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Abstract

Communication and Efficiency in Coordination Games

Coordination games with complete information have been used to model a
variety of social interactions. The present study examines in detail how
improvements in coordination can be achieved through communication among the
players and between players and outside actors. Its main goal is to
understand the role of communication in a coordination game with asymmetric
information. We characterize the set of Bayesian equilibria in a two—player
coordination game with incomplete information; derive an ex ante efficient
communication mechanism with a mediator; characterize all ex ante efficient
symmetric decision rules with communiéation; and give necessary and
sufficient conditions under which communication can be efficient without
mediation. Among other results, we find that incomplete information without
communication yields efficiency gains over complete information; and that in
general unmediated communication is insufficient to achieve incentive

efficiency.






Communication and Efficiency in Coordination Games

1. Introduction

In any game with multiple equilibria, the players face a problem of
coordination: there is a danger that different players will use strategies
corresponding to different equilibria in such a way that the result is Pareto-
inferior to all those equilibria.1 The players would prefer, if possible, to
coordinate their actions so as to avoid such inferior outcomes. The problem
of coordination is captured most elegantly in the "battle of the sexes” game

of Luce and Raiffa (1957, p. 90-91):

Player 2°s decision
X y
0 1

Player 1°’s 0 t
decision t 0

vhere t > 1. .In this game, player 1 prefers one of the two pure-strategy
Nash equilibria, (x, y). while player 2 prefers the other, (y, x). There is
one other equilibrium, a symmetric, mixed-strategy profile in which each
player chooses x with probability t/(t+1). To assume that the players
successfully coordinate on one of the pure-strategy equilibria would beg the
question of how, in an initially symmetric situation, the players arrive at
an outcome that is asymmetric in terms of actions and expected payoffs
(Farrell 1987). The symmetric equilibrium, then, seems the most reasonable

prediction. In that case, the players will fail to coordinate with
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probability (t2+1)/(t+1)2, and indeed achieve an expected payoff that is
Pareto-dominated by both of the pure strategy equilibria.

Coordination games with complete information have been used to model a
variety of social interactions, including market entry (Dixit and Shapiro
1985), product compatibility (Farrell and Saloner 1988), networking (Katz and
Shapiro 1985), political leadership (Calvert 1987), repeated prisoners’
dilemmas (Hardin 1982), and bargaining (Schelling 1960). In the Dixit-
Shapiro model, for example, the action "x" denotes the decision to enter a
naturally monopolistic market, while "y" denotes staying out. The focus in
all these studies is to determine how, in a setting in which the basic
coordination game is augmented with such processes as communication and
repeated play, players could increase the equilibrium probability of
coordinating.

The present study examines in detail how such improvements in
coordination can be achieved through communication among the players and
between players and outside actors. In the case of the battle—of-the-sexes
game above, our analysis extends that of Farrell (1987), who demonstrates
that "cheap talk” among the players coula yvield efficiency improvements
through increased coordination. In section 2 we show how communicating
players can generally do even better than the Farrell model indicates, and
can in fact achieve full Pareto efficiency.

Our main goal, however, is to understand the role of communication in a

coordination game with asymmetric information. Taking again the example of

the Dixit-Shapiro model, suppose that each firm’s true production costs for
each market are private information. Assuming that the initial situation is

symmetric, then in addition to solving the original coordination problem the



firms also can profit, ex ante, by letting the lowest—cost firm be the
entrant in any market. Section 3 describes the basic two-player coordination
game with incomplete information, and characterizes the efficient outcomes
and the Bayesian equilibria. In section 4, we assume in addition that the
players are able to communicate with one another and with outside actors
before playing the game. In general, the role of the "outside actor" is to
improve outcomes by serving as an impartial mediator. We derive an ex ante
efficient decision rule —— the pattern of communication and behavior yielding
the highest payoff achievable in equilibrium through any such pre-play
communication process. Using that derivation we derive properties that must
hold for any symmetric, incentive-efficient efficient decision rule and
examine the importance of the mediator’s (i) ability to communicate privately
with the players and (ii) inability to enforce suggestions about how they
should play the game. Section 5, finally, gives necessary and sufficient
conditions under which bilateral communication alone, without mediation, can
generate such an efficient outcome. In contrast with recent results
concerning bargaining games (see for example Matthews and Postlewaite 1989},
we prove that bilateral communication is not sufficient in general to achieve

the payoff levels available with the assistance of a mediator.

2. Coordination with Communication under Complete Information

Farrell (1987) and others have argued that one means of overcoming such
coordination failures in practice is through communication between the
players prior to selecting their actions. Suppose that the players
simultaneously and costlessly announce their (nonbinding) intentions to play

X or y, and consider the following strategies for subsequently playing the
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coordiﬁation game: if they announce (x, y) they play the (x, y) equilibrium
in the game; if they announce (y, x) they play (y. x); and if they announce
the same action then they play the mixed strategy equilibrium. Farrell
(1987) then shows that there is a symmetric equilibrium in this game in which
the probability of coordination and hence the resulting payoffs are higher
than they would be without communication. Farrell also shows that, as the
number of such communication stages increases prior to the play of the game,
the probability of coordination increases, but is bounded away from 1. Thus
no matter how much of this "cheap talk" is allowed, a fully coordinated
outcome cannot be achieved through symmetric behavior of the players.

One difficulty with such communication games is that there are many
symmetric equilibria. Farrell (1987) selects from among these the one that
is "conventional" (Palfrey and Rosenthal’s (1988) term) in that, if the
players announce a Nash equilibrium, they subsequently play this equilibrium.
This selection argument, however, is based on the labelling of the messages
the players send, so that if the messages were not labelled as the actions
are labelled, some other outcome could "conventionally"” be selected. Suppose
that in the one-stage communication game the two meésages were labelled
"heads” and "tails", and that the convention to be used were that of
"matching pennies:"” the players truthfully announce the results of private
coin flips, and if the players’ announcements match, i.e. both announce
"heads" or both announce "tails", the players will play (x, y). while if they
do not match they play (y, x). These strategies of communicating and playing
are in equilibrium and yield symmetric, ex ante efficient payoffs —— the
outcome is (x, y) with probability 1/2 and (y, x) with probability 1/2.

Indeed, these strategies implement the efficient symmetric correlated



equilibrium (Aumann 1974), which is the best the players can achieve in the
original game.2

Thus in the complete-information battle of the sexes with one stage of
simultaneous communication using a two-element set of available, non-binding,
non-verifiable messages (exactly Farrell’'s setup), the players can achieve
efficiency in a symmetric equilibrium without the need for a joint
randomizing device or for an impartial mediator to carry out randomizations
and give instructions. One possible conclusion from all this is that, if the
players are communicating in order to arrive at coordinated outcomes in a
manner that preserves their symmetric situations, then the players themselves
may be able to figure out how to interpret messages in such a way that
coordination is achieved. In the environment described by Farrell, the
players may realize that they are both better off playing the "matching
pennies" version of the game and so rely on a different interpretation of the
messages than in the "cheap talk” equilibrium. The key to understanding
bilateral communication may require analyzing equilibrium behavior when the
labels on the messages have been '"neutralized,” that is, each player simply
has a set of messages M. In this framework, two communication processes
differ only if the number of messages available to the piayers differs.
Therefore, given a game such as the battle of the sexes above, we can inquire
vhether, if the players have enough messages, there exists an equilibrium in
the resulting communication game that implements an efficient solution. For
the battle of the sexes with complete information, the answer is yes; as long
as the players have at least two messages, they can achieve a symmetric and
efficient solution. We shall return to this method of evaluating bilateral

communication for an incomplete—information environment in section 5.



3. A Coordination Game with Incomplete Information
Suppose now that the payoff t to each player in the battle-of-the-sexes
game is private information. We consider in particular the following version

of the game, to which we refer henceforth as G:

Player 2’s decision
b.S y

Player 1’s 0 1
decision t 0]

where t, € {a, b} = Ti’ b>a>1, and Prob(ti =b) =p for i =1, 2.
Then the original coordination problem persists, in that the players’
preferences over the "coordinated” outcomes differ, but now in addition it is
unclear which of the players has the greater stake in achieving his preferred
outcome. This complication presents thg players with an opportunity: prior
to learning their true payoffs, they could realize mutual gains in expected
utility if they could agree that if only one player turns out to be in his
"high-stakes™ situation the resulting outcome is to be biased in this
player’s favor. For suppose that they managed to choose the higher-stakes
player’s preferred outcome with probability A and the other’s with
probability 1 — A; then each player’s expected utility conditional on the
players being of different types would be

(1-p)p[A + (1-N)al + p(1-p)[Ab + (1-A)]

= p(1-p)[A(b-a) + a + 1] ,



which is maximized when N\ = 1. Such distributional issues are important in
many of the real world situations modeled as coordination games as 6ited in
Section 1. The remainder of this paper concerns the possibility of achieving
such a favorable distributional arrangement, along with the possibility of
achieving coordination at all, given the requirement that the players behave
rationally in choosing between x and y as well as (in subsequent sections) in
revealing their true payoffs. We begin by establishing what happens in
equilibrium when the players cannot communicate.

Let Di = {X, y} be player i’s decision set in the coordination game, and
write D = D1 X D2, T = T1 X T2. A strategy for player i in the game G is a
function mapping each possible type into a probability distribution over
actions. For convenience we write player i’s strategy as

o, : Di X Ti --> [0, 17,
where ai(di; ti) is the probability that player i takes action di € Di’ given

type t. € Ti' For any d € Dand t € T, let ui(d, t) denote i’s utility from

the action pair d = (dl’ d2) given types t = (tl’ t2); thus ul(x, y; a, b) =

1l

a, u2(x, y; a, b) 1, etc. A pair of strategies o = (01, 02) induces

(expected) payoffs for the players in the usual fashion:

Ui(o; ti) = ET {Pr(t_i) b ai(di; ti)a—i(d—i; t—i)ui(d’ t)}.

t . d€eD
-1 -1

where —i denotes the opponent of player i.

Definition. A Bayesian equilibrium to the game G is a strategy pair o* =
% %

(al, 02) such that for i =1, 2,

U (0 t,)2U. (0., 0.; t.) VYVt €T.,Voao,.
1 1 1 1 -1 1 1 1 1

Let B(G) denote the set of Bayesian equilibria of the game G.



As with the complete information version of the game, G possesses
asymmetric equilibria. In particular, the following strategy pairs

constitute Bayesian equilibria:

1i

Ul(X;') = 02(3';') 1,

(1)
al(y;') = 02(x;~) = 1.
Thus if the players select the coordinated outcome regardless of type, such a
strategy pair is an equilibrium. Of course, regardless of the players’ types
they still face the problem of which equilibrium to play, since the players’
preferences over these asymmetric equilibria still diverge. By the same
reasoning as we used in the complete-information version of the game, a
symmetric equilibrium, if one exists, would yield a useful prediction of the
players’ choices. An equilibrium is symmetric if it satisfies
[d1 = d‘2 and t, = t2] ==> ol(dl; tl) = 02(d2; t2)
or equivalently,
Ul(dl; tl) = 02(d1; tl) (2)
For every dl’ d2, tl, and t2.
Our first result derives B(G) and shows that it contains exactly one

symmetric equilibrium.

Proposition 1. The game G has the following Bayesian equilibria, and no

others:

(1.0) the type-independent strategy pair in (1) above, which is in

equilibrium for any value of p;

(1.1) forp< 2, o(x;a)=UPIR"P ,(ip)=1;
atl (1-p)(a¥1)



(1.2) for 2 <p¢ P

atl +1

(1) Ui(X; a) =0, ai(x; b) =1 fori=1, 2; or

A

.

(ii) ai(x, a) =0, Ui(x, b) = BTE:TT and
o_i(x, a) = %%E%%%E£T§-, U_i(x, b) =1 fori =1, 2;
(1.3) for p > _E_., o.(x; a) =0, o,(x; b) = __E___ .
b+l 1 ! p(b+1)

(1.4) for p = a/(at+l) and p = b/(b+1), a continuum of other mixed-strategy,

type-dependent equilibria resembling (1.2)(ii) is also possible.

Note. The combination of (1.1), (1.2)(i), and (1.3) defines a unique
symmetric equilibrium for each value of p. The extra equilib}ia of (1.4) are

specified in Case 4 of the proof.

Proof. For notational simplicity let q; = Ui(X; a) and r. = Ui(x; b) be the
strategy mixtures used by each type of player i. Also, let s; = (1—p)qi +
pPT represent i’s apparent mixed strategy to player —-i. Then player i’s best

response to QU Ty is the pair q;. T4 that maximizes the expected payoffs

(1 - qi)-s_i + aqi°(1 - s_i) and

)

(1 - ri)°s_i + bri'(l - s

respectively. This gives the following best-response function for player i:



. . b
=0 if s, > 57 e (l—p)q__i +pr_. > T

It is clear from this best response correspondence that (1.0) is in
equilibrium regardless of the values of a, b, and p (but recall that 1 < a <
b and p € [0, 1]). Also, looking at the best response as a function of 5_g»
it is clear that for any equilibrium either q; = 0O or r, = 1 or both (see
Figure 1). We use this fact to examine other all other possible Bayesian
equilibria for each of the intervals for p represented in (1.1), (1.2), and
(1.3).

Case 1: p < a/(at+l). Suppose that r, < 1. Then q; = 0 so s; = Pry <

a/(a+l) < b/(b+1). Applying the best response correspondence derived above

to player -i, then, we must have q  =T_; = 1, which in turn implies q; =T

i
= 1, just the pure equilibrium (1.0).

The same reasoning holds for each player, so it remains to consider what
happens when ry =Ty = 1. First, notice that both 9 and 95 must lie in the
open interval (0, 1): for if q; = 1 then s; = 1-p+p=1>D>b/(b+l),
forcing r, = 0, a contradiction; and if q = 0 then s; =P < a/(a+l),

implying Q; = 1 and thus r, = 0, again a contradiction. Now to have q; €

(0, 1) requires s_, = a/(a+l), that is, (1—p)q_i + p = a/(a+l), so q_ =
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b
b+1 p _(l-plJa - p
1 -p = (1-p)(a+l) ~

since p < a/(a+l) < b/(b+1). Identical reasoning gives the same value for

Notice that this is always in (O, 1) as required

q;- yielding the equilibrium given in (1.1) of the proposition.

Case 2: p > b/(b+l). Reversing the roles of q, and r, and considering
the cases q > 0 and q; = dg = 0, reasoning identical to that in Case 1 above
gives the equilibrium in (1.3) of the proposition.

Case 3: a/(a+l) < p < b/(b+1l). We consider each of several

(exhaustive) possibilities in turn. First, suppose q = 9qg = 0. Then s; =

pry for each i. Letting T =Ty = 1 would give $] = S = P, SO for Case 3

these values are consistent with equilibrium (1.2)(i). Suppose, on the other
. . . b

hand, that r, < 1. This would require S_; > b/(b+1), that is, r_s 2 p(b+1) >

1. Thus the only equilibrium having q = =0 is (1.2)(1i).

)

=r, =1, so s (l—p)qi + p for each i. If q; = 9y

Second, suppose Ty 9 i

= O we have equilibrium (1.2)(i) again, just as above. Suppose q > 0; this

a
o3 — P
would require S_; { a/(a+l), that is, a_; < é%l:—s— < 0. Thus the only
equilibrium having r =T, = 1 is (1.2)(1)."

Finally, suppose that for either i =1 or i = 2, q; = 0 and r; = 1, so

s; = Pry and s_; = (l—p)q_i + p. Either of r, = 1 or q_; = O implies the

other, and yields (1.2)(i) again as an equilibrium. Either of r, = 0 or a_
= 1 implies the other and yields the pure equilibrium (1.0). The remaining
possibility is to let TS € (0, 1). This requires sy = b/(b+1), hence q; =

(1-p)b - p
(1-p)(b+1) -
a/(a+1), hence r, =

(1.2)(ii).

Case 4: boundaries. At the boundaries of Case 3, the strategies in

In turn, this value of a_; is in (O, 1) and requires s; =

STEITT-G (0, 1), giving the asymmetric mixed equilibrium
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(1.1), (1.2)(i), and (1.3) coincide where appropriate. Equilibrium (1.2)(ii)
expands somewhat, however. The argument made in Case 3 when the initial

assumption was q, = q, = O still holds, except that now when p = b/(b+1) it
1 2

is possible to have r. = land r . € (__2;__ , 1), the lower bound on r_|,
i -1 p(a+1) -i

being needed to maintain q; = O as a best response. Likewise when the

initial assumption was r =Ty = 1, the argument still holds with the

additional possibility when p = a/(a+l) that a; = O and a € (o,
1-p)b - . . _ )
(1—p)(b+1))’ the upper bound being needed to maintain r; = 1 as a best

response. These calculations yield the extra equilibria mentioned in (1.4)

of the proposition. u}

Denote the intervals defined in Proposition 1 by P1 = [0, a/(a+l)), P2 =
[a/(a+1), b/(b+1)], and P3 = (b/(b+1), 1]. Then we can describe the
symmetric equilibrium as follows. For p € Pl’ b-types always take their
preferred actions (x) while a-types randomize, using their preferred
strategies with a probability that ranges from a/(a+l) at p =0 to O at p =
a/(a+l). For p € P2, b-types always take their preferred action while
a-types always take their less preferred action. Finally, for p € P3,
a—types always take their less-preferred action while b-types randomize,
using their preferred strategy with a probability ranging from 1 at p =
b/(b+1l) to b/(b+l) at p = 1.

We will be concerned throughout this paper with comparing the efficiency
of various equilibria. To facilitate comparisons to and among the equilibria
described in Proposition 1, Table 1 shows the corresponding payoffs for
players of each type, playing each roie (i or -i) in each of the equilibrium

strategies.
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Table 1 here

Obviously some potential gains from coordination go unrealized under the
equilibria described in (1.1) through (1.4), since in those the players fail
Vwith positive probability to coordinate. While the pure strategy equilibrium
of (1.0) avoids this problem, it seems an unwise prediction for the same
reasons as under complete information: it begs the question of how the
players reach a particular asymmetric solution to this initially symmetric
problem. Thus we concentrate on the symmetric equilibrium.

Recall that one of the features of the symmetric equilibrium in the
complete information battle of the sexes game is that the equilibrium is
Pareto—-dominated by both of the asymmetric, pure-strategy equilibria; in
particular both players would rather be at their least preferred of these
outcomes. With incomplete information, however, the analogous statement need
no longer be true. To see this, note in Table 1 that an a-type always
prefers either of the type-independent, pure-strategy equilibria, since in
the symmetric equilibrium an a-type’s payoff is always less than 1, which is
the payoff in a player’s less-preferred pure-strategy equilibrium regardless
of type. However if p { a/(a+l) and b > a+l, then a b-type player prefers
the symmetric equilibrium payoff, since this gives a payoff of b/(a+l). In
addition, from an ex ante perspective a player’s expected utility from the
strategy profile o is is pUi(a,b) + (1—p)Ui(o,a) so that if, e.g., p =
a/(a+l) and a(b+l) > (a+1)2 both players’ ex ante expected utility from the
symmetric equilibrium is higher than that from the less—preferred pure-
strategy equilibrium. Thus for some parameter values the symmetric
equilibrium is not Pareto-dominated by any other Bayesian Nash equilibrium.

More generally, the values shown in Table 1 can be used to calculate that the
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symmetric equilibrium is efficient in this sense when p € P1 if and only if p

¢ 1/(b-a); and efficient when p € P, if and only if

2

=3 b3
p € 1‘Jb+1 1+Jb+1 .
2 2

(Notice that the asymmetric, mixed-strategy equilibrium in P2 is always worse
for player i than the symmetric equilibrium, so efficiency of the symmetric
equilibrium on P2 only depends on whether it is dominated by the
pure—-strategy equilibrium.)

It is interesting to compare the interim payoffs from this game with
those of the complete information version of G. Let U(t,p) denote the
expected payoff from the symmetric Bayesian equilibrium for a player of type

t. If p € P,, then U(a,p) = a/(a+l) and U(b,p) = b/(a+l); if p € P,, then

1 2’
U(a,p) = p and U(b,p) = b(1-p); and if p € PB’ then U(a,p) = U(b,p) =
b/(b+1). From Section 2 we know that the mixed strategy equilibrium
generates a payoff of t/(t+1) for both players. Suppose now that the
complete information game is played where t1 £ tys if we continue to rely on
the mixed-strategy equilibrium (although the strategies are not the same for
both players), we see that the payoff for player i is ti/(ti+1), regardless
of the value of tj’ j#i. Thus, comparing the complete-information payoffs
with the values of U(t,p) calculated above, we see that both types receive as
least as high an expected payoff in the incomplete information game‘as under
complete information, and for any value of p at least one type receives a

strictly higher payoff. Thus the players are better off under incomplete

information.
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This comparison is analogous to that found in Kreps, Milgrom, Roberts,
and Wilson (1982), where the presence of incomplete information in a finitely
repeated prisoner’s dilemma game creates Pareto—improvements over the
outcomes under complete information. A result in the same spirit is derived
by Vickers (1986) in a model of monetary policy making. Both these models
rely on the multiperiod "signaling” nature of the strategies, which provides
the opportunity of reputation-building. Our result, on the other hand, shows
that incomplete information can provide Pareto improvements even in a one-
shot, simultaneous-move game. This occurs because the presence of differing
types gives the players a device by which they can distinguish themselves
from one another and, more often than was possible under complete
information, achieve the necessary asymmetric outcome of the symmetric

coordination game.

4. Incentive Efficient Decision Rules with Communication

Having established the Bayesian equilibria as benchmarks for the
outcomes of rational play in the incomplete-information coordination game G,
we can now evaluate the possibility of improving on these outcomes through
communication between the players and between players and outside actors.
Specifically, we now consider augmented forms of G in which the players first
have opportunities to send and receive messages according to some specified
extensive form, after which they play G. All payoffs accrue from the actual
play of G, and none directly from the communication process. Throughout our
analysis, no binding commitments can be made during the communication process
about behavior in the ultimate play of G, and no verification of claims made

in the communication process is possible.
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In order to conduct the analysis, we first cover several essential terms
and tools.

Preliminaries. A strategy profile in an augmented game of the type
described above, say G+, determines a sequence of messages, actions, and
ultimately an outcome of the basic game. We can think of an equilibrium

strategy profile in B(G+) as generating a decision rule for G. A decision

rule is a function assigning a probability distribution over outcomes as a
function of the players’ types; we will write 6: T x D —-> [0, 1], so that
6(d; t) is the probability of outcome d = (dl’ d2) of G when the players are
of types t = (tl’ t2). As Holmstrom and Myerson (1983) note, the decision
rule is the relevant object for making efficiency comparisons. In this
section we characterize those decision rules that are incentive efficient;
that is, they constitute the highest payoffs the players could ever achieve
through equilibrium play in any arbitrary communication game ending with play
of G. In so doing we will also further explore the efficiency of the
Bayesian equilibrium described in Proposition 1 above.

Efficency Concepts. We compare decision rules via the expected payoffs
associated with those rules. Such a comparison can potentially be made at
three different stages of the play of the game: (i) the "ex ante" stage,
prior to the players learning their types:; (ii) the "interim"” stage, after
they haved learned their types but prior to any moves in the game; or (iii)
the "ex post" stage, with full knowledge of both players’ types. We say that

a decision rule 6 is ex ante (respectively interim, ex post) efficient in

some feasible set I' if there does not exist another decision rule + in I' such
that the payoffs according to v ex ante (resp. interim, ex post)

Pareto-dominate those of 6. In what follows we focus attention on the
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criterion of ex ante incentive efficiency. The focus on ex ante payoffs has
two motivations. First, the set of ex ante efficient decision rules is a
subset of the interim, as well as ex post, efficient decision rules
(Holmstrom and Myerson 1983); hence ex ante efficient decision rules
constitute a selection from the set of interim efficient decision rules. The
second motivation concerns endogenous institutional deéign: the players
realize that in the future they will be faced with the decision problem
summarized by G. Therefore, prior to the play of G and prior to their
learning of types, the players may have an incentive to influence the
resulting outcomes by establishing the guidelines of their forthcoming
interaction. Under such circumstances the players would prefer to choose to
interact so as to achieve payoffs that are efficient from their ex ante point
of view.

Symmetric Decision Rules. A further restriction in our approach is that
we focus on symmetric decision rules. Given the symmetry of the original
game G, it seems natural to require the associated communication games to
reflect this property as well. As argued previously, then, we should
concentratre on symmetric equilibria as the predictions for outcomes in the
augmented game; and symmetric equilibria of G+ generate symmetric decision
rules. We say that a decision rule 6 is symmetric if it is independent of
the labeling of the players. More formally, we require that the following
5 and all types tl’ t21
6(d1, d2; tl, t2) = 6(d,. dl; t2, tl) (3)

equality hold for all decisions dl’ d

Direct Mechanisms and the Revelation Principle. Finally, we turn to the
subject of modelling communication between the players. Suppose that the

+
augmented game G begins with a communication stage, whose normal form has
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pure—-strategy sets C1 and C, for the two players. In the communication

2
stage, the players send messages to one another or to an outside actor, and
receive such messages, according to completely specified orders of moves,
sets of available messages at each move, and rules by which the outside actor
responds to received messages. Let pi(ci; ti) be player i’s probability of
using communication strategy 4 when his type is ti' The outcome of the
communication stage is c = (Cl’ c2), and it can be observed partially by the
two players (only partially because, for example, some of the outside actor’s
messages may be private information). Let ci be player i’s observation of
the outcome c. We assume here that ¢ can be written equivalently as either

2 : . . 1 2
). As a notational convenience, we may write ¢’ = c

(Cl’ 02) or as (cl, c
whenever player 1’s observation of c given his initial situation is identical
to that of player 2 —— e.g., when the players have sent the same messages to
one another and received the same messages from outside actors. This will
prove useful in considering symmetric G+ below.

The players proceed to play G, having observed c. Their actions in G
are now chosen according to strategiés ai(di; . ci), the probability that
player i uses decision di in G, given that he is of type ti and he observed

i : ..
¢’ as the outcome of the communication stage. The decision rule generated by

the strategy profiles p' and a' is given by

5(d: t) = ) aj(dys ty, ) ay(dy: ty. €) pileys ty) py(cy: to). (4)
ceC

By restricting attention to a certain class of simple communication
processes, it is possible to learn all there is to know about decision rules

that can be derived from any communication process. A direct mechanism is a

communication process having the following simple form. First the players

privately report their types to a single outside actor, the "mediator;" they
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may lie. Second, the mediator uses a rule (the "mechanism") known to the
players to derive from their reports a recommended decision for playing G; he
communicates each player’s recommendation privately. Such a mechanism takes

‘the form of a function p : D x T —> [0, 1] such that 3 p(d, t) =1 for
deD

all t € T. Thus p{d, t) is the probability that the arbitrator recommends
the decision d1 to player 1 and d2 to player 2, given that the players have
reported types t. The mechanism p then generates an augmented game & in
which each player’s strategy takes the following form: communciate according
to pii Ti X Ti --=> [0, 1], which describes the probability that player i
reports each type given i’s true type; and act according to ai: Di X Ti X Di
-=> [0, 1], which describes the probability that i takes each action in Di
given type i and the mediator’s recommendation. (When the meaning is clear
from the context, we will sometimes refer to the decision rule generated by a
mechanism p simply as p.)

The revelation principle (Myerson 1985) states that any decision rule

resulting from an equilibrium p' and a' in any G+ based on G, that is, from

any preplay communication process, can also be derived from an incentive

compatible direct mechanism (ICDM) based on G. A direct mechanism p is

incentive compatible if honest reporting of types and obedience of the

mediator’s recommendation by both players constitutes a Bayesian equilibrium
in ¢"; i.e. if the strategies p.(t., t.) =1 and a_,(d,; t,, d.) = 1 for each
ivtvit i it i’ i

i, each ti’ and each di are in equilibrium. The revelation principle is

proved simply by noting that, given any ¢ and given the equilibrium p', «a'
+

in B(G ), the resulting & can be achieved in an ICDM by setting p(d; t) =

6(d; t), for then truthful reporting in " leads to the same result as using

the equilibrium strategy for a player’s true type in G+, and no type would
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like to report falsely or disobey the mediator given that the other player
does not do so.

Since we wish to concentrate on symmetric decision rules, we need to
establish a further result, namely that it will suffice for us to look at
symmetric ICDMs. A symmetric ICDM p(d; t) is one that obeys the same
conditions as did the symmetric decision rule §(d; t) in (3), namely

”(dl’ d2; t tz) = u(d2, dl; ty, tl).
As previously in {2), we say that p’' is symmetric if pi(cl; tl) = pé(cl; tl)
and that a' is symmetric if ai(dl; t cl) = aé(dl; t cl); that is, the
players use identical mixed strategies in identical situations. We can now

"

state the following "symmetric revelation principle.

+
Lemma 1. Let p', a' be a symmetric equilibrium for any augmented game G .
Then the resulting decision rule & is symmetric. Further, any symmetric
decision rule 6 that results from equilibrium strategies in any augmented

game can be achieved using a symmetric ICDM.

Proof. Since p' and a' are symmetric, from (4) we have

1] 1 1 2 1) L]
6(dy. dyi t5. ty) = 2 aj(dy: ty. c) ag(dg: ty. ) pylegs t1) polegs t)

c€C
1] . 2 1 - 1 L} . 1] .
= ) @j(dgi ty. ) ay(dys £ el pileyi ) pyleps ty)
ceC
= 6(d2, dl; ty. tl) \

so 6 is symmetric, proving the first claim. To prove the second claim, the
revelation principle ensures that & can be implemented by some p; since this

is done by setting p = §, p is symmetric. O
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The set of all decision rules deriving from incentive-compatible
behavior in symmetric ICDMs defines the feasible set of decision rules for
our analysis of efficiency below. By the revelation principle, however, our
efficiency results will apply to the feasible set of all decision rules
derived from equilibrium behavior in any symmetric mechanism. And by Lemma
1, this is equivalent to the set of all incentive-compatible decision rules.

Finally, it is important to note that our restriction to symmetric
decision rules will never lead us to consider a decision rule that is not

efficient overall. This is made clear in the following result:

2
Lemma 2. Suppose 6 1is (ex ante, interim, or ex post) incentive-efficient
*
within the class of all symmetric decision rules. Then § 1is also incentive-

efficient in the class of all decision rules.

Proof. Suppose instead that 5** is a decision rule that is incentive-
compatible, i.e. can be implemented in equilibrium, and that Pareto-dominates
6*. Then 6** must be asymmetric. Let §' be defined by
4 . _** . .
o (dl’ d2, to t2) =& (dz’ dl’ ty, tl) ;
that is, 6' is identical to 6** except that it treats the players in the
opposite fashion from 6**. Thus &' dominates 6* as well. Let u*, u¥*, and
i' be the ICDMs that implement 6*, 6**, and 6' respectively. Define one more
ICDM, u", by
"(dy, do; ty, ts) = = KN, da t) + R'(d,. do: to, t
pU(dps doi tys t5) =5 [n(dys dys s ty) +pt(dy dgs b )T
so that p" is the "average" of u** and its mirror image p'. We will show
that u" is incentive compatible and symmetric, and thus that 6 = u” is a

%
symmetric, incentive compatible decision rule that dominates 6 . This
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contradicts the assumed incentive-efficiency of 6* among symmetric decision
rules, so such a 6** cannot exist, and thus 6* is incentive efficient in the
class of all decision rules.

Obedience under u" is immediate since the recommendation for player i in
effect comes from either u** or u', and -i’s recommendation comes from the
same mechanism; since both u** and p' elicit obedience, so does u". To prove
honesty under p", let V(ri; ti’ 1) represent player i’s expected payoff under
mechanism i@ from reporting type s € Ti when i’s true type is ti’ given that
player ~i will be honest and obedient and given that player i will behave in
a specified fashion (obey x only, obey y only, obey both, or obey neither)

after the mediator’s recommendations are made. Then we know that

V(ti; t,

i u) 2 V(ri; te p) for all L for p = p¥* and for p = u', from the

incentive compatibility of u** and p', respectively. But V(ri; ts p') = 1/2
[V(ri; ts p) + V(ri; s 1)], so honesty holds for u" as well. Thus p" is

incentive compatible. Finally, u" is symmetric since by the definition of p'

** '
172 [u (dl’ d2; t t2) + (dl’ d2; tgs t2)]

[ . o .
172 [ (d2, dl‘ ty tl) + (d2, dl’ ty tl)]

nildy, dyi ts t)

L (d2, dl; ty tl). o

Results: Incentive-Efficient Mechanisms. Our goal then is to
characterize those decision rules that are ex ante efficient in the feasible
set consisting of all symmetric decision rules derived from equilibrium play
in a communication-augmented version of G -~ i.e., the "incentive-efficient”
symmetric decision rules (Holmstrom and Myerson 1983). An obvious initial
question is whether the requirement that a decision rule be derived from

equilibrium behavior in ¢"is a binding constraint on payoffs. In other
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words, is the "classically efficient” symmetric decision rule achievable in
equilibrium? Using the reasoning from the beginning of Section 3 about the
optimal distribution of expected payoff between an a-type and a b-type, it is
easy to see that the classically efficient symmetric decision rule is
equivalent to the following mechanism:

Bc(x, v T, T)

éc(y, x; T, T) = 1/2 ;

il

6c(x, y; b, a) = 1.

Thus if both players are of the same type then each player receives his
preferred outcome half the time, as in the correlated equilibrium of the
complete information game; if the players are of different types, then the
player of type b receives his preferred outcome with certainty. From an ex
ante perspective, this decision rule maximizes the payoffs of the players;
yet it is clearly not incentive compatible, since in a direct mechanism with
KL= 60 each players would have an incentive to report his type as b
regardless of his true type. By Lemma 1, then, since classical efficiency
cannot be achieved with a symmetric ICDM, there is no symmetric communication
process that enables the players to achieve classical efficiency.

On the other hand, the following mechanism, which we label the "flat
mechanism,” is always incentive compatible:

pe(xo yi ooy ) =y, x5 ¢, ¢) = 172,

This ICDM ignores the reported types and simply guarantees an ex post
efficient outcome. (Note that this is the unique ex post efficient symmetric
decision rule.) Clearly Be is incentive compatible, since neither type gains
from dishonesty or disobedience. The interim payoffs for each player are

then (ti+1)/2. If we let 6n denote the decision rule associated with the

("no communication”) symmetric Bayesian equilibrium in Proposition 1, we get
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the following result.

Proposition 2. For all values of a, b, and p, e interim (and hence ex ante)

dominates 6n.

Proof. From Table 1, the highest payoff for an a-type under 6n is b/(b+1),
which is strictly less than (a+1)/2 since a > 1; thus an a-type is better off
under M- Similarly, the highest payoff for a b-type is b/(a+l). Since a >
1, (b+1)(a+1) > 2b, which implies that (b+1)/2 > b/(a+l); thus a b-type too

is better off under M- O

We now know that a simple use of an outside mediator, namely one who
employs the rule e provides improvements over the (symmetric) equilibrium
play, without communication between the players, of the game G. The
remaining question then concerns whether He itself can be improved upon.
Note that the flat mechanism Mg and the classically efficient decision rule
60 differ only when the types differ, in which case 50 biases the outcome in
the b-type’s favor. Hence any improvementé over the flat mechanism must
include such a bias. However, since 5c‘is not incentive compatible there
must be an offsetting loss in ex post efficiency to maintain honesty, in
particular the honesty of an a-type. In other words, gains in ex ante
efficiency come at the expense of ex post efficiency.

Our main results are embodied in the next two propositions. They
characterize incentive-efficient symmetric mechanisms and allow us to
calculate the maximum payoffs achievable for comparison with the payoffs from

6n, e and 60. For convenience we write Pr(tj) for the probability that
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‘player j is of type tj’ that is, 1-p or p as appropriate, and we designate

the following criterion values for p:

1 _ g:l = _ _ gb+1!ga—1!
and P =1 -3 1)(ba)

T at+tl b-a
‘(note that neither p nor p need lie in [0, 1]). Propositions 3 and 4 are

oI

proved simultaneously in an appendix. Proposition 3 gives the conditions
under which the flat mechanism is incentive efficient, and derives some
important general characteristics of an ex ante incentive efficient symmetric
ICDM. Notice that by Lemma 2, "efficiency" in both propositions is relative

to the set of all decision rules.

%
Proposition 3. If p is a symmetric, ex ante efficient ICDM for the game G,

then the following conditions hold:

(3.1) b3 Pr(t_i) 3 u*(d; a, t_Jeu.(d; a, t_.)
t €T . deD vt .
-1 -1
= 3 Pr(t) 3 pd; b, t_)eu.(d; a, t ), Vie€{l, 2};
t €T . deD ol b
-i -1
(3.2) u*(x, y; a, a) = u*(y, x; a, a) = 1/2;
(3.3) if p > p, then

u*(x, y: t) = u*(y, x; t) =1/2, V t €T;

(3.4) if p < p and
(i) p 2 3:1_, then u*(x, y;: b, a) =1
a+l

and p(x., y: b, b) + 1 (v, x; b, b) < 1 ;
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(ii) p < 271, then p*(x. y; b, a) € (172, 1)
a+l

and u*(x, y; b, b) + p*(y, x; b, b) = 0.

Proof. See Appendix.

Condition (3.1) says that in an efficient mechanism if player i is an a-type
he will be indifferent between honestly and dishonestly reporting his type,
conditional on the other player being honest and both players obediently
following the mediator’s suggested actions. Condition (3.2) says that
a-types always coordinate, each coordinated outcome occurring with
probability 1/2 (the latter is a result of symmetry): (3.3) says that if the

prior probability that the players are b-types is sufficiently high, then the

efficient mechanism is flat. Note that p is not necessarily in the interval
(0,1); thus, if a = 2 and b = 3.5, then p < O so that for all values of the
prior p the flat mechanism e is incentive efficient, while if a = 1.01 and b
= 10, then 5 > 1 and for no value of p is e incentive efficient. Finally,
condition (3.4) notes that for lower values of p, when the players report
different types the b-type’s preferred oﬁtcome occurs more than half the
time, and in some cases all of the time; and that if both players are
b-types, they may fail to coordinate, and under some circumstances must
always fail. This possibility of failure, "caused" by the mediator operating
according to u*, is what keeps type—a players honest in the reporting stage.
The following stfaighforward application of Lemma 1 demonstrates the

breadth of the characterization in Proposition 3.
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Corollary 1. Let 6 be any symmetric, incentive-efficient decision rule for

»*
G. Then & obeys the same conditions as does p  in Proposition 3.

The interpretation of (3.1) is now rather strained: under any such 6, an
a-type is indifferent between being treated as an a-type or as a b-type. The
other three conditions, however, now directly provide important properties
true of all members of this important class of decision rules.

A second immediate result from Proposition 3 concerns the need for
privacy in the communication of the mediator’s suggestions to the players in
an ICDM. We can say exactly when public communication of suggestions will be

sufficient.

Corollary 2. Public announcement of suggestions by the mediator is capable
of providing ex ante efficiency in a symmetric mechanism if and only if p > ;

(that is, if and only if the flat mechanism is efficient).

Proof. Clearly public announcement can be used to implement the flat
mechanism since then any unilateral deviation by a player would lead to a
coordination failure and a lower payoff. If the flat mechanism is optimal,
we are done. If not, then by (3.4) the mediator must sometimes induce
coordination failures to achieve ex ante efficiency; but this is impossible
if suggestions are announced publicly, since players lose nothing by

disobeying such a suggestion. o

In general the ex ante incentive-efficient symmetric ICDM is not unique,

as shown in the Appendix. This non—uniqueness is due to the possibility of
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"trading off” certain types of inefficiencies to achieve the same payoff
results while maintaining incentive compatibility. The following
proposition, however, completely characterizes one such efficient mechanism.
Using this characterization, we can calculate the maximum payoff achievable

through any symmetric communication process.

Proposition 4. The following symmetric ICDM u* is ex ante incentive
. % % »*
efficient: p (x, y; a, a) =p (y, x; a, a) =1/2, p(y, y; b, a) =

J%y,y;b,b):O, and

(4.1) if p > p. then u* =K s
(4.2) if p<pandp> i:i , then u*(x, x; b, a) =0, u*(x, y; b, a) =
a+l
1, and p¥(x. x; b, b) = 27!
p(a+l)
(4.3) if p € [p, p) and p < E:i , then u*(x, x; b, a) =0,
a+l
P*(X, y; b, a) = l‘+ Eitllg.. and u*(x, x; b, b) = 1;
2(a-1)
(4.4) if p < p and p < E:i . then u*(x, x; b, a) = E:l:&itllg_ ,
a+l 2[a~(a+1)p]

1 - u*(x, x; b, a) , and u*(x, x; b, b) = 1.

1

E.3
B (x, y;: b, a)

Proof. See Appendix.

Statement (4.1) matches (3.3) above; namely, if p > p then the only ex ante
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incentive efficient mechanism is flat. Statement (4.2) follows from (3.4)(i)
as well as allocating all of the probability of failure if the types are

(b, b) to the outcome (x, x). Under the conditions in (4.3), even if the
‘players’ types differ they still coordinate with certainty, although not
always on the b-type’s preferred outcome; further, if both are b-types they
will certainly fail to coordinate. Finally, (4.4) identifies conditions
under which, if the players are different types, the outcome is either on the
b-type’s preferred outcome or on the ex post inefficient outcome (x, x), but
never on the a-type’'s preferred outcome.

The proof of Proposition 4 reveals one further important fact about the
maximization of payoffs using a mediator. Suppose that the mediator, rather
than merely suggesting how the players should play in G, is able costlessly
to enforce those suggestions. It turns out that no more can be gained from

such enforcement than can be had from the ICDM described in Proposition 4.

Corollary 3. Suppose that G+ is further augmented so that the mediator’s
suggestions are costlessly enforced. Call the latter enforcement game .
Then the maximum achievable ex ante expected payoff from G® is identical to

that generated in G+ by the ICDM described in Proposition 4.

Proof. This is the situation covered by the revelation principle in its
original form (Dasgupta, Hammond, and Maskin 1979; Myerson 1979). The
optimal decision rule of this type is found by maximizing ex ante expected
utility subject to honesty constraints. But the proof of Proposition 4 does
exactly this, having shown that the obedience constraints are not binding for

this ICDM. ]
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Intuitively, the mediator can accomplish no more with costless enforcement
- than he can with an ICDM because he still faces the problem of enticing
truthful reports from the players. Corollary 3 demonstrates that it is
always possible to solve the truthfulness problem in such a way that
obedience is already taken care of. Thus, in this setting of asymmetric
information, once we have learned what decision rules and payoffs are
possible using an ICDM, we have also learned all there is to know about
decision rules attainable with enforcement.

Another implication of Corollary 3 bears noting. The assumption of
perfect enforcement means that the mediator is free to choose any of the
outcomes of G without regard to the game-theoretic structure of G. So given
this set of available outcomes, and given that the players can communicate
and use mediation, it is irrelevant for purposes of maximizing expected
payoff whether or not the players are forced to play the battle-of-the-sexes
game at all. Indeed, Proposition 4 and Corollary 3 together show that one
way for the perfectly enforcing mediator to induce maximal payoffs would be
for the mediator to force the players to engage in G after using the

. %
mechanism p .

5. Efficiency Without a Mediator

We have derived an incentive efficient decision rule via the revelation
principle by examining communication précesses aided by impartial outside
actors. Our next problem is to identify when such mediation is needed, that
is, to characterize those situations in which the players can achieve an

efficient outcome simply by communicating with one another. This is an
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important difference, since it may be hard to imagine such impartial
mediation in some real-life situations. For the incéntive—efficient direct
mechanism above, however, the mediator is potentially crucial because it may
be necessary to keep secret both the report of each player and the
recommended action for each player. Without such secrecy, the players»could
never be induced to fail to coordinate, and thus the temptation for an a-type
to report falsely could not be overcome. The question now is whether, or
under what conditions, some alternative communication process can accomplish
the same expected payoffs without such secrecy.

We concentrate here on another special form of the augmented game G+
introduced in section 4. Assume now that each player’s set Ci of pure
communication strategies is just a finite set of possible messages that
player i could send to —i. Throughout this section we maintain symmetry of
= C,, and write C = C, x C,. Following the sending

1 2 1 2

of messages, the players simultaneously decide on actions di € Di as before.

the game by assuming C

Thus again pi(ci; ti) is player i’s probability of using message c, when his
type is o and ai(di; tes c) is i’s probability of taking decision di when
i’'s type is ti and the players have previously communicated messages ¢ = (Cl’
c2) to one another.3

In terms of the model developed thus far, then, our aim is to determine
whether or not, given a basic coordination game G, there exists a symmetric,
unmediated communication process C and a symmetric equilibrium in the
resulting game G+ that generates an incentive efficient decision rule for G.
Ve restrict our attention to symmetric processes and rules since otherwise it
is always possible to generate trivial incentive-efficient decision rules by

allowing only one player, in effect, to communicate. Using the same notation



32

as in Proposition 3, the answer can be derived from the following result:

Proposition 5. A necessary and sufficient condition for there to exist a
+ . .
message set C whose associated augmented game G has a symmetric equilibrium
%
(p . ) such that the resulting decision rule is ex ante incentive efficient

is that p > p.

Proof. (Sufficiency.) If p > P, then by (3.3) the flat mechanism is
efficient. Let Ci = {m', m"}, and for each i € {1, 2} and each t, € Ti

consider the following message and decision strategies:

* l. —_ * LA —_—
pi(m ; ti) = pi(m ; ti) =1/2 ,

and

1 if c1 =c

0 if ¢y £ C

* . P _ 2
al(x, ty. e 02,) = az(y, ty, €4 c2) =

9

with the complementary probability weights in a? being placed on the other
action. This is analogous to the "heads‘and tails” strategies used in the
complete-information game in section 2 above. It is easily seen that these
strategies constitute an equilibrium to the game G+; further, each of (x, y)
and (y, x) occurs half the time regardless of the players’ types, thus
implementing the flat mechanism of (3.3), which is ex ante incentive
efficient as required.

(Necessity.) Let p < p and suppose that an incentive-efficient decision
rule is generated by message set C and symmetric equilibrium (p*, a*). For j

€ {a, b} define Cj = {m' € Ci! p?(m'; j) > 0}, so that C? are the messages
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sent by a-types and Cb are those sent by b-types. By (3.2), V (Cl’ c2) e @
x (7, either aT(x; a, ¢;. 02) = aT(y; a, ¢, 02) =1 or both = 0. Thus
whenever a message pair from @ x @ is sent, the players coordinate with
certainty. Further, by the symmetry assumption, for any c_; ec® player i’s
message strategy p?(-; a) is such that the outcome (x, y) occurs with
probability 1/2. This leads to the following result, of which we will make
later use:

PN #. v (5)

To prove this, suppose the contrary; then for every c, € Cb the probability

1
that (x, y) occurs, if 1 is a b-type and 2 is an a-type, is 1/2. From (3.4),
however, incentive efficiency requires that this probability be strictly
greater than 1/2, a contradiction.

Using (5), then, let m' € Cb \ (%, and suppose that p < (a-1)/(a+1).
Then if (m', m') is observed (which occurs with positive probability), it
becomes common knowledge that both players are b—types. Thus the expected
utility to a b-type player, conditional on the opponent being a b-type, is
strictly positive, since following (m', m') the players must play an
equilibrium, any of which (see Proposition 1) would yield positive expected
payoffs to both players. But this contradicts (3.4)(ii). Thus for p <
(a-1)/(a+1l) this Proposition is proved.

Suppose finally that p 2 (a-1)/(a+l). To complete the proof we will use
the fact that now

Anc - (6)

To prove (6), suppose that there were a message m' € & n Cb. Then from the

proof of (5) we know that the probability of (x, y) occurring if either

player is type b and sends m' is 1/2. But this would contradict (3.4)(i), so
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there can be no such m'. By (6), then, if an incentive efficient equilibrium
exists in this case it must be separating. Further, since the efficient
mechanism is not flat, there is a message pair ¢ € Cb x Cb such that upon
observing c the players adopt the complete information mixed strategy:

o (x:b.m) = b/(b+1).

By (3.1), an a-type is indifferent in an optimal mechanism between
honesty and dishonesty, given honesty by the other player and given
obedience. In the posited incentive-efficient equilibrium (p*, a*) to the
game G+, this implies that an a-type is indifferent between using the
strategies (p:(-; a), a§(°;a, *)) and (p?(-, b), a?(°; b, *)). However, for

the case p 2

(a-1)/(a+1) we can construct a strategy ai(-;a, *} which
generates a strictiy higher payoff than aT if player 1 is an a-type,
contradicting the assumption that (p*, a*) constituted an equilibrium in G+.
The new strategy is as follows: 1 plays according to aT except when t1.= a
and the message pair (m', m'), where m' € An Cb, whose existence is
guaranteed by (6), is observed. In that case, use ai(x; a, m') = 0. This
gives an a-type player 1 a strictly higher payoff in this event than

* %
following the b-type’s mixed strategy, so (p , a ) cannot have been an

equilibrium. 8

Proposition 5 shows that the only situation in which a mediator is not
required in order to achieve efficiency is when the mediator’s role would be
in some sense trivial; when p ? E, the mediator ignores the reporting of
types and simply assures an ex post efficient outcome. This result can be
contrasted with that of Malthews and Postlewaite (1989), who study the role of

bilateral communication in two-person sealed-bid double auctions. They show



35

that any incentive compatible decision rule that is in addition ex post
individually rational can be achieved as an equilibrium of some bilateral
communication game; no mediation is ever required. Their sufficiency
argument is similar to ours, in that behavior in the communication stage is
"mixed"” and chosen so as to correlate on particular outcomes with the
required probabilities. The key feature differentiating our result from that
of Matthews and Postlewaite is their assumption that the players’ payoffs are
in effect linear in money: the utility derived by the seller is just the
payment by the buyer minus the value of the object sold, and analogously for
the buyer. Total payoff is just the difference between the players’ true
valuations, times the probability of trade. In our model, on the other hand,
the "total" payoff when the players are of different types depends on which
coordinated outcome is chosen, and is higher when the b-type is favored.

Thus while distributional features in our mechanisms have an effect on ex
ante expected utility, analogous features of the Matthews—-Postlewaite model
have no such consequences. In our model, no mediator is needed just in order
to achieve a maximal amount of coordination regardless of distribution, just
as none is needed to assure maximal realization of gains from trade in their
model. However, if each player in the bargaining model could vary in the

v

(nonlinear) rate of increase of utility in "money,” a mediator might be

required to achieve incentive efficiency in that model as well.

6. Discussion
Summary. Using the standard "battle of the sexes'" game as a basic
model, we have analyzed the effects of incomplete information and

communication upon the payoffs in coordination games. In the process we have
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discovered interesting features of optimal communication processes. We
learned first of all that, from an ex-ante standpoint, expected payoffs from
the coordination game with incomplete information are higher than those that
would result if the types were revealed and the appropriate
complete-information symmetric equilibrium played. Incomplete information
about payoffs, however, introduces a new efficiency consideration to the
problem: by agreeing ex ante to favor the player facing the higher stakes,
the players could in principle receive higher expected payoffs than if they
were treated symmetrically regardless of their types. To achieve such
efficiency gains, however, the players must somehow reveal their private
information about payoff values. Thus communication serves two purposes:
the coordination of actions and the revelation of private information about
payoff values.

To understand how communication could best be used for these purposes,
we applied a version of the revelation principle to construct a mechanism
that generates the highest payoffs achievable through any communication
process. Generally this optimal communication mechanism requires the
presence of an impartial mediator, but under qertain conditions joint
randomization alone (the "flat mechanism™) constitutes such an optimal
mechanism. More generally, we demonstrated the tradeoffs between, on the one
hand, the ability to achieve ex ante distributional efficiency by using
information about true payoffs and, on' the other hand, degrading coordination
in order to provide the incentive for players to reveal that information.
The presence of these tradeoffs implies that no communication process can
enable the players to achieve all the available gains from coordination.

Once we had derived an optimal mechanism, we were able to state several
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important properties of symmetric efficient decision rules and of the
abilities of the mediator. Proposition 3 and Corollary 1 showed, among other
things, that any symmetric, incentive-efficient decision rule must fail to
coordinate the players’ actions with certain probability in certain.
situations. Corollary 2 showed that the mediator’s ability to communicate
privately the suggested actions to the players is critical exactly when the
flat mechanism is not optimal; in light of Proposition 5, this means that
whenever a mediator is required for efficiency, privacy of communication is
required also. Corollary 3 showed that the mediator need not have any
ability to enforce those suggestions —-— even costless enforcement would yield
no further gain in ex ante expected payoffs.

The impartial mediator in this optimal communication mechanism seems
inappropriate for some applications. At the opposite extreme, then, we
examined what could be accomplished through communication between the players
only, with no mediation of any sort. In the case of a simple coordination
problem under complete information, we saw that by communicating without the
use of an arbitrator or any jointly verified randomizing device, the playérs
could coordinate fully. This ability depends on the players being able to
label the available messages, that is, to associate them with ultimate
outcomes, in any fashion they wish, contrary to the usual approach in "cheap
talk” models.

When there is incomplete information about payoffs, the mediator is
dispensible only in the situation in which the mediator’s function would be,
in effect, merely to flip a coin and dictate a coordinated outcome. Such
joint randomization can be achieved through bilateral communication alone.

If instead the optimal mediation mechanism takes the players’ messages into
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account in any way, then the mediator is necessary in order to achieve
incentive—-efficient expected payoffs. In general then, if the players rely
on bilateral communication alone, the highest possible expected payoff will
be only a "third best” solution to their coordination problem.

Effects of Communication on Payoffs. We can gain some insight into the
effects of incomplete information and communication by comparing the graphs
of ex ante payoffs from various decision rules as functions of p for
particular values of a and b (Figures 1-3). Several relationships hold true
in all these graphs. First, as noted above the ex ante payoffs from 6n, the
decision rule generated by the symmetric Bayesian equilibrium in Proposition
1, exceed those from 60, the decision rule generated by mixed-strategy Nash
equilibrium under complete information with varying payoffs. Second,
Proposition 2 shows that the flat mechanism Mg interim (and ex ante)
dominates 6n. Finally, Proposition 4 shows that the optimal mechanism u*
will sometimes be identical to Hgo and will never achieve as high a payoff
level as 60, that is, will never be classically efficient (for O < p < 1).
In what follows, we examine the graphs of all these payoffs to explore the
relative sizes of these differences, and‘to see the degree fo which the flat

mechanism can be improved.

Figures 1, 2, and 3 here

For large values of a, mediated communication yields very little
improvement over the flat mechanism, for which mediation is unnecessary,
relative to the shortfall between Ke and classical efficiency. Figure 1
shows the ex ante expected payoffs from symmetric equilibria for various
values of b when a = 5. (Notice that the vertical scales in Figures la, 1b,

and lc differ.) When b = 10, E < 0 so that the flat mechanism is always
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optimal anyway. When b = 50 or 100, the graph for u* is barely
distinguishable from that for e for smaller values of p, and 5 itself is not
very large —— it approaches an upper limit of 1/3 as b -» ®. Figure 2 shows
that even for an a-value of 2, the potential gains from mediation are still
relatively small; again the gain is restricted by the fact that ; < 2/3 for a
= 2. For smaller values of a, however, as shown by Figure 3 where a = 1.1,
mediation comes close to classical efficiency and improves greatly on the
flat mechanism, especially for large values of b and moderately small values
of p. Qualitatively, all this suggests the following generalization:
mediated communication is most profitable when the importance of achieving
coordination at all outweighs the importance of coordinating on one’s own
favorite outcome (a is not much bigger than 1) much of the time (p not too
large). This is especially true if, for the occasional exception when the
player is a b-type, the value of obtaining one’s favorite outcome becomes
extremely high (b is large).

Notice, secondly, that when both a and b are small there is a big
difference between the payoffs from any kind of communication (u* and uf) and
the no-communication payoffs (from 6n and 60). This is illustrated in Figure
3 and, to a lesser extent, in Figure 2. As b grows, however, the payoff
under incomplete information with no communication increases far above that
under complete information, approaching that of the flat mechanism for values
of p in the low interval Pl’ which itself increases in size. For small a and
small-to-moderate values of p, then, we can make the following
generalization: if b is only slightly greater than a, communication is
important; but if b is much larger than a, the important thing is that the

types of the players not be verifiably revealed —— the self-discrimination
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possible under incomplete information may be more important than
communication.

Application to Entry Problems. As an illustration of how our results
bear on coordination problems in the real world, consider a two-firm, market
entry decision similar to those modeled by Dixit and Shapiro (1985) and
Farrell (1987), described in the Section 1 above. A market is to become
available for entry by either of two firms; the market will support only one
firm profitably, and due to startup costs the entry decisions of the firms
must in effect be made simultaneously. At the time the market becomes
available, each firm learns its true production costs for operating in that
market in the long run. These production costs are drawn randomly and
independently by the two firms; they may be either "high" (with probability
1-p) or "low" (probability p), and are private information to the firm.
Finally, if only one firm enters the market, the other firm will be able to
make some small profits by selling a complementary good produced at known
cost. The possible outcomes are: neither firm enters, giving each a profit
of O; both firms enter, and neither makes any profit (again, for simplicity,
0):; and one firm enters, making a profit of m if costs are low or w, if

h

costs are high, and the other firm makes a profit of w, where Lo} > ™ > .
These three payoffs correspond to the values b, a, and 1, respectively, in
our game G.

In advance of learning the costs of the market to be contended, the
firms may contemplate some form of regulation or communication to improve
their ex ante expected profits. Note first of all that, if the firms have

the option of verifiably revealing their true costs to one another before

making the entry decision, they should nevertheless prefer not to do so —-—
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their expected profits are higher in any case from playing the game under
incomplete information than under complete information about costs, because
in using the symmetric equilibrium strategies in Proposition 1 they will
successfully coordinate more often than if they played the full-information
mixed-strategy equilibrium.

Assuming that the firms do operate under incomplete information, there
remains the opportunity to design a communication scheme that will maximize
expected profits. If ™ is much greater than w, then the flat mechanism is
optimal (Proposition 3 and Figure 1) —— the firms are best advised to engage
in a simple joint randomization and ignore the distributional problem of who
would profit more from being the monopolist.

However, if m is not much greater than 7 then by Proposition 3 the flat
mechanism is not always best (as in Figure 3). If in addition ™ is
relatively large and p is not too large, then considerable improvements in ex
ante expected profits are avaiable (as in Figure 3c¢) and a more complex
communication scheme is in order. If the scheme is to maximize ex ante
expected profits, it must involve the use of an outside mediator in some
capacity (Proposition 5). Further, if the resulting decision rule is to be
symmetric, it must obey the conditions of Proposition 3 and Corollary 1: in
particular, the probabilitiy of an uncoordinated outcome (dual entry or no
entry) must be positive whenever either firm has low costs, although not when
both firms have high costs. Indeed, if p < z%% then even when exactly one
firm has low costs the probability of an uncoordinated outcome must be
positive.

One can imagine a regulatory agency playing the role of this outside

mediator. The firms would privately report their cost information to the
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agency, which subsequently advises each firm on whether or not to enter the
market4. By employing an incentive compatible mechanism the agency leads the
firms to report cost information truthfully as well as to carry out the
agency’s suggestions obediently, improving expected profits for both firms.
By Corollary 3, of course, this improvement is the same as could be expected
if the agency had enforcement powers. We can view Proposition 5, then, as
identifying a source of the demand for regulation, differing from that
suggested by "capture theories” of regulation (Bernstein 1955; Stigler 1971).
In the latter, the demand for regulation follows when regulation permits
firms to cartelize markets, whereas here we predict that, even in the absence
of this incentive, firms may prefer to create a regulatory system when such a
system would facilitate the efficient coordination of the firms’ behavior.
Note that in the present context this regulation is not necessarily bad from
the consumer’s point of view, since the contested market is assumed to be
naturally monopolistic. Indeed, by reducing the probability of the "no
entry” outcome, the regulation might increase consumer surplus.

Conclusion. Substantively, our analysis provides elements of a theory
of institutions and institutional design when_a group of actors faces a
coordination problem. The design of institutions takes place in an ex ante
process in which individuals attempt to determine a communication mechanism
through which coordination will be consistent with rational behavior by the
participants. Such a mechanism becomes an "institution" only if the players
have no incentive to change the mechanism. Further development of such a
theory of institutions will require specification of the process in which the
mechanism is created and changed, including considerations of "durability"

(Holmstrom and Myerson 1983; Crawford 1985) and the possible role of an
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arbitrator who, unlike ours, is not impartial (such as the "principal” in
Myerson 1982). The work of Myerson (1982) on "optimal coordination
mechanisms” (which does not focus on coordination as we define it) is similar
to such a model of institutional creation, except that here we want the
entire group of "agents” to produce the mechanism, with no exogenously
designated "principal.” Such a model would offer a wealth of important
applications in social science, in areas as diverse as the evolution of
economic institutions (North 1981), the development of social norms (Taylor

1987), and the creation of political constitutions (Buchanan 1975).
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Proof of Propositions 3 and 4

Symmetric mechanisms can be described by seven variables, v V.

1: e 7;

defined as follows:

p{x, x; a, a)

i
<

u(y, v; a, a) = v,

»
P
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i
=
E
.
¥
p
P
N
I

u(x, y: 1/2(1~V1~v

5)

p(x, y; b

u(x, x; b, a) = p(x, x; a, b) =v
b

n(y. y;

u(y. x; b, a) = u(x, y; a, b) = 1=vy-v ~vg
p(x, x; b, b) = Ve

p(y. y: b, b) = v,

p(x, y: b, b) = u(y., x;: b, b) = 1/2(1—v6—v7).

The ex ante expected payoff, given honesty and obedience, from a mechanism pu
= <v1, cees v7> can then be written as
(1) = (1-p)(a+1)[(1-p) (1-v,~v,)/2 + p(1-v5=v,~v,)]

+ p(b+1)[p(1—v6—v7)/2 + (1-p)v3].

For an a-type to report honestly, given that the other player will be

honest and that both will be obedient, p must satisfy the constraint
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(a+1)p(v6+v7)/2 - (a+1)(1—p)(v1+v2)/2

- (a—l)(v3—1/2) + [1—(a+1)p](v4+v5) 2 0. (C1)

This condition is derived as follows: if an a-type reports honestly, his
expected payoff is (1—p)(a+1)(1—v1—v2)/2 + p[a(l—vB—v4—V5) + VB], while if he
reports b his payoff is (1-p)(av3+1—v3—v4—v5) + p(a+1)(1—v6—v7)/2. The
difference between these two expressions gives the left-hand side of (Cl).
Similarly we can derive the honesty condition for b-types, assuming

obedience:

(V3—1/2)(b—1) + (b+1)(1—p)(v1+v2)/2

- (b+1)p(v6+v7)/2 - [1—(b+1)p](v4+v5) 2 0. (C2)

For an a-type player i to obey a recommendation of di = X, given honesty and
given that the other player, j, will accept his recommended move dj’ we need
to calculate the probabilities that the arbitrator will suggest dj = x and dj
=y, given that di = x. In general this conditional probability is given by

the expression:

Pr{dizx and dj=x}
Pr{dizx}

Pr{dJ.:xI d,=x} =

and similarly for Pr{dj=y| di=x}. Ignoring the denominators (which are
identical throughout the inequality below), the obedience condition for an

a-type with di = X becomes

a[(l—p)(l—vl—vz)/2 + p(l—vB—v4—v5)] - (l—p)v1 - PV, 2 0. (C3)
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Similarly, when di =Yy,
(1—p)(1—v1—v2)/2 + pvy - a[(l—p)v2 + pv5] 2 0. : (C4)
For b-types the analogous obedience conditions are

b[(l—p)vs + p(l—V6—V7)/2] - (lz—p)v4 - pV6 20 (CS)

(l—p)(l—VB—v4—V5) + p(l—v6—v7)/2 - b[(l—p)v5 + pv7] 2 0. (ce)

Thus constraints (C1) through (C6) give incentive compatibility
conditions bn feasible mechanisms p. There should also be constraints so
that neither type would prefer to be'both dishonest and disobedient. These
would add six more constraints toc the problem: three for an a-type specifying
that honesty and obedience is preferred to dishonesty combined with
disobedience only when action x is suggested, with disobedience only when
action y is suggested, or with both; similarly for a b-type. In what follows
we ignore these constraints and solve for the relatively unconstrained
optimal mechanism, and later show that at this optimum it is the case that
both types will prefer to be obedient even if they are dishonest. Thus the
ignored constraints will also be satisfied at the relatively unconstained
optimum, so that this is a global optimum as well. For example, if (C3) aﬁd
(C4) are altered by replacing "a" with "b'", then we have the condition that a
b-type will want to be obedient after reporting dishonestly; similar
conditions are derived by replacing "b" with "a" in (C5) and (C6). Label

these constraints (C3') - (C6'). Since b > a, if (C6) holds then (C6') holds
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as well, and if (C3) holds then (C3') holds also. So all we will need to
show below is that (C4') and (C5') hold.
The final constraints on feasible mechanisms require that the relevant

parameters generate well defined probabilities:

Vy t v, v <1 (Ch)
vyt <1 (C8)
Vg t Vo <1 (C9)
v, 20, k=1,..,7. (C10)

An ex ante efficient ICDM thus is one that solves the following program:

P:  max m subject to (Cl) through (C10).
7

% % *
Denote a solution to program P as pu = <V1’ cees v7>.

From the definition of the ex ante payoff 7 we have that dn/dv, > O,

3
while aw/avk <0, k # 3. These last signs follow from the fact that the
variables Vi k # 3 summarize the probability of ending up "off-diagonal”,
and as such are associated with lower payoffs. Further, since the flat
mechanism is always incentive compatible, an efficient mechanism will have
VB* 2 1/72. Note also that, since Vi

coordinate, they do not contribute to a player’s willingness to follow the

k # 3 are probabilities of failing to

suggested action; thus the obedience constraints (C3) - (C8) remain satisfied
if we lower any of these variables. In particular, if the efficient

mechanism is such that 3 Vi > 0 it must be that either (Cl} or (C2) holds
k#3

with equality, but not both (both hold in the flat mechanism where 2 v
k#3

k:O).
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Further, it is immediate that if either constraint holds with equality, the

other will hold with strict inequality if 3 vy > 0 and Vg 2 1/2. We claim
k#£3

that in an efficient mechanism, (Cl) is the constraint that holds with
equality. To see this, suppose that (C2) holds with equality in an efficient
mechanism; then it must be that v; = v: = 0, since othewise we could lower
either variable by a sufficiently small amount, still satisfy (Cl) - (C6),
and thereby increase m. Since Vg 2 172, (C2) will hold with equality only if
the mechanism is flat or if (b+1l)p < 1 and V4tV > 0. In the latter case,

though, we could lower v, or Ve by a sufficiently small amount, satisfy the

4
constraints, and improve the payoff w. Thus, the ex ante efficient mechanism
will be such that (Cl) holds with equality, proving statement (3.1), so that
by deriving the efficient mechanism on the hyperplane defined by (Cl) we will
have derived the efficient mechanism in general. Consequently we can ignore
constraint (C2) in solving for the efficient mechanism, since (C2) holds when
(C1) is satisfied with equality.

Constraint (Cl) holding with equality also implies that VT = v; = 0,
since if not we could lower these variables by a small amount, still satisfy
(C1) - (C6), and increase the expected payoff; thus statement (3.2) follows.
Hence in any efficient mechanism, if both players are a-types they will
always coordinate, and do so with equal probability on either player’s
preferred outcome. Since the optimal values of vy and v, are fixed at zero,

we can ignore these variables in solving for the efficient mechanism.

Along the hyperplane determined by (Cl), we can write vy as a function

of (v,, ..., v7):

VoV oo Vo) = 1/2 4 Zi‘f [5*2-1_ p(vgtv,) + (1-(a+1)p) (v +vs) .
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Let Q(p) denote the set of values (v4, e V7) such that v3(v4, e v7) 2
172 and vy 20, k=4,...,7. For convenience define w'(v4, cees v7) as
7(0, O, v3(v4, cees v7), Vgs e v7). Then any solution to the following

program will also be a solution to program P above:

P': max w'(v
Q(p)

40 V7) subject to (C3)-(C6), (C7), (C9).

Note that w' is additively separable and linear in all of its arguments. In
what follows we will ignore constraints (C3) and (C4) as well, so that after
characterizing a candidate for an efficient mechanism it will remain to show
that (C3) and (C4), as well as (C4') and (C5'), are satisfied.

The solution of the program P' can be thought of as a search for

profitable deviations from the flat mechanism. From our analysis of ex ante

classical efficiency, we know that any such improvement must be obtained by
increasing the frequency of coordination on the b-type’'s preferred outcome

when the players are of different types; that is, by increasing V3 above 1/2.

To satisfy constraint (Cl), however, any increase in v, must be offset by an

3

occasional failure to coordinate. Since we know that v1 = v2

failure must occur in cases where at least one of the players is a b-type.

= 0, this

The question, then, is where to induce the failure -— for instance, if we
increase both e and V3 along the constraint (Cl), does the resulting
increase in payoff when the players are of different types offset the loss
when both are b-types? The answer will depend on the value of p given (a,b);
the separability of 7' will allow us to examine individually the tradeoffs

from increasing each of v4,...,v7.
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Differentiating w',

g%; = g%; = l%é%%%lg'[P(l-P)(b+1) - p(1-p)(atl)] - p(1-p)(a+l)

p(1-p) [ 7GR (b-a) - @)1,

Hence our value p = 1/(a+l) - (a-1)/(b-a) is that for which 61r'/6v4 2 Oasp

§ 5} likewise for 6#'/6v5. Similarly,

%%; = S%; =L L%ﬁ%%%—] [p(1-p)(b+1) - p(1-p)(a+1)] - p=(b+1)

p(1-p) [ L2 1 (ba) - pP(be1).

We have set p

1 - (b+1)(a-1)/(a+1)(b-a). so that 8w'/8vg } O as p ¢ P
similarly for 6w'/6v7. It is immediate that p < p; this plus the fact that
Q(p) includes the origin then establishes statement (3.3); namely if p > p.
the efficient mechanism is flat: u* = M- It also establishes statement
(4.1) which says the same for p 2 p. (This is the first of several points at
which strict and weak inequalities have been inserted arbitrarily in
Proposition 4; the boundaries between statements (4.1) and (4.2), between
(4.1) and (4.3), and between (4.3) and (4.4) are sources of nonuniqueness of
the optimal mechanism; as the values of some of the Vi do not coincide there.
The boundaries between (4.2) and (4.3) and between (4.2) and (4.4) are
assigned completely arbitrarily, as the v, -values do coincide.)

k

Suppose now that p < p, so that an increase in v, or AL increases the ex

6
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ante expected payoff w'. Let C

5(v4, Vg v7) denote the LHS of constraint

(C5); then

805
5;g'= pb[(1-p)(a+1)/(a-1) -11/2 - p,

so that 6C5/6v6 2 0 as

b[(1-p)(a+1)/(a-1) -1] } 2.
Since p < p, (1-p) > [(b+1)(a-1)]/[(b-a)(a+1)]. so that
b[(1-p)(a+1)/(a-1) -1] > b[(b+1)/(b-a) - 1] = b(a+1)/(b-a) > 2.

Thus for p < P, 6C5/6v6 > 0; a similar result holds for 6C5/6V7. Since (C5)

holds in Q(p) when v = O (because v, > 1/2, v, 2 v, and b > 1), (C5)

6~ V7 3 3¢ Vg
will be satisfied for all parameter values in Q(p), so that we can ignore
this constraint. Thus in determining the optimal values of Vge o0 Vo when
p < p the relevant constraints are (C8), (C7), and (C9) (we return
subsequently to (C4)). We make the following claim: if there exists an
efficient mechanism with \L > 0, then there exists another mechanism yielding
the same payoffs with vy = 0. To see this, note that Vs and Vo enter
symmetrically in constraints (C7) and (C9) through v3(°) as well as entering
symmetrically in the payoff w'. Hence a "shift" in probability from AL to Ve
will not effect these. Further, if (C6) is satisfied when AL > 0, then V% =
Vo T € and Vé = Vg
on (C6) is greater than that of v

+ e satisfy (C6) as well, since the marginal impact of AL

6 this then proves the claim, and shows why
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in general the ex ante incentive efficient mechanism may not be unique. Thus

= * '
for all p < p we will set Vo = O in order to compute an optimal mechanism as

in Proposition 4. An analogous argument allows us, without loss of

generality, to set v; = 0 as well. Thus constraint (06) will always be
satisfied, implying that the only relevant variables when p < p are Vg and Ve
and the only relevant constraints are (C7) and (C9).

Suppose now that p € [5: ;). Since 7' is then nonincreasing in vy @
mechanism for which there does not exist v& < v: such that the resulting
mechanism is feasible would be an optimal mechanism. Let vg(v4) denote the
value of Ve such that constraint (C7) holds with equality given Vy Since
vg(v4) is not necessarily decreasing in Vg the feasible set need not be
convex to the v6—axis. Thus it is not immediately obvious that the optimal

value of V4 will be zero. To see that this will in fact be the case, we

establish the effect on 7' of changes in Vy along the boundary determined by
vg(v4). Implicit differentiation of the equation where (C7) holds with
equality gives us that
7
6v6(v4) _ —6v3/6v4 + 1

8V4 6v3/6V6 ’

thus

-—6V3/6v4 + 1

or'
p(b+1) {(p/2) 6V3/6V

= 7
6V4 V6=V6(V4)

6

v (1p)L zv ) sz 6v3/6j§V+ 1 n
V4 g V3%

= po+{(0 TEER 1 - (1-p))

= [p(b+1)/(a+1)][a - (a+1)] < O.
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Thus 7' is decreasing in 2 along the boundary determined by vg(v4). This
implies that for p € (p.p). v: = 0.

The optimal value of Ve for the program P' will then be equal to
min{l, (a-1)/[p(a+1)]}., depending on where the function vg intersects the Ve
axis. This then establishes statement (3.4)(i), statement (4.2) for p € [p,
5), and statement (4.3), provided we can satisfy the "ignored” constraints.

3

To see that these hold as well, note that v: = Vg = 0 implies that (C3),

(C4), and (C4') are all satisfied. The remaining constraint to check is

(C5'), which we can rewrite as

a[(l'—p)VB + p(l“V6)/2)] 2 pV6-

+ (atl)p so that (C5') becomes

* >
If p < (a-1)/(a+1l), then v, = 1 and v, = 5(a-1)’

1
6 372
a(l-p)(a-1+(a+l)p) 2 2p(a-1).

Now p < p implies that (1-p) > (a-1)/(a+1), which in turn is greater than p,

so it follows that a(l—p)(a—l) > p(a-1) and a(l-p)(atl)p > p(a-1), and (C5')

a-1

holds. If p > (a-1)/(a+l) then vy = @+ 1)p °

and (C5') becomes

al(-p) + 5 (1 - 1 2 5

Cancelling terms, we get

a(a+1-p) 2 a-1,
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so that (C5') holds for p > (a-1)/(atl) as well.
Finally, let p < 5, s0 that the positive indirect effect (through v3) on
m' of an increase in vy outweighs the negative direct effect. As above we

can without loss of generality let v; = V; = 0. Further, since 61r'/6v4 is

decreasing along the constraint defined by vg(v4), if the function vg
intersects the Ve axis below Vg = 1 then the optimal mechanism will be such
that v: = O; otherwise v: > 0. This establishes statements (3.4)(ii) and

(4.4), and statement (4.2) for p < p, again provided the "ignored"
constraints are satisfied. As above, constraints (C3), (C4), and (C4')
follow immediately; if p < (a-1)/(a+l) constraint (C3) follows from the fact
that for p < p, (1-p) > p. What remains is to show that (C5') holds as well.
Suppose p < (a-1)/(a+l). Since ve=1and v, = 1-v*, we can write (C5') as

6 4 3

(1-p)(a+1)vy > 1.

Substituting v3(v4, R v7) for ALY

(-p)(arn) |1 + (22p , Io(atp a-l(atle | 5

Cancelling terms, we get

(1-p)(a+l) [(a-1)(a-(a+l)p) + a - 1] > 2(a-1) [a - (a+l)p].

or

[(1-p)(a+1)]° > 2[a - (a+1)p].
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At p = O this holds as a strict inequality, while at p = (a—-1)/(a+1) this

holds with equality. Further, the graph of the left-hand side crosses that

of the right-hand side from above at p = (a-1)/(a+l), so that V p <
‘(arl)/(a+1) the above inequality holds. If p > (a-1)/(a+l), then the

argument for when p € (Eﬁ;) shows that (C5') holds in this case as well.
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Notes

1. Provided that the equilibria are not themselves strictly Pareto ranked,
in which case an obvious focal solution is at hand. To prove that such a
coordination problem always exists in a two-player game with multiple
equilibria, suppose that there are two equilibria in which both players use
different strategies. Without loss of generality, say that each player uses
strategy 1 in the first equilibrium, and strategy 2 in the second. Let aij
and bij be the payoffs to players A and B, respectively, when player A uses
strategy i and player B uses strategy j. Since (1, 1) is an equilibrium, it

must be that aq 2 ay for all i, and likewise b11 2 b Since (2, 2) is an

1j°

and b 2 b,.. If there is no strict Pareto relation

equilibrium, a 2

29 2 349 22
between the two equilibria, we may also assume WLOG that asy 2 Agq and b22 2
bll' But then it is immediate that Ao < a1y and b12 < b22, and so the
outcome (1, 2) is weakly Pareto-inferior to both (1, 1) and (2, 2). If the
original Nash equilibrium conditions are satisfied with strict inequality for
a player, then the inferiority of (1, 2) is strict for that player.

Extension of this result to an arbitrary finite number of players is

straightforward.

2. This is the same method as used by Matthews and Postlewaite (1989) to
allow players to randomize over efficient allocations without the use of a
mediator or of a jointly observable random device. Notice that the choice of
this convention itself entails a coordination problem: do the players choose

(x, y) when they match and (y, x) when they do not, or vice versa? At least
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this derived coordination problem is of the no-conflict sort, where t = 1.
With communication, such problems are relatively easy to solve, so it does

not seem worrisome in the present context.

3. Since we focus on the Bayesian equilibria of G+, this specification could
cover as well any communication process in which the players have a sequence
of opportunities to send such messages, by considering each Ci as a set of

normal-form strategies as before. Notice that this would not be true of some

equilibrium refinements, such as sequential equilibrium.

4. This raises the issues of (1) providing the agency with incentives to
behave in an optimal manner, and (2) the ability of the agency to commit
itself to carry out the designed mechanism. We postpone consideration of

these important topics.
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Table 1. Expected payoffs from G for each player—type, and the
relations among them.

For p € Pli
expected payoff in equilibrium
Player Type (1.0) (1.1)
i a a < a/(a+1)
i b b < b/(a+1)
-i a 1 < a/(a+1)
-i b 1 % b/(a+1)
For p € P2:
expected payoff in equilibrium
Player  Type (1.0) a-2)(1) .26
i a a > P { b/(b+l)
i b b > b(1-p} > b/(b+l)
-1 a 1 > P > 1/(a+1)
-i b 1 ¢ b(i1-p} < b/(a+l)
for p € PBZ
expected payoff in equilibrium
Player Type (1.0) (1.3)
i a a > b/ (b+1)
i b b > b/ (b+1)
-i a 1 > b/ (b+1)
-i b 1 > b/(b+1)
Notes:

t The payoffs for equilibria described in (1.4) are identical to
those for (1.2)(ii}.

% This relation is ">" if and only if b-a < 1.

¢ This relation is "2" if and only if p 2 (b-1)/b.
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