S in the subgame of v relative to P
and x is computed under the assumption that S can obtain the cooperation of
any subgroup S’ of Q not overlapping with P, provided each of the members of
S’ receives his payoff of the proposed compromise x. After these payments are

made, what remains for S is the difference Vaugs by X;. Maximizing behavior
S/

on the part of S involves finding S ¢ Q\P for which this difference is

maximal. (Note that the worths of two distinct coalitions 5, and S, may be

established by assuming cooperation with two overlapping subgroups Si and Sé

of Q\P.)
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(2

Defining the subgame of v e yQ relative to P € Q and x ¢ RC.

Figure 3

Apart from the core, another well-known solution is the prenucleolus,

which associates with every v e ?Q the vector x ¢ IRQ with EXi =vq whose

Q

,1Q1 _
) eR , where for each S C Q, eS(x) =

associated vector of "excesses" e(x

VS'— Xx, is lexicographically minimal among all such vectors; for the
S

' _(ISI—l)!ngI—IS!)!_
Shapley-value, x, = X kS(VS—vS\i), where kS = [QTT ; for the

ScQ
S3i

prekernel x is such that for all i,j € Q, max{es(x)li €S,j¢gS}=
max{eg(x)[j € S, i ¢ S}.

Consistency first appears in the context of games in coalitional form in

Davis and Maschler (1965), Maschler and Peleg (1967), Maschler, Peleg and
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Shapley (1972) and Aumann and Dréze (1974). It is satisfied by the core, the

prenucleolus and the prekernel.13

Results. We will need the following properties of solutions. Pareto—Optimality:
payoffs add up to the worth of the grand coalition; Individual Ratiénalz‘ty: each
agent is awarded at least what he can achieve on his own; Super—Additivity:
the set of payoff vectors of the sum of two games contains all the sums of
payoff vectors of each of the games; Invariance: the multiplication by a
common positive constant of all the utilities and the addition of arbitrary
constants to each of the utilities affect the payoffs in the same way;

Symmelry: if two agents contribute the same amount to all coalitions, they are
awarded the same payoff; Anonymity: the solution is invariant under exchanges

of the names of the agents; Converse Consistency: if a Pareto-optimal payoff

vector is such that its restriction to any two person subset of the set of agents
is a solution outcome of the corresponding subgame, then it is a solution

outcome of the original game.14

130ther solution concepts satisfy Consistency: the pseudokernel, the
pseudonucleolus, the pseudobargaining set.

14 Pareto—Optimality: ZFi(v) = vy Individual Rationality: for all i ¢ Q, Fi(v)
> vy Super-Additivily: F(v,+vy) 3 F(v|) + F(vy); Invariance: if there exists
o R, and § ¢ R such that for all S € Q, wg = avg + 26, then Flw) =
oF(v) + f; Symmetry Vsu(il = Vsu(j} for all S ¢ Q\{i,j} implies Fi(v) =

Fj(v); Anonymity. for all v ¢ ¥, v' ¢ ﬁQl with |Q] = |Q”
one-to—one function m Q - Q’ such that vg = Vv’ (x(i) [ieS) for all S C Q,

, if there is a

i
then F,(v) = Fﬂ(i)(v’); Converse Consistency: if (%Xi =g and for all P C Q

with [P| = 2, xp ¢ F(t35(v)), then x ¢ F(v).
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Theorem 5 (Sobolev 1975). The prenucleolus is the only single—valued solution
satisfying Anonymity, Invariance, and Consistency.
Theorem 6 (Peleg 1986a). Let % be the class of games for which the core is
non—empty. The core is the only solution on ﬁo satisfying Individual
Rationality, Super—Additivity, and Consistency.
Theorem 7 (Peleg 1986a). The prekernel is the only solution satisfying
Pareto~Optimality, Invariance, Symmetry, Consistency, and Converse
Consistency.15

We noted earlier that the Shapley—value does not satisfy Consistency.
However, as shown by Hart and Mas—Colell (1988, 1989), it satisfies
Consistency with respect to a subgame that depends on the solution itself. The
Shapley—value can in fact be characterized with the help of this condition.

Next, we consider a richer formulation where what each coalition can
achieve is given as a subset Vg of the utility space [RS pertaining to that
coalition. Each Vg which is interpreted as the set of utility vectors achievable
by the coalition S on its own, is required to satisfy certain properties which we
will not list. These games will be called NTU (non—transferable utility) games,
as opposed to the TU (transferable utility) games described earlier. Let A be

the class of admissible games involving the group Q, #= U Jﬁ, and X =
Qe

U [RQ. A solution here associates with every Q ¢ % and every v ¢ J‘ZQ a
Qe?

non—empty subset of Vo'

5Results related to Theorem 5 appear in Suematsu (1988) and to Theorem 6 in
Tadenuma (1989). A recent result involving consistency is Dutta (1988). A
characterization of the core of market games along the lines of Theorem 7
appears in Peleg (1986D).



22

Definition. The solution F:# -+ X satisfies Consistency if for all P, Q ¢ 2 with
P cQ, for all v e %Q, and for all x ¢ F(v), t)ﬁ(v) ¢ A and Xp € F(t;(v)),

where t;(v) is the game w ¢ A defined by

wp = {y R [(rxgp) € vo)

S :
we = U {y e R°|(y,x¢,) € Voo, } if S CP, S # P.
S $/CQ\P S SuS

Theorem 8 (Peleg 1985). Let fsz be the class of NTU games with a
non—empty core. The core is the only solution on Jfb satisfying Individual
Rationality, Consistency and Converse Consistency.16

Extensions of these results to the case of games with coalition structures

appear in Peleg (1986a) and Tadenuma (1989).

3. Bankruptcy and tazation problems.
Ezamples. We start with two problems discussed in the Talmud.

The contested garment problem: two men disagree over the ownership of a
garment, worth 100. The first man claims half of it (50) and the other claims
it all (100). Assuming both claims to be made in good faith, how should the -
worth of the garment be divided among the two men? The Talmud
recommends 25 to the first one and 75 to the second.

The estate problem: a man has three wives whose marriage contracts
specify that in case of his death they should receive 100, 200 and 300
respectively. The man dies and his estate is found to be worth only 100.

How should that amount be divided among the wives? The Talmud
recommends equal division. If the estate is worth 300, the Talmud recommends

proportional division, but if it is worth 200, it recommends (50, 75, 75)!

16We omit the precise formulation of Converse Consistency, which is patterned
after the condition of that name that we stated earlier for TU games.
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To clarify the mystery posed by the numbers proposed as solutions to
these two problems we should first of all find a natural formula that would
generate them. Consider the following method, described for the n—person case
as a function of the amount available for distribution, and illustrated in Figure
4 for the two Talmudic problems: The first units are divided equally until
each claimant has received an amount equal to half of the smallest claim;
then, the claimant with the smallest claim does not receive anything for a
while; instead, equal division of any additional unit is applied among all others
until each of them has received an amount equal to half of the second smallest
claim ... the algorithm proceeds in this way until a value of the estate equal to
201/2; then, each claimant has received half of his claim; for values of the
estate greater than Eci/ 2, payments are computed in a symmetric way by
successively equating incremental losses instead of gains. The reader can check
that this method applied to the two Talmudic problems does yield the numbers
given in the Talmud.

Now, for an estate of 200 in the 3—person problem, the amounts awarded
to claimants 1 and 2 are 50 and 75 respectively, for a total of 125. Applying
the 2—person method to an estate of 125 claimed by the first two claimants
returns the same numbers 50 and 75! In fact, given any value of the estate, if
x denotes the solution to the 3—person problem, applying the 2-person method
to any pair {i,j} for an estate of x; + X; yields the settlement (Xi’xj)' The

Talmudic solution is consistent!
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The Talmudic solution to the estate problem.
The value of the estate is measured horizontally.
The payments to the claimants are measured vertically.

Figure 4

General Definitions. A bankruptcy problem is a pair (c,E) € lR% x R " with X,
Q

> E: Q is a group of claimants on the net worth E of a bankrupt firm, ¢
being the claim of claimant i. Bankruptcy problems have been considered by
O'Neill (1982), Aumann and Maschler (1985), and Chun (1988).

A different interpretation of pairs in [R% « R 4 gives the class of tax
collection problems: a taz collection problem is a pair (w,T) € IRE x R 4 with T

< Zwi: Q is a group of tazpayers with incomes given by the coordinates of w,

and who among themselves must cover the cost T of a certain project. Let .9Q

be the class of these problems, 9= U .9Q, and X = U IRQ. A solution is a
Qe? Qe?

-~ / 200 /
x 150
X9 s X2
53 . 100
""""""" 5% - (L] iy )
5T 2T
> : ® 1125
150 200 250 350 450 600 100 200 300
Claims are (C;,C9,Cq) = (100,200,300) Claims are (¢;,¢o) = (100,200)
(2) (b)
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function associating with every Q ¢ £ and every (w,T) e BQ, a vector in [RQ
with coordinates adding up to T. Taxation problems have been extensively
investigated by Young (1986, 1987a, 1987b, 1988a) and we will focus on that
model.

Interesting examples of solutions are: the proportional solution which gives
the vector of taxes x as Aw, A being adjusted, as in the next three examples,
so that Xx; = T; the leveling taz, where x, = max{w-1/A, 0}; Stuart's
solution, where X, = max{0, Wi—Wl_/\}; Cassel's solution, where X, =

W?/(Wi-l-l//\).

Taxpayers” Proportional taxation Rank taxation
incomes applied to applied to

w (w,30) (wy,wy,15) (w,30)  (wy,w4,20)
10 5 5 5 10/3

20 10 10 10

30 15 15 40/3

Proportional taxation is consistent but rank taxation is not

Figure 5

Figure 5 illustrates the fact that proportional taxation is consistent
whereas the following rank tazation method!” is not: order the taxpayers in
"increasing order of incomes. Then assess them proportionately to their positions
(for example, agent of rank 5 is assessed 5/3 times what agent of rank 3 is

assessed).

17T owe this example to P. Young.
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Consider now the following class of solutions. Let f:R +x[aJ,b} - R o where
[a,b] C [~w,+], be continuous, weakly monotonic in its second argument and
such that f(w;,a) = 0 and f(w;,b) = w; for all w;. Then, given (w,T) ¢ J let
x = F(w,T) if for some A, x, = f(w;,A) for all i and ¥x;, = T. Young (1986)
calls these methods paerametric. 1t is straightforward to check that they are all
consistent:
Definition. The solution F:9 - X satisfies Consistency if for all P, Q ¢ £ with
P c Q, and for all (w,T) ¢ BQ, if x = F(w,T), then Xp = F(t;(W,T)), where
t}ﬁ(w,T) = (wp, IE))Xi).

Results. We will consider the following additional requirements: Symmetry:
taxpayers with identical incomes are assessed the same taxes; Continuity: small
changes in the parameters of the problem do not produce large changes in
taxes; Homogeneity: if incomes and aggregate tax are multiplied by the same
positive number, so is the vector of taxes; Progressivity. taxpayers with greater
incomes pay relatively greater taxes; and Decomposability. taxes can be assessed
indifferently at one time or in installments.!8
Theorem 9 (Young 1987h): The parametric solutions are the only solutions
satisfying Symmetry, Continuity and Consistency.

Within the class of parametric solutions, a narrow subclass of great

interest can be identified.

BSymmetry. w, = w. implies F.(w,T) = F.(w,T); Continuity: (w”,T") = (w,T)
1 J 1 J

implies F(w”,T") -+ F(w,T); Homogeneily. F(ow,oT) = oF (T,w) for all a > 0;

Progressivity: w, > W; > 0 implies Fi(W,T)/Wi > F.(w,T) /Wj; Decomposability:

J
F(w,T+T’) = F(w,T) + F(w-F(w,T),T").
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Theorem 10 (Young 1986): A parametric solution satisfies Progressivity,
Homogeneity, and Decomposability if and only if it can be represented in one

of the following ways

flw,A) = Aw, 0<Axgl1 or
fp(wi,)\) =w, - Wi/(l-f-/\WIi))l/p 0< X< o, p>0 or
f (w,A) = max{0,w;-1/)} 0 <A<

Other interesting subclasses of the class of consistent solutions are
identified by Young (1987a, 1988a).

A family of problems closely related to taxation problems is the class of
surplus—sharing problems studied by Moulin (1985a). Such a problem is a pair
(w,8) € [R% x R i where w. is the investment in a joint venture made by agent
ieQ and s > 0 is the surplus generated by this venture. Moulin uses
Consistency together with some other natural conditions to characterize
one-parameter families of surplus—sharing methods that generalize both equal

sharing and proportional sharing.

(4) Quasi-linear cost allocation problems.
Ezample. Three agents have the choice between two projects, 2y and aq,
costing (Cl’c2) = (20,30). The benefits they derive from these projects are Uy

= (70,50), uy = (10,50), and ug = (30,10). Which project should be selected

2
and how should its cost be allocated? Consider the method consisting in first
selecting the project generating the highest surplus and then choosing
contributions so that all agents receive an equal share of this surplus. For the
example, the best project is ay since Uy + Uy +ugy — ¢ = 70 + 10 + 30 —
20 = 90 > Ujg + Ugy + Ugg = Cy = 50 + 50 + 10 —30 = 80, and the utility

levels are (90/3,90/3,90/3) = (30,30,30). To check whether the method is
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(2 uy, 3
- 110 AN 2 2 o)

100

80

30

10

project 1

Consistency for quasi-linear cost—allocation problems

Figure 6

consistent, we note that in order to guarantee that agent 3 receives a utility of
30, agents 1 and 2 should pay him 30 — 30 = 0 if they choose ay and 30 — 10
= 20 if they choose aq, leading to an "adjusted cost vector" ¢’ = (20+0,
30+20) = (20,50). The project that produces the highest surplus is of course
2y sinceu11 + Uy — ¢ =70 + 10—20=60>u12+u22—0é=50+50
- 50 = 50. Equal sharing of that surplus yields the utilities (60/2,60/2) =

(30,30), as initially determined. This is because the method is consistent.

General Definitions. Given a finite set A of public projects, a quasi-linear cost

allocation problem is a pair (u,C) ¢ [R‘AlelRlAi. C is the cost vector. Each
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coordinate of C is the cost of the corresponding project. In addition, there is a
private good called "money". The preferences of agent i, defined over the
product AxR, admit a quasi-linear utility representation: given the project a and
given agent i's holdings of money m;, his utility is w, + m;. Let JItQ be the

class of these problems, #£ = U Jﬁ, and X = U [RQ. A solution is a
Qe 2 Qe?

function that associates with every Q ¢ £ and every (u,C) ¢ A 2 vector x e

R such that Ix;, < max(Zu, —C, ).
Q — aeAQ

Moulin (1985a, 1985b) carried out an extensive analysis of this class of
problems, which generalizes the class of bankruptcy and taxation problems as it
is given in a space of higher dimensionality.

Moulin describes a rich class of solutions. They can be interpreted as
variants of the Egalitarian solution since they are based on equating utility
gains. They differ from each other in the specification of the reference point
from which utility gains are measured.

Definition. The solution F: A4 - X satisfies Consistency!® if for all P, Q ¢ £ with
P c Q, for all (u,C) ¢ JlQ, if x = F(u,C), then xp = F(t?(u,C)), where

t;(u,C) = (up,C’) with C; = C, + Q§P(xi~uia) for all a € A.

Results. We will consider solutions satisfying the following requirements:
Pareto-Optimality. the decision maximizes the net aggregate benefit;

Anonymity: the solution is invariant under exchanges of the names of agents;
Independence of the Zero of the Utility Functions: the solution is invariant under

the addition of an arbitrary constant to the agents' utilities; and Independence

19Moulin uses the term "separability".
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of the Zero of the Cost Funclion: any increase in the cost function uniform

across all alternatives is distributed evenly among the agents.20

Theorem 11 (Moulin 1985a): A solution F:£ - X satisfies Pareto—Optimality,
Anonymity, the two Independence axioms and Consistency if and only if there

[[RA ]2 - R satisfying

(i) s(x+a(l,...1)z) = g
= 0 for all z ¢ [RA,

is g:
(x,z) + a for all x, z € [RA, a ¢ R; g(0,2)

(i) g(xz+a(l,..,1)) = g(x,z) for all x, z ¢ [RA, a € R,
and such that for all Q ¢ 2 and for all (u,C) ¢ A and for all i e Q,
Fi(u,C) = (1/]Q| Jmax(SuzC.) + (1/1Q1){(1Q]-1)g(u;,SuC) -
a€A Q Q
b g(u72u1_c)} ,

Q\i 'Q

The class identified by this theorem is quite large. By imposing further
conditions it is possible to characterize an interesting subclass:

We will assume that F is Cost Monolonic: an increase in the cost

function is borne by all agents; and is Immune to Manipulation by Disposal of
Utility: no agent can benefit by pretending his utility to be smaller than what

it really is.2t

20Pareto-Optimality: Yx, = max(Zu,, — C,); Anonymity F(#(u),C) =

aecA Q !
7(F(u,C)) for any one—to—one function mQ - Q’ where |Q| = |Q"|;
Independence of the Zero of the Utility Functions: if for some o, v, = U+
o1,...,1), and Vi = for all j # i, then F;(v,C) = Fi(u,C) + @ and F\(v,C) =

Fj(u,C) for all j # i; Independence of the Zero of the Cost Funclion: if C ~ =
C + ofl,....1), then F(u,C’) = F,(u,C) — o/|Q] for all i.

21Cost Monotonicity: if C < C’, then F(u,C’) < F(u,C); Immunity to
Manipulation by Disposal of Utility: if u < v; and U = v; for all j # i, then
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Theorem 12 (Moulin 1985a): A solution of the form identified in Theorem 11
satisfies Cost Monotonicity and is Immune to Manipulation through Disposal of

Utility if and only if g(x,z) = é(x) for some monotonic é:IRA -+ R.

(5) Resource allocation problems in ezchange economies.

Ezamples. Suppose that you had to determine a fair allocation of the resources
available on the planet earth. After attributing to each individual what you
think he deserves, you focus on a particular continent and add up what the
inhabitants of that continent have received. If you had to fairly allocate that
amount among them, would you give back to each of them exactly what that
person had initially received? If the answer is yes and if the answer would be
yes for all continents, all countries within continents, towns within countries,...,
independently of preferences and independently of what is to be distributed,
then the method of fair division that you are using is consistent.

For instance, suppose that you recommend that resources be allocated by
operating the Walrasian mechanism from equal division, as illustrated in the
two—commodity example of Figure 7a. If the aggregate bundle Q is available,
the mechanism leads to the allocation z = <Z1’Z2’Z3) with associated equilibrium
price p. Considering now the amount z; + 25 t0 be distributed to the
subgroup made up of the first two agents, and applying the same mechanism
(now, each agent starts out with (z,+2,)/2), takes us back to the allocation
(ZI’ZQ)’ the same price serving as equilibrium price. Each of the two agents
ends up with exactly the same bundle. This simple example illustrates the fact

that the Walrasian solution from equal division is consistent.

F.(u,0) < Fy(v,C).
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On the other hand, Figure 7b shows that the solution that selects the
efficient allocations at which utilities are equal, using the utility representations
obtained by calibrating along the ray through the aggregate bundle, is not
consistent. Indeed, although in the three person economy z = (zl,z2,z3)
satisfies this criterion, agents 1 and 2's indifference curves through z; and z,

respectively, do not intersect on the ray passing through z; + 2Zo

Z3
(z1+22)/2
Q/3
7
>~ (71+22) /2
Zn
The Walrasian solution from The Egalitarian solution is
equal division is consistent not consistent
(a) (b)

Consistency in pure exchange economies

Figure 7

General definitions. A problem of fair division is a pair (u,) € UQx[R_f: there
are { commodities and a group Q of agents; ui:[R_i - R is agent i's continuoﬁs,
quasi—concave and monotone utility function;, Q0 ¢ IR_f is the aggregate
endowment. This formulation is to be distinguished from the usual set—up in
which each agent is entitled to a particular share of €, his initial endowment;

here, we assume instead that agents are collectively entitled to 2. Let E’Q be a
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class of admissible economies, & = U é"Q, and X = U [RZ[QL A solution is
Qe? Qe

a correspondence that associates with every Q ¢ £ and every (u,Q) ¢ &9 a

non—empty subset of {z ¢ rf1Ql | Yz, < Q}, the set of feasible allocations for

(u,42).
Definition. The solution F:& - X satisfies Consistency?? if for all P, Q ¢ £ with

P c Q, and for all (u,) ¢ ‘@"Q, if z ¢ F(u,), then z, ¢ F(t5(u,)), where

P P

tf,(u,Q) = (uP’%Zi)'

We stated the condition for correspondences. This is probably the most
natural formulation since resource allocation rules are rarely single-valued; one
would not want to eliminate the Walrasian solution from equal division We d
from consideration, for instance, just because it does not usually select a single
allocation.

We noted earlier that this solution satisfies consistency. However, there
are other important solutions that do too. The Pareto correspondence P is
among them; so are its intersections with the no—envy correspondence F (Foley
1967; F(u,f2) is the set of feasible allocations z such that for no pair {i,j},
ui(zj) > u,(z); at such an allocation no agent would want to exchange bundles
with anyone else,) or with the egalitarian—equivalent correspondence E* (Pazner
and Schmeidler 1978; E*(u,ﬂ) is the set of feasible allocations z such that for
some z, € [R_{ and for all i, u,(z;) = uy(z)). However, neither the intersection
of P with the individually rational correspondence from equal division I ed
(Ie d(u,ﬂ) is the set of feasible allocations z Pareto—dominating equal division)

nor the Core correspondence from equal division satisfies the condition.

22Thomson (1988) uses the phrase "stability under arbitrary formation of
subgroups".
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Results. Consistency can be used to characterize the Walrasian solution from
equal division when imposed in conjunction with other related requirements
expressing a certain form of invariance of the solution under deletion, as well as
addition, of agents. A representative example is the following result, which
involves the condition of Replication Invariance: if an allocation is chosen by
the solution for some economy, then its k—times replica is chosen by the
solution for the k-times replica of the economy.23
Theorem 13 (Thomson 1988). Consider a domain of economies where
preferences have differentiable numerical representations. If a solution that
selects Individual rational from equal division and Pareto optimal allocations
satisfies Consistency and Replication Invariance, then it is a subcorrespondence
of the Walrasian solution from equal division.

Other results in the same spirit can be found in Thomson (1988).

Consider now the following class of economies in which indivisible goods
are present. For instance, there are n jobs that have to be assigned to n
agents. Salary adjustments can be made to compensate agents for being
assigned less desirable jobs. The notion of an envy—free allocation applies to
this situation just as well. Envy—free allocations do not always exist, but when
they do, there often is a continuum of them and the natural question there is
how to make selections from this continuum. This question was addressed by
Tadenuma and Thomson (1989). To state their results we need the following
very mild condition: Independence of Irrelevant Permutations. If an allocation

obtained by exchanges of bundles from one that is chosen by the solution leaves

23 Replication invariance: z ¢ F(u,Q) implies kyz ¢ F(kyu,kQ), where kyz is the
k-replica of z and kyu is the k-replica of u.
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unaffected the welfares of all agents, then it should also be chosen by the
solution.

Theorem 14 (Tadenuma and Thomson, 1989). If a subcorrespondence of the
no—envy solution satisfies Consistency and Independence of Irrelevant
Permutations, then it coincides with the no—envy solution.

We will omit the formal statement of the two additional conditions needed
for the next result: Bilateral Consistency is simply Consistency applied to only
two persons subgroups, and Converse consistency is patterned after the condition
of the same name used in the section on coalitional form games.

Theorem 15 (Tadenuma and Thomson, 1989). There is an infinity of
subsolutions of the no—envy solution satisfying Bilateral Consistency and
Independence of Irrelevant Permutations, or Converse Consistency and
Independence of Irrelevant Permutations. However, if a subsolution of the
no—envy solution satisfies Bilateral Consistency, Independence of Irrelevant
Permutations and Converse Consistency, then it coincides with the no—envy
solution.

(6) Apportionment problem.

Ezample. One of the oldest problems in political science is that of attributing
seats to states in order to achieve pfoportional representation. The problem
arises because rounding is necessary and it is important because which rounding
method is used may dramatically affect the representation of small states.
Consider the three-state apportionment problem described in Figure 8, and let
us solve it according to two well-known methods, respectively advocated by
Jefferson and Hamilton, and defined as follows.

For Jefferson's method, choose a divisor of the populations of states so
that the whole numbers contained in the quotients sum to the total number of

seats. Then, give to each state its whole number. For Hamilton's method,
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define the "quota" of each state to be the ratio of its population to the
aggregate population times the total number of seats. Give to each state the
whole number contained in its quota. Assign the remaining seats to those

states having the largest fractions.

Note that states S1 and 83 have been allocated a total of 6 = 1 + 5
seats under Jefferson's method. Applying this method to the problem of
allocating 6 seats to these states produces exactly the same apportionment (1,5).
Jefferson's method is consistent. However, Hamilton's method is not since when
there are three states, 5, and Sq together receive 6 = 1 + 5 seats , but
applying the method to the allocation of 6 seats among them produces the

allocation (2,4).

Jefferson's method Hamilton's method
applied to : applied to

States”
Populations (S,10) (51,53,6) (S,10) (S1,55:6)

S
200 1 1 1 2
500 4 4
590 5 5 5 4

Jefferson's method is consistent but Hamilton's method is not.
S = (200, 500, 590)

Figure 8
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General definitions. An apportionment problem is a pair (s,H) e [NQxIN: the
members of Q are states with populations given by the coordinates of s; H is
the number of seats in the parliament. The objective is to allocate the seats to
the states proportionately to their populations, or as "close to proportionately

as possible".24  Let ./5Q be the class of these problems, .6 = U -/ﬁ, and X =
Qe?

U ([NU{O})Q. A solution is a correspondence that associates with every Q ¢ 2
Qe

and every (s,H) ¢ A2 & vector in (INU{O})Q with coordinates adding up to H.
Balinski and Young (1982) carry out an extensive analysis of
apportionment. One of the important axioms they consider is Consistency.25
Definition. The solution F: £ - X satisfies Consistency if for all P, Q ¢ &
with P ¢ Q, and for all (sH) ¢ £, if x ¢ F(s,H), then xp ¢ F(s3(s,H)),
where t3(s,H) = (sp,gxi). Also, if y € F(tp(s,H)), then (y,xq\P) e F(s,H).

The first part of the condition corresponds directly to what we have
already seen a number of times. The second part is new. It says that if the
subproblem relative to P and x ¢ F(s,H) admits a solution outcome y different
from Xp, then the original problem admits as solution outcome the juxtaposition

of y with XQ\P‘

Results. In addition to consistency, we will impose the following properties on
solutions. Balancedness. whenever two states have equal populations, their
apportionments do not differ by more than one seat; Anonymity: the solution
is invariant under exchanges of names of the states; Homogeneity: if the

populations of the states change by the same proportions, the apportionment

24The more general problem of allocating seats "proportionately to both
population and parties" has been examined by Balinski and Demange (1986).

%Under the name of "uniformity".
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should be unchanged; Weak Proportionality: if there is a feasible
apportionment proportional to the populations, it is the only one recommended
by the solution; Rank-preserving: if a state has a greater population than
another one, it should receive at least as many seats at any apportionment
recommended by the solution.26
Let r:Cx(Nu{0}) = R be a monotone decreasing function of its second
argument (€ is the set of rational numbers) and let & be the class of all
functions £: 9 (Nu{0}) - ([NU{O})Q defined recursively as follows:
(i) for H = 0, f(s,H) = (0,...,0)
(i) if f(s,H) = x, then f(s,H+1) is found by giving x; + 1 seats to
some state i such that r(si,xi) > r(sj,xj) for all j#, and X; seats to each j#i.
Finally, the rank indez solution relative to r is defined by F(s,H) = {x|x
= {(s,H) for some f ¢ H.27
Theorem 16 (Balinski and Young 1982). The rank index solutions are the only
solutions satisfying Balancedness, Anonymity, and Consistency.
Given a monotone increasing function d = Nu{0} - NU{0} such that a <
d(a) < a+1, the divisor solution based on d is defined by F(s,H) = {x|d(xi——1)

< si/A < d(x;) and Xx; = H for some A}.

26 Balancedness: s; = 5; implies |F.(s,H) - Fj(s,H) | < 1; Anonymity.
F(r(s),H) = «(F(s,H)), where mQ - Q’ with |Q| = |Q’| is an arbitrary
permutation; Homogeneity: F(A\x,H) = F(s,H) for all A ¢ € L the set of
positive rational numbers; Weak Proportionality: if x = As for some A and in
H, then F(s,H) = {x}; Rank-Preserving. if s, > 55, and x ¢ F(s,H), then x;
X;.

27Jefferson's method is the member of the family obtained for r defined by
r(syx) = 8./(x+1).

v
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By imposing some of the other conditions, Theorem 14 can be refined to
give
Theorem 17 (Balinski and Young, 1982): The divisor solulions are the only
ones to satisfy Homogenejty, Anonymity, Weak Proportionality,

Rank—Preservingness and Consistency.

IV. Concluding comments

We hope to have convinced the reader that the consistency principle is
powerful and versatile. In fact, there are other models in which consistency has
been used. We will simply mention that Epstein (1986) has used the principle
in a characterization of certain allocation rules in intergenerational problems,
Toda (1988) and Sasaki (1988) have used it to provide a characterization of the
core of matching games, and Tadenuma and Thomson (1987) have explored its
implication for the study of resource allocation in public good economes.

It is also worth noting that in all of the examples we examined,
subproblems are obtained by varying the number of agents. But there are
other ways of affecting the dimensionality of problems. Roemer (1986a,b, 1988)
considered exchange economies and allowed for variations in the number of
commodities instead. He used the resulting consistency condition to characterize
egalitarian type solutions. See also Donaldson and Roemer (1987) for a
characterization of "welfarist" solutions.

While the consistency principle has been an important unifying theme in a
variety of areas, it should be pointed out however that the techniques of proof
of the various characterizations that have been based on it have little in

common, due to the very different mathematical structures of these problems.
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