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A Cointegration Approach to Estimating Preference Parameters
Abstract

This paper estimates the relative risk aversion coefficient by
utilizing information in stochastic and deterministic time trends. The
first order condition that equates the relative price and the
contemporaneous marginal rate of substitution for two goods are used to
derive a restriction that the relative price and consumption of two goods
are cointegrated. The cointegrating vector involves curvature parameters,
and these preference parameters are estimated with a cointegrating
regression. This cointegration approach allows for borrowing constraints,
aggregation over heterogeneous consumers, unknown preference shocks, and a
general form of time-nonseparability. It also does mnot require the
consumers to know the true stochastic law of motion of the economy. These
factors have been pointed out as possible causes of empirical rejections of
the Consumption-Based Asset Pricing Model by Hansen and Singleton (1982)
with the Generalized Methods of Moments (GMM). We separate the elasticity
of intertemporal substitution from the relative risk aversion coefficient by
allowing for time-nonseparable preferences. Our estimates of the
coefficient of the risk aversion are typically compatible with Hansen and

Singleton’s GMM estimates.
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1. Introduction

This paper estimates the relative risk aversion (RRA) coefficient by
utilizing information in stochastic and deterministic time trends.
Traditional empirical research has typically ignored information in trends
by detrending prior to estimation or by first differencing variables.
However, time trends may contain substantial information about the
underlying structure of the economy that govern the secular and cyclical
frequencies of economic time series simultaneously as emphasized by
Singleton (1988) among others. To exploit information in trends, a
restriction on trends of economic variables (the relative price and
consumption of two goods) is derived from the first order condition that
equates the relative price and the marginal rate of substitution of two
goods. When these variables possess stochastic trends, this restriction
implies that trends contain enough information to identify preference
parameters including the RRA coefficient; these preference parameters can be
estimated by a cointegrating regression.

Much work (see, e.g., Campbell and Shiller [1987] and Campbell [1987])
has utilized information in stochastic trends to estimate and test economic
models, using standard econometric procedures for cointegrated systems
developed by Engle and Granger (1987), Phillips and Durlauf (1986), and
Phillips and Ouliaris (1988) among others. Econometric procedures used in
this paper incorporate recent important improvements to standard econometric
procedu?es fof cointegrated systems.

There are four problems in the standard econometric procedures. First,
the estimators of cointegrating vectors have nonstandard distributions.
Many economic models imply cointegration, and structural parameters can be

estimated as components of cointegrated vectors. The OLS consistently



estimates a cointegrating vector even when regressors are not
econometrically exogenous and when stationary measurement errors are present
(see, e.g., Phillips and Durlauf [1986], Stock [1987], and Park and Phillips
[1988]). However, the OLS estimators have nonstandard distributions, and
inferences on structural parameters have been difficult for this reason.
Recent work by Johansen (1988), Phillips (1988), Park (1988a), and Phillips
and Hansen (1989) has solved this problem. The estimators developed by
these authors have mixture of normal distributions. Hypothesis testing on
structural parameters can be conducted by standard xz tests.

Second, the standard econometric procedures take no cointegration as
the null hypothesis when testing for cointegration (see, e.g., Engle and
Granger [1987] and Phillips and Ouliaris [1988]). In applications, failures
to reject the null of no cointegration are often interpreted as evidence
against economic models which imply cointegration. However, these tests are
known to have very low power in some cases and may fail to reject the null
of no cointegration with high probability when the econbmic model tested is
actually consistent with data. On the other hand, these tests may reject
the null of no cointegration when the economic model tested is inconsistent
with data for reasons that are remote from cointegration such as
heteroskedasticity of the disturbance term. It is therefore much desirable
to test the null of cointegration to control the probability of rejecting a
valid economic model. Though this problem has been recognized in the
literature, constructing tests with the null of cointegration has been
difficult because of reasons suggested by Phillips and Ouliaris (1988).
Recently, several authors have overcome these difficulties by constructing
consistent tests for the null of stationarity (see Park and Choil [1988],

Park [1988b], Park, Ouliaris, Choi [1988], and Fukushige and Hatanaka



[19891).

Third, the standard econometric procedures do not utilize what we call
the deterministic cointegration restriction in estimation and testing.
Since most macro economic time series tend to drift (upward) over time, it
is often reasonable to model such series as difference stationary process
with nonzero drift. Such series have deterministic trends arising from
drift as well as stochastic trends. Economic models often imply that the
cointegrating vector eliminates both the deterministic and the stochastic
trends. We can test this restriction, which is called the deterministic
cointegration restriction, with the null of cointegration. This test
arguably provides a useful diagnosfic for detecting the absence of
cointegration in small samples because it is easier to detect a
deterministic trend than to detect a stochastic trend. Imposing this
restriction on estimators will lead to more efficient estimators. Park
(1988), West (1988) and Hansen (1989) developed procedures to impose the
deterministic cointegration restriction on estimators. Park's (1988a)
Canonical Cointegrating Regression (CCR) procedure can be used to test the
deterministic cointegration restriction.

Fourth, the standard econometric procedures do not utilize information
in the long run correlation of disturbance terms in the case of multiple
regressions. Such information is utilized for sharper estimation in
Johansen's (1988) maximum 1ike1ihood procedure and Park and Ogaki's (1989)
Seemingly Unrelated Canonical Cointegrating Regressions (SUCCR) .

To incorporate all of these improvements, we employ Park's (1988a) CCR
procedure for the single regression case and Park and Ogaki's (1989) SUCCR
procedure for the multiple regressions case. We test the first order

condition with Park, Ouliaris, and Choi (1988) and Park’s (1988a) wvariable



addition method. The variable addition testing procedure can be used in the
framework of the CCR and the SUCCR to test the null of cointegration. The
procedure does not require strong distributional assumptions, allows for a
general from of se;ial correlation, and takes the whole region of a stable
root as the null. Though our econqmic model implies linear cointegration
relationship, the short-run dynamics implied by our model is highly
nonlinear in the presence of time-nonseparable preferences. Because of this
nonlinearity, Johansen’s (1988) maximum likelihood procedure is not readily
applicable to our model.

Hansen and Singleton (1982) showed how to estimate the RRA coefficient
and test the Consumption-Based Asset Pricing Model (C-CAPM). They used the
Ceneralized Methods of Moments (GMM) procedure proposed by Hansen (1982).
The C-CAPM was rejected strongly by Hansen and Singleton (1982, 1984) when
stock returns and Treasury Bill rates were used together. Their results are
consistent with another form of empirical rejection of the C-CAPM by Mehra
and Prescott (1985) that the observed equity risk premium has been too large
for the C-CAPM to explain. Possible causes of the rejection of the C-CAPM
have been pointed out. These include unknown preference shocks (e.g.,
Garber and King [1983]), time-nonseparable preferences (e.g., durability in
the commodities usually labeled as nondurables and services as in Eichenbaum
and Hansen [1987], Eichenbaum, Hansen, and Singleton [1988], habit formation
as in Constantinides [1988], and both durability and habit formation as in
Heaton [1988]), and borrowing constraints (see, e.g., Hayashi [1985] for a
survey). The GMM approach also assumes that there are no measurement errors
and the consumers know the true stochastic law of motion of the economy.

The cointegration approach allows for borrowing constraints,

aggregation over heterogeneous consumers, unknown preference shocks, and a



general form of time-nonseparability, any measurement errors that are
stationary, and possibilities that consumers do not know the true stochastic
law of motion of the economy. Hence as suggested by Hausman (1978), we can
test the C-CAPM against the alternative of factors such as borrowing
constraints by testing whether or not our estimate and the GMM estimate are
the same. Our estimates of the coefficient of the risk aversion are
typically compatible with Hansen and Singleton's (1982, 1984) GMM estimates.
Thus the C-CAPM passes this specification test.l Qur results are consistent
with the view that the factors which we allow and the GMM does not allow
such as borrowing constraints are not empirically important.

One of the important identifying assumptions in the cointegration
approach is that at least one consumption series is difference stationary
rather than trend stationary in the terminology of Nelson and Plosser
(1982). Following Nelson and Plosser, a number of authors reported that the
null hypothesis of difference stationarity cannot be rejected against the
alternative of trend sﬁationarity for most macroeconomic time series.
However most of the tests used do not have much power against some trend
stationary processes, and thus it is often difficult to discriminate between
trend stationary and difference stationary processes (see, e.g., Evans and
Saving [1981, 1984], Cochrane [1988], and Christiano and Eichenbaum [1989]).
For this reason, each time series we use is tested for the null of
difference stationarity and the null of trend stationafity. When neither of

the hypotheses is rejected, we try both of the two alternative

1Unfortunately, we cannot formalize this specification test because the
joint distribution of the CCR estimator and the GMM estimator is not known.
For this reason, we just compare point estimates and their standard errors
in this paper.



specifications as a sénsitivity analysis. When one of the consumption
series is specified as trend stationary while the other consumption series
is specified as difference stationary, we use the Seemingly Unrelated
Canonical Cointegrating Regressions (SUCCR) procedure developed in Park and
Ogaki (1989). When both consumption series are specified as trend
stationary, the cointegration approach fails. Though trends, by themselves,
do not contain enough information to identify the RRA coefficient in this
case, the deterministic cointegration still contain useful information about
preferences. Ogaki (1988, 1989a) estimated and tested the first order
conditions utilizing the deterministic cointegrating restriction with the
GMM procedure assuming that both consumption series are trend stationary.
The rest of this paper is organized as follows. In Section 2, the
preferences of the representative consumer are specified, and then a
restriction on trends of the relative price and consumption of two goods is
deduced. We examine iﬁplications of the restriction in terms of stochastic
and deterministic cointegration. We discuss intuition behind the
cointegration approach and compare our approach with the GMM approach.
Section 3 describes econometric procedures we use. In Section 4, we discuss
test results for identifying assumptions made in terms of deterministic and
stochastic trends. In Section 5, we present empirical results of
cointegrating regressions. We compare our estimates for the RRA coefficient
with GMM estimates in Section 6. Our conclusions are contained in Section

7.



2. The Cointegration Approach

In this section, we derive a restriction on trends of economic
variables from an first order condition that equates the relative price and
the marginal rate of substitution. We define notions of stochastic and
deterministic cointegration and derive an implication of the restriction
that the relative price and real consumption expenditures are stochastically
and deterministically cointegrated. We discuss intuition and robustness of

our results.

The Stationarity Restriction

The present paper employs the addilog utility function which was
proposed and estimated by Houthakker (1960). The addilog utility function
assumes that preferences are represented by the Constant Relative Risk
Aversion (CRRA) form for each good and that goods are additively separable.
Deaton and Wigley (1971), Deaton (1974), Ball (1984), and Miron (1986)
estimated addilog utility functions, among others. Specifically, consider
an economy with two goods. The number of the goods can be extended without
any difficulty as long as the goods other than two goods considered here are
additively separable from these two goods in preferences. Suppose that a

representative consumer maximizes the lifetime utility function

(2.1) U= E[}Bu(®)]

t=0

at period 0, where Et(-) denotes expectations conditional on the information
available at period t. The intra-period utility function is assumed to be

of the addilog form



l-a

n Si(t) -1
(2.2) u(t) =y a () ,
i=1 l-a
i.
1-a
where ai>0 for i=1,...,n. When ai=1, we interpret Si(t) 1/(1-ai) to be
1og(Si(t)). Here Si(t) is service flow from consumption purchases of the

ith good. Purchases of consumption goods and service flows are related by
i i i i
(2.3 Si(t) = A (L)Ci(t) = aOCi(t) + aICi(t-l) + aZCi(t-2)+ .

for i=1,...,n, where Ci(t) is the real consumption expenditure for the ith
good at period t. We assume that the representative consumer is endowed
with C:(t) units of the ith good at period t. We denote values of Si(t)
obtained when Ci(1)=Cz(r) for all r=<t by S:(t). We assume that Ai(z)
satisfies the condition that the 1life time wutility U evaluated at
Si(t)=S:(t) is finite. This type of specification for time-nonseparability
has been used by Hayashi (1985), Eichenbaum, Hansen, and Singleton (1988),
Eichenbaum and Hansen (1987), and Heaton (1988) among others. Note that the
purchase of one unit of the ith good at period t increases Si(f) by a:__t
units for r=t. Preference shocks are allowed in equation (2.2) via the
stochastic process {[al(t),...,an(t)]’: -o<t<w}, which is assumed to be
(strictly) stationary.

Let Pi(t) be the price of the ith good. We take the first good as a
numeraire for each period: Pl(t)El. Let Wb(t) and W(t) be the beginning of
period wealth and the end of period wealth of the consumer at period ¢,

respectively:

(2.4) we(t) = Ww(t) + Y Pi(t)C:(t) -y Pi(t)Ci(t:)

i=1 i=1



We assume that there is only one asset in the economy in the present paper.
The asset has the gross return rate of Rt[We(t)] from period t to period

t+1, which is a function of w°(t) to allow for borrowing constraints:

(2.5) Wb(t+l)=Rt[We(t)]We(t)

The function Rt is assumed to be in information available at t and its
derivative, denoted Rt', is assumed to exist.

The consumer is assumed to maximize (2.1) subject to (2.4) and (2.5)
and a boundary condition liukﬁmﬁtwb(t)zo with probability one. Assuming an

interior solution, the first order necessary conditions include

(2.6) 9u/8c (t) = A(t)P (£)(R+ W (t) R’)

for t=0 and i=1,..,n, where A(t) is the Lagrange multiplier for the
constraint (2.5) into which the lagged (2.4) is substituted. Since the
first good is the numeraire, Pi(t)=Pi(t)/P1(t) is the relative price between

the ith and the first goods, and by (2.6),

3u/ac_(t) E [} ° BTou(e+r)/8C ()]
(2.7) Pi(t) - i - t 1‘;0 - 1
8u/ac. (t) E [}, _ B du(t+r)/3C (¢)]
-

E [T, 870, (t+r)a (S (t+r)) ]
0 T 7 1 ' -al
E (T, B o, (t+r)a (S (t+71)] ]

We take Ci(thii(t) for all i and t as an equilibrium condition. In an
equilibrium, the first order condition (2.7) 1is satisfied with the
equilibrium values of Si(t), S:(t). We derive a restriction from the first

order condition (2.7), which is the foundation of the cointegration



approach. Though (2.7) is derived from a specific intertemporal budget
constraint (2.5), it should be obvious that (2.7) is not affected by the
specification of intertemporal budget constraint.

We need the following assumption to insure that the ratio of Si(t) and

Ci(t) is stationary.

Assumption 1: The stochastic processes {C:(t)/C:(t-l):-w<t<w} for i=1,..,n

are jointly stationary.

Under Assumption 1, the process (C:(t+r)/C:(t):-w<t<w) is also stationary
for any fixed integer r because C:(t+1)/C:(t) = (C:(t+f)/C:(t+T-1))
{C:(t+‘r-l)/C:(t+f-2))---(C:(t+l)/C:(t:)). It follows that the process
{S:(t+7)/C:(t):-w<t<w} is also stationary for any r because the right hand

side of

* kg

(2.8) S:(t+-r)/CZ(t) - a';c,(tw)/ci(t) + aiC:(t+r—1)/C:(t)

-

cf(t+f-2)/c:(c) + .

i

+ a

| S L

is stationary. We also make an extra assumption that the growth rates of

consumption are jointly stationary with the state variables on which the
-a -a
conditional expectations are based. Then {Pi(t)[CZ(t)] 1/[C:(t)]

i

: -~ <)

is stationary because the right hand side of

-

! Et[zrfop’ai(uf)aj{s:(cﬂ)/c’i‘(c)) :

" -
P (t)[C (t)] ]

(2.9) — -
[(c.j *

-

Et[Z:Oﬂ’al(tw)a: {S:(t+'r)/C: )y '

is stationary. Taking the natural log of the left hand side, we conclude

that pi(t) - alc:(t) + aic:(t) is stationary, where pi(t)wlog(Pi(t)),

10



cf(t)clog(Cf(t)) for 'i=1,...,n. We shall call this restriction the
1 1

stationarity restriction.

Stochastic and Deterministic Cointegration

We define notions of stochastic and deterministic cointegration in this
subsection. When a scalar stochastic process is stationary after taking the
first difference and the process has positive spectral density at frequency
zero, the process is said to be difference stationary. The trend stationary
process is also stationary after taking the first difference but has zero
spectral density at frequency zero. A scalar difference stationary process
y(t) and a vector difference stationary process X(t) are said to be
cointegrated with a normalized cointegrating vector 7, if y(t)vn:X(t) is
stationary.

Let X(t) be a k-dimensional difference stationary process:

(2.10) X(t) - X(t-1) = Bt ex(t)

for t>1 where p is a k-dimensional vector of real numbers where ¢ (t) is
X X

stationary with mean zero. Then recursive substitution in (2.1) yields

(2.11)  X(£) =pt + 2 (t)
where Xo(t) is

t
(2.12)  X°(£) = X(0) + L e (¢t).

T=1

Relation (2.11) decomposes the difference stationary process X(t) into
deterministic trends arising from drift p_ and the difference stationary
X

. . 0 .
process without drift, X (t). We can further decompose the stochastic trend

11



component, XD(t), into a random walk component and stationary stochastic
process as in Beveridge and Nelson (1981), though such a further
decomposition is not essential for the purpose of this paper. Suppose that

y(t) is a scalar difference stationary process with drift py. Le us
decompose y(t) into a deterministic trend pyt and a difference stationary

process without drift y: as in (2.12):

(2.13)  y(£) =t +y(£).

Difference stationary processes y(t) and X(t) are said to be
stochastically cointegrated with a normalized cointegrating vector T, when
there exists a k-dimensional vector 7, such that yo(t) - 7x’X0(t) is
stationary. In general, it 1is possible that y(t) and X(t) are
stochastically cointegrated while they are not deterministically
cointegrated. Stochastic cointegration only requires that stochastic trend
components of the series are cointegrated. We may write yo(t) - 7x’X0(t) =
Gc + ec(t), assuming that yo(t) - 1x’X°(t) has mean 0c. Here ec(t) is

stationary with mean zero. Then by (2.12) and (2.13),

(2.14) y(t) =8 + pt+ vy *X(t) + € (t)
[+] [+ X [+
where
(2.15) p=p-v'bB_ .
c Yy x Xx

*
Suppose that a vector y_ satisfies
X

*

(2.16) p_=7v"p_.
y X

X

Then Y(t) - 7*’X(t) does not possess any deterministic trend, and Y(t) and
X

12



X(t) are cotrended with a normalized cotrending vector 7:. If k1 and if
one of the components of B is nonzero, there are infinitely many cotrending
vectors. Consider an extra restriction that the normalized cointegrating
vector 7 is a cotrending vector. This restriction, which we call the
deterministic cointegration restriction, requires that the cointegrating
vector eliminates both the stochastic and deterministic trends. In this

case,

(2.17) y(t) = 00 + 'yx’X(t:) + ec(t).

Let us consider a cointegrated system involving a trend stationary

process z(t):
(2.18) z(t) =8 + pt+ e (t),
z z 2z

where € (t) is stationary with zero mean and u #0. Suppose that an economic
2 z

model implies a restriction that y(t) - 7x'X(t) - 7zz(t) is stationary.
. , 0
Since y(t) - Y X(t) - yz(t) = -y b + (b - v'p_- VpIt + (y(t) -
z 2 z y X x z 2
¥ ’Xo(t)} - v e(t), this restriction implies that y(t) and X(t) are
X z

stochastically cointegrated with a normalized cointegrating vector vy and
X

that y(t) and [X(t)’,z(t)]’ are cotrended with a cotrending vector [v ',
X

v 1]
z
(2.19) p_=v"p_+ 74 .
y x X z z
Implications of the Stationarity Restriction
In this subsection, implications of the stationarity restriction are

discussed in terms of the notions of stochastic and deterministic

cointegration defined above. The restriction on trend properties of the

13



variables from the “demand side 1is summarized by the stationarity
restriction. For the supply side, we need to require that at least one of
the endowment process is difference stationary for identification of

preference parameters.

The Demand System with Two Goods

For now, we focus on the demand system with two goods.

First, we consider the case where both the log of the endowment of
first good and that of the second good are difference stationary:

Assumption 2a: The process {c:(t):tZO) is difference stationary for i=1,2.

Assumption 2b: The processes {c:(t):tZO} and (c;(t):tZO) are not

stochastically cointegrated.

Let CT(t) be measured consumption and Ei(t)=(CT(t)-C:(t)}/C:(t) be the ratio
of the measurement error and consumption.2 We assume that &i(t) is
stationary. Note that this assumption, together with Assumption 2, implies
implies that the log of measurement error, log[C(t)-CT(t)] :is difference
stationary with stochastic trends. Taking the log of both sides of
c‘:(t)=[1+5i(c)]c:(c) , we obtain cj(t)=c:(c)+1og[1+gi(t)] where
cT(t)=log[CT(t)]. It should be noted that log[l+§i(t)] is stationary. Then
cj(t) is the sum of a difference stationary and stationary processes and
therefore is difference stationary. Similarly, let P:(t) be the measured
relative price and assume that Eo(t)=(P2(t)-Pz(t)}/Pz(t) is stationary.
Since pi(t) - aci(t) + acl(t) = lp(t) - alc:(t:) + aic:(t)} + o+

{log[l+§o(t)] - allog[1+§1(t)] + ailog[1+§2(t)), the stationarity

2We thank Adrian Pagan and Edward Prescott for helpful discussions
about the formulation of measurement errors.
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restriction implies that pl:(t) - alcl:(t) + azc:(t) is stationary. Let y(t)
- p:(t) and X(t)= [c?(t), c:(t)]', using the notation introduced above.
Assumption 2a implies Assumption 1 in Section 2, and hence y(t) - —yx’X(t) is
stationary with —y:[al, -a_]’. Assumption 2b is equivalent to an assumption

2

that there is no 2-dimensional vector 7, such that 'yx’X(t) is trend

stationary. Assumption 2b requires that two endowment series possess
different stochastic trends. Since y(t) - 'yx’X(t) is stationary with
'1=[a1, -az]’, this implies that y(t), which is the sum of a difference
X

stationary 'yx’X(t) and a stationary process, is difference stationary. Thus
the stationarity restriction implies that (1) p:(t:) is difference
stationary, (ii) p:(t) and [c':(t), cZ(t)]’ are stochastically cointegrated
with a normalized cointegrating vector [al, -az]’, and (iii) the
deterministic cointegration restriction is satisfied, under Assumption 2.
Second, we consider the case where the log of the endowment of the
first good is difference stationary and that of the second good is trend

stationary:

Assumption 3: The process {c:(t):tZO} is difference stationary, and the

¥ .
process {cz(t):tZO) is trend stationary.

Assumption 3 implies Assumption 1. In this case, we let y(t) = pZ(t), X(t)
= c';(t:), and z(t) = c:(t) to apply the argument in the last subsection.
The stationarity restriction implies that (i) p';(t) is difference
stationary, (ii) p';(t) and cl:(t) are stochastically cointegrated with a
normalized cointegrating vector v = and (iii) pZ(t) and [c':(t),cl:(t)] are

cotrended with a normalized cotrending vector [7x,7Z]’ - [a , -a2]’ .
2
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The Demand System with Three Goods

Let us consider the demand system with three goods. For simplicity, we
only consider the case where the log of each of the three goods is
difference stationary. Let yl(t)=p:(t), yz(t)=p:(t), Xl(t)=[cT(t), cZ(t)]’,
Xz(t)=[CT(t)’ c:(t)]’. The stationary restriction implies that yi(t) is
stochastically and deterministically cointegrated with a mnormalized
cointegrating vector T, for i=1,2, where -yx1==[a1, az] and 7x2=[a1, aa]'
Thus in this case, we have a system of cointegrating regressions and a
cross-equation restriction that that the first compopent of T, and that of

v are the same.
x2

Intuition and Robustness

We showed that the the first order condition (2.7) 1leads to
restrictions that economic variables are cointegrated. As will be shown in
the next section, these restrictions can be used to estimate some preference
parameters and to test the first order condition. In this subsection, we
discuss intuition behind these results and compare our approach with the GMM

approach.

The Linear Expenditure System

First, we provide an intuitive explanation for the stationarity
restriction by comparing the demand system with the addilog utility function
with the linear expenditure system. We define any demand system with the
property that the expenditure share of each good is stationary the linear
expenditure system. For example, the addilog utility function with a1=a2=1
ip (2.2) lead to a linear expenditure system. See Eichenbaum and Hansen
[1988] and Ogaki (1989b) for examples of the linear expenditure system. The

linear expenditure system has a property that pz(t)-c:(t)+c;(t) is
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stationary. To see this, let

(2.20) P _(£)C (£)/I(t) = ¥ (t)

where ¢i(t) is a stationary random variable (i=1,2) and I(t) = P1(t)C1(t) +
Pz(t)Cz(t) is the total consumption expenditure on the two goods. Dividing

(2.20) for i=2 by (2.20) for i=1 yields

(2.21) [P (£)/P (£)]C,(£)/C,(t) = $,(£)/% (L)

Since the right hand side of (2.21) is stationary, the left hand side of
(2.21) is stationary. Therefore pz(t)-cl(t)+c2(t) is stationary.

In our empirical work, we typically found very strong evidence against
this implication of the linear expenditure system that pz(t) and [cl(t),
cz(t)]’ are cointegrated with a known normalized cointegrating vector [1,
-1, We depart from the linear expenditure system, using the addilog
utility function which allows nonhomotheticity. In the addilog utility
function in equation (2.2), the curvature parameters, a and a,, govern
income elasticities in the following sense. Let us consider the following
situation. Suppose that a consumer with this utility function were able to
trade the household capital stocks in an Arrow - Debreu market with no
transaction costs. Fix all S(r) (r=0,1,...) except for S(t), and increase
income at t exogenously. It is easy to show that the income elasticities in
this experiment for Sl(t) and Sz(t) are c/a1 and c/a2 respectively for some
constant ¢ which depends on t in general (see Ogaki [1989b]). Thus al/a2
is the ratio of income elasticities of the second and the first goods. When
a1=a2=l, the addilog utility function implies the linear expenditure system.

When a1=az¢1, the addilog utility function represents homothetic preferences
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which are not the linear expenditure system. When a Fa , preferences that
the addilog utility function represents are nonhomothetic.

To develop intuition for the stationarity restriction, imagine that the
relative price pz(t) is stationary for simplicity. If the demand system for
the two goods is the linear expenditure system, then pz(t)-cl(t)+c2(t) does
not possess any time trends, and therefore cl(t) and cz(t) must grow at the
same rate in the long run. The addilog utility function implies that
pz(t)-alcl(t)+azcz(t) is stationary. When a1>a2, the first good has a lower
income elasticity than the second good and consumption for the first good
can grow at a slower rate than the second good in the long run.

If at least one of the consumption series is difference stationary,
then the parameters o, and o, are identified by information in trends and
can be estimated by cointegrating regressions. This is because trends of
the relative price and consumption contains information about income
elasticities. For example, if consumption of food is growing at a slower
rate than consumption of automobiles after correcting for the effect of the
relative price, we can infer that food has a lower income elasticity than
automobiles.

In our empirical work, we take a measure of nondurable consumption as
the first good and interpret a as the RRA coefficient for the nondurable
consumption. We identify the RRA coefficient because it is harder for a
consumer to tolerate riskiness of consumption of a necessary good than that
of a luxury good. This identification of the RRA coefficient relies on the
assumption of separability across the first and second goods in preferences.
If nondurable consumption is not separable from the other goods, we cannot

define the RRA coefficient for the nondurable consumption.
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Robustness of the Cointégration Approach

One remarkable feature of cointegrating regressions is that structural
parameters can be estimated consistently by the OLS without an assumption
that regressors are econometrically exogenous. We utilize this property in
the first step estimation for the CCR procedure. This property is important
because few economic variables are econometrically exogenous in most of the
stochastic and dynamic rational expectations equilibrium models. The OLS
estimators are median biased, however, and we correct for endogeneity and
serial correlations by the CCR procedure as we will describe.

We can allow for measurement errors without assuming that regressors
are uncorrelated with measurement errors of the regressand. The only
assumption we need is that the ratio of the measurement error and the true
value is stationary for each variable as discussed above. In contrast, the
GMM approach of Hansen and Singleton (1982) does not allow for measurement
errors unless they are of very special form.

1t should be noted that relation (2.7) equates the relative purchasing
prices of consumption goods with the marginal rate of substitution for
purchases of consumption goods. Relation (2.7) does not focus on the
relation between user costs and the marginal rate of substitution for
services. Borrowing constraints may contaminate the relation between user
costs and the intraperiod marginal rate of substitution for service flows
[{au(t)/acz(t))/{6u(t)/601(t)) in our notation]. The relation between the
relative purchasing price [pz(t)] and the marginal rate of substitution for
purchases of consumption [{BU(t)/acz(t)}/{aU(t)/HCI(t)}] is more robust.
Also note that the stationarity restriction only involves the relative
purchasing price and purchases of consumption. Consequently, the

cointegration approach only requires data for purchasing prices and
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consumption of two goods and does not need data for user costs and service
flows that are not directly observable.

The cointegration approach allows for aggregation over heterogeneous
consumers as long as every consumer has the same curvature parameters, a
and @, and variance of the log of each consumption expenditure across
consumers is stationary. Suppose that there are N consumers in the economy
and that the consumption expenditures of each consumer satisfies the
stationarity restriction. Let Ci(t) be consumption on good i by consumer j
and assume that we observe the equilibrium consumption C:(t) =
A/MT_C(6).  Then log(P,(£))-a (L/MY] 10g(C, () +a, (/M| _ 1og(C,(£))
is stationary. This stationary process is different from observable
pz(t)-alc:(t)+azc:(t) only by the difference between the log of average,
log(C:(t)), and the average of the log, (l/N)ZEﬂ;og(Cj(t)). This
difference is one half of variance of the log of consumption if we can
approximate the distribution of consumption across the consumers by a log
normal distribution. Hence the stationarity restriction is satisfied by the
aggregated variables if the variance of the log of each consumption is
stationary.

Garber and King (1983) pointed out that unknown preference shocks can
explain empirical rejections of the C-CAPM by the GMM approach. The
cointegration approach allows for preference shocks since the stationarity
restriction is robust with respect to stationary unknown preference shocks.
The cointegration approach does not qllow for permanent preference shocks
with a unit autoregressive root, however. At least for aggregate level of
consumption such as nondurable goods, permanent preference shocks are
unlikely compared with. permanent shocks in productivity that have been

considered in recent work on real business cycle models (see, e.g., King,
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APlosser, and Rebelo [1988] and references therein). Qur consumption and
income today may well be affected by permanent technological shocks that
happened during the industrial revolution. It does not seem likely that our
consumption on nondurable goods is affected by permanent shifts in
preferences that happened during the industrial revolution.

Though perménent preference shocks are assumed away, we do allow for
habit formation through time-nonseparability. Constantinides (1988) showed
that adding habit persistence could help to explain asset market data.
Durability of goods is a source of time-nonseparability as in Mankiw (1982)
and Dunn and Singleton (1986), among others. Even goods that are usually
labeled as nondurables may have durability (see, e.g., Hayashi [1985],
Eichenbaum and Hansen [1987], and Eichenbaum, Hansen, and Singleton [1988]).
Heaton (1988) investigated interactions of durability and habit formation
for the C-CAPM.

When Itime-nonseparability is allowed in the GMM procedure as in
Eichenbaum and Hansen (1987) and Eichenbaum, Hansen, and Singleton (1988), a
particular form of time-nonseparability must be employed to obtain estimates
of service flows. The form of time-nonseparability should be limited so
that the number of free parameters is mnot too large. For example,
Eichenbaum and Hansen (1987) and Eichenbaum, Hansen, and Singleton (1988)
allowed for one month durability using monthly data for nondurables and
services in the NIPA. They fouﬁd a significant durability for nondurables
plus services. Since nondurables in the NIPA include consumption measures
that are durable for more than one month such as clothing, it may be
reasonable to allow for longer terms of durability. However, to do so
requires more free parameters to be estimatéd, which could cause problems.

A general form of time-nonseparability is allowed as in relation (2.3),
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but the cointegration approach does not require estimating the particular
form of time-nonseparability, Ai(L). This is because the stationarity
restriction is in terms of purchases of consumption goods rather than in
terms of.unobservable service flows. Thus we can estimate the curvature
parameter of the CRRA utility function without specifying any particular

form of time-nonseparability as long as unit roots are present in the
relevant time series.

Cochrane (1989) calculated utility losses caused by departures from the
optimal consumption path in the C-CAPHM. He concluded that utility losses
that are associated with departures that are significant enough to cause
rejections of tests of the C-CAPM are typically very small. If the
representative consumer does not know the true stochastic law of motion of
the economy and is in the process of learning, then such departures may be
rational: the consumer'’'s optimal path in this case will depart from the
optimal path when the consumer knew the true law of motion. It should be
noted that the GMM approach assumes that the consumer knows the true law of
motion. The stationarity restriction does not‘ require that the
representative consumer knows the true law of motion. When the consumer is
in the process of learning, the optimal probability measure to be used for
the conditional expectation operator in relations (2.7) and (2.9) is the
measure that maximizes entropy given available information (see El-Gamal
[19891). This coincides with Bayesian learning (see, e.g., Easley and
Kiefer [1988] and references therein for Bayesian learning models) when the
initial prior distribution of Bayesian is optimal. When random variables
that generate available information are stationary, the right hand side of
(2.9) is stationary when the optimal probability measure is used to form

conditional expectations.
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3. Econometric Procedures

In this section, we describe econometric procedures to estimate and
test the economic model using stochastic deterministic cointegration. The
first subsection treats the single regression case. The demand system with
two goods under Assumption 2 leads to this case. The second subsection
treats the multiple regressions case. The demand system with more than
three goods or the demand system with two goods under Assumption 3 leads to

this case.

Canonical Cointegrating Regressions
We consider the demand system with two goods under Assumption 2 in this

subsection.

Estimation

Suppose that Assumptions 2a and 2b are satisfied, and let y(t) = p:(t)
X(t:)-——[c'ln(t),cz(t)]', and v = [a, -a]l. Then y(t) and X(t) are
stochastically and deterministically cointegrated with a normalized
cointegrating vector v . Since y(t) and X(t) are stochastically
cointegrated, regression (2.14) can be used to estimate T, Park and
Phillips (1988) showed that the OLS estimator of (2.14) 1is consistent.
Regression (2.14) ignores the deterministic cointegration, however. The
deterministic cointegration implies that the true &alue of B, is =zero.
Hence we consider a regression (2.17), which leads to a more efficient
estimator. We apply the CCR procedure developed by Park (1988a) to (2.17).
We now briefly describe the CCR procedure.

Let e(t) = [ec(t), ex(t)’]’. We assume that e(t) is strictly

stationary and ergodic with zero mean and finite positive definite
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covariance matrix . We also assume that the partial sum process
constructed from e(t) satisfies the multivariate invariance principle and
weakly converges to a vector Brownian motion with the positive definite
covariance matrix Q. We decompose O as 1 = T + A + A where T = E
[e(t)e(t)’] and A = EJ:IE[E(O)e(j)']; and we define A = Z + A. We partition
1, =, A conformably with e(t). Some sufficient conditions for e(t) to
satisfy the multivariate invariance principle are provided by Hall and Heyde
(1980, theorem 5.5) and Phillips and Durlauf (1986). Let Az = [A , A ]

21 22

and 0 =0 -0 o0 .
11.2 11 12 22 21

The first step to obtain the CCR is to obtain consistent estimates of

~

¥y, O, %, A, and Q . Let v, ﬁ, i, A, and 6 denote consistent

x 11.2 x 11.2

estimates of v, Q, Z, A, and 0112. To obtain these estimates, we apply
X N

the OLS to (2.10) and (2.17). From the residuals of these regressions,

;(t)=[;c(t), ;x(t)’]’, the sample counterparts of O and A are formed:

T 4 T . R -
(1/T)Y e(t)e(t)” + (I/T)Y w(l,7) ¥ {e(t-1)e(t)” + e(t)e(t-71)")

t=1 =1 t=7T+1

(3.1) Q

T . L T . .
(1/D)Y e(t)e(t) + (1/T)y w(d,r) ) e(t-1)e(t)’

t=1 T=1 t=7T+1

(3.2) A

for some choice of the lag truncation number ¢ and the lag window w({,7).
For the empirical results reported in the present paper, we employed the lag
window of Parzen's estimates (see, e.g., Hannan [1970], p.279). Asymptotic
theories indicate that we consistently estimate Q@ and A by (3.1) and (3.2)
as the lag truncation number is increased but provide little guidance for
choosing the lag truncation number. In our empirical work, we checked
sensitivity of our results with respec£ to the lag truncation number. For

the results reported in the tables, we chose large enough lag truncation
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number that the test statistics settled down.

The second step is to run a regression with transformed data. Let
* - I‘I 1 o 51 - * = _‘/A-lk
y (£) = y(t) - ['yx A 22 + (0, 012022)]e(t) and X (t) X(t) AZE e(t).

Let Z(t) = [1, X*(t:)]. We regress y*(t) onto Z(t) to get an OLS estimate,

say ;S, of the coefficient vector, say ¢ = [0c, 'yx’]'. Then ;S has an

asymptotic normal distribution N(4, 011 2[Zti-lZ(t) Z(t)’]_l) conditioned on

the limit of Z(t). (See Park [1988] for the precise meaning of this
statement). We report square roots of diagonal elements of 611 z[ztilz(t)
Z(t:)’]—1 as standard errors of estimates. For the purpose of hypothesis

testing and interval estimation, these standard errors may be interpreted
just as the usual standard errors as explained below.

Since both o and a, are different from zero, we can choose c:(t) or
c;(t) as the regressand y(t) rather than pz(t:). Fist, consider the case
where c:(t) is chosen as the regressand, and let y(t)=c:(t) and X(t)=[pz(t),
c;(t)]. The stationarity restriction implies that y(t) and X(t) are
cointegrated with a normalized cointegrating vector T, = [1/a1, az/al]. It
is easy to show that Assumption 2b implies that the components of X(t) are
not stochastically cointegrated. Thus we can apply the CCR procedure to
y(t) and X(t) with these definitions to estimate 1x=[1/a1, az/al].
Consistent estimates of a and a, are obtained from a CCR estimate of 7,
from the formulas o:1=1/'1Xl and az-'yxz/'yXl. Asymptotic distributions of
these estimators can be derived by a mean;value approximation (the delta
method). Second, consider the case where c;(t) is chosen as the regressand,
and let y(t)=c;(t) and X(t:)=[p2(t), c:(t)]. In this case, y(t) and X(t) are

cointegrated with a normalized cointegrating vector y = [-l/az, al/az].
x
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Testing
An important consequence of this result is that linear restrictions can

be tested by xz tests which are free from nuisance parameters. Let
(3.3) R¢=r

be the null hypothesis, where R is a known matrix with ¢ rows and full row
rank q, and r is a known gx1 vector of real numbers. Partition R

conformably with ¢=[0c,7']’. Assume that Ru:=:E%1 =0, Let

(3.4) 6= (Rd - ) (Ra (T} j2(e) z(e) 1RO (R$ - 1),

11.2
Then G, asymptotically has an unconditional XZ distribution. This means
that Gﬁ tests for g=1 can be used to justify interpretations of the
conditional standard errors: if an estimate &i of the ith element of ¢ is
away from a hypothetical value of ¢i by more than two standard errors, then
the hypothesis that ¢i takes that value is rejected at the 5 per cent level.

We can use GR statistics in a regression with spurious deterministic
trends added to (2.17) to test for stochastic and deterministic

cointegration. Consider a regression

q <
(3.5)  y(£) =0 _+1. nitl+ v X(t) + € (t)
je1 x c

-~

We apply Park’'s (1988a) CCR procedure of to (3.5) using estimates of ;, Q,
i, &, and 611‘2 described above. Let H(p,q) denote the Gﬁ statistic to test
the hypothesis np=nw1= . -n4=0. Then H(p,q) converges in distribution to
a x;q random variable under the null of cointegration. In particular, the

H(0,1) statistic tests the hypothesis pc=0 in (2.14) and can be used to test
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the deterministic cointegrating restriction. If y(t) and X(t) are not
stochastically cointegrated, then ec(t) is difference stationary for any 7.
In this case, (3.5) is a spurious regression and H(l,q) statistics diverge
in probability. Hence the H(l,q) tests are consistent against the

alternative of no stochastic cointegration.

Seemingly Unrelated Canonical Cointegrating Regressions

We consider the case of multiple regressions in this subsection. We
mostly discuss this case in the context of the demand system with two goods
under Assumption 3. It is simple to extend the analysis for the demand

system with three goods.

Estimation

Now let us consider the case where Assumption 3 is satisfied. Let
y(t)=p:(t), X(t)=c?(t), and z(t)=c:(t), using the notation introduced in the
last section. Then since y(t) and X(t) are stochastically cointegrated,
regression (2.14) can be used to estimate T and B, - As shown in‘the
last section, y(t), X(t), and z(t) are deterministically cointegrated with
a normalized cointegrating vector 1=(7x, 12)’, where 1= "o, From
relation (2.15) and the deterministic cointegration restriction (2.19), we

obtain
(3.6) v, = BB,

Since p, can be estimated from (2.18), the deterministic cointegration
restriction can be used to identify v,
Let us formulate (2.14) and (2.18) as a system of Seemingly Unrelated

Regressions (SUR):
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(3.7) Y= Z¢ + u

where Y = [y(1), ..., y(T), 2(1), ..., 2(T)]’, é = [8_, B, 7, 6, uz]’. u

=le (1), ..., e(T), e (D), ..., e (T)]”, and

" 11 X(1) 00
12Xx2) 00

(3.8) Z =

Park and Ogaki's (1989) seemingly wunrelated canonical cointegrating
regressions (SUCCR) procedure extended the CCR procedure to SUR systems.
Though it is possible to obtain consistent estimates by applying the CCR
procedure to each regression, the SUCCR procedure provides more efficient
estimators by utilizing information in the long run correlations of the
disturbances.

Let ¢'(t) = [ (), € (£), € (t)]. We define Q. =, A" from € (t) as
we defined 0, =, A from e(t) in the first subsection. Partition Q" and A"
so that the subscript I corresponds with [ec(t), ez(t)]’ and the subscript 2

corresponds with e (t), so that Q -0*- 0* (Q* )_10 is a 2 by 2 matrix
x 1.2 11 125 22 21

and A; = [A;l, A;z]’ is a 3 by 1 matrix. In the first step we apply the OLS

to (2.10), (2.14), and (2.18) separately to obtain consistent estimates of
* * * * * +*

T, Q, Z, A, and 011 . The sample counterparts of . and A are formed by

(3.1) and (3.2) with e(t) replaced by E*(t)=[2c(c), Ez(t), Zx(t)]'. Let ;x,
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~h ~d ~ % ~ % * * *
Q, £, A, and 011 2 denote these consistent estimates of v, G, £, A,
. X

and ﬂ:l . The second step is to run a regression with transformed data.
Let

N :

y (t) y(t) L PO, fx aw qn
(3.9 = - A, Tz Te (t) - 012(022) ex(t)

z (t) z(t) 0

and X (t) = X (t)-zl;'é*'lé*(t). The SUCCR system is
* * ¥
(3.10) Y=2¢ +u,

where Y and Z" are defined from y*(t:), z*(t), and X*(t) as Y and Z were
defined from y(t), z(t), and X(t). Applying the GLS to (3.10), we obtain

the SUCCR estimator

*, " -1 *o-1 %, % -1 *
(3.11) ¢ = [2 (@, e 1)z1°z7(@Q e I)Y.

The asymptotic distribution of $ is (approximately) N(4, [Z*' (Qzl—:®

_1). An consistent estimate of 7, is ${$5 in the light of (3.6), and

1))
its asymptotic distribution can be derived by the delta method.

Since a is different from zero, we can choose c:(t) as the regressand
y(t) rather than pz(t). Consider the case where c:(t) is chosen as the
regressand, and let y(t)-—-c:(t), X(t)=p2(t:), z(t)-c;(t,). The stationarity
restriction implies that y(t) and X(t) are stochéstically cointegrated with
a normalized cointegrating vector vy = 1/a1. In this case, —yz=a2/a1. Thus
we can apply the SUCCR procedure to y(t), X(t), and z(t)\ with these

definitions to estimate 1=1/a1 and '1=az/a1. Consistent estimates of a
z z

and a, are obtained from a SUCCR estimate of -y=('yx, 'yz)’ from the formulas
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a1=1/'yx and a2=7z/7x. ‘Asymptotic distributions of these estimators can be
derived by the delta method. It should be noted that a, = pc/U27x] and
that the estimators of B, and p_ converge at a faster rate than that for T,
Consequently, the sampling errors for estimates of B, and B, have no impact
on the asymptotic distribution of the estimator of a,. The distribution is

derived as if estimates of u and g were known true values.
c z

Testing

As in the first subsection, linear restrictions can be tested by X;
tests which are free from nuisance parameters. Consider a linear
restriction (3.3), where R is a known matrix with g rows and full row rank
g, and r is a known gx1 vector of real numbers. It should be noted that
components of ; and ¢ converge at different rates: the estimators for b and
p_ converge at a faster rate than those for v converge. Hence we assume
that each row of R does not pick up estimators with different convergence

rates. Let
’ *I % -1 *.-1,, -1
(3.14) 6 = (R$ - r)' (R[Z (@, .,® IT)Z] R} (R$ - r)

for ¢ and

(3.15) G, = (R - ry (R[22 172 (rz’l“1 @ Ir)z*[z*'z*]'lk'}'l(ka - 1)

for é. Then each of these Gk statistics asymptotically has a xz
distribution.

We can use Gk statistics for a SUCCR system with spurious deterministic
trends added to (2.14) to test for stochastic cointegration. Consider a

SUCCR system which consists of
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q .
(3.16) y(t) =6_+} nit1+ Y X(t) + € _(t)
i=1

and (2.18). We apply the SUCCR procedure to this system. Let H(p,q) denote

the GR statistic to test the hypothesis np—q =n;4L Then H(p,q)

pH

. . . . 2 .

converges in distribution to a X random variable under the null of
P-q

stochastic cointegration. As in the first subsection, the H(l,q) tests are

consistent against the alternative of no stochastic cointegration.
4. Trend Properties of the Data

In this section, we test empirical validity of Assumptions 2 and 3. 1In
the first subsection, we explain the data used in this paper. In the second
subsection, we report results of tests for difference stationarity and trend
stationarity of time series of real consumption expenditures and relative
prices. In the third subsection, we report results of tests for Assumption
2a.

The Data

We used seasonally adjusted monthly data in the NIPA. Three measures of
nondurable consumption were alternatively used as the first good to obtain
estimates of the relative risk aversion coefficient for each of three
measures. These were nondurables plus services (NDS), nondurables (ND), and
nondurables minus clothing (NDC). Durables consumption was used as the
‘second good when NDS was taken as the first good; durables and services were
alternatively used as the second good when ND was taken as the first good;
and durables, services, clothing and shoes (clothing for short)were wused
alternatively as the second good when NDC was taken as the first good.

Seasonally adjusted monthly data for the NIPA was taken from the PCE

magnetic tape of the NIPA prepared by the Bureau of Economic Analysis, U.S.
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.Department of Commerce. For CT(t) and CZ(t) in the model, real per capita
consumption expenditures were constructed by dividing personal consumption
expenditures in constant 1982 dollars by the total population including
armed forces overseas obtained from the CITIBASE.3 The implicit deflator
was used as the price for each consumption series. The implicit deflators
for eéch series was constructed by dividing personal consumption expenditure
in current dollars by that in constant 1982 dollars.

The sample period was from February 1959 to December 1986 unless
otherwise noted. Hence each time series consists of three hundred thirty
five observations. For the empirical results involving services series, we
also used the sample period from January 1968 to December 1986 for the

reason to be explained below. In this case, the sample size is two hundred

twenty eight.

Tests for Difference and Trend Stationarity
Tests for Time Series of Consumption Expenditures

The stationarity restriction was derived under the assumption that
c?(t) and cZ(t) are stationary after first differencing (note that trend
stationary processes also satisfy this requirement.) In figures 1-6, we
plot the first differences of log of real per capita consumption for NDS,
ND, NDC, durables, services, and clothing. These series show no apparent
nonstationarity in these figures except for the series for services in
figure 5. Variance of the series for services appears to increase

substantially after 1968. Since 1967 is one of the benchmark years used to

We incorporated the revision of population estimates reported in
Current Population Reports (Series p-25, No.1036) issued in March 1989 by
Bureau of the Census after the release of the version of the CITIBASE we
used.
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construct monthly consumption series (see, e.g., Byrnes, Donahoe, Hook, and
Parker [1979, p.24]), this seems to be caused by nonstationary measurement
errors that we do not allow. For this reason, we excluded the period from
January 1959 to December 1967 from some of our empirical analyses.

Our next results are concerned with discrimination between trend
stationarity and difference stationarity of consumption series. Let {X(t))
be the process of interest. We are interested in whether X(t) is difference

stationary or trend stationary. Consider an OLS regression

4.1 X(t) =‘§ m it + e(e),
i=o

and define ;2 = (l/T)Zi=1 ;(t)z. Let F(p,q) denote the standard Wald test
statistic in regression (4.1) for the null hypothesis npﬂ=npﬂ=,...,=né=0.
Let J(p,q) = (1/T)F(p,q) and G(p,q) = (Gz/ﬁ)F(p,q), where 6 is defined by
(3.1) for ;(t) in (4.1). Then J(I,q) converges in distribution to a
nondegenerate random variable under the null hypothesis that X(t) 1is
difference stationary; G(l,q), to a xz__1 random variable under the null
hypothesis that X(t) is trend stationary (see Park and Choi [1988]). Hence
J(1,q) can be used to test the null of difference stationarity against the
alternative of trend stationarity. | We reject the null of difference
stationarity when the J(1,q) statistic is smaller than critical wvalues
tabulated by Park and Choi (1988). The G(1,q) statistic can be can be used
to test the null of trend stationarity against the alternative of difference
stationarity. We reject the null of trend stationarity when the G(I,q)
statistic is larger than critical values. These tests are consistent.

For the null of difference stationarity, we also used Za and Zt test

statistics of Phillips and Perron (1988) and Ouliaris, Park, and Phillips
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(1988) that correct Dickey and Fuller (1979) statistics for serial
correlation. Critical values for Za and Zt statistics are the same with
those for Dickey and Fuller (1979) test statistics tabulated in Fuller

(1976, p.371 and p.373) by construction. Consider an OLS regression
(4.2)  X(t) = ?,0 + ,}1t + aX(t-1) + e(t).

The Za statistic modifies T(;-l) and the Zt statistic modifies the ¢
statistic for the hypothesis that @ is equal to one. These modifications
for serial correlation involve estimation of the long run variance with the
formula (3.1) for ;(t) in (4.2). For reasons suggested by Park (1989), we
focused on these single unit root tests rather than the joint tests for the
null hypothesis that a is equal to one and n is equal to zero that were
analyzed by Dickey and Fuller (1981) among others.

A serious problem about the Za and Zt statistics are size distortions
in small samples. Simulations reported in Phillips and Perron (1988) showed
that the size distortion problem could be substantial when the stationary
component of the series is small relative to the random walk component in
the sense of Cochrane (1988): the probability that Za and Zt tests with
nominal size 5 per cent reject the null hypothesis of difference
stationarity may exceed 90 per cent when the null hypothesis is true (Also
see Schwert [1987] for related simulation results). Simulations by Park and
Choi (1988) showed that that the size distortion problem for J(p,q) tests
could be much less severe and could disappear at a much faster rate as the
sample size increases than that for the Za and Zt tests., The size
distortion problem for the Za and Zt tests seems to be related with the

estimation of the long run variance. It should be noted that the J(p,q)
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tests do not require the estimation of the long run variance.On the other
hand, their simulations showed that the J(p,q) tests may have less power
than the Za and Zt tests in small samples.

Table 1 presents results of the J(1,2), J(1,3), ..., J(1,6), Za and Zt
tests with the null of difference stationarity of log real per capita
consumption expenditures. For services, we used the sample period of
1968:1-1986:12 as well as the sample period of 1959:1-1986:12 because of the -
suspected heteroskedasticity of the series mentioned above. We also used
these two sample periods for the time series for NDS because suspected
nonstationary measurement errors in services affect this series which is the
sum of ND and services.

There was no evidence against difference stationarity of the time
series examined according to the J(I1,q) tests. On the other hand, there was
evidence against difference stationarity for durables and clothing according
to the Za test at the 5 per cent significance level. The Zt tests showed
similar evidence against difference stationarity of these series. For the
results reported in table 1 for the Za and Zt tests, we used the lag
truncation number of 30 and the lag window of Parzen's estimates in
estimating the long run variance as in (3.3). We also tried the 1lag
truncation numbers of 10, 20, 40, 50, 60, 70, and 80. Our results for Za
and Zt tests were not very sensitive to the choice of the lag truncation
number. For NDS, ND, NDC, and services, the Za and Zt statistics were not
significant at the 10 per cent level for any choice of the lag truncation
‘number. For durables and clothing, the Za and Zt statistics were not
significantly negative at the 10 per cent level when the lag truncation
number of 10 was used and were not significant at the 5 per cent level.

However, they were always significantly negative at the 5 per cent level and
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'sometimes at the 1 per cent level when the lag truncation numbers greater
than 30 were used.

Two interpretations are possible for these conflicting results between
the J(p,q) tests and the Za and Zt tests for durables and clothing. A
possibility is that the size distortion of Za and Zt is the source of the
problem. Since the time series for durables.and clothing are not smooth,
the random walk component of these series seem to be small relative to the
stationary component (see Ogaki [1988] for diagnosis similar to that of
Cochrane [1988] for the time series of durables consumption). This means
that the Za and Zt tests may not be reliable for these time series. Even if
these series have nonzero random walk components and are difference
stationary, these tests may reject the null of difference stationary with
high probability. Another possibility is that lower power of J(p,q) tests
in small samples is causing the problem when these series are trend
stationary.

In table 2, we report results of the G(1,2),..., G(1,6) tests for the
null hypothesis of trend stationarity. The lag truncation number used for
the results in table 2 was 80. When the sample period of 1959:1-1986:12 was
used, the G(1,2) test rejected the null of trend stationarity in favor of
the alternative of difference stationarity at the 5 per cent level for NDS,
ND, NDC, services, and clothing. For these series, some of the G(1,3) and
G(l,4) statistics were significantly large at the 10 per cent level. This
evidence against trend stationarity is not compatible with our Za and Zt
test results. On the other hand, no test statistics were significant at the
10 per cent level for durables, which is compatible with our Za and Zt test
results. When the shorter sample period of 1968:1-1986:12 was used for NDS

and services, no tests rejected the null hypothesis of trend stationarity.
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We checked sensitivity of our results with respect to the choice of the
lag truncation number. For NDS with the sample period of 1959:1-1968:12,
the values of the G(1,2) statistic for the lag truncation numbers of 10, 20,
30, 40, 50, 60, 70, 80, 90, and 100 were 28.015 (0.000), 14.463 (0.000),
10.026 (0.002), 7.863 (0.005), 6.608 (0.010), 5.805 (0.016), 5.262 (0.022),
4.882 (0.027), 4.612 (0.032) and 4.418 (0.036), respectively, where the
numbers in parentheses are probability values. Thus the G(1,2) statistic
was stabilized enough to fall in the region between the critical value for
the 5 per cent level and that for the 1 per cent level for the lag
truncation numbers which are greater than 50. Statistical inferences for
the results in table 2 at the 1 per cent and 5 per cent significance levels
were robust to the choice of the lag truncation numbers of 60, 80, or 100
except for the following three cases: the G(1,2) statistic for ND was not
significant at the 5 per cent level when the lag truncation number of 100
was used (the probability wvalue was 0.058): the G(1,2) statistic for
clothing was significant at the 1 per cent level when the lag truncation
number of 60 was used; the G(1,3) statistic for clothing was not significant
at the 5 per cent level when the lag truncation number of 100 was used (the
probability value was 0.052).

We conclude this subsection by summarizing our results in tables 1 and
2. We did not find gvidence against difference stationarity at the 10 per
cent significance level for any of the consumption series we tested except
for durables and clothing. For durables and clothing, we did not find
evidence against difference stationarity for durables and clothing at the 10
per cent level in terms of the J(l,q) tests. We found evidence against
trend stationarity for consumption series of NDS, ND, NDC, services, and

clothing at the 5 per cent level but not for series of durables when we used
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the longer sample periéd. When the shorter sample period was used, we did
not find evidence against either difference stationarity or trend
stationarity for any of the consumption series we used,

In the light of these results, we employed the following specifications
for the rest of the empirical results reported in the present paper. We
employed the specification that the log of real consumption series is
difference stationary for services when the longer sample period was used
and for NDS, ND, NDC, and clothing. We tried both the specifications that
log of consumption is difference stationary and that log of consumption is
trend stationary for services when the shorter sample period is used and for

durables.

Tests for Time series of Relative Prices

As shown in Section 2, the stationarity restriction implies that log of
the relative price is difference stationary under either Assumption 2 or
Assumption 3. We now test this implication of the model.

Table 3 presents results of the J({,2),..., J(1,6) and Za and Zt tests
for log of relative prices. The lag truncation number used for the results
of the Za and Zt tests reported in table 3 was 30. No Za and Zt test
statistics showed evidence against the null hypothesis of difference
stationary relative prices at the 10 per cent significance level. This
conclusion was robust against the choice of the lag truncation numbers of
10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. Results of the J(1,q) tests
were similar except for those for the relative price of durables and NDS
when the sample period of 1968:1-1986:12 was used. The J(1,2) test
statistic was significantly small at the 5 per cent level in this case; the

J(1,4) and J(1,6) statistics, at the 10 per cent level. Thus these J(1,q)
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test for the relative price of NDS and durables showed evidence against our
model for the shorter sample period. None of these statistics are
significant at the 1 per cent level, however, and the J(1,q) tests did not
reject the null hypothesis of the difference stationary relative price for
the longer sample period at the 10 per cent level. Thus the rejection could
be a manifestation of the size distortion problem of the J(I,q) tests that
disappears as the sample size increases.

Table 4 presents results of the 6(1,2), ..., 6(1,6) tests for the null
of trend stationarity. The main purpose of table 4 is to give some ideas
about small sample power of the Hfl,q) tests as we discuss in the next
section. The lag truncation number used for the results in this table was
80. When the sample period of 1959:1-1986:12 was used, either the G(1,2) or
the G(1,3) tests rejected the null of trend stationarity in favor of the
alternative of difference stationarity at the 5 per cent level for all the
relative prices we tested. For this sample period, some of the G(1,4) and
G(1,5) statistics were significantly large at the 10 per cent and 5 per cent
levels.

We also used the shorter sample period of 1968:1-1986:12 for the
relative prices involving NDS or services. The G(1,2) test rejected the
null of trend stationarity for the relative price of services and ND and
that of services and NDC. No tests rejected the null hypothesis of trend
stationarity for the relative price of durables and NDS in favor of the
alternative of difference stationarity. However, the G(1,2) statistic fell
in the tail of "too good to be true" tail for the null of the trend
stationarity at the 5 per cent level. This observation is compatible with
our conjecture of the size distortion for the J(1,2) test for this relative

price series with this sample period.
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We checked sensitivity of our results with respect to the choice of the
lag truncation number. For the relative price of durables and NDS with the
sample period of 1959:1-1968:12, the values of G(1,2) for the lag truncation
numbers of 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 were 25.844 (0.000),
13.909 (0.060), 10.014 (0.002), 8.144 (0.004), 7.091 (0.008), 6.440 (0.011),
6.016 (0.014), 5.732 (0.017), 5.540 (0.019) and 5.412 (0.020), respectively,
where the numbers in parentheses are probability values. Thus G6(1,2)
statistic was stabilized enough to fall in the region between the critical
value for the 5 per cent level and that for the 1 per cent level for the lag
truncation numbers which are greater than 60. Statistical inferences for
results in table 4 at the 1 per cent and 5 per cent significance levels were
robust to the choice of the lag truncation numbers of 60, 80, or 100 except
for the following cases: the G(1,4) statistic for the relative price of
durables and NDS with the longer sample period, the G(I1,3) statistic for the
relative price of services and ND, the G(1,3) statistic for the relative
price of services and NDC with the shorter sample period, and the G(1,3) and
G(l,4) statistics for the relative price of clothing and NDC were marginally
significant at the 5 per cent when the lag truncation number of 60 was used;
the G(1,4) statistic with the longer sample period and the G(1,3) statistic
with the shorter sample period for the relative price of services and ND
were not significant at the 5 per cent level when the lag truncation number
of 100 was used.

We conclude this subsection by summarizing empirical results in tables
3 and 4. We did not find evidence against difference stationarity for any
of the relative prices we tested at the 10 per cent significance level
except for the relative price of durables and NDS. We found evidence

against trend stationarity for all the relative prices at the 5 per cent
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level when the longer sample period was used.

Tests for No Stochastic Cointegration

Suppose that Assumption 2a is satisfied. Then Assumption 2b (together
with the stationarity restriction) implies that log of the relative price is
difference stationary as in proposition 1. Thus ;ather strong evidence in
favor of difference stationarity of most of the relative prices supports
Assumption 2b. The difference stationarity of the relative price, however,
does not imply Assumption 2b because the two consumption series may be
stochastically cointegrated with a normalized cointegrating vector other
than [al, -azy . For this reason, we report results of tests for the null
hypothesis of no stochastic cointegration in this subsection.

Consider an OLS regression
- 2.~ ; -~ ~
(4.3) y(t) = § + ) nt+ Y E(E) e(t).
i=1

where y(t) and X(t) are difference stationary processes, and let F(p,q)
denote the standard Wald test statistic in regression (8.3) for the null
hypothesis npufnpu=,...,=nq=0. Define I(p,q) = (1/T)F(p.,q). Quliaris,
Park and Chéi (1988) showed that I(l,q) converges in distribution to a
nondegenerate random variable under the null hypothesis that y(t) and X(t)
are not stochastically cointegrated. We reject the null of no cointegration
Qhen I(p,q) statistics are smaller than critical vélues of I(p,q) test
statistics tabulated by Park, Ouliaris, and Choi (1988). The I(p,q) tests
are consistent against the alternative of stochastic cointegration. The

I(p,q) tests basically apply the J(p,q) tests to the residual of regression

(4.3). Alternatively, we can apply the Za or Zt tests to the residual as in
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Phillips and Ouliaris (1988). We did not use these Za and Zt tests because
of the serious size distortion problem mentioned above.

Table 5 presents results of the I(l,5) test for the null of no
cointegration of c?(t) and cZ(t) for various choices of the first and second
goods. For each pair of consumption goods, we can choose the first good as
the regressand (y(t)=c:(t), X(t)=c2(t) ) or the second good as the
regressand (y(t)=c§(t), X(t)=c?(t) ) for the I(l1,q) tests. Hence we changed
the choice of the regressand for each pair of goods. No I(1,5) test
statistic was significantly small at the 10 per cent significance level.

Thus the results in table 5 show no evidence against Assumption 2b.
5. Empirical Results of Cointegrating Regressions

In this section, we report results of cointegrating regressions. The
first subsection presents results for the demand system with two goods under
Assumption 2; the second subsection, for the demand system with two goods
under Assumption 3; the third subsection, for the demand system with three

goods.

The Demand System with Two Goods under Assumption 2

In this subsection, we assume that all the consumption series are
difference stationary, so that Assumption 2 is satisfied for each pair of
consumption series. Table 6 presents CCR results. For each pair of
consumption series, we first chose the relative price, p,, as the
regressand. Table 6 reports estimates of a, o, and al/az, and the GR test
statistic for the null hypothesis af%3=1 from regression (3.2). The GR
statistic tests the null hypothesis that the demand system is the linear

expenditure system as explained in Section 6. Table 6 also reports the

H(0,1) test statistic for the deterministic cointegration restriction from
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'regression (3.11) with g¢=1 and the H(¢(1,2), H(1,3), and H(1l,4) test
statistics for stochastic cointegration from regression (3.11) with ¢= 2, 3,
and 4, respectively. When none of these H(p,q) tests rejected the model at
the 1 per cent significance level, we applied the CCR with CT chosen as the
regressand as reported in table 6. For this choice of the regressand, table
6 reports the GR test statistic for the null hypothesis 1/a1=a2/a1=1 that 1is
a linear restriction on estimated parameters to test the linear expenditure
system. When none of the H(p,q) tests with c? as the regressand rejected
the model at the 1 per cent significance level, we applied the CCR with CZ
chosen as the regressand as reported in table 6. For this choice of the
regressand, the reported GR statistic tests the null hypothesis
l/a2=a1/az=l. The lag truncation number uéed for the results in table 6 was
80. We will discuss sensitivity of the results with respect to the choice
of the lag truncation number in the text.

The G(l,q) test results reported in the last section provides some
jdeas about small sample power of the H(l,q) tests. For example, the value
G(l,q) for P, will be close to the value of H(l,q) in the regression with P,
as the regressand if estimated a and a, are close to zero. The reason why
we do not report H(l1,5) and H(1,6) in this paper is that the G(1,5) and
G(l,6) test statistics were not significant for any variable at the 5 per
cent level in the last section.

We found much evidence against the stationarity restriction for NDS and
durables under Assumption 2. The deterministic cointegration restriction
was rejected at the 1 per cent significance level by the H(0,1) test with cT
chosen as the regressand for the longer sample period. In this case, we
also found evidence against stochastic cointegration in terms of the H(1,4)

test. For the shorter sample period, the H(0,1) test with P, chosen as the
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regressand rejected the deterministic cointegrating restriction at the 1 per
cent level. Even more overwhelming evidence against the linear expenditure
system was found by the GR test. Most of the point estimates of a and a,
had theoretical incorrect negative sign for both sample periods (we do not
report an estimate of czl/a2 when point estimates of either a or a was
negative). Some of the point estimates of these parameters were
significantly negative at the 1 per cent level.

We also found much evidence against the stationarity restriction when
ND was used as the first good. In this case, we used either durables or
services as the second good. When the p, was used for the longer sample
period, the H(0,1) test rejected the deterministic cointegration restriction
at the 1 per cent level for ND and durables and for ND and services. For
the shorter sample period, the deterministic cointegration restriction for
ND and services was rejected at the 1 per cent level. Most of the point
estimates for a and a, had theoretical correct positive sign for the models
with ND, however. Even when the point estimate of a was negative for the
model with ND and durables, it was not significantly negative at the 5 per
cent level. Also, there was no evidence against stochastic cointegration in
terms of the H(1,2), H(1,3), and H(l,4) tests at the 5 per cent level.
Evidence for stochastic trends found in the last section in terms of G(1,2),
G(1,3) and G(1,4) tests were removed in these cointegrating regressions. In
these respects, the results for ND were more encouraging than those for NDS.
We found overwhelming evidence against the linear expenditure system in
terms of the GR test for all the cases reported.

We found much evidence against the stationarity restriction for the
models with NDC used as the first good and either durables, services or

clothing chosen as the second good when the longer sample period was used:
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the deterministic cointegration restriction was rejected at the 1 per cent
level by the H(0,1) test. Stochastic cointegration, however, was not
rejected at the 1 per cent level, and all the point estimates had the
theoretically correct positive sign for all the models. We found
overwhelming evidence against the linear expenditure system in terms of the
Gﬁ test for NDC and durables and for NDC and services. We found much less
evidence against the linear expenditure system for NDC and clothing in terms
of the GR test: the linear expenditure system was not rejected at the 1 per
cent level by the Gi test.

We found little evidence against the stationarity restriction for the
model with NDC and services when the shorter sample period was used: neither
the deterministic cointegration restriction was rejected by the H(0,1) test
nor stochastic cointegratioh was rejected by the H(I1,2), H(1,3), and H(1l,4)
tests at the 5 per cent level for any choice of the regressand. All the
point estimates for a and a, have the‘theoretically correct positive sign.
Again we found overwhelming evidence against the linear expenditure system
for this model. When the longer sample period was used for this model, the
deterministic cointegration was rejected at the 1 per cent level as we noted
earlier. The point estimate of each of the parameters for the longer sample
period, however, were not too different from the estimates of the parameter
for the shorter sample period to be explained by the standard errors. The
point estimates of a in the model with NDC and durables and the model with
NDC and clothing were also not very different from those in the model for
NDC and services if we consider standard errors.

We checked sensitivity of our results in table 6 with respect to the
choice of the lag truncation numper. The lag truncation number of 80 was

used for the results in table 6 because the G(1,q) statistics in the last
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section were typically stabilized around the lag truncation number of 50 or
60. We tried the lag truncation numbers of 60 and 100. For all the cases
where the H(0,1) test rejected the deterministic cointegration restriction
at the 1 per cent level in table 6, the test rejected the restriction at the
1 per cent level when the lag truncation number of 60 or 100 was used. For
all the cases where the Gk statistic was significant at the 0.1 per cent in
table 6, it was significant at the 0.1 per cent when the lag truncation
number of 60 or 100 was used. The sign of the point estimate of @ or a,
never changed when the lag truncation number of 60 or 100 was used. When a
point estimate of a was significantly negative at the 5 per cent level in
table 6, it was significantly negative at the 5 per cent level when the lag
truncation number of 60 or 100 was used. For the model with NDC and
services when the shorter sample period was used, the H(p,q) statistics were
not significant at the 5 per cent level except for the following two cases:
the value of H(0,l1) was 4.410 with the probability value 0.036 when cT was
used as the regressand and the lag truncation number of 60 was used; the
value of H(1,2) was 4.174 with the probability value 0.041 when c: was used
as the regressand and the lag truncation number of 100 was used.

We now examine results for the model with NDC and services when the
shorter sample period was used in more detail. This is the only model that
was not rejected at the 5 per cent level, and the other models were rejected
at the 1 per cent level. Standard errors of each parameter indicate the
source of finite sampling errors that caused differences in point estimates
when different regressands were chosen. The point estimates for a and a
had the lowest standard errors when p, was used as the regressand. These
parameters are nonlinear functions of the estimated cointegrating vector

when any of the other variables is used as the regressand. On the other
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hand, the point estimates for al/a2 have the lowest standard error when c:
was chosen as the regressand. Again this parameter is a nonlinear function
of the estimated cointegrating vector when any of the other variables is
chosen as the regressand. Hence finite sampling errors caused by the linear
approximation of nonlinear functions appears to be important source that
caused the differences in point estimates.

Given that the 1linear approximation does mnot seem reliable (see
Phillips and Park [1988] for related problems), inferences about a parameter
of interest should be based on the regression for which the parameter is
estimated linearly. The parameters a, and a, are estimated linearly in the
regression with the regressand of pz(t). According to this regression, the
RRA parameter for NDC, @, is likely to be between 0 and 2.7 and the
curvature parameter for services, @, is likely to be between 0 and 0.6 with
the 95% confidence level. The parameter al/a2 is estimated linearly in the
regression with the regressand of cZ(t). According to this regression, the
ratio of income elasticities for services and NDC is likely to be between
2.9 and 3.7 with the 95% confidence level. Hence there is evidence against
the hypothesis that preferences for NDC and services are homothetic (a1=az),
which is weaker than the hypothesis of the linear expenditure system
(a1=a2=1). Our estimates indicate that the income elasticity for services
is greater than that for NDC.

We checked sensitivity of our results with respect to the choice of the
data of population. For this purpose, we tried the civilian
noninstitutional adult (age sixteen and over) population obtained from the
CITIBASE to construct real per capita consumption series for the
NDC-services model with the shorter sample period. We found 1little

sensitivity for our results in tables 6 for this model.
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In table 7 we compare estimates on which the deterministic
cointegration restriction was imposed and those on which the restriction was
not imposed for the model with NDC and services. We applied the CCR method
to regression (2.14) to obtain the unrestricted estimates. Standard errors
indicated that there was much gain in efficiency by imposing the restriction
on the estimates. Imposing the restriction helped to reduce the dependency

of point estimates on the choice of the regressand.

The Demand System with Two Goods under Assumption 3

In this subsection, we assume that the consumption series for durables
and services are trend stationary. We did not find evidence against trend
stationarity of consumption of durables at the 5 per cent level in the last
section. We did not find evidence against trend stationarity of consumption
of services at the 5 per cent level when we used the shorter sample period.
We assume that consumption series for NDS, ND, and NDC are difference
stationary, so that Assumption 3 is satisfied for each pair of consumption
series.

Table 8 presents SUCCR results. For each pair of consumption series,
we first chose the relative price, p,, as the regressand. Table 8 reports
estimates of a, a, and cﬂ/az, and the GR test statistic for the null
hypothgsis a1=1 and B = Since a, = -/.Lc/pz as in (3.14), the hypothesis
B=b is equivalent with the hypothesis a2=1. Hence the GR statistic tests
the null hypothesis that the demand system is the linear expenditure system.
Table 8 also reports the H(1,2), H(1,3), and H(l,4) test statistics for
stochastic cointegration from the SUCCR system (3.12°) and (3.13) with g= 2,
3, and 4, respectively. When none of these H(l,q) tests rejected the model

at the 1 per cent significance level, we applied the SUCCR with c? chosen as

48



the regressand as reported in table 8. (It happened that this was the case
for all the results in table 8). With this choice of the regressand, the GR
statistic tests the hypothesis 1/a£=1 and B =H which is equivalent with
the hypothesis a1=a2=1 in this case. The lag truncation number used for the
results in table 8 was 80. We will discuss sensitivity of the results with
respect to the choice of the lag truncation number in the text.

We found much evidence against the cointegration restriction for NDS
and durables under Assumption 3 when the longer sample period was used. The
deterministic cointegration restriction was rejected at the 1 per cent
significance level by the H(0,1) test with cT chosen as the regressand for
the longer sample period. 1In this case, we also found evidence against
stochastic cointegration in terms of the H(l,2) and H(1,3) tests at the 1
per cent level. When we used the shorter sample period for NDS and
durables, we found little evidence against the stationarity restriction.
The H(l,q) tests did not reject stochastic cointegration at the 5 per cent
level. The point estimates of the parameters were positive and were not
very different from those obtained with the longer sample period,
considering their standard errors. Overwhelming evidence against the linear
expenditure system was found by the Gk test for both the longer and shorter
sample periods. i

We also did not find evidence against the stationarity restriction in
terms of the H(l,q) tests at the 5 per cent level when ND was used as the
first good. When we used durables as the second good, only the longer
sample period was used because the suspected nonstationary measurement
errors should not affect ND and durables. When we used services as the
second good, only the shorter sample period was used because the hypothesis

of trend stationary consumption of services was rejected at the 5 per cent
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level for the longer sémple period. All the point estimates for a and a,
had theoretical correct positive sign for these models with ND. We found
overwhelming evidence against the linear expenditure system in terms of the
GR test.

When we used NDC as the first good, we used durables as the second good
with the longer sample period or services as the second good with the
shorter sample period. Though we found evidence against stochastic
cointegration at the 5 per cent level in terms of the H(1,2) test for both
cases, we did not reject the stationarity restriction at the 1 per cent
jevel for either of the two cases. All the point estimates for a and a,
were positive. We found overwhelming evidence against the> linear
expenditure system in terms of the GR test.

We checked sensitivity of our results in table 8 with respect to the
choice of the lag truncation number. We tried the lag truncation numbers of
60 and 100. When the H(l,q) test rejected (did not reject) stochastic
restriction at the 1 per cent level in table 8, the test rejected (did not
reject) the restriction at the 1 per cent level when the lag truncation
number of 60 or 100 was used (g=2,3,4) except for the following two cases.
When the lag truncation number of 60 was used for NDC and durables, the
value of the H(1,2) statistic was 6.784 with the probability value 0.009;
when the lag truncation number of 100 was used for NDC and services the
value of the H(1,3) statistic was 9.923 with the probability value 0.007.
When the GR statistic was significant at the 0.1 per cent in table 8, itlwas
significant at the 0.1 per cent when the lag truncation number of 60 or 100
was used except for the following case: when the shorter sample period was
used for NDS and durables, the lag truncation number of 60 yielded the GR

statistic of 10.906 with the probability value 0.004. The sign of the point
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estimate of a or a, never changed when the lag truncation number of 60 or
100 was used.

In the SUCCR system, a is estimated linearly by the regression with
pz(t) as the regressand. Neither a, nor al/az is estimated linearly by any
regression in the SUCCR system. However, the regression with pz(t) as the
regressand should be more reliable for estimation of a because o, = pc/pz
in this regression: the estimators for B and K, converge at a faster rate
than the estimators for the other parameters. For similar reasons, the
regression with c?(t) as the regressand should be more reliable for
estimation of al/az.

The RRA coefficient for NDS is likely to be between 0.22 and 0.77 with
the 95 per cent confidence level; the curvature parameter for durables, @,
is 1likely to be between 0.6 and 1.1; and the ratio of the income
elasticities for durables and NDC, al/az, is likely to be between 0.8 and
0.9 according to our results for NDS and durables with the shorter sample
period. Since we estimated al/a2 to be significantly smaller than 1, there
is evidence against the hypothesis that preferences for NDS and durables are
homothetic that is weaker than the hypothesis of the linear expenditure
system, Our estimates indicate that the income elasticity for NDS is
slightly greater than that for durables.

We checked sensitivity of our results with respect to the data of
population. For this purpose, we tried the civilian noninstitutional adult
(age sixteen and over) population obtained from the CITIBASE to construct
real per capita consumption series for the NDS-durable model and ND-services
model with the shorter sample period. We found little sensitivity for our

results in tables 8 for these models.
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The Demand System with Three Goods

This subsection reports results for SUCCR estimation of the demand
system for ND, services, and durables and the demand system for NDC,
services, and durables. There are two purposes. First, we test the
cross-equation restriction discussed in Section 2 for the demand system with
three goods. This restriction requires that the RRA coefficient implied by
the first order condition involving services and that implied by the first
order condition involving durables be the same. Second, we impose the
cross-equation restriction on estimates to obtain sharper estimates of the
RRA coefficient.

Table 9 reports SUCCR results. We used the shorter sample period and
prices as the regressands. The first two panels report results for ND; the
second two panels, results for NDC. For each measure of mnondurable
consumption, the log of services consumption is assumed to be difference
stationary in the first panel, and it is assumed to be trend stationary in
the second panel. The log of ND consumption and that of NDC consumption are
assumed to be difference stationary and the log of durables consumption is
assumed to be trend stationary throughout the table. The GR statistic tests
the cross-equation restriction. For both NDC and ND, the restriction is
accepted when the log of services is assumed to difference stationary and
rejected decisively when the log of services consumption is assumed to be

trend stationary.
6. Comparisons with GMM estimates

In this section, we compare our estimates of the RRA coefficient
obtained by the cointegration approach with estimates of the RRA coefficient

obtained by the GMM approach. The GMM approach of Hansen and Singleton
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(1982) is closely related with our cointegration approach. In the model
presented in Section 2, suppose that the preferences of the first good is

time separable, so that Sl(t) = Cl(t). In addition, assume that Rt does not

depend on We(t-l) and o(t) is constant over time. Thus there is no
borrowing constraint or unknown preference shock. Then the asset pricing
equation

-a

1

(10.1)  E (R BIC (t+1)/C (t)] ")=1

must be satisfied in an equilibrium. Hansen and Singleton (1982) utilized
asset pricing equation (10.1) to estimate a and B using NDS or ND as the
first good.

Tauchen (1986) showed that the GMM estimators could have reasonable
small sample properties in simulations where the true parameter values were
a1=0.3 and B=0.97 while Kocherlakota (1988) showed that the GMM estimator
could underestimate a and B in small samples in simulations where a£=13.7
and B=1.139. Kocherlakota also showed that Friend and Blume's (1975)
technique could also underestimate a. Though the parameter values he used
may be somewhat counterintuitive, these values are theoretically valid in
the sense a well defined equilibrium exists. Kocherlakota argued that these
large values of a and B could explain empirical rejections of the C-CAPM
with the CRRA utility function found by Hansen and Singleton (1982, 1984),
Mehra and Prescott (1985), and Hansen and Jagannathan (1988) among others
using Treasury Bills and stock market returns.

Our estimates are compatible with most of the GMM estimates reported in
Hansen and Singleton (1982, 1984), taﬁing standard errors 1into
consideration. OQur estimates of the RRA coefficienf do not support a large

value of the RRA coefficient that Kocherlakota (1988) proposed.
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7. Conclusions

This paper proposed an approach to estimate the preference parameters
and to test the first order condition based on stochastic and deterministic
cointegration. The deterministic cointegration restriction played important
roles in our empirical work. We obtained much sharper estimates by imposing
the deterministic cointegration restriction. The test for the deterministic
cointegration restriction with the null of cointegration provided strong
evidence against many models.

We obtained favorable empirical results for the models when the log of
nondurable consumption and the log of services consumption were assumed to
be difference stationary and the log of durables consumption was assumed to
be trend stationary. We found overwhelming evidence against the linear
expenditure system for all the models we examined except for the model with
NDC and clothing.

Our interval estimates with the 95 per cent confidence level of the RRA
coefficient from our results for the models that were supported by the data
are as follows. The RRA coefficient for NDS is estimated to be between 0.2
and 0.8 (see Table 8); that for ND, between 0 and 1.2 (see Table 10); that
for NDC, between 0.4 and 1.3 (see Table 10).

We estimated the ratio of income elasticities for each pair of goods we
used. Our estimates indicated evidence against the hyﬁothesis of homothetic
preferencés that is weaker than the hypothesis of the linear expenditure
system for the model with NDS and durables, the model with NDC and services,
and the model with ND and services. The income elasticity for NDS is likely
to be slightly greater than that for durables. The income elasticity for

services is likely to be much greater than that for NDS and that for NDC.
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TABLE 1

TESTS FOR DIFFERENCE STATIONARITY OF CONSUMPTION

J(1,2)  J(1,3) J(,4)  J(,5) J(1,6) z, z,
NDS 1.549  1.554  3.186  3.303  4.317 -5.770  -1.709
59:1-86:12
NDS 0.085  0.190 0.412  0.630  0.835 -15.059 -2.889
68:1-86:12
ND 0.714  0.788  1.662  1.826  2.286 -12.176 -2.49%4
59:1-86:12
NDC 1.542  1.598  3.396  3.580  4.119 -6.369  -1.790
59:1-86:12
Durables 0.120  0.184  0.749 0.776  0.978 -23.6017 -3.397"
59:1-86:12
Services 3.526  3.669  7.053  7.055  9.137 -3.307  -1.347
59:1-86:12
Services 0.709  0.871  1.448  2.041  2.451 -11.680 -2.767
68:1-86:12
Clothing 1.423  1.507  1.545  1.731  2.490 -25.7747 -3.6701
59:1-86:12

NOTE: The lag truncation number used for the Za and Zt statistics

reported in this table was 30. Critical values for the 1 per cent, 5 per
cent, and 10 per cent significance levels are 0.000086, 0.0023, and 0.0093
for J(1,2); 0.011, 0.055, and 0.12 for J(1,3); 0.055, 0.16, and 0.29 for
J(1,4); 0.123, 0.295, and 0.452 for J(1,5); 0.21, 0.43, 0.66 for J(1,6);
-29.5, -21.8, and -18.3 for Za; -3.96, -3.41, and -3.12 for Zt. Critical

values for J(p,q) are from Park and Choi (1988) when they are reported, and
were estimated using 500 observations and 10,000 iterations when they are
not reported in Park and Choi (1988). Critical wvalues for Za and Zt are

from Fuller (1976, p.371 and p.373).
Significant at the 10 per cent significance level.
TSignificant at the 5 per cent significance level.
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TABLE 2

TESTS FOR TREND STATIONARITY OF CONSUMPTION

G(1,2) G(1,3) G(1,4) G(1,5) G(1,6)
NDS 4.882 4.888 6.115 6.167 6.523
59:1-86:12 (0.027) (0.087) (0.106) (0.187) (0.259)
NDS 1.055 2.149 - 3.929 5.202 6.123
68:1-86:12 (0.304) (0.342) (0.269) (0.267) (0.294)
ND 3.874 4,100 5.808 6.011 6.472
59:1-86:12 (0.049) (0.129) (0.121) (0.198) (0.263)
NDC 4.860 4,929 6.190 6.263 6.447
59:1-86:12 (0.027) (0.085) (0.103) (0.180) (06.265)
Durables 1.681 2.293 6.322 6.451 7.299
59:1-86:12 (0.195) (0.318) (0.097) (0.168) (0.199)
Services 5.776 5.826 6.493 6.493 6.683
59:1-86:12 (0.016) (0.054) (0.090) (0.165) (0.245)
Services 3.344 3.753 4.768 5.410 5.724
68:1-86:12 (0.067) (0.153) (0.190) (0.248) (0.334)
Clothing 6.427 6.579 6.643 6.936 7.808
59:1-86:12 (0.011) (0.037) (0.084) (0.139) (0.167)

NOTE: Probability values are in parentheses. The lag truncation number
used for the G(p,q) statistics reported in this table was 80.
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TABLE 3

TESTS FOR DIFFERENCE STATIONARITY OF RELATIVE PRICES

c, Jq1,2)  J(1,3) J@1,4) J@,5) J(1,6) z, z,
C : NDS
1
Durables 1.164  1.862 2.386 2.763 3.9285 -8.438 -2.363
59:1-86:12
Durables 0.00009F 0.259 0.273"  0.431 0.496" -13.999 -2.671
68:1-86:12
C : ND
1
Durables 0.018  1.216 1.224  1.388 1.424 -10.845  -2.352
59:1-86:12
Services 0.454  2.587 3,015 3 080  3.237 -2.120 -0.603
59:1-86:12
Services 1.749  2.716 2.923  2.975 3.004 -2.440 -0.832
68:1-86:12
C : NDC
1
Durables 0.194 1.576  1.684  1.805  1.816 -9.865 -2.360
59:1-86:12
Services 0.077  1.332 2.050  2.072 2.211 -5.018 -1.207
59:1-86:12
Services 1.103  2.249 2 337  2.373  2.423 -2.813  -0.870
68:1-86:12
Clothing 1.908  2.585 12.126 12.393 14.354 -3.742  -1.689
59:1-86:12

NOTE: The lag truncation number used for the Za and Zt statistics

reported in this table was 30. See the first footnote of Table 1 for
critical values of the test statistics reported in this table.

Significant at the 10 per cent significance level.

Significant at the 5 per cent significance level.
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TESTS FOR TREND STATIONARITY OF RELATIVE PRICES

TABLE 4

C2 G(1,2) G(1,3) G(1,4) G(1,5) G(1,6)
C : NDS
1
Durables 5.732 6.934 7.510 7.825 8.170
59:1-86:12 (0.017) (0.031) (0.057) (0.098) (0.147)
Durables 0.002 3.553 3.705 5.205 5,731
68:1-86:12 (0.968) (0.169) (0.295) (0.267) (0.333)
C : ND
1
Durables 0.209 6.675 6.694 7.069 7.145
59:1-86:12 (0.648) (0.036) (0.082) (0.132) (0.210)
Services 3.335 7.698 8.016 8.058 8.155
59:1-86:12 (0.068) (0.021) (0.046) (0.089) (0.148)
Services 4,865 5.589 5.697 5.722 5.736
68:1-86:12 (0.027) (0.061) (0.127) (0.221) (0.333)
C : NDC
1
Durables 1.777 6.695 6.867 7.043 7.058
59:1-86:12 (0.183) (0.035) (0.076) (0.134) (0.216)
Services 0.864 6.925 8.150 8.178 8.349
59:1-86:12 (0.353) (0.03D1) (0.043) (0.085) (0.138)
Services 4,387 5.789 5.857 5.884 5.919
68:1-86:12 (0.036) (0.055) (0.119) (0.208) (0.314)
Clothing 4.696 5.161 6.612 6.623 6.691
59:1-86:12 (0.030) (0.076) (0.085) .157) (0.245)

(0

NOTE: The lag truncation number used for G(p,q) statistics reported in

this table was 80.
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TABLE 5

TESTS FOR NO COINTEGRATION

Regressand Regressor Sample Period I(1,5)
NDS Durables 1959:1-1986:12 .912
NDS Durables 1968:1-1986:12 .128
Durables NDS 1959:1-1986:12 .615
Durables NDS 1968:1-1986:12 .266
ND Durables 1959:1-1986:12 .215
Durables ND 1959:1-1986:12 .392
ND Services 1959:1-1986:12 .034
ND Services 1968:1-1986:12 .063
Services ND 1959:1-1986:12 4.797
Services ND 1968:1-1986:12 .175
NDC Durables 1959:1-1986:12 2.895
Durables NDC 1959:1-1986:12 .510
NDC Services 1959:1-1986:12 0.590
NDC Services 1968:1-1986:12 .505
Services NDC 1959:1-1986:12 1.796
Services NDC 1968:1-1986:12 .798
NDC Clothing 1959:1-1986:12 4,215
Clothing NDC 1959:1-1986:12 .796

NOTE: Critical Values for I(l1,5) at the 5 per cent and 10 per cent
significance levels are 0.251 and 0.384, respectively. These critical
values are from Park, Ouliaris and Choi (1988).
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TABLE 6

CANONICAL COINTEGRATING REGRESSION RESULTS

Regress- ¥ * * t t t t t
and a a, a1/az GR H(O,1) H(1,2) H(1,3) H(1,4)
Cl: NDS, CZ: Durables, 1959:1-1986:12
p; -0.843 -0.051 . .. 34.848 6.214 0.009 2.017 2.120
(0.359) (0.187) e (0.000) (0.013) (0.924) (0.365) (0.548)
cj -1.914 -0.504 . . . 250.902 53.326 0.059 0.898 14.584
(0.376) (0.185) e (0.000) (0.000) (0.808) (0.638) (0.002)
CI: NDS, CZ: Durables, 1968:1-1986:12
p: -1.386 -0.144 . . . 337.760 11.875 3.412 4,266 4,321
(0.134) (0.063) e (0.000) (0.001) (0.065) (0.119) (0.229)
Clz ND, CZ: Durables, 1959:1-1986:12
pz -0.485 0.162 o 87.380 15.503 2.931 2.947 3.194
(0.658) (0.221) .o (0.000) (0.000) (0.087) (0.229) (0.363)
CI: ND, 02: Services, 1959:1-1986:12
p: 0.453 0.040 11.456 163.139 7.838 0.831 1.099 1.100
(0.649) (0.315) (75.873) (0.000) (0.005) (0.362) (0.577) (0.777)
CI: ND, CZ: Services, 1968:1-1986:12
p: 1.023 0.099 10.299 83.541 2.667 0.170 0.572 3.239
(0.740) (0.315) (25.8667) (0.000) (0.102) (0.680) (0.751) (0.356)
e 4.113 1.432 2.872 2053.731 10.025 0.912 1.196 1.224
1 (0.876) (0.379) (0.214) (0.000) (0.002) (0.340) (0.550) (0.747)
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TABLE 6 - Continued

Regress- * * * t + t 4 ¥
and a a, al/a2 GR H(0,1) H(1,2)' H(1,3)' H(1,4)
C1: NDC, CZ: Durables, 1959:1-1986:12
p: 0.791 0.589 1.344 93.440 22.220 6.460 6.469 8.580
(0.446) (0.123) (0.495) (0.000) (0.000) (0.011) (0.039) (0.035)
Clz NDC, CZ: Services, 1959:1-1986:12
p: 0.393 0.064 6.175 242.421 7.869 2.534 3.794 4,012
(0.372) (0.149) (9.093) (0.000) (0.005) (0.111) (0.150) (0.260)
Clz NDC, CZ: Services, 1968:1-1986:12
p: 1.197 0.141 8.508 69.049 2.461 1.226 1.712 3.699
(0.742) (0.194) (7.947) (0.000) (0.117) (0.268) (0.425) (0.296)
cT 4,281 0.984 4.348 957.146 2.863 0.120 0.258 0.523
(1.181) (0.318) (0.557) (0.000) (0.091) (0.729) (0.879) (0.914)
CZ 10.785 3.683 2.928 91.380 1.674 3.513 4.287 6.116
(7.302) (2.700) (0.349) (0.000) (0.196) (0.061) (0.117) (0.106)
01: NDC, CZ: Clothing, 1959:1-1986:12
p: 1.402 1;186 1.182 8.663 18.108 2.431 2.780 2.886
(0.178) (0.064) (0.101) (0.013) (0.000) (0.119) (0.249) (0.409)

NOTE: The lag truncation number used for the results in this table

80.

*
TStandard errors are in parentheses.
Probability values are in parentheses.
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TABLE 7

CANONICAL COINTEGRATING REGRESSION RESULTS UNRESTRICTED
AND RESTRICTED BY THE DETERMINISTIC
COINTEGRATION RESTRICTION

. * * . * *
Unrestricted al az Restricted al a2

Cl: NDC, CZ: Services, 1968:1-1986:12

P, 2.306 1.796 1.197 0.141
(1.025) (1.073) (0.742) (0.194)
c? 4.956 2.558 4,281 0.984
(1.650) (1.374) (1.181) (0.318)
e 26.845 10.495 10.785 3.683
(64.723) (26.560) (7.302) (2.700)
NOTE: The lag truncation number used for the results in this table was
80.

*
Standard errors are in parentheses.
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TABLE 8

SEEMINGLY UNRELATED CANONICAL COINTEGRATING REGRESSION RESULTS

* * *

Regressand a a a /a GRT H(1,2)T H(1,3)T H(l,h)T

Cl: NDS, Cz: Durables, 1959:1-1986:12

P 0.602 0.763 0.788 8.487 5.455 6.215 9.313
(0.138) (0.087) (0.181) (0.014) (0.020) (0.045) (0.025)

c” 4.146 2.720 1.524 34.828 9.821 9.822 9.893
(2.215) (1.453) (0.160) (0.000) (0.002) (0.007) (0.019)

Clz NDS, CZ: Durables, 1968:1-1986:12

P 0.493 0.863 0.571 15.469 0.311 4.566 5.826
(0.138) (0.101) (0.160) (0.000) (0.577) (0.102) (0.120)

c 3.591 2.496 1.439 16.144 3.116 3.275 3.285
(2.500) (1.737) (0.287) (0.000) (0.078) (0.194) (0.350)

C : ND, C_: Durables, 1959:1-1986:12

P 0.550 0.570 0.966 29.967 1.013 5.170 5.971
(0.137) (0.059) (0.241) (0.000) (0.314) (0.075) (0.113)

c 8.699 3.307 2.630 120.712 3.423 3.548 3.869
(7.475) (2.842) (0.288) (0.000) (0.064) (0.170) (0.276)

C : ND, C: Services, 1968:1-1986:12

1 2
p: 1.662 0.328 5.072 148.946 2.728 3.915 4.771
(0.223) (0.131) (0.682) (0.000) (0.099) (0.141) (0.189)
c” 3.192 0.983 3.247 3751.575 1.976 4.831 5.933

(0.364) (0.112) (0.251) (0.000) (0.160) (0.089) (0.115)

68



TABLE 8 - Continued

¢! st ma,»t ra, !

Regressand a a al/a

Clz NDC, CZ: Durables, 1959:1-1986:12

P 0.692 0.640 1.082 24,456 0.532 5.363 5.851
(0.125) (0.054) (0.196) (0.000) (0.466) (0.068) (0.119)

et 3.440 1.372 2.507 74.713 5.581 5.640 7.763
(1.202) (0.479) (0.338) (0.000) (0.018) (0.060) (0.051)

CI: NDC, Cz: Services, 1968:1-1986:12

pz 1.494 0.181 8.257 115.915 4.477 5.411 6.350
(0.249) (0.117) (1.378) (0.000) (0.034) (0.067) (0.096)
c? 3.912 0.818 4.784 6400.455 1.268 5.063 5.063
(0.385) (0.080) (0.668) (0.000) (0.260) (0.080) (0.167)

NOTE: The lag truncation number used for the results in this table was
80. The GR statistic tests the null of the linear expenditure system.

*
TStandard errors are in parentheses.
Probability values are in parentheses.
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TABLE 9

SEEMINGLY UNRELATED CANONICAL COINTEGRATING REGRESSION RESULTS:
RESTRICTED ESTIMATES FOR DEMAND SYSTEM WITH THREE GOODS

* * * * * t
% % % al/az al/aa GR
CI: ND, CZ: Services, Ca: Durables, 1968:1-1986:12
Diffrence stationary C1 and C2 and trend stationary C3
.604 0.103 0.604 5.846 1.001 1.352
.267) (0.132) (0.078) (9.441) (0.339) (0.245)
Clz ND, Cz: Services, Cs: Durables, 1968:1-1986:12
Diffrence stationary 01 and trend stationary C2 and C3
.804 0.384 1.013 4.700 1.781 126.979
.225) (0.131) (0.116) (1.407) (0.203) (0.000)
61: NDC, Cz: Services, 03: Durables, 1968:1-1986:12
Diffrence stationary C1 and C2 and trend stationary C3
.906 -0.012 0.692 o 1.309 1.913
.220) (0.104) (0.054) .o (0.291) (0.167)
Cl: NDC, CZ: Services, Ca: Durables, 1968:1-1986:12
Diffrence stationary C1 and trend stationary C2 and C3
.264 0.133 0.828 9.522 1.526 63.317
.219) (0.116) (0.091) (8.056) (0.260) (0.000)

NOTE: The lag truncation number used for the results in this table was
The GR statistic tests the cross-equation restriction of the model.

*
TStandard errors are in parentheses.
Probability values are in parentheses.
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