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TRANSVERSALITY CONDITION AND OPTIMALITY IN A CLASS OF
INFINITE HORIZON CONTINUOUS TIME ECONOMIC MODELS

By

Siu Fai Leung

ABSTRACT: This paper studies a class of widely used infinite
horizon continuous time economic models first formulated by Kamien
and Schwartz (1971). We show that the method of solution for this
class of models offered in the literature is unwarranted because it
assumes that the transversality condition is a necessary optimality
condition. We show that the existing theorems in the literature do
not provide a satisfactory justification for the necessity of the
transversality condition. Two different approaches are provided to
solve the problem. The first approach requires some restrictive
assumptions and the second approach provides a complete solution to
. the problem without making any additional assumption.

KEYWORDS: Transversality condition, optimal control, infinite
horizon models, limit pricing






1. INTRODUCTION

In this paper, we will study a class of infinite horizon continuous
time optimal control problems that have been widely used in economics.
This class of models first appears in Kamien and Schwartz (1971) in an
attempt to bring uncertainty into the Bain-Sylos-Labini-Modigliani theory of
limit pricing. The model that Kamien and Schwartz formulate turns out to
have a profound impact not only on the subsequent development of limit
pricing theory but also on some other areas in economics as well. In the
area of limit pricing, refinements and generalizations of the Kamien and
Schwartz model have been made, for example, in Baron (1972, 1973), Kamien
and Schwartz (1975), De Bondt (1976), Deshmukh and Chikte (1976), Lippman
(1980), and Phlips (1980).1 Other than limit pricing, the same model has
been applied to study, for example, new product pricing (Kamien and
Schwartz, 1972a), optimal plant size (Kamien and Schwartz, 1972b), market
structure and innovation (Loury, 1979), and most recently, crime and
punishment (Davis, 1988). Although the economic issues addressed in these
papers may be very different and hence there may be some variations in the
models, the mathematical structures of these models are analytically the
same, because they are all based on the Kamien and Schwartz (1971) model.
For brévity, let us call these models the KS class of models. It will be
shown later that this class of models is a broad one, for example, it also
covers Lucas’ (1971) model of research and development.

Although there are many variations in the KS class of models, the
solutions to the different optimal control problems in this class of models
are all based on the solution that Kamien and Schwartz (1971) established

for their optimal control problem (hereafter the KS solution). All the



comparative statics results derived from the KS class of models are built on
the KS solution, which is the only solution available and is implicitly
considered to be the solution in the literature. In this paper, we show that
the proof that Kamien and Schwartz (1971) (hereafter the KS proof) use to
establish the KS solution is unfounded because it suffers from an important
problem that has never been noticed in the literature. Therefore, whether
the widely endorsed KS solution is valid remains to be shown. Despite the
widespread use of the KS class of models in economics, we demonstrate that a
complete solution to the problem has not yet been established. The problem
of the KS proof lies in the use of an unverified transversality condition
for an infinite horizon optimal control problem.

For a finite horizon optimal control problem with no constraint on the
terminal state, the multiplier (auxiliary variable, costate variable) must
be equal to zero at the terminal time. This condition, known as the
transversality condition or the terminal condition, is one of tﬂe necessary
optimality conditions obtained from the Pontryagin maximum principle.2 If
there are inequality constraints on the terminal state, the transversality
condition can be modified accordingly. The transversality condition plays an
important role in optimal control theory because it is useful in eliminating
nonoptimal solutions, proving sufficient conditions for optimality and
performing stability analyses. Short of a rigorous proof, it was once
believed that the transversality condition is also a necessary optimality
condition for an infinite horizon optimal control problem. This conjecture
was shown to be false when Shell (1969) provided the first counter-example
to show that the transversality condition is not a necessary optimality

condition. At about the same time, Arrow and Kurz (1970) reported another



counter-example constructed by Halkin (see also Halkin, 1974). For the last
twenty years, the counter-examples of Shell and Halkin have generated a
number of studies to provide sufficient conditions under which the
transversality condition is a necessary optimality condition for an infinite
horizon optimal control problem, see for example Bensoussan, Hurst and
Naslund (1974), Aubin and Clarke (1979), Michel (1982), Benveniste and
Scheinkman (1982), Araujo and Scheinkman (1983).3 The conditions supplied by
these studies are quite general and they have been used to justify the
transversality conditions found in many different economic models. We show,
however, that none of the existing theorems in the literature can
satisfactorily justify the transversality condition of the KS class of
models. It is shown that this class of models does not satisfy many of the
conditions (such as concavity) required by the existing theorems. In some
cases, the conditions are satisfied only if some assumptions with little
economic appeal are imposed on the model. The KS class of models possess
several nonstandard features that cause the justification of the
transversality condition a technically difficult problem. Therefore the KS
proof, which relies on an unverified transversality condition, remains
unfounded.

In this paper, we provide two different approaches to solve the problem.
The first approach presents a straightforward way to justify the
transversality condition by making some boundedness assumptions. We argue
that this approach is not satisfactory because the assumptions are too
restrictive in many economic situations. The second approach presents an
entirely different way to tackle the problem. The approach does not involve

the transversality condition and no extra assumptions have to be imposed on



the models. The approach yields the transversality condition as a
byproduct. It also reveals clearly the role of the assumptions in the
models. We further illustrate the usefulness of the approach by applying it

to solve Lucas’ (1971) model of research and development.

2. THE KS CLASS OF MODELS

For expository reasons, throughout this paper, we will couch our
discussion of the KS class of models in terms of the limit pricing model in
Kamien and Schwartz (1971), but we emphasize that the discussion will be
essentially the same for other models as well. Consider the following model
of limit pricing first formulated by Kamien and Schwartz (1971). A monopoly
firm or a cartel faces potential entry of rival firms. The incumbent firm
has to choose a price policy to maximize its expected profit and to deter
the entry of rival firms. Assuming the product price p(t) € [0,P] for some
finite positive number p, the firm's decision problem is to choose p(t) to
maximize (1) subject to (2) and (3). For convenience, we call this control

problem [P1]:

1) Max [ e~ (F-8)t[x) (p(£)) (1-F(£)) + mp(g)F(t)]de
p(.) 0
subject to
[P1]
(2) F'(t) = h(p(t),g) (L-F(t))
(3) F(0) = O,

where
r = discount rate
g = market growth rate

p(t) = product price at time t



n1(p(t)) = profit at time t, before entry of rival firms
n9(g) = profit after entry of rival firms
F(t) = distribution function of the time of entry of rival firms
F'(t) = density function corresponding to F(t)
h(p(t),g) = hazard rate of entry of rival firms at time t
We briefly describe how the integral in (1) is derived. Without

potential entry of rival firms, the incumbent firm can just choose p(t) to
maximize profit egtnl(p(t)) at each t. When there is potential entry, a
higher price p(t) will induce a higher probability of entry so that the
incumbent firm cannot just maximize egtnl(p(t)). Before any rival firm
enters into the market, the incumbent firm earns egtxl(p(t)) at each time
t. If a rival firm enters into the market at time s, then the incumbent firm
will earn egtxz(g) for all t > s. Therefore, the present value of the
incumbent firm’s expected profit is given by

© oo ©

j e Tt[eBtx; (p(t)) (1-F(t))]dt + J e'rS[J e T(t-8)eBtry(g)dt]F’ (s)ds.

0 0 s
The integrand e'rt[egtwl(p(t))(l-F(t))] is the present value of the
incumbent firm's profit at time t when entry of rival firms has not yet
occured by time t, multiplied by the probability of that event. The
integr;nd e Is[f2 e'r(t's)egth(g)dt]F'(s) is the present value of the
incumbent firm’'s profit when entry occurs at time s, multiplied by the
density F'(s) at time s. Assume r-g > 0, then
I3 e IS[[3 e'r(t's)egtnz(g)dt]F'(s)ds can be simplified to
Is e'(r'g)tnz(g)F(t)dt (a finite integral), by using Fubini’s Theorem to
interchange the double integrals. Hence, (1) is obtained.

Facing potential entry of rival firms, the incumbent firm sets the



limit price to maximize expected profits and to deter entry of rivals.
Although the incumbent firm cannot preclude entry altogether, it can affect
the probability of entry of rival firms. The hazard rate of entry of rival
firms is assumed to be a function of the market growth rate and the price
set by the firm, i.e., h(p(t),g). Since the hazard rate is defined by
F'(t)/[1-F(t)], the incumbent firm faces the law of motion (2). The initial
condition (3) indicates that the probability of entry at time zero is 0.

Problem [P1] is an infinite horizon continuous time optimal control
problem, with state variable F(t) and control variable p(t). This kind of
formulation has atfracted considerable interests among economists. By
renaming the symbols p(t), m1(p(t)) and no(g), many economists have
essentially used the same mathematical model (1)-(3) to study a variety of
different economic issues other than limit pricing. Two examples are
provided below to illustrate the usefulness and wide applicability of [PI].
These examples show that there can be many variations in the KS class of
models.

EXAMPLE I: Crime and Punishment (Davis, 1988)

“In Davis' intertemporal model of crime and punishment, the problem is
to

©

Max J e'rt[wl(p(t))(l-F(t)) - #F'(t) + noF(t)]dt

p(.) Y
subject to

F' (t)=h(p(t))(1-F(t))

F(0)=0,
where 71(p(t)) is the income or utility received from some illegal activity

and p(t) is the rate at which offenses are committed. Using Davis' examples,



n1(p(t)) might represent the profit function of a firm subject to pollution
control laws or price controls and p(t) might represent the rate of
pollution or the price charged in excess of the ceiling.4 F(t) is the
distribution function of the time of detection of the illegal activity. If
the illegal activity is detected, the firm has to pay a fine # at the time
of detection. The firm will earn income ny from some legal activity
thereafter. One can further complicate Davis’ model by including
imprisonment as a punishment, and making the fine § and the income =y
depending on the offense rate.

EXAMPLE II: Cournot Oligopoly with Uncertain Entry (Kamien and
Schwartz, 1975; Deshmukh and Chikte, 1976; and Lippman, 1980)

Suppose at time t, there are n identical firms in an industry, each
with profits q(t)D(Q(t)+q(t))-C(q(t)), where q(t) is the quantity 'of output
produced by each firm, D(.) is the industry inverse demand function, Q(t) is
the quantity produced by the other (n-1) firms, and C(.) is the cost
function. Let V(n+l) be the value function when there are n+l firms in the
industry, then each firm faces the following recursive problem:

4 ©

V(n) = Max J e T [q(t)D(Q(t)+q(t))-C(q(t))]1(1-F(t)) + rV(nt+l)F(t)}dt
q(.) Jo
subject to
F'(t) = h(D(Q(t)+q(t)))(1-F(t))
F(0) = 0,
where h(.) is the hazard function of entry of the (n+l)st firm. Although
this control problem is more complicated than [P1] (e.g., the properties of
the value function have to be derived), the structures of the two problems

are basically the same. This example illustrates that the KS class of models



is not only limited to two period models. In the limit pricing example in
[P1], there are only two periods, the first period is the time before the
entry of rival firms and the second period is the time after the entry.
Similarly, there are only two periods in example I, the period before the
illegal activity is detected and the period after. In example II, however,
multiple periods are allowed because of the recursive structure such that
there can be sequential entry of firms. It is easy to see that both the
limit pricing and the crime and punishment examples can be extended to

multiple period models.

3. SOLVING THE KS CLASS OF MODELS
The Hamiltonian for problem [P1] is given by
H = xge™ (F-BYE[my (p(£)) (1-F(£)) + mp(g)F(E)] + A(E)h(p(£), ) (1-F(E)).
Since our focus is on the justification of the transversality condition and
not on the existence of an optimal solution, the multiplier g is assumed to
be 1. In order to solve the optimal control problem, Kamien and Schwartz
(1971) make the following assumptions:
(Al) mp is twice continuously differentiable and strictly concave in p.
(A2) For any k € [0,7], the equation n1(p) = k has two real, distinct and
;positive solutions of p.
(a3) g<r, 0=smp< max, n1(p) -
(A4) 87y/8g < 0, h(p(t),g) = 0, h(0,g) = 0, 3h/3p = O, 82h/3p2 = 0,
dh/dg = 0.
Assumptions (Al) and (A2) imply that we can take P to be the nonzero
root of the equation =xj(p) = O. With assumptions (Al)-(A4), Kamien and

Schwartz (1971, p.447-448) show that an optimal policy is to choose a



constant price p* for all t € [0,»), defined by the following equation:
(4) 71 (p%) (x-g+h(p*,8)) = hy(P¥,8) (11 (P™)-72(8)) .
Their proof involves three steps:
Step 1. To show that if the policy p(t) = p* exists, then it is admissible,
i.e., there exist functions F*(t) and A*(t) such that

(p*,F*(t),A*(t)) satisfy the following three conditions (5),(6) and

7).
(5) aH/ap = [e(T-8)Ex](p(£)) + A(t)h)(p(t),g)](1-F(£)) = O
(6) A’ (t) = -3H/8F = e (T-8)E[xy(p(t))-mp(g)] + A(E)h(p(L),8)
(7) lime,e A(E)F(t) = O.

Step 2. To show that p* exists.
Step 3. To prove that p* is optimal.

It is the first step that is problematic. In the process of finding the
function A*(t), they assume that the transversality condition (7) is a
necessary optimality condition. Although the work of Shell and Halkin show
that the transversality condition may not be a necessary optimality
condition for infinite horizon problems, Kamien and Schwartz do not provide
any justification for (7). Despite the wide applicability of the formulation
of problem [P1], the necessity of (7) has not yet been demonstrated in the
literature.’ The conclusion that the constant price p* is an optimal
solution, however, has been accepted without any reservation in the

literature.

4. JUSTIFYING THE TRANSVERSALITY CONDITION
In this section, we will investigate whether the existing results in

the literature can be used to justify the transversality condition (7).



Specifically, we will examine the theorems in Bensoussan, Hurst and Naslund
(1974), Aubin and Clarke (1979), Michel (1982), Benveniste and Scheinkman
(1982), Araujo and Scheinkman (1983) because these are the only available
results in the 1iterature.6 We first begin with Michel (1982). Michel's
results appear to be the most general one because only a few conditions are
required to be satisfied. The key condition, for the transversality
condition to be a necessary optimality condition, is that the set of the
laws of motion has to contain a neighborhood of zero for all large t. This
condition is, however, violated in [P1] because h(p(t))(1-F(t)) = 0, as the
hazard function is always nonnegative and the distribution function F(t) is
bounded between 0 and 1, so that the set of the laws of motion does not
contain a neighborhood of zero for any t€[0,«). One can see that it is
impossible to transform or reparametrize [PI] into omne such that the set of
the laws of motion will contain a neighborhood of zero, thus Michel's
result is not applicable. To examine whether the other results in the
literature are applicable, we have to transform the original problem [P1]
into a suitable formulation required by these theorems. This is because
Bgnveniste and Scheinkman (1982), and Araujo and Scheinkman (1983) only deal
with calculus of variations and not optimal control problems, while
Bensougsan, Hurst and Naslund (1974), and Aubin and Clarke (1979) require
that the law of motion has to satisfy a certain linear relation.

Let a = r-g be the effective discount rate. Since g is assumed to be a
constant, the dependence of the functions h(p,g) and n9(g) on g can be
suppressed for convenience. Equations (2) and (3) imply that F(t) =
l-exp[-JE h(p(s))ds]. Let z(t) = [§ h(p(s))ds, then z'(t) = h(p(t)). Assume

h' (p(t)) = 0 for p(t) € (0,p), then there exists a function n(.) such that

10



n(p(t)) = x(h(p(t)) for p(t) € [0,P]. In addition, the dependence of
h(p(t)) on p(t) can be suppressed and can simply be written as h(t). With
this reformulation, problem [P1] will then be equivalent to the following

calculus of variations problem [P2]:

Max J e @t [x(h(t))e Z(t) 4+ xy(1-e72(t))]at
h(.) 0
[P2]
subject to
z' (t) = h(t)
z(0) = 0.

The control variable is the hazard rate of entry h(t), instead of the
price p(t). Let p(t) be the multiplier, then the transversality condition
for [P2] is
(8) limg,, p(t)z(t) = 0.

It is easy to see that the Kamien and Schwartz (1971) method of solving [P1]
is also applicable to solving [P2], therefore the solution p* given by (4)
is optimal if we can show that (8) is a necessary optimality condition. Let
G(z(t),h(t)) = G(z(t),z’' (£)) = n(h(£))e 2(E) + ny(1-e"2(¥)). Clearly,
G(z(t),z'(t)) is not concave in (z(t),z’'(t)), therefore the theorems of
Benveniste and Scheinkman (1982) and Araujo and Scheinkman (1983) are not
applicable since they require the objective functions to be concave. The law
of motion (z'(t) = h(t)) is linear in the control variable h(t), which
satisfies one of the conditions of Bensoussan, Hurst, and Naslund (1974) and
Aubin and Clarke (1979). Their results would seem to be applicable since
they do not require concave objective functions.

Even if all the conditions in Bensoussan, Hurst, and Naslund (1974) are

satisfied, their results are not useful in solving our problem because the

11



transversality condition that they obtain is different from the ones usually
found in the literature. They show that under certain regularity conditions,
limg o e'at"p(t)"2 = 0, where ||.| is the Ly norm in the space L2[0,t].7
Since limg,q e 2t = 0 (as a is positive), limg,, e'“t"p(t)"2 = 0 does not
imply limg,, p(t) = 0, which is the transversality condition that we really
need. The transversality condition that they derive seems to be a rather
weak one and is not useful in our context.

Aubin and Clarke (1979) generalize the results of Bensoussan, Hurst,
and Naslund (1974) and obtain stronger transversality conditions. In order
to apply the Aubin-Clarke theorem, three more conditions have to be
satisfied:

(C1) G is locally Lipschitz.
(C2) The derivatives of G satisfy a growth condition: there exist real
numbers ¢ = 0 and k 2 0 such that
(GE + 62)1/2 < c[1+(n2+22)k/2], ...,
(9 e Z[(x' (0))2 + (mp-n(0))2]1/2 < c[1+(h24+22)k/2],
(C3) a > k+1.

"If k > 0, let q be defined by 1/q + 1/(k+1l) = 1. If all the three
conditions (Cl)-(C3) are satisfied, then the Aubin-Clarke theorem states
that the following transversality conditions are necessary for optimality:
(10) lime,, e{T-Dat|y(t)|9 =0 if k > 0,

(11) limg,, e2tu(t) = m if k = 0 (m is some finite number).
Clearly, both (10) and (11) imply (8) since q > 1 and a > 0. Therefore,

only the results of Aubin and Clarke (1979) are applicable to the class of
nonconcave economic models considered in this paper.

We examine more closely the conditions (Cl) to (C3). (Cl) is easily

12



satisfied because of the assumptions (Al) and (A4) that G is (twice)
continuously differentiable, and hence locally Lipschitz. However, the
remaining two conditions (C2) and (C3) are very restrictive. (C3) requires
that @ > k+1 = 1, since k = 0. The condition a > 1 means that from time
zero to infinity, the incumbent firm’s effective discount rate for future
profits has to be strictly greater than one. Since a = r-g, this implies
that ¥ > 1 if g is nonnegative. In short, (C3) requires either a high
discount rate r and/or a negative growth rate g for all t € [0,»). If the
model is applied to an individual instead of a firm, as in example I, then
the individual has to be an impatient one. Aubin and Clarke (1979) are
aware of this problem. They remark (p.569) that "the necessary conditions
may be expected to hold ... provided the "discount rate" ... is sufficiently
large." They also provide an example in which the transversality condition
fails to hold when the discount rate is bounded between 0 and 1.
Nevertheless, a discount rate greater than one is a rather unusual
assumption in economics and seems to have little economic appeal.

The growth condition (9) does not allow n(h) and n'(h) to be unbounded
at p = 0. This implies that =x1(0) > -=, wi(O) < o, and h'(0) > 0. There are
three problems with these boundedness assumptions. First, they are too
restrictive in many economic situations, a detailed discussion will be found
in the next section. Second, there exist examples in which the growth
condition (9) is violated but the transversality condition is still valid.
One example is provided in the appendix. In that example, ri(O) < o and
h'(0) = 0, therefore n'(0) = wi(O)/h'(O) = o, but the transversality
condition is shown to be valid. This example suggests that the growth

conditions are too restrictive and can be removed. Third, it will be shown
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in the next section that the two assumptions ni(O) < o and h'(0) > 0 are
sufficient to justify the transversality condition. Thus, the restrictions
that a > 1 and 71 (0) > -» are unnecessary.

Based on the available results in the literature, the above discussion
shows that none of the existing results can give a satisfactory
justification for the transversality condition. The structure of the KS
class of models immediately rules out the relevance of the results of
Bensoussan, Hurst and Naslund, Michel, Benveniste and Scheinkman, Araujo and
Scheinkman. Only the Aubin-Clarke results are applicable, but it requires
some unattractive economic assumptions such as a discount rate greater than
unity, and several boundedness assumptions. The most general results to date
seem to be Ekeland and Scheinkman (1986): there is no special restriction on
the discount rate, the objective function can be nonconcave and some types
of unbounded objective functions are allowed. The problem is, however, that
they have only established the transversality conditions for discrete time

optimization problems.

5. TWO SOLUTIONS

In this section, we will provide two approaches to solve the KS class
of models. The first one is a straightforward approach to justify the
transversality condition and the second one takes an entirely different
route which does not involve the transversality condition. The second

approach provides a complete solution to the KS class of models.

5.1 THE FIRST APPROACH

There is a straightforward way to justify the transversality condition

14



(7) if one is willing to make two additional assumptions, namely, for any
pe[0,P], there exist two constants kj and ko such that

(A5) 71(p) < k; < ®, and

(A6) hy(p,g) > ko > 0.

To see this, notice that (A6) implies that (5) can be written as

ACE) (1-F(£)) = e~ (F-8)t[x] (p(£)) (1-F(£))/hy (p(t),g)]. Since m1(.) is bounded
above (by (A5)), hl(.,.) is bounded away from zero (by (A6)), F(t) is
bounded between 0 and 1, and e~ (r-8)t 4 0 as t + =, therefore
e~ (T-B)t{x] (p(t)) (1-F(t))/h1(p(t),g)] = 0 as t » =. Although
limg o A(t)(1-F(t)) = 0 does not imply (7), it is easy to see that one can
modify [P1] slightly by taking 1-F(t) (instead of F(t)) as the state

variable so that the transversality condition becomes limg o A(E)(1-F(B))

0. The KS proof will still work with this modification, hence the KS
solution is a valid one. Therefore, if one is willing to make these
boundedness assumptions, then the transversality condition can easily be
justified. Notice that in this case, the transversality condition is no
longer a separate necessary optimality condition, it is just a result that
follows directly from the first order condition (5).

It is useful to emphasize that the result obtained here is a general
one and apparently has not been brought up in the literature. Consider a
general infinite horizon control problem Maxc(_) fz e'rtg(X(t),C(t))dt
subject to X' (t)=f(X(t),C(t)) and X(0)=X,, which is the same problem studied
in Michel (1982). Let B(t) be the multiplier. If all feasible states X(t)
are bounded, then the transversality condition limg,, B(t)X(t) = 0 will be
verified if for all feasible (X,C), go(X,C) <m < = and f,(X,C) > mp > 0,

for some constants mj and mp. This is because these assumptions and the
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first order condition e’rtgz(X(t),C(t))+ﬂ(t)f2(X(t),C(t)) = 0 imply that
limg,, B(t) = 0. If these two boundedness assumptions are made, then the
Michel method of justifying the transversality condition is just redundant.
It also shows that the Aubin-Clarke conditions are overly restrictive. The
conditions @ > 1 and n7(0) > -« are simply redundant . 8

This approach, though simple and straightforward, is not satisfactory
because of the following considerations. First, assumption (A6) excludes a
whole class of functions with hy(p,g) = O for some p. For example, ordinary
functions such as h(p,g) = p or exp(p™) (n > 1) which satisfy assumption
(A4) are excluded because hy(0,g) = 0. In the context of limit pricing, this
exclusion is too restrictive because it is reasonable to assume that there
is a range of prices, say [0,p7] (0 < p; < P), such that hy(p,g) = 0 for
pel0,p1]. This is because potential entrants will not be attracted into the
market if the price that the incumbent firm charges is only infinitesimally
greater than zero. Potential entrants will consider entering the market only
if the price is high enough to cover the costs of production and to signal
that the market is an attractive one. In fact, the focus of the barriers to
entry literature (see for example, Stigler, 1968) is to argue that there
are significant costs (barriers) in entry so that it is impossible to enter
a market with just an infinitesimal price. Let the "reservation" price be
p1. then h(p,g) = 0 for pe[0,p;], which implies hj(p,g) = 0 for pe[0,p1].
Similar criticisms of this assumption can be made in other applications of
the KS class of models. For example, in example I above, there may be a
range of pollution rate that cannot be detected due to the costs of
measurement and enforcement by environmental agencies. In any case, the

restriction that assumption (A6) imposes on the model is artificial and is
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not very appealing in economics. Second, assumption (A5) excludes functions
with 11(0) =, e.g., log(p) or P® ( 0 < n< 1). If n1(p) denotes a profit
function, as in the limit pricing model, then one may be able to rationalize
the boundedness assumption. However, if x1(p) denotes a utility function, as
in example I and in other applications of the KS class of models, then the
boundedness assumption may be too restrictive. In consumption models (e.g.,
classical growth models), any reasonable consumption path should avoid zero
consumption at any time. Hence, the assumption xi(O) = o is made because it
implies that with infinitely large marginal utility at zero consumption, one
would always consume some positive amount, since the marginal cost of doing
so is usually bounded in most economic situations. As Ekeland and Scheinkman
(1986) have emphasized, zero consumption should be penalized much more
heavily than by simply setting n1(0) = O or some large negative value,
therefore they argue that it is more appropriate to have nj1(p) =+ -« as p =
0, which implies xi(O) - .9 In any case, the assumption wi(O) = ig
frequently used in economics to guarantee an interior solution. In fact,
proving the transversality conditions for infinite horizon problems with
unbounded objective functions is the main purpose of most work in this area
because the unboundedness causes difficult technical pfoblems, see for
example, Araujo and Scheinkman (1983), and Ekeland and Scheinkman (1986).
Lastly, there exist examples in which the transversality condition is
verified even when assumption (A6) is violated. In the appendix, an example
with a closed form solution is provided to illustrate the existence of such
cases. This example suggests that assumption (A6) can be removed and the
transversality condition is likely to be valid under more general

conditions.
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5.2 THE SECOND APPROACH -

The first approach is not really satisfactory because it is no longer

applicable with a slight change either in nj(.) or h(.

). Furthermore, they

cannot deal with more realistic economic situations. In this section, we

will provide a complete solution to the problem. We have seen in the

previous sections that with no extra assumptions, justifying the

transversality condition for this class of nonconcave

infinite horizon

control problems is not a trivial task at all. Whether the transversality

condition will hold without making the boundedness assumptions is still an

open question. Given that there are still many unresolved technical problems

in the justification of the transversality condition for the KS class of

models, the method of solution offered by Kamien and Schwartz does not seem

to be a fruitful way to tackle the problem. Instead, we choose an approach

which is entirely different from the Kamien and Schwartz approach. Our

approach does not require the justification of the transversality condition.

No additional assumptions have to be made, and #7(0) = -e, ni(O) = o, and

hi1(p,g) = O are all allowed. The key is to make use of the uncertainty in

the model and to reformulate the problem to time s (s
zero.

Let V(s,F(s)) be the value function at time s (s
probability F(s) at time s is a given number, say Fg,

reformulated as:

> 0) instead of time

> 0), given that the

then [P1] can be

F(u)-Fg

© 1-F(u)
V(s,Fg) = Max e (-8) (U-8) [y (p(u))—— + mp(g)——Jdu

p(.)

s.t. F'(u) = h(p(u),p)(1-F(u))

s 1-Fg

F(s) = Fg

18
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The main difference between [Pl]'and [P3] is that the probability terms are
different. Notice that Qhen t = 0, then V(0,Fg) = V(0,0), and [P3] is just
[P1]. At time s, given that there is no entry by time s, the probability of
no entry by time u, u > s, is given by the conditional probability
[1-F(u)]/(1-Fg). This is because Prob(mo entry by time u and no entry by
time slno entry by time s) = Prob(no entry by time ulno entry by time s),
since u > s. Similarly, the conditional density that entry occurs at time u,
given that no entry by time s, is given by F’'(u)/(1-Fg). Therefore, the
second term, [T e'(r'g)(u's)rz(g)[F(u)-Fs)]/(l-Fs)du, is obtained by using
Fubini's theorem to interchange the double integrals
J2 e t(V-8) [ [ o-X(u-V)eBUr, (g)du]F’ (v)/(1-Fg)dv.10

It is easy to see that the infinite horizon control problem [P3] is
autonomous, therefore, V(s,Fg) does not depend on s explicitly and can be
abbreviated as V(Fg). Now, let t=u-s, then by a change of variable, [P3] can

be expressed as

© 1-F(s+t) F(s+t)-Fg
V(Fg) = Max e  (T-B)t[ny (p(stt))—— + mp(g)———]dt
p(s+.) 0 , 1-Fg 1-Fg
s.t. F'(s+t) = h(p(s+t),g) (1-F(s+t))
F(s) = Fg,

= Max J e  (T-8)T[xy ((£)) (1-G(t)) + mp(g)G(t)]dt
p(.) 0

s.t. G'(t) = h(p(t),g) (1-G(t)) [P4]
G(0) = 0,
where $(t) = p(s+t) and G(t) = [F(s+t)-Fg]/(1-Fg). Although the control
variables (p(t),p(t)) and the state variables (F(t),G(t)) in [P1] and [P4]

are different, it is easy to see that the two control problems are actually
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mathematically identical, because the difference is only a matter of
notations. Therefore, V(Fg) = V(G(0)) = vV({0) = V(Fo).11 It is clear that if
an optimal solution of [Pl] exists, then [P4] will have the same optimal
solution, i.e., p(t) = p(t) for any te[0,»). Since p(t) = p(s+t), it follows
that p(t) = p(s+t). Since s is arbitrary, p(t) = p(s+t) for any s€[0,»).
This is possible if and only if p(t) = constant. Therefore, if an optimal
solution of [P1] exists, then it must be given by a constant that is
independent of time. Differentiate (5) with respect to t and combine with
(6), it is obvious that dp/dt = 0 if and only if (4) is true. In other
words, the constant is the p* that solves (4). The existence of p* has been
established by Kamien and Schwartz in the second step of their method. It
follows immediately that the optimal solution of [P1] exists and is given by
p*.

As a byproduct of our approach, the transversality conditiQn (7) is
verified. This follows from (5), where A(t) = e'(r'g)tni(p*)/h'(p*), since
h'(p*) # 0. Clearly, limg,, A(t) = 0. Notice that our approach does not
require any extra assumptions to be imposed on the model. The function ny(p)
can be unbounded at p = 0 and h’(0) can be zero. Although the result of
Ekeland and Scheinkman (1986) only applies to discrete time models, it is
useful to make a comparison here. Their result cannot handle all kinds of
unbounded objective functions, e.g., functions such as -el/p, which
converges to -« very fast as p + 0, are not allowed. It is easy to see that
our approach does not suffer from this problem since any kind of unbounded
objective functions will not affect the proof.

Our proof is a very general one because it will work for any model in

the KS class of models. We illustrate this point by briefly outlining the
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proofs for examples I and II. In example I, Davis’ objective function can be
expressed as e” (T-8)E([xy(p(t))-fh(p(t))]1(1-F(t)) + np(g)F(t)), since F'(t)
= h(p(t))(1-F(t)). Let ®(p(t),d) = x1(p(t))-6h(p(t)), then the only
difference between (1) and Davis’ objective function is that ®1(p(L),0)
replaces n1(p(t)) in (1), and the proof clearly carries over. One can also
verify that the proof also works for the case when the fine # and the income
n9 depend on the offense rate. In example II, the main difference is that
no(g) of [P1] is replaced by rV(n+l). Our proof remains valid because the
control problem is autonomous, hence the value function V(n+l) does not
depend on time explicitly. Consequently, the objective function does not
depend on time explicitly. Our approach reveals clearly that the explicit
independency of time in the objective function and the law of motion is one
of the key driving forces for the constant solution of the infinite horizon
control problem.

As a final remark, we give another example to illustrate the usefulness
of our approach. We first show that Lucas' (1971) model of research and
development can be expressed in the form of problem [P1] and can be solved
by our approach. The control problem in Lucas’ model (1971, p.686) is

, 0
' Max J e TE[rRF(z(t)) - c(t)(1l-F(z(t)))]dt
c(.) 0
subject to
z' (t) = f(ec(t))
z(0) = 0,
where r and R are some constants, c(t) is the firm’s expenditure on
research and development, f(.) is the production function, z(t) is the

firm's cumulated effort, and F(z(t)) is the probability that the research
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and development project will be completed when the cumulated effort is z(t).
One can reparametrize Lucas' model into [P1] by letting M(t) = F(z(t)). The
law of motion becomes M'(t) = F'(z(t))z'(t) = F'(F‘l(M(t)))f(c(t)), since
z(t) = F‘l(M(t)) and z'(t) = f(c(t)). As F'(x) = h(x)[1-F(x)], where h(x) is
the hazard function, then the law of motion can be expressed as M'(t) =
h(F-LQu(e))) [1-F(E-LQM(£))) 1E(e(t)) = h(F~LQM(t))) [L-M(£) 1£(e(t)) . The
initial condition becomes M(0) = 0, since F(0) = 0. If F is an exponential
distribution function, then the hazard function will be a constant, say K.
In other words, h(F'l(M(t))) = K, so the law of motion becomes M'(t) =
K[l-M(t)]f(c(t)).12 The Lucas’ problem can then be expressed as
oo
Max [ e TE[rRM(t) - c(t)(1-M(t))]dt
c(.) 0
subject to
M’ (t) = Rf(c(t))[1-M(1)]
M(0) = O,
which is similar to [Pl] except that the state variable, the control
variable, and the hazard function are now M(t), c(t), and Kf(c(t))
respectively. It follows from our approach that the optimal solution to the
problem is a constant rate of research and development expenditure. It is
useful to compare our method of solution with Lucas’. He makes three
assumptions: a piecewise linear functional form for f(c(t)), F is a gamma
distribution, and the transversality condition is a necessary optimality
condition. Again, no justification for the transversality condition is
provided. Similar to the discussions in Section 4, one can easily observe
that the available results in the literature cannot justify the

transversality condition in Lucas’ model. Our approach does not rely on the
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functional form of f(c(t)) and does not rely on the transversality
condition.l3 The solution that he obtains is different from the one obtained
by our method, which implies that the solution depends on the assumption on
the form of the distribution function F. The restrictions that he put on the
parameters of the gamma distribution precludes the possiblity of obtaining

the exponential distribution as a special case of the gamma distribution.l%

6. CONCLUSION

In this paper, we examine a class of infinite horizon continuous time
optimal control models which have been applied to study a wide range of
economic problems. The solution of this class of infinite horizon optimal
control problems proposed in the literature depends crucially on the
assumption that the transversality condition is a necessary optimality
condition. We demonstrate, however, that the transversality condition canmot
be satisfactorily justified by the existing results in the literature. The
unverified transversality condition calls into question the validity of the
widely accepted solution for this class of models.

We provide two different approaches to solve the problem. The first
approaqh is straightforward and requires two boundedness assumptions. These
assumptions are restrictive in many economic situations and therefore they
put a serious limitation on the applicability of the KS class of models. The
second approach provides a complete solution to the KS class of models. It
is an entirely different approach which obviates the difficult problem of
verifying the transversality condition. This is possible because the
approach solves the optimal control problem directly without involving any

optimality condition. The approach does not require any additional
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assumption and yields the transversality condition as a byproduct. This
suggests that the transversality condition is valid under very general
conditions and further research is needed to demonstrate this conjecture
directly. Although the second approach is successful in dealing with the KS
class of models, we show that there are limitations in applying it to other
models. For example, it solves Lucas’' model of research and development only
when the distribution function is exponential. To solve the Lucas model for
other distribution functions requires the verification of the transversality
condition, which has continually been ignored in the literature. Of course,
one can always use the first approach to justify the transversality
condition by making the boundedness assumptions. As these boundedness
assumptions are restrictive in many economic situations, future research
should be directed to verify the transversality condition without making

these assumptions.
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APPENDIX
In this appendix, an example is provided to show that the solution p¥*
and the transversality condition are still valid even when hl(O,g)=0. For

brevity, the argument t is suppressed wherever necessary. Assume g = 0 and

let

(E1) x1(p) = Ap - Bp?2 (A >0, B> 0)
(E2) ny = rB/C (r >0, C>0)
(E3) h(p) = Cp?

Assumptions (Al)-(A4) are satisfied. Clearly h'(0) = 0 and assumption (A6)
is violated. The Hamiltonian is

(E4) H = e-Yt{(Ap - Bp2)(1-F) + myF] + ACpZ(1-F).

The necessary conditions are

(ES5) Hp = [e"Tt(A-2Bp) + 2ACp](1-F) = 0,

(E6) A" = -Hp = e Tt(ap-BpZ-mp) + ACp2.

Since F(t) € [0,1) for t € [0,»), (E5) becomes

(E7) e Tt(A-2Bp) + 2ACp = O.

Differentiate (E7) with respect to t and combine with (E6), and use (E7) to
eliminate X, we get

(E8) p' = -[rAp + 2(Cmy-rB)p? - ACP3]/A.

This is a first-order differential equation which does not have a nice
closed form solution. By using the simplifying assumption (E2), (E8) becomes
(E9) p' = -rp + Cp3.

Now (E9) is a Bernoulli’s equation, which can be solved by a change of
variable y = p'2 [Coddington (1961, p.46)]. The solution is

(E10) p(t) = [C/r + ReZTE]-1/2,

where K = [1/(p(0))2] - (C/r). Thus, after some manipulations, we get

25



(E11) F(t) = 1 - exp[-J§ C(p(s))2}ds = 1 - [e7FFp(0)/p(E)].
Let V denote the value function (maximized value of (1) subject to (2) and
(3)) for problem [P1]. Substituting (E10) and (E1ll) into (1) and
integrating, we have a nice closed form solution for V:
(E12) V = Ap(0)/2r = (A/2r)(C/r + K)"1/2.
Since p(t) must be a nonnegative real number, (E10) implies that K must
also be nonnegative, otherwise C/r + Ke2rt will become negative for some
sufficient large t. It follows from (E12) that V attains its maximum when K
= 0, hence the optimal solution is p* = (C/r)'l/z, a constant. Clearly in
this case, p* is also the unique optimal solution.

Notice that we have not invoked any transversality condition to prove
the optimality of the solution. On the other hand, the optimal solution p*
obviously satisfies the transversality condition (7) since limg,, A(E)F(t) =

limg,, -e TE[A-2Bp(t)J(1 - [e TEp(0)/p(t)]}/2Cp(t) = O for p(t) = p*.
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FOOTNOTES

10.

A nice review of the literature on limit pricing can be found in Kamien
(1987).

See for example, Luenberger (1969) or Kamien and Schwartz (1981).

There are similar work in the discrete time literature. Since we only
deal with continuous time models in this paper, we do not reference
these work here. See Ekeland and Scheinkman (1986) for references.

A more familiar example may be income tax evasion. Let Y be a person’'s
income, r be the tax rate, and p(t) be the declared income, then Y -
rp(t) will be the person’s post-tax income. The person derives utility
71 (Y-rp(t)) from the post-tax income. This example is a continuous time
analog of the Allingham-Sandmo dynamic income tax evasion model, see
Allingham and Sandmo (1972) for details.

This includes the books of Kamien and Schwartz (1981, p.206-208; 1982).

There is a subtle difference among these results. The transversality
condition that Bensoussan, Hurst and Naslund, Aubin and Clarke, and
Michel prove is that the multiplier converges to zero, while the
transversality condition that Benveniste and Scheinkman, and Araujo and
Scheinkman prove is that the product of the multiplier and the state
variable converges to zero. Clearly, neither one implies the other. If
the state variable is bounded (which is the case in this paper), then
the two transversality conditions are equivalent.

See Bensoussan, Hurst, and Naslund (1974, p.274-275, eq. (7.34)).

If this is the case, then one may wonder why Aubin and Clarke need so
many strong assumptions to obtain the transversality condition. The
strong assumptions that they make allow them to deal with
nondifferentiable nonconcave objective functions and derive stronger
transversality conditions than the conventional ones found in the
literature (such as the ones that we want to verify in this paper).
They argue that the transversality conditions that they derive (which
they call growth or dual conditions) are more natural than the
conventional ones. See Aubin and Clarke (1979, p.569) for their
arguments.

The condition x{(p) + - as p » 0 is the classical assumption in growth
theory first proposed by Koopmans (1965). His argument for this
assumption (p.241) is that it provides "a strong incentive to avoid
periods of very low consumption as much as is feasible."

One may compare the value function in [P3] with the one in Kamien and
Schwartz (1971, p.450, eq. (30)). It is clear that their formulation is
erroneous because they have ignored the additional information that
there is no entry by time s.
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11.

12.

13.

14.

Note that V(Fg) = V(0) implies dV(Fg)/dFg = 0 = A(s), which seems to be
contradictory to the well known standard result that the multiplier
should be equal to the derivative of the value function with respect to
the state variable (if the derivative exists). This apparent
contradiction can easily be resolved by noting that the objective
function in [P3] also depends on Fg explicitly, which is different from
the standard case. The contradiction will disappear when one takes care
of these extra terms in the differentiation.

It is interesting to note that the exponential distribution is a common
assumption in the research and development literature, see for example,
Loury (1979). The exponential distribution is a key assumption that
drives the results in Loury (1979).

One can also observe that Lucas’ solution is very involved (e.g., it
occupies 8 pages) while our approach is relatively much simpler.

From Lucas' model, one can observe the usefulness and also the
limitation of our approach. One can check that our approach is
applicable only if M'(t) is proportional to 1-M(t). This implies that
h(F'l(M(t))) must be a constant, which in turn implies that F must be an
exponential distribution, because the exponential distribution is the
only distribution with a constant hazard function.
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