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Lov Frequency Filtering and Real Business Cycles
Abstract

It is common practice in business cycle analysis for researchers to
filter out low frequency components, so as to focus their efforts on business
cycles rather than economic growth. In recent real business cycle research,
this "trend elimination” has most frequently been undertaken with the HP
filter due to Robert Hodrick and Edward Prescott [1980].

In this paper, we provide a detailed discussion of the HP filter from
time and frequency domain perspectives, motivating it as a generalization of
the well known exponential smoothing filter. Further, we show that the HP
filter—in parameterizations applicable in large samples—contains a centered
fourth difference, so that it is capable of rendering stationary time series
that are "difference stationary" and, indeed, integrated of higher order.

However, our application of the HP filter to U.S. time series and to the
simulated outcomes of real business cycle models leads us to question its
widespread use as a unique method of trend elimination, prior to computation
of moments summarizing model and actual time series. We provide examples of
how standard HP practice produces major departures from alternative, more
traditional views of cyclical fluctuations. Notably, HP filtering
dramatically alters measures of persistence, variability and comovement.
Thus, we recommend some alterations in existing practice of communicating
research results on business cycle models.






I. Introduction

A hallmark of modern equilibrium business cycle theory is the view that
growth, business cycles and seasonal variations are to be studied within a
unified framevork. Even though rational economic agents are presumed to
respond differently to shocks of varying duration, dynamic economic theory
generally imposes concrete and extensive restrictions across frequencies.

For one example, the manner in which agents respond to varying seasonal
opportunities provides information about how they will respond to temporary
opportunities during the course of business cycles. For another, the manner
in which labor supply responds to the permanent wage and wealth changes
occurring during economic growth restricts responses at business cycle
frequencies. |

Yet, beginning with Kydland and Prescott [1982], many studies in the real
business cycle research area apply the HP filter—due to Hodrick and Prescott
[1980]—to both time series generated from an artificial economy and actual
data before making conclusions about the properties of the model and its
congruence with observations. This practice corresponds to an implicit
definition of "the business cycle frequencies" and a decision to downplay the
implications of the model at other frequencies, generally on the grounds that
these represent growth rather than business cycles.

Reading the literature on real business cycles, one can easily come to
the conclusion that the practice of "low frequency filtering" has relatively
minor consequences for how one thinks about economic models and their |
consistency with observed time series. This paper demonstrates that the
opposite conclusion is true: the practice of lov frequency filtering has
major consequences for both the "stylized" facts of business cycles and the

perceived operation of dynamic economic models. In fact, the components of



time series removed by mechanical application of the HP filter are
sufficiently important that one may feel that the baby is being thrown out
vith the bath water in terms of business cjcle research. Consequently, we
provide some specific recommendations for alterations in practice, i.e., in
the reporting of research results on business cycles.

Our motivation for this investigation derived from two sources, which we

provide to the reader as a puzzle to be investigated in the remainder of the

paper.

Implications for Simulated Time Series

Our first exposure to the potential importance of HP filtering involved
an attempt to replicate some results obtained in Gary Hansen's [1985] analysis
of the effects of varying the labor suppl&‘elasticity in a basic real
business cycle model.!

Table I-1 provides a few population moments, basically those reported by
Hansen [1985], with and without HP'filtering.2 The model economy is one in
which the single source of uncertainty is a trend stationary technology shock
to total factor productivity; it is detailed in King, Plosser and Rebelo
[1988a] and reviewed in section III below. From this table, it is clear that
HP filtering alters the moment implications of the model in a quantitatively

important manner, but that this influence is not constant across series.

IYe thank Gary Hansen for providing some simulation results for unfiltered
versions of his model [1985] that confirmed our conjectures that filtering,
not model solution methods or model parameter values, lay at the heart of
major differences in moments.

ZReporting of these selected moments is common in discussions of implications
of real business cycle models, as—for example—in McCallum's [1989] survey,
Tables 1 and 2.



First, HP filtering, which extracts a component from the original series,
lowers volatility as measured by the standard deviation columms in table 1.
Second, HP filtering alters the relative volatilities of different series
(the standard deviation of a variable divided by that of output). 1In
particular, it incréases the relative volatility of investment and hours
while lowering that of consumption, the real wage and the capital stock.
Third, the correlations between individual series and output—a measure of
cyclical sensitivity—are substantially altered by HP filtering. Notably,
the cyclical variation in capital and labor input is dramatically altered by
filtering. In the unfiltered economy, capital's correlation with output is
.73 and that of labor with output is .79. With filtering, capital's

correlation drops to .07 and that of labor rises to .98.

HP Filtering of Some U.S. Post War Time Series

Oﬁr second indication of the potential importance of HP filtering came
from Marianne Baxter's empirical work (Baxter [1988] and Baxter and Stockman
[1988]) on stylized facts of economic fluctuations in the United States and
other countries.3 To provide some empirical background to our subsequent
analysis, we begin by displaying an application of the HP filter to a measure
of aggregate economic activity and a measure of labor input. These are the
logarithm of U.S. real gross national product, which we denote Vi» and the

logarithm of per capita average hours worked, which we denote Nt'

3We thank Marianne Baxter for suggesting the revealing examples contained in
this section and for technical assistance in producing these results.



Like other low frequency filters, the HP filter can be viewed as
extracting growth and cyclical components from the data.4 To start, let us
focus on the Ve series and begin by dividing Vs into a linear trend (qt) and
a residual deviation from a linear trend (so that the residual yz =y, — 1) .
If the growth component is assumed to be a deterministic trend, then the
business cycle component is yz. Under the HP filtering procedure, by
contrast, the time series is permitted to have a stochastic growth component.
In addition to extracting a linear trend—if one exists in the series under
study—HP filtering also removes some additional variation whose properties
depend on the series in ways detailed in section II below. The HP cyclical
component is then defined as the difference between the original time series
and the HP growth component.

Implications for Real GNP: Figure I-1 plots the HP growth component versus
the linear trend component of real gross national product. A relatively
common reaction to this figure is that these ways of removing growth are not
too different. But it tufns out that there are major consequences for
business cycle components.

In order to study the practical implications of alternative detrending
methods, we construct the HP stochastic growth component by subtracting a
linear trend from the HP growth component (taking the vertical difference

between the series in Figure 1). We call this component HPg(yt).

4In part, our discussion in this section and below involves the issue of how
best to define business cycles. 0One possibility—which is sometimes
discussed in evaluation of mechanical procedures such as the HP filter—would
be to select some mechanical method that broadly replicated the stylized
facts reported by NBER researchers following Mitchell [1927,1951] and Burns
and Mitchell [1941]. However, preliminary work by King and Plosser [1989]
leads us to believe that the NBER methods should be subject to some scrutiny
as well.



Summarizing our definitions, the alternative decompositions are

Yo = TE* Y =t o+ BPCGy) ¢ pe(y,),

i.e., the HP cyclical and stochastic growth components sum to the residual
from the deterministic trend.

Figure I-2 makes clear that the HP stochastic growth component
constitutes a major portion of the departure of output from a linear trend,
so that the implied cyclical components arising from these two methods of
trend elimination are very different both in terms of magnitude and
persistence. Notably, the autocorrelation correlation coefficient of yi at
the annual lag is .72. Figure I-3 plots the HP cyclical component (HPC(yt))
of real GNP, which is a rapidly fluctuating series, as may be judged from its
autocorrelation structure, which is presented in Table I-2, panel A. The
autocorrelation at a year lag (four quarters), for example, is only .09,
which is an order of magnitude smaller than the autocorrelation coefficient
for HPr(yt) at the same lag.

Implications for GNP and Labor Input: Figure I-4 plots yi versus the

departures of our labor input measure from its mean (i.e., NtQﬁ). There is
not a strong relationship: the contemporaneous correlation is only .06.
However, when one compares the HP cyclical components of output and hours in
Figure I-5, there is a striking coincidence: the contemporaneous correlation
is .86. Further information on the implications of filtering for

correlations among variables is contained in Table I-2.

Qutline of Our Analysis

To this point, we have shown that low frequency filtering—using the

Hodrick and Prescott [1980] filter—has important implications on moments of



U.S. time series and a simulated real business cycle model. In developing an
explanation of the origin of these results and their practical consequences
for business cycle research we proceed as follows. In section II, we first
discuss what linear filtering is and then review some facts about linear
filters. We next derive the HP growth and cyclical filters as a direct
generalization of the well-known exponential smoothing filter of Brown
[1962]. 1In section III, we apply the HP filter to some basic real business
cycle models to further develop the sorts of implications suggested by
section III. Building on these results, in section IV, we provide a
concrete set of recommendations about how to best report results of
investigations into business cycles. Section V is a brief summary and

conclusion.

II. Low Frequency Filtering

There is a lengthy history in macroeconomics of filtering time series.
For example, there is extensive use of moving averages of time series by
Mitchell [1930] and Kuznets [1930] in their analyses of business cycles and
economic growth. Further, applications of moving averages and other linear
filters can sometimes lead to important statistical artifacts in time series.
For example, Fishman [1969] summarizes research that points out how the
apparent long swings in economic activity suggested by Kuznets [1961] might
potentially have arisen simply from his application of moving averages rather
than as a property of underlying economic time series.

In this section, our objectives are twofold. First, in section II.1, we
provide an overview of analytical tools for studying the implications of
linear filters. This section should be skipped by readers who are

comfortable with introductory treatments of frequency domain methods (e.g.,



Harvey [1981, Chapter 3]). Second, in section II.1, we motivate the HP
filter as a generalization of the familiar class of exponential smoothing
(ES) procedures studied by Brown [1962]. Throughout our discussion in this
section, we will focus our attention on a representative time series Vi
which we treat as the logarithm of an original series so that its first
difference is a growth rate.

In filtering Yi» @ researcher is motivated by one of several objectives:
(i) extraction of a component such as a growth, cyclical or seasonal
component; (ii) transformation to induce stationarity; or (iii) mitigation of
measurement error that is assumed to be particularly important at specific
frequencies. We concentrate on the first two motivations, since a detailed
treatment of measurement error would require grappling with details of a
specific application.

To focus our discussion, then, consider the idea that a particular
economic model makes predictions about a "business cycle" component of a time
series and that the researcher views the series as containing both growth and

business cycle components,

AL K M

vhere y% is the growth component and yz is the business cycle component.

Representing y% as a moving average (possibly two sided) of observed Vi

permits extraction of the growth component (y%) and the cyclical component

(y:). That is, suppose that we assume that

[14]

= ¥ . . = G(B R
v o 8j Yy_j = 6(B) vy

vhere B is the backshift operator with ant =x,_,forn : 0. Then, since



yg =¥; - y%, it follows that yz is also a moving average of Vi

y; = [1 - 6®)] y, = CB) y,.

In the language of filtering theory, G(B) and C(B) = [1 — G(B)] are linear

filters and we nov explore some of their properties.

I1.1 Some Facts About Linear Filters

In order to discuss why a specific linear filter may be described as a low
frequency filter, we are led to consideration of the Fourier transform of a
linear filter (also called the frequency response function of the filter).

For example, the frequency response of the growth filter is

~ 1]
G(w) = % 8;

j=-o

exp (-ijw)

where i denotes the imaginary number /(1) and where w is frequency measured
in radians, i.e., -7 £ w £ T.

Gain and Phase Decomposition: At a given frequency w, the frequency
response é(w) is simply a complex number, so that it may be written in polar
form as a(w)=P(w)exp(—iW(uD), where F(w)=|é(w)| and ¥(w) are real numbers
for fixed w. In these expressions and below,‘|x| denotes the modulus of x
(the square root of the product of x and its conjugate). The gain of the
linear filter, I'(w), yields a measure—at the specified frequency w—of the
increase in the amplitude of the filtered series over the original series.
The phase, ¥(w), yields a measure of the time displacement attributable to
the linear filter, again at the specified frequency w. The frequency
response function can be decomposed into the gain function I'(w) and phase

function ¥(w) by replicating the preceding decomposition at each value of w.



To take a concrete example, suppose that a time series is strictly
periodic with a period of 97/w. Then application of the linear filter G
would simply alter the range of this periodic function by F(w*)=|G(w*)|, as
illustrated in Figure II-la. Further, Figure II-1b illustrates the
hypothetical phase shift effect of a linear filter.

Symmetric Filters: In our analysis, we will focus on filters that possess a

symmetry property in that gj =g ..

j For any such filter, it is possible to

show that

~ o
G(w) =g, +2 X g cos (Gw)
j=1

using the trigonometric identity 2cos(x) = {exp(ix) + exp(-ix)}. Symmetric
filters have the important property that they do not induce a phase shift,
i.e., ¥(w) = 0 for all w, since the Fourier transform é(w) is real for a
symmetric filter. Thus, the gain function is equal to the frequency
response, so that we use these terms interchangeably below.

Further, in the class of symmetric filters, it is easy to see that

~ @®
G(0) = X 8 ~ 1

j=—o

is a necessary and sufficient condition for a filter to have the property
that it has unit gain at zero frequency.’ Thus, by extension, the associated
cyclical filter C(B) = [1 — G(B)] will place zero weight on zero frequency

whenever é(O) =1,

5This property obtains for symmetric filters since cos(0)=1 and it follows
directly that G(0) =1. Moreover, this property holds as well for

nonsymmetric filters since exp(0) = 1 implies that G(0)=1 under the condition
that the filter weights sum to unity.
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By restricting attention to symmetric filters, then, we can simply
express their implications by plotting the gain for various values of w.
Figure II-2a depicts the gain function of an idealized growth filter that
emphasizes only frequencies up to some maximum w*. It has unit gain for
frequencies 0 { w ¢ w* and zero gain for wr { w ¢ 7. Figure II-2b shows the
gain of its cyclical counterpart, C(B) = [1 — G(B)]. However, as discussed
by Koopmans [1974, pages 176-185], it is not possible to actually apply such
an ideal filter to a finite length data set, since its comnstruction requires
an infinite number of weights. Adaptation of the ideal filter to a finite
weight context—including procedures such as truncation of the filter
weights—generates problems that make the resulting filter imperfect. For
example, Koopmans [1974, figure 6.7, page 185], demonstrates that the squared
gain of the filter obtained via truncation is‘not flat over either 0 < w < W
or w' < w < 7. Rather, there is "leakage" from those frequencies for which
the ideal filter's gain is zero to those for which it is unity. For this
reason, we consider the linear filters arising from some commonly analyzed

minimization problems, which take explicitly into account the length of the

data set.

I1.2 Analysis of Some Common Linear Filters

In many practical contexts, one frequently approaches the task of
extracting unobserved components by solving a minimization problem. Two
noted examples are the problem (ES) which leads to the exponential smoothing
filters for growth and cyclical components and the problem (HP) which leads

to the Hodrick-Prescott [1980] filters for growth and cyclical components.S®

60ur formulation of the HP problem is slightly different from that originally
presented in Hodrick and Prescott [1980], in terms of treatment of endpoints.
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' T
(ES) mn 3 [, -9+ 2 6B -8 7]
{y%}Ll -
. I 2 g g g 2
(&P) min 3 [, - y9? ¢ 2 165, - v® - oF -8 %)

gT+1 t=1
rgti=0

In practice, the ES program would contain an additional parameter—a constant
mean of the growth rate—to permit the minimal extraction of a deterministic
linear trend for each chosen value of A. The HP program automatically
involves minimal extraction of a linear trend component, since this
specification involves no change in the growth rate. Thus, throughout our
discussion, we proceed as though a linear trend had already been removed from
data. |

Each of these minimization problems contains a parameter ) that
"penalizes" changes in the growth component (in problem (ES)) or in the
acceleration of the growth component (in problem (HP)). Below, we will use
the first order conditions from these problems to characterize the associated
linear filters. For the minimization problem (ES), the first order condition

takes the form
0=-2 [y, -8l +2) ¥ -y ;1 -2x b, - y81.

For the minimization problem (HP), the first order condition takes the form

However, this difference is unimportant given our focus on the "infinite
sample" version of the filter.
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0= _.2(yt — Y%) + ZA[(Y% - Y%_l) - (y%——i - y%—2)]
-— 4)\[(Y%+1 - yl%) - (y% . y%—l)]

+ 2A[(y§+2 - y%+1) - (y’%+1 - y%)].

In each case, then, the first order condition links yi =V~ y% to changes
in the growth component in adjacent periods. Below, this shared
characteristic will play an important role in analysis of the growth and
cyclical filters associated with these minimization problems.

In studying the optimal linear filters that solve these first—order
conditions, we will consider the limiting version that obtains as the
historical record length (T) is driven to infinity. This results in
relatively simple formulae describing the filters and provides the maximum
opportunity for these to match the perfect low frequency filter described
earlier. In this case, each of the first order conditions can be written in

the form F(B)y% =y The F(B) polynomials associated with the two problems

e

are:

Fyo (B) AB L+ (1420 —AB = [AU-B)U-B1) + 1]

B2 — 3B + (6M+1) — 4xB + 2B2] = A(1-B)2 (- H2 + 17,

Fio (B)

In order to find the growth and cyclical filter, we need to invert F(B) since
G(B)=[F(B)]_1 and C(B)=1—G(B)=[F(B)—1][F(B)]—i. The details of this process
are relatively easy for the ES filter; Appendix A records the more tedious

calculations for the HP filter.
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Growth and Cyclical Components Via Exponential Smoothing

The extraction of low frequency components via exponential smoothing has
a long tradition in economics, having been employed—to cite only one
example—in Friedman's [1957] research on the permanent income hypothesis. In
contrast to that application, however, the problem (ES) leads to a two sided
exponential smoothing filter since we do not comstrain y% to be a function
solely of past history. Manipulating the relevant first order condition for

the ES filter, we find that

) [1-B] [1-8 1

C(B) = [F(B-11[F(B)]1 T = .
1 + A[1-B]l[1-B ]

Thus, we find that the ES cyclical filter contains forward and backward
differences. A key implication of this finding is that the ES filter would
render -stationary Nelson and Plosser's [1982] differenced stationary
stochasticiprocesses and also integrated processes of order two, whose growth
rates are not stationary.

Our convenient expression for the cyclical filter's Fourier transform is

é(w)

[F(exp(-iw)) — 11/F(exp(-iw))

A [1 —exp(=iw)] [1 - exp(iw)] - 2) [1 - cos(w)]
1+ 31 - exp(—iw)] [1 - exp(iw)] T+ 2V [1 —cos(w]’

where the third equality makes use of the trigonometric identity discussed

earlier. Thus, the cyclical filter has zero weight at the zero frequency

(since cos(0) = 1) and assigns a weight close to unity at high frequencies

-1, é(w) = 4)/(1 + 4)), which is close to one for large )).

(since cos(7m)
Figure II-3 plots the gain of this cyclical filter for some alternative
values of the smoothing parameter A. Higher values of A shift the gain

function upvard, raising the gain closer to unity for each fixed frequency.
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Analysis of the cyclical filter in the time domain is siightly meséier.
To undertake this analysis, we define # to be the smallest root of F, i.e.,
F(0)=F(0—1)=0. This parameter is related to A by the equation
g = {(1+2)) - [(1+2)\)2 - 4A2]1/2}/(2A), so that it is real and less than 1
for any A > 0. The growth filter can then be expressed as G(B) = F(B)—1 =
(0/A)[1—0B]_1[1—08_1]—1. From a straightforvard expansion,

_ 0 ®
- [ 1-6° ]{ sfoesyt"s+ 200syt+s ’

s=

i.e., the growth component is a two sided exponentially weighted moving
average of the original series. Similarly, the cyclical filter can be

expressed as:

6 [1-B] [1-B]

c(B) = -,
X [1-68] [1-87"]

which also makes clear that the effects of second differencing [1—B][1—B—1]
in the numerator are partly undone by the presenée of [1—0B][1—0B_1] in the
denominator. In fact, if 6 were unity (which is true in the limit as A-w),
then numerator and denominator terms would cancel. In practical applications
 is closer to .9, so that while this filter will render stationary an
integrated time series, it will generally preserve more low frequency content
than the first difference filter.

Filter weights for the cyclical filter C(B) are shown in Figure II-4 for a
sample value of the smoothing parameter (A\=60). Larger values of A—which
penalize changes in the growth component—lead to smoother growth components.

Thus, they lead to values of § closer to unity (in the limit as A - o, 61
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so that C(B) =1, i.e., yz = yt). The values of @ for some alternative values

of )\ are given in Table II-1.

Growth and Cyclical Filters via the Hodrick—Prescott Method

It turns out that the HP filters are closely related to those derived
above. Manipulating the relevant first order condition, the HP cyclical
filter C(B) may be written as

A [1-B12 [1-87412

C(B) = [F(B)-1]1[F(B) 7] = i
1 + A[1-B]° [1-B 7]

Hence, the HP cyclical filter is also capable of rendering stationary any
integrated process up to fourth order, since there are four differences in
the numerator.

As with the exponential smoothing filter explored earlier, it turns out
that the Fourier transform of the cyclical component filter has a

particularly simple form:

4)\[1—cos(w)]2

Clw) = 5
1+ 4\ [1—cos(w)]

Thus, the cyclical component filter places zero weight on the zero frequency
[C(0)
[c(m

0] and close to unit weight on high frequencies

16 A/(1 + 16 X)]. These features are reflected in Figure II-5,
which plots the gain for various values of A. Increasing A shifts the gain
function upward, moving a given frequency's gain closer to unity.

Developing time domain representations of the filter is once again more
involved (see Appendix A). The first order condition F(B) may be factored
into (A/6,0,) [(1 - 6,B)(1 — 6,B)(1 — 0,871)(1 — 6,871)], where 0, and 0, are

complex conjugates vhose value depends on A. (These parameters are the zeros
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of F that satisfy |0i| < 1). With this factorization, we can develop a two
sided moving average expression for the growth component

- [ 5 sy 3, sl + ] )

vhere the parameters A; and A, depend on 01 and 02 in a manner spelled out in
Appendix A. It may be shown that the coefficient [Aiﬂi + A20%] is a real
number for each j and that A1 and A2 are complex conjugates. Hence, the
growth component is a two sided moving averages involving a kind of "double
exponential smoothing." Table II-2 indicates the values of the f#'s and A's
that arise with different values of the smoothing parameter A. Figure II-6
plots the filter weights of the cyclical filter for the A=1600 value that has
most frequently been employed, following Hodrick and Prescott [1980].7
Combining the results of this section, we conclude that the HP filter
will render stationary series that are integrated (up to fourth order), but
that it also removes substantial low frequency variation. 0On the other hand,
the HP filter will preserve more low frequency content than the first
difference which is commonly employed for the purpose of achieving
stationarity. As in the case of the ES filter, this property derives from
the fact that the (fourth) differences in the numerator are partly undone by
the [(1 - 0,B)(1 - 6,B)(1 — 0,B™1)(1 ~ 6,87")] terms which appear in the
denominator, since the modulus of Hi is about .9 with the smoothing parameter
A set equal to 1600. Another way to reach this conclusion is to examine
Singleton's [1988, figure 2] comparison of the squared gain of the HP and

first difference filter.

7See Appendix A for a discussion of the rationalization of A = 1600 from the
standpoint of an unobserved components model.
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Comparisons of ES and HP Filters

There is a single parameter on which the gain of the ES and HP cyclical
filters depends, the smoothing parameter. To compare the filters, we chose
A = 1600 for the HP cyclical filter and required that the gain of the HP and
ES cyclical filters be equal at the frequency 7/16, which corresponds to a
period of 8 years (32 quarters).

The results of this comparison are given in Figure II-7: the HP filter
looks more like the ideal filter presented in Figure 2, since its gain
function is more nearly zero for frequencies below 7/16 and more nearly unity

for frequencies above it.

Inverse Optimal Linear Filtering

Given the form of the HP filter, one can ask "for what set of statistical
structures is the HP filter an optimal linear filter in the sense of
minimizing the mean square error as in Wiener [1949] and Whittle [1963]7"8
We treat this question in Appendix B and summarize here the results of our
investigation.

If innovations to the growth and cyclical components are uncorrelated, we
find that a necessary condition for the HP filtering procedure to be optimal
is that the stochastic growth component have a random walk growth rate, i.e.,
that it be second difference stationary in an extension of the Nelson and
Plosser [1982] terminology. However, this condition is not sufficient. For
the HP filter to be optimal, we must further require either that the cycle

consist of uncorrelated events or that there be an identical dynamic

8This question was first posed to us by Mark Watson, who also provided useful
hints about how to proceed with answering the question. Hovwever, Watson
should not be held responsible for any potential errors in following these
leads or for our interpretation of the results.
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mechanism that propagates changes in the growth rate and innovations to the
business cycle component.

In real business cycle models growth and business cycles do not arise as
separate phenomena, so that these models provide no theoretical justification
for decomposition into growth and cycles. The simplest way to introduce
growth into a real business cycle model is to assume that the level of
Harrod-neutral technical progress expands at a constant rate. This induces
common deterministic trends into time series and economic fluctuations are
stationary stochastic processes about this common trend. 1In this case there
is a clear—cut separation between growth and cycles; growth is responsible
for the common deterministic trend while cycles are the fluctuations around
that trend. If we make exogenous technical progress stochasitc and assume
that it follows an integrated process (a kind of "stochastic growth"), then
these will generally set in motion complex responses that may resemble
economic fluctuations (see King, Plosser and Rebelo [1988b, Section II]).
Thus, it is difficult to separate growth and fluctuations in this context.
'The dividing lines virtually disappear in models of endogenous economic
growth, in which transient displacements to the dynamic system have permanent
consequences for the paths of economic quantities (King and Rebelo [1986]).
However, given that there are a variety of motivations for filtering—some
which do not hinge on an interest in precise growth versus cycle
decompositions—we next explore the consequences of low frequency filtering

in standard real business cycle models.
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III. Filtering A Real Business Cycle Model

Our next objective is to investigate how application of a low frequency
filter influences the time series generated by an artificial economy. The
specific economy that we study is one that we have explored in detail
elsevhere (King, Plosser, and Rebelo [1988a]), so that our presentation is
deliberately brief. For reference purposes, the economy is close to that
studied by Hansen [1985] and Prescott [1986], which contain examples of the

application of HP filtering to model and actual time series.

The Basic Neoclassical Model

The deep structure of the model economy—preferences, technology and
resource constraints—is specified as follows:

Preferences: The representative agent values sequences of consumption (Ct)

and leisure (Lt) according to

S gt
By L3 A" u(cy, 1],

t t

where for simplicity we work with the loglinear momentary utility function
u(Ct, Lt) = log(Ct) + nlog(Lt). In this expression E, is the expectation
conditioned on information available at time zero.

Technology: The production and accumulation technologies are

_ 1-a a = (1_
Yt = At [Kt (Ntxt) ] and Kt+1 = (1 6)Kt + It’

vhere Yt is output, Nt is labor input, Kt is capital, It is investment and §
is the rate of depreciation. The production function is constant
returns-to-scale with 0 < @ < 1. The exogenous variables are X , which is a

labor augmenting techmnological shift that satisfies X /Xt =Y > 1, and A,

t+1

which is a stationary total factor productivity shift that satisfies
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log(At/A) = p log(A _4/B) + ¢, with A > 0, p >0, and ¢ is an iid random

A
variable with E(et) = 0 and E(e,) = s%.
Resource Constraints. The resource constraints for goods and leisure are

C, +I_=Y and N, +L_=1.

Values for technology and preference parameters are given in Table III-1.

Approximate Dynamics

The equilibrium quantities for consumption, investment, output, capital
and real wages will fluctuate stochastically around a common deterministic
trend induced by Xt. On the other hand, hours are stationary random
variables. Approximating this system, we can develop a state space system
for the logarithms of variables so that each variable can be written in the
form log(Yt) = log (Y) + log(Xt) + §t’ vhere §t is interpretable as the

deviation from trend.? The state space system which describes the vector z, =

-~ -~ -~ - -~

[yt ¢, i, ky v t] then is:

z, =1Is

t t

with state evolution governed by

M Txa
Spep = M Syt €y and M= 1,
0 »
vhere s_ = [kt At]'and. € = [o EA’t+1]. Coefficients in the matrices II and

M—implied by the Table III-1 deep parameters—are given in Table III-2.

Stationarity of deviations from trend (ul < 1) is assured by diminishing

%0ur approximation strategy—which works off the first order conditions to the
representative agent’s dynamic optimization problem—is detailed in King
[1987] and King, Plosser and Rebelo [1987]. In the present context, it is
equivalent to the log linear approximation strategy of Christiano [1988],
which uses quadratic approximation to the objective function.
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returns to capital (holding fixed labor input). Thus, s _ is stationary so

t
long as A, is stationary (p < 1).
Thus, it is relatively easy to compute the population moments of the

economic variables, z_ and Sy by the two step procedure common in state

t
space systems. First, one computes the moments of the states and then one
exploits the simple relations that are readily shown to exist for moments of
the z variables. For example, if V=E(sts£) is the variance—covariance matrix
of the states, then E(z ,z, ) = IIVII' is the variance of the z variables.

Results reported in subsequent tables involve application of these ideas in a

straightforward manner.

Filtering the System

Table III-3 reports the consequences of application of the Hodrick and
Prescott [1980] cyclical filter for the population moments of the model.
Panel A of the table reports the moments of the original series (i.e.,
linearly detrended); panel B reports moments of the filtered series.

Looking first at the unfiltered moments in panel A, a researcher would
draw one set of conclusions about the relative volatility of different
series: labor input is about half as volatile as output; consumption is about
two—thirds as variable; and investment is about twice as variable. The real
vage is less volatile than output (about two thirds) but more variable than
labor input. Further, one would conclude that labor imput is at best only
slightly more procyclical than capital input, on the basis that each has a
contemporaneous correlation with output of about three quarters. Finally, one
would view the stochastic components of output as relatively persistent given
that the correlation of output with its fourth lag is about .75 and the

correlation with its twelfth lag is about .4.
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Turning now to panel B, one finds the population moments for the
components of time series isolated by the HP cyclical filter, with the
smoothing parameter )\ set to 1600. Through this filter, a very different
picture of business cycles emerges. Consumption is now only about a quarter
as variable as output, labor input is two thirds as variable and investment
is now nearly three times as variable. The volatility of the real wage is
only one sixth that of output. Further, with an application of the HP
filter, the real wage it is sharply less volatile than labor input (only
about one half as volatile).

One now also has a very different picture of cyclical movements in
inputs: labor input is very highly correlated with output (.98) and capital
is unrelated to cyclical activity (its correlation is .07). Finally;
autocorrelation in output is close to zero at a lag of one year (four
quarters) and negative at a lag of three years (twelve quarters).

Considering the state space system, it is not too hard to see what is
happening to produce these results. The evolution of all variables depends
on their weights placed on the state variables, the capital stock and the

technology shock. The technology shock is given by At =p At_1 t o€y which

-

m
implies that it is representable as A, = T p° € .
: s=0 yt-s

Given the law of
motion for capital, £t+1 = Iy it + A At with u1:.95, the capital stock is a
moving average of technology shocks, with weights that die out very slowly.
Relative to the technology shock, then, the capital stock is very slow moving
and application of the low frequency filter down plays its influence and
raises that of the technology shock. Notice that this occurs despite the
fact that both capital and technology are driven by €pt since they are

related to it by different (one sided) linear filters.
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Figure III-1 shows the impact of HP filtering on the spectral densities
of these two variables (the dashed line is the spectral density of the
unfiltered series and the solid line is the spectral density of the filtered
series). Despite the fact that both variables display Granger's [1961]
typical spectral shape, the power of the capital stock is more concentrated
at low frequencies and, consequently, the HP filter downplays its relative

influence.

Random Walk Technology Shocks

It is possible to solve this model under the alternative assumption that
technology shocks are integrated processes (see Christiano [1988] or King,
Plosser and Rebelo [1988b, section 2]). In view of the Nelson and Plosser
[1982] results and given the infuitive idea that technology shocks are well
modeled as a random walk (with positive drift), ve present some final results
based on that alternative specification in Table III-2. Since the levels of
variables are not stationary, population moments are not finite. Thus, we
present results for the first difference filter and for the HP cyclical
filter. In the presence of this nonstationarity, the HP filter produces
results that broadly resemble those of Table III-3, although the shift to a
random walk technology shock does reduce the extent of labor volatility, as

stressed by Hansen [1988].

Does Filtering Affect Moments that Are Very Important?

In vieving the foregoing results, one is naturally led to ask whether the
practice of filtering affects moments that are very important from the
standpoint of real business cycle research. In this research area, it is

established practice to focus on a subset of moments—typically
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contemporaneous correlations and selected autocorrelations or cross
correlations—in evaluating whether an alteration in a model's physical
environment is quantitatively important. For example, Hansen's [1985]
analysis of the influence of indivisibilities in labor supply on a real
business cycle model concentrates on its implications for the contemporaneous
covariance matrix of the model's variables, notably the relative volatility of
hours and productivity. Clearly, given the foregoing, HP filtering will
alter the moments studied by Hansen. However, no major alteration in one's
views of the importance of this structural change is indicated by a careful
comparison of Hansen's [1985] analysis (which uses HP filtering) and King,
Plosser and Rebelo's [1988a] analysis of a similar economy (which does not
employ HP filtering).

By contrast, with complicated model elements that are capitalistic in
nature—that is, those which alter intertemporal substitution
opportunities—HP filtering is likely to be far more important. To take one
example, Rouvenhorst [1988] studies the influence of the "time to build"
technology of Kydland and Prescott [1982]. He concludes that the major
differences between models with and without time to build lie in the
autocovariances—with jumps in otherwise smooth generating functions
occurring at the lags that are integer multiples of the delay between the
initiation and fruition of an investment project. The application of a
smoothing procedure—such as the HP cyclical filter—would likely mask this
key implication of the model. To take another example, there has been recent
interest in the cyclical implications of models with endogenous long run
growth (King and Rebelo [1986]1, King, Plosser and Rebelo [1988b] and
Christiano and Eichenbaum [1988b]). A major feature of these models is the

endogenous genmeration of a stochastic growth component of the form that is
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eliminated by the HP cyclical filter. We conclude that there are important
and numerous extensions of real business cycle models in which essential
information will be lost if the HP cyclical filter is the unique mechanism

for viewing model implicationms.

IV. Implications of Our Analysis for Practice

To this point, we have provided an exposition and critique of an
established practice in real business cycle research, the low frequency
filtering of model and actual time series with a method due to Hodrick and
Prescott [1980]. In our view, this procedure has gained widespread
acceptance for three reasons, which are important background to our
recommendations for alterations of research practice. First, as stressed by
Hodrick and Prescott [1980, page 1], their method is a simple procedure that
can be mechanically applied to economic time series. This characteristic
reduces the judgmental decisions by a researcher and thus makes easier the
process of cross—investigation comparison which is essential to scientific
progress. Second, we have seen that HP cyclical filtering renders stationary
series that have persistent changes in the underlying growth rate. Thus, as
stressed by Hodrick and Prescott [1980, pp. 4-5], it is capable of
accommodating phenomena such as "the productivity slowdown" in underlying
time series. Third, the procedure implements a traditional view that
economic growth and business cycles are phenomena that are to be studied
separately. Further, application of the HP procedure generates summary
statistics for real U.S. data that correspond to many economists' prior
notions of "business cycle facts."

We nov provide some suggestions for how researchers should modify

practice based on the results of our investigation, so as to maximize
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scientific communicatién. These suggestions are based on three ideas: (i) it
is desirable on statistical grounds to report sample moments only when time
series have finite population counterparts; (ii) economic models generally
contain explicit instructions about how to transform the data so that it will
be stationary; and (iii) since the traditional separation of growth and
business cycles is not an attribute of modern dynamic equilibrium theories,
vhich embody concrete and extensive cross frequency restrictions, economists
pursuing the real business cycle research program cannot have sharp priors
about the decomposition of macroeconomic time series along these lines.

Reporting Attributes of Dynamic Macroeconomic Models:  The moment
implications of a dynamic equilibrium model are governed by its reduced form,
e.g., the linear dynamic system summarized by the II and M matrices.
Investigators should always report sufficient information for calculation of
alternative moment implications to be undertaken by another researcher
without solution of the model.10

Reporting HP Growth Components: Researchers utilizing the HP filtering
procedure should report moments of the actual and model generated "stochastic
growth" components so that comparisons between models can be made on the
basis of this information.

First, since the "prior" under the HP filtering procedure is that the
actual data contain a stochastic trend, a transformation to achieve

stationarity is necessary. Below, we report results for the HP stochastic

10A1though not present in such important contributions as Kydland and Prescott
[1982], Hansen [1985], and Prescott [1986], this information is provided in
other early work by Kydland and Prescott [1979] and Long and Plosser [1983].
More recently, this practice is followed by Christiano [1988], Hansen and
Sargent [1988], King, Plosser and Rebelo [1988a,b]l, and Kydland and Prescott
[1988] in the recent Journal of Monetary Economics special issue on Real
Business Cycles.



27

growth component extracted from a model filtered with (1—B)(1—B_1)/2 for this
purpose. We have experimented with this centered second difference for two
reasons: (i) it induces no phase shift; and, (ii) it renders stationary a
time series with a random walk growth rate.

Second, the researcher should report statistics on this stochastic growth
component under the transformation implied by the specified dynamic economic
model that naturally achieves stationarity: we give two examples of this
transformation below.

Reporting Moments for Model Based Data Transformations: Dynamic stochastic
economic models generally suggest ways of treating nonstationarity in
economic time series. Any investigation should at minimum report the direct
transformations suggested by the model, since evidence against this
transformation is useful in judging the adequacy of the model.

Trend Stationary Models: For example, one common model building strategy
is to view economic time series as stationary relative to a common
deterministic trend, as is implicit in Hansen [1985] and explicit in King,
Plosser and Rebelo [1988a]. Under this scenario, our results suggest that HP
filtering can dramatically alter how a researcher views a model economy as
vorking, for example in terms the relative importance of variation in capital
and labor in response to persistent but stationary technology shocks. Major
components of time series on output, consumption etc. are treated by the
filter as stochastic growth, when the posited model involves none. We
recommend two alterations in practice for this case. First, researchers
should report unfiltered moment implications as well as HP filtered moment
implications. Researchers using the HP filter should also report attributes
of the isolated stochastic growth components, under the model's assumption

that these are stationary and the alternative assumption that there is a
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random walk growth rate, which is implicit in analysis underlying HP
filtering. In table IV.1, we provide an application of these methods to the
population moments of the model economy described in section III above. These
tables make clear that there is a substantial component of the time series
removed by the HP filter and that this component in many ways resemble those
of the unfiltered series. Thus, in such a trend stationary model, a much
clearer picture of the operation of the theoretical model is provided by
table III-3, panels A&B, and table IV-1, panels A&B, than by individual
components. 1

Presumably, it is not feasible to report all of the information in the
tables we have presented here, given constraints on journal space. But it
would be very easy to add information on HP growth components to our table
I-1, which is a standard device for reporting implications of business cycle
models.

Stochastic Trend Models: Frequently, low frequency filtering is
motivated by concern over potential nonstationarity of macroeconomic time
series as suggested, for example, by Nelson and Plosser's [1982] investigation
of individual series and King, Plosser, Stock and Watson's [1987]
investigation of common stochastic trends. For models with explicit
stochastic growth elements—as in, for example, Christiano [1988], Hansen
[1988] and King, Plosser and Rebelo [1988b]—it will generally not be
meaningful to produce simulated moments for the levels of economic variables,

since the population counterparts are not finite. Some transformation of

UFurther, in such trend stationary environments, we caution that research
wvhich focuses on dynamic elements of model construction—like that of
Rouwenhorst (1988) discussed earlier—should be wary of interpreting HP
filtered moments as providing much information about the importance of
structural changes.
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actual and model generated data will be necessary: two natural
transformations that are consistent with the economic structure of stochastic
steady state models are first differencing and construction of ratios of
variables possessing common stochastic trends. Motivated by concern over
nonstationarity, some recent investigations do undertake exploration of model
sensitivity to filtering and data transformation in the way that our
investigation suggests. Examples are provided in Christiano and Eichenbaum
[1988al, who explore HP filtering and first differencing, and King, Plosser
and Rebelo [1988b], who use first difference filtering and a ratio form that
involves imposition of a common stochastic trend. Again, for researchers
using HP filtering, our recommended practice requires reporting of statistics
on stochastic growth components under (i) the model based assumption that the
first difference is stationary and (ii) using the second difference filter
discussed earlier.

No real business cycle research to this point has explicitly incorporated
the persistent changes in productivity growth originally cited by Hodrick and
Prescott [1980] as a major motivation for application of their filter to post
war U.S. data. This feasible investigation could well shed further light on

the interaction of growth and business cycles.

V. Summary and Conclusions

This paper has reported on implications of low frequency filtering,
focusing‘on the HP filter—due to Hodrick and Prescott [1980]—which is
commonly used in investigations of the stochastic properties of real business
cycle models.

First, application of the filter to U.S. real gross national product and

a measure of labor input illustrates the impact of HP filtering on the
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character of cyclical components. Second, we derive convenient expressions
for the HP filter and the closely related exponential smoothing (ES) filter
in forms appropriate for both the time domain and frequency domain. These
results are used (i) to discuss the influence of smoothing parameters and
(ii) to demonstrate that the cyclical components which these filters generate
are stationary, when the underlying time series are differenced stationary
stochastic processes in the sense of Nelson and Plosser [1982]. Third, ve
consider the conditions under which the HP filter is the optimal linear
filter in the sense of Wiener [1949] and Whittle [1963]. These conditions
are unlikely to be even approximately true in practice. Fourth, application
of the HP filter to a basic real business cycle model demonstrates that this
filter substantially influences the perception of the operation of the model
economy, as viewed by researchers studying its moment implications. Fifth,
based on the results of our investigations, we recommend some new practices
designed to facilitate scientific communication between researchers.

At the end of our investigation, however, we remain struck by the
Figures presented in section 1: macroeconomic research focusing on the
component of the time series that is isolated by the HP cyclical filter—in
terms of either devising stylized facts or evaluating dynamic economic
models—is likely to capture only a subset of the time series variation that
most economists associate with cyclical fluctuations. A major facet of our
ongoing research is the construction of dynamic models that more completely

integrate the explanation of these components.
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Appendix A

Analysis of the HP Filter in Time Domain

The starting point for our analysis is the (first order condition)

requirement that
y, = F®yS
where F(B) = A [3’2 ~4B T+ (6+D - 4B+ 32]
=A[u-nﬂ(1—r%2+ﬂ

A.1. Zeros of F Polynomial

We develop properties of the polynomial F(z), especially the location of

its zeros, establishing the claims made in the main text.

(a) Reciprocal Character of Roots — since the polynomial F(z) is symmetric if

x . x . .
2% is a root then 1/z  is also a root. To see this, note that F(z) =

A[(i _2?% - % 2, %] for arbitrary z. Thus, if z* implies
et = ala-2H% a-g0? e X] - 0 then F(1/2%) =

1
A [(1 Y o L R L %] - F(zH = 0.
(b) Complez Character of Roots — For any real number z, F(z) > 0. Thus, the

roots must be complex. Further, it follows that z* and 1/z* are complex

conjugates.



A.2. Inverting F(B) and Related Matters

The previous results imply that we can express F(B) as:
= —1 ~1
F(B) = (3/6,0,) (1 - 6,B) (1 -6, (1-6;B ) (1 - 0,87,
where [, <1, for i=1,2.

Thus to determine a useful form for [F(B)]—1 = G(B), it is necessary to

decompose

1 1 1 1
-1 -1
1—012 1—022 1—912 1—022
A A A A
into A, + 1 .2 . 3 -+ 31
1—012 1~02z 1—012 1—02

To determine AO’Al’ A2, A3 and A4 we require that
- : -1 -1
1= Ao(i—ﬁlz) (1—022) (1—012 ) (1—022 )
o A (1-0.2) 40,2~ 1) (1-0,271) + &, (4-0,2) (1-0,270) (1-0,2° )
1 2 1 2 2 1 1 2
b A 0-0,2) (-0y2) (16,270 + B, (-0,2) (-0, (=0

Evaluating this expression at z=1 yields




Evaluating this expression at z = 1/01 yields
_ -1
ay = [a -0 a-d a- AR

and evaluating at the other roots yields

_ 1
Ay = [ - 070 (- 0y0) G- 0]

- 2 ]
Ay = (= 0D (1= 0,0y (1 - 0y/0)

-1

= -1
h = [ - 00 @ - B a-oyap]t

Some useful properties of these expressions are as follovs. First, A1 = A3

and A2 = A4.

evident if we move to the (polar form) representation 01 = rexp (im) and 02 =

Second, A1 and A2 are complex conjugates, as is most readily

rexp (—im). Then, when we substitute these expressions for f, and 6, into the
P P 1 9

preceding expressions for A1 and A2, wve find that:
_ . 2 . 2,11
A = (1 - exp(—2im)) (1 - rfexp(2im)) (1 - ")
_ . 2 . 2,11
A, = [(1 - exp(2im)) (1 - rexp(-2im)) (1 - r )] ,

so that the conjugate status of these coefficients becomes clear. Hence,

combining the results of the foregoing, we can express the growth filter as



¢(B) = [F(B)1?

6,90 A A A A
- [ 1 2] A+ [ 1, 2 } + [ 1_1 + 2—1]
A 1—01B 1—02B 1—01B 1—02B

A.3 Coefficients in the Growth Filter

To establish that the coefficients in the growth filter — which depend

Alﬁi + AQG% for j > 0 — are real, it is again convenient to adopt the polar

form representation

<
Ll

D
n

| =T exp (im) g = T exp (—im)

=g
]

1 = Rexp (iM) A, = R exp (—iM) .

Then, it follows fhat

[Alaij. + A20%:| = Rrjexp (i(M+jm)) + Rrjexp (—i(M+jm))

.

= 2RrJ cos (M+jm).
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Thus, we can write G(B) = ¥ g. Bl as
j=

2 ® . .
= |L J ; J
[_X] A+ 2R jEO r'cos (M+jm) B

m . .
+2R % 1J cos(M+jm) B
j=0

which indicates that the roots are real. Further, using cos(jm + M) =
[cos(mj) cos (M) — sin (mj) sin(M] it is direct to establish the form of the
filter provided by Hodrick and Prescott [1980] and Singleton [1988]. For

this purpose, we note that A  turns out to be —2R cos(M). Then, the previous

expression for G(B) may be written as:

6B = I g B

j=o

where

8; rj[a1 cos(bj) + a, sin(bj)] for j20
& 7 8
with the constants a, = [r2/A] 2R cos(M), a, = [rz/A] 2R sin(M), b = |m|.

for j<O



Appendix B
Inverse Optimal Linear Filtering

Taking as given a specific filter, the Hodrick and Prescott [1980] filter
in our context—one can ask what the implicit model for the underlying time
series must be for this filter to be optimal in the sense of minimizing the
mean square error‘as in Wiener [1949] and Whittle [1963]. 1In order to be
possible for the HP filter to be optional we start with a statistical
representation of the underlying time series which is linear and in which
growth and cycles are separate phenomena.

Suppose that we view the growth and cyclical components as being

generated by ARMA models,

A8B) y& = u8(B)

c C _ 4C c
A"(B) y. = M (B) ¢

c . . . 2, c
where e% and €, are vhite noise processes whose variances are s (¢) and

s2(eg). By assumption, the roots of the autoregressive polynomials lie
outside the unit circle (statiomarity) and the roots of the moving average

polynomial lie outside the unit circle (invertibility). The innovations e%

c
t

0. Further, for convenience, ve define the ratio of variances Y =

SQ(eC)/[s2(ec) + s(B)].

it

and e- are serially uncorrelated and, for simplicity, we assume that E[e%eg]

Whittle [1963, chapter V] shows that the optimal (two sided) signal

extraction filter for the cyclical component is:



AFCC(B) + I g(B)

where FCC(B) is the autocovariance generating function of the cyclical
component and Fgg(B) is the autocovariance generating function of the growth

component. From the ARMA structure it follows directly that

¥S(z) ¥z 1)

2, ¢c

' (z) = s“(e])
cc Ac(z) Ac(z_l) t
wB(z) M8z 2. g

I (z) = s“(e2)
g8 28(z) Ag(z—i) t

Hence, it follows that the optimal filter may be expressed as:

v 8@ 8@

c*® =
VA8 (BYAB(B™1)+(1-9) 0 (B)

shere QB = AC®ACEHIME@®MEE D1/ @M E™D].
Whittle's analysis [1963] is limited to stationary ARMA processes.
However, recent work extends these formulas to cases with unit roots (Watson

[1986] provides a brief summary of Bell's [1984] work on these cases).

Matching the HP Cyclical Filter

The HP cyclical filter may be written as

A r1-812 17h?

C(B) = [F(B)-11[F(B) ] = 15
1 + A[1-B1° [1-B ]

The problem is to find AR and MA polynomials (AB(B),AS(B),ME(B), and M°(B))
such that C(B) and C*(B) coincide.
One example of such an inverse optimal filtering rule is discussed by

Hodrick and Prescott [1980, page 5] and involves assuming that



18(B) = (1-B)2

A°(B) = ¥8(B) = M°(B) = 1
That its, under this specification, the change in the growth rate is a white
noise as is the cyclical component. Further, the parameter A corresponds to
¥/ (1—¢) which is equal to the ratio of variances A=sz(ec)/52(eg) or
A(1/2>=s(ec)/s(eg). Hodrick and Prescott [1980] use a "prior view that a five
percent cyclical component is moderately large as is a one—eighth of one
percent change in the rate of growth in a quarter. This led us to select or
A(1/2)=5/(1/8) or A=1600 as a value for the smoothing parameter."

Pursuing this line further, suppose that we require that Ag(B)=(1—B)2 so

as to accommodate nonstationarity in the growth rate. Then, it follows that

c(B)=C*(B) requires that

1= &ham.

Thus, the optimality of the HP filter requires—apart from the constant
terms—implies restrictions across the AS(B), M°(B), and M8 (B) polynomials.

In particular, it requires that
) = U= WD jCmyuBm).

In our view, these sorts of restrictions are unlikely to arise directly from
the structure of dynamic economic models since in these models growth and

cycles do not tend to arise as separate phenomena.
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Table I-2

Qutput and Hours, 1948.1-1987.4

Panel A: Autocorrelations

Lag: 1 2 3 4 8 12 16 24
HP®(y,) .86 .62 .34 .09 -.33 -.32 .07 -.05
y: .96 .89 .81 .72 .41 .20 13 -.02
HPC (N, ) .83 .61 .37 14 -.40 -.34 -.02 .04
N ¥ .93 .85 .75 .65 .37 .24 19 .11

Panel B: Correlation Matrix of Variables
v ER(y) HP(y,) NN  EP(N)  HP(N)
Ve 1 0.60 0.89 0.06 0.48 -.24
HPC (y,,) 1 0.17 0.56 0.86 0.15
P (y,) 1 -.24 0.11 -.37
LI 1 0.62 0.86
HPC () 1 0.14
1

HPg(Nt)




Table I-2(cont'd)

Panel C: Standard Deviations of Variables

r
Ve

.043

c g = c
P (y,) BPS(y,) LI HPC(N,) HPE (N, )

.020 .035 .030 .016 .024

Notes:

#1:

#2:

The data employed in this table and Figures 1-5 are quarterly U.S.
time series over 1948.1-1987.4 constructed from entries in CITIBASE.
GNP refers to U.S. real gross national product in 19982 base
(CITIBASE code GNP82). The hours percapita series is constructed as
follows: First, monthly series on civilian noninstitutional
population 16 years and older (CITIBASE code D16); total workers
(CITIBASE code LHEM); and average weekly hours (CITIBASE code LHCH)
were obtained on a monthly basis. Second, percapita hours at the
monthly frequency (N) was formed as N = LHCH*LHEM/D16. Third, the
monthly entries were averaged to form quarterly average hours per
capita.

Although we report moments for the growth component of the series,
this information has to be interpreted with caution, since despite
the fact that a linear trend has been removed prior to filtering, the
growth components may be nonstationary.

man8901:t2



Table II-1:

Impact of Smoothing Parameter (A) on Exponential Smoothing Parameter ()]

} 0
7.5 0.6955
15.0 0.7730
30.0 0.8333
60.0 0.8790
120.0 0.9128
240.0 0.9375
480.0 0.9554
960.0 0.9682

man8901:tII1



Table II-2:

Impact of Smoothing Parameter (A) on Parameters of the HP Filter

A re(6,) im(0,) re(A)  im(ay)
100 0.7792 0.1764 0.0566 0.0552
400 0.8429 0.1341 0.0398 0.0393

1600 0.8886 0.0997 0.0280 0.0279
6400 0.9211 0.0729 0.0198 0.0197

notes:

() re(01) is the real part of 01 and im(01) is the imaginary part of 01.
(ii) since each pair 01,02 and Ai,Az are complex conjugates, it suffices to

report the real and imaginary parts of each since, for example,
0, = re(d,) - im(8,).

man8901:t112



Table III-1:

Economic Parameter Values

Depreciation rate: d = .025
Labor's share a = .58

Gross growth rate: T = 1.004
Discount factor: g = 1/(1+.016)

Steady state fraction
of time spent vorking*: N = .20

Technology persistence
parameter p = .9

Standard Deviation of

Technology Innovation s2(e) = 1.00

* It is equivalent for us to specify the steady state fraction or the
utility parameter 7, since there is a simple relation that links these
tvo parameters.

man8901:tIII1



Table III-2:

Parameters of the Log-linear System

Consumption
Labor Input
Investment
Qutput

Real Wage

Capital Stock

State Variable:

Capital Technology Shock
LR .617 Ter = .298
Tk = -.294 ™A = 1.048
Tix = —7629 | LT 4.733
”&k = ,249 “jA = 1.608
Tk = .b44 Toa = .560
By = .953 Ter = 137

note: For details on
Rebelo (1988a).

man8901:tIII2

derivations of these coefficients, see King, Plosser and
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8.4

Figure I.1: Linear and HP Trends in Real GNP
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Figure I.2: HP Growth Component v. Linear Trend Residual
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Figure 1.3: HP Cyclical Component of Real GNP
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Figure I-4: logHours — mean v. logGNP-linear trend
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Figure I-5: HP cyclical components of output and hours
0.1

0.05

T

v \ /’\ Mf”\ M
-0.05

-0.1+
_0'15 I 1 1 1 i 1 L 1
1945 1950 1955 1960 1965 1970 1975 1980 1985 1990
date

-_— e e e = ew -

Hours

HP Cyclical Component of Logarithm of Rean GNP
HP Cyclical Component.of Logarithm of Per Capita



Figure II-1a: Impact of Filtering——Increase in Gain
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Figure II-2a: jdealized low frequency filter
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Figure II-2b: implied cyclical filter
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Smoothing Parameter Values = [30 60 120 240]

Figure II-3: ES Cyclical Filter——-Frequency Response
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filter weight

Figure

114: ES cyclical filter—-lag weights
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Figure IL.5 The HP cyclical Filter: Frequency Response
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filter weight

Figure I1.6: Lag Weights For The HP cyclical filter
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Figure 11.7: The HP & ES Cyclical Filters
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Figure IIT.l: Implications

technology shock
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