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ABSTRACT

In his 1964 book, Alonso proposed several concepts of land use equilibrium in
terms of discrete population. However, the so—called new urban economics (developed
after Alonso) has been concerned exclusively with continuous population models, in
which household distributions are represented in terms of densities. It is our belief
that in order to develop logical foundations for continuous population models, it would
be useful to go back to the original models of Alonso. In this paper, we focus on the
additive land price model of Alonso, and examine its solution characteristics. In
particular, we demonstrate the existence and Pareto efficiency of equilibria, and the
supportability of efficient allocations through additive land price systems. Journal of

Economic Literature Classification Numbers: 930, 021.







1. Introduction

The standard land-use model of the urban economics and regional science literature
employs a continuum of consumers and locations. For classical examples, see
Beckmann [4], Muth [10], Mills [8] and Solow [12]. The class of models has proved to
be useful and empirically rich. However, the theoretical foundations of these class of
models have not been sufficiently explored.!

In order to develop the foundations for this model, it seems useful to consider a
finite model that was proposed by Alonso [1]. Here we focus on the additive land
price model of Alonso, and examine its general solution characteristics. The model is a
discrete or finite household version of the monocentric city model. It is a very natural
model of an urban economy that Alonso takes pains to connect to standard
microeconomics in his book. Surprisingly, to our knowledge this model has never been
analyzed with the tools of modern economic theory. In particular, existence of
equilibrium and the welfare theorems have never been explored formally for this model.

The purpose of the present work is to conduct this exploration. Unfortunately,
many of the tools of mathematical economics, such as fixed point or separation
theorems, are not applicable due to important nonconvexities in the model2. Instead we
construct supporting prices and equilibria ezplicitly. Thus, it is our hope that such
solutions have empirical relevance. In fact, this model can be viewed as a tractable
example of the finite or discrete household approach to urban economics.3

The model detailed below is a one-dimensional model of location with a central
business district. As in the standard land-use model, the utilities of households are
restricted to be location—independent and the same for all households, but the
households can have different endowments. Under standard assumptions, the welfare
theorems and existence of a competitive equilibrium are demonstrated.

The paper is organized as follows. Section 2 contains a description of the model



and the first welfare theorem. Section 3 contains an example of the techniques and
concepts using Edgeworth box diagrams that illustrates how the model differs from the
standard model of microeconomics. Section 4 contains the statement and proof of the
second welfare theorem, while section 5 contains the statement and proof of existence of
a competitive equilibrium. Finally, Section 6 contains our conclusions and suggestions

for future research.

9. The Economy and Efficient Allocations

Imagine a long narrow area of length I and width 1. Since the width of the area
is sufficiently small, the area is treated as one—dimensional and is represented by the
interval X = [0, {] of the real line. Location and distance from the origin are denoted
by x € X (or by y € X). The density of land at x is equal to 1 for all x € X.

In this area, n households are to be accommodated, where n is a positive integer.
Each household is assumed to occupy a lot in X and consume an amount of the
composite (consumer) good. Each lot is represented by a half open interval, [x, x + s)
C X, where s represents the size of the lot. All households have the same utility
function U(s,z), where s and z represent respectively the lot size and the amount of the
composite good. [This implies that the utility function is location-independent.] The
composite good is chosen as the numeraire, S0 its price is unity. Each household
commutes (for working and shopping) to the central business district (CBD) located at
the origin of X. If a household occupies a lot [x, x + s), the associated transport cost
(per unit of time) is assumed to be equal to tx (measured in terms of the numeraire
good z), where t is a positive constant.4 Absentee landlords own all land initially and
only want consumption good. As this sector of the model is inessential (as well as
irrelevant), we suppress it throughout the remainder. The utility function is assumed

to be well behaved in the following sense:S



Assumption 1: The utility function, U:IR_Z}_ +—»IR, satisfies the following conditions:
(i) On lR_%_ 4 U is twice continuously differentiable, strictly quasi—concave, and
increasing in both components s and z.
(ii) No indifference curve cuts an axis, and every indifference curve has
the z—axis as an asymptote.

(ili) Lot size (or land) s is a normal good.

To explain Assumption 1(iii), let us consider the following standard utility
maximization problem: Given a "land price" p > 0 and income Y > 0,

max U(s, z), st. z + ps = Y and 8 > 0,z > 0. (2.1)
$,2

Under Assumptions 1(i) and (ii), the optimal lot size [for problem (2.1)] exists uniquely
for each (p, Y) € R L which is denoted by s(p, Y) and called the Marshallian

demand for land. The normality of land means that s(p, Y) is increasing in income Y.

For example, if U(s,z) = olog s + flog z (x > 0 and B > 0), all three conditions
above are satisfied.

Since U is increasing in each component, we can assume without loss of generality
that

inf{U(s, z): s > 0, z > 0} = — o, sup{U(s, z): s > 0, z > 0} = . (2.2)
For each u € R and s > 0, the equation ‘

u = UG, 2) | (2.3)
can be solved for z (by Assumption 1) and we denote the solution by Z(s, u). For
each u, z = Z(s, u) represents the equation of the indifference curve associated with
utility level u. We can readily see that Assumption 1 implies
Lemma 2.1: 7Z is a function such that

(i) Z:IR++xiR-)lR++.



(i)  Z is twice continuously differentiable on (0, w)xR, where for each given

ueR v

limSwZ(s, u) = o, ' (2.4)

Zs(s,u) = 0Z(s,u)/d < 0, Zu(s,u) z 9L(s,u)/0u > 0, (2.5)

lim lOZs(S’u) = —w, limsTst(s’u) = 0, (2.6)
(iii) At each (s,u) € R R 6

Zyy(s,u) = 0L (s,u)/ B > 0 and Z, (s,u) = 6ZS(s,u)/8u < 0. (2.7)

Next, given p > 0 and u € R, let us consider the following expenditure

minimization problem:

min z + ps, s.t. U(s,z) = uands > 0,z > 0. (2.8a)
§,2
Using function Z above, this problem can be restated as
min Z(s, u) + ps. (2.8b)
s>0

Since Z(-, u) represents a smooth, strictly convex curve in the consumption space IR_%_ 4
the following first-order condition,

- Zs(s, u) = p, (2.9)
defines uniquely the optimal lot size, which is denoted by S(p, u) and called the
Hicksian demand for land. By definition

—ZS(S(p, u), u) =p forallp >0, ueR (2.10)

Using Lemma 2.1, it can be readily shown that:
Lemma 2.2: Relation (2.10) defines a unique function, S:R +xiR—»(0, ®), which is
continuously differentiable and

&(p, u)/dp < 0, 3S(p, u)/du > 0, (2.11)
at each (p, u)eR +XJR. Furthermore, for each u € R,

hmplOS(p’ u) = o, hmpTwS(p, u) = 0. (2.12)



Next, to study the problem of optimal resource allocations for the area under
consideration, we introduce several definitions. There are n (integer and finite)

consumers in the economy. Let N = {1, 2, ..., n}. Each allocation in X is

represented by {(Si’ z, xi)}Iil=1 such that s; > 0, z; > 0, x 20 and x; + 8, < L
Here, s, represents the gize of the lot occupied by household i, z the amount of the

composite good consumption by i, and x; the front location of i's lot. This allocation

implies that each household i occupies the lot, [Xi’ x; + s). An allocation {(Si’ Z;,

x,)}]_; is feasible iff

n
U [x, x. +8) C X and [x;, x + §)N [x., x; + 8;) = @ for all consumers i,j € N
=1 11 i i’ 7 1 I ) J

with 1 # j. (2.13)
That is, the lot of each household must be inside the area X, and no pair of lots be
overlapping. Given a feasible allocation {(Si’ Z xi)}?zl, the associated total cost C is
defined as

n
C= % (g + tx), (2.14)
i=1

which is the sum of the composite-good costs and transport cOsts for the n households.”?

Now, given any pair of feasible allocations, {(Si’ Zg xi)}lil__=1 and

{(s;75 7" xi’)}?=1, we say that the latter dominates (or, Pareto—dominates) the

former if
U(s;, z;) < U(s;”s z;) for all i€ N, and (2.15a)
n n
T (z + tx) 2 B (g + txy), (2.15b)
=1 ' Y =t !

with a strictly inequality for at least one relation. An allocation is said to be efficient

(or, Pareto optimal) if no feasible allocation dominates it.
The main task of the rest of this section is to examine the characteristics of
efficient allocations. One systematic way for identifying the set of all efficient

allocations may be as follows. Suppose we choose arbitrarily a target utility level,




u, € R, for each i € N. Given the target utility vector, (ul, Uy, oo un), the problem
of finding a feasible allocation that achieves this target utility vector with the least

cost can be formulated as follows:

n
Problem A: min C= 3% (z + tx;)
{(Si,zi,xi)}l-ll=1 =1 :

5.4 U(s VieN,

R U
n
iil[xi’ x;+8)cX
[x;, x; + 8] N [xj, X, + Sj) = P Vij€e N with
i#]
and si>0,zi>0,xizo VieN.
Since the utility function U is assumed to be continuous and increasing in z, it can be

readily seen that each solution to Problem A under any target utility vector

(_ul,_uz, ces un) € R™ is efficient: conversely. any efficient allocation must be a solution

to Problem A under an appropriate target utility vector.

For each (u;, ug, -, u) € R", we denote by Problem A(u;, u2; .y U ) the
Problem A under the target utility vector (u;, Uy, - u)-

Again, since U is assumed to be increasing in both s and z, if {(s;, %, xi)}i___1 is
a solution to problem A, then it follows immediately that

U(s;, Zi) =y Y ie N, and (2.16)

n
Ts =1 (2.17)

i=1
That is, in any efficient allocation, each target utility constraint is satisfied by equality,

and no vacant land is left in the area X. The following result is less obvious.
Lemma 2.3: Let {(s;, %, xi)}ril=1 is a solution to the Problem A(u;, uy, - u ).
[Hence, it is efficient]. Then, for any pair i and j € N,

x; < X, &8 <8 (2.18)

J ¥

and
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X < X3y < uj; | and y; < Uy 3 X < X (2.19)
Proof. I {(s;; %, xi)}ril=1 is a solution to Problem A(uy, ug, - u,), then by (2.17)
no vacant land is left in X. Hence, if we show relations (2.18) and (2.19) for each
pair of adjacent households, then by transitivity, these relations hold for any pair of
households. Therefore, in the following analyses, we consider an arbitrary pair of
adjacent households, i, j € N.

(i) First,

X < X = s, < 5; (2.20)
must hold. For if x; < X and s; > 5 then we can give the two households the same
consumption bundles, (Si’ Zi) and (Sj’ Zj)’ but by switching their positions (i.e.,
household i now occupies the lot [xj X; + s.), and household j the lot [xi, X; + Sj)) (si
- 8. )t can be saved in transport cost (without affecting the rest of the allocation).

This contradicts that the original allocation was efficient, so (2.20) must hold.

(ii) Next, given that x; < X;, considering (2.20) we have the following four
possible situations in the relationship between (u;, Si) and (uj, sj): (a) u > uj and s;
= s8; (b) u; > uy and s <85 (c) y < u and s, =sj,(d)ui$ujandsi<s.. We

shosiz in turn tha]t each of (a), (b) and (c; leads to a contradiction; hence (d) r]nust
hold.
(a) Suppose x; < X;p Y > U, and s; = s = s’. Then, since Zsu(s, u) < 0 [by
(2.7)], we have that Z(s’, ) < Z (s, uj). Since Z(+, u) is continuous on (0, w) [by
Lemma 2.1(ii)], and since s* > 0 by definition, this implies that there exists a positive
As such that s* — As > 0 and

Z(s’+c,u)<Z(s—-e,u) Y € € [0, As],
from which it follows that IOSZ (s* + € u;) de < — jOSZS(S' - €, uj)de and hence
Z(s* + As, u) — Z(s’, v;) < Z(s’, uj) - Z(s* — As, uj), or

Z(s* + As, uy) + Z(s” - As, uj) < (s’ uy) + Z(s’, uj).
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Suppose we switch the positions of i and j, and increase the lot size of i (now located
further away from the CBD) from s’(= s;) to s* + As and reduce that of j (now
located closer to the CBD) from s’(z Sj) to s — As. This switching reduces the total
transport cost of the two households by tAs, and also reduces the total cost of z —
consumption (for maintaining the same utility levels u; and uj) as is shown by the last
expression. This implies that the original allocation was not efficient, a contradiction.

(b) Suppose x; < X5 > uj, and s; < 85

S. S.
Jsgzs(s, u))ds < Jsizs(s’ u;)ds, which leads to Z(s;, w) = 25, u)) < 2055 u) - Z(s;,

Then, since Zsu(s, u) < 0 by (2.7),

uj), or

Z(sj, u) + Z(s;, uj) < Z(s; vy + Z(Sj, uj).
Now consider switching the land allotments of i and j (while maintaining the rest of
the allocations). That is, i gets j's previous lot, [xj, X + Sj)’ and j gets i's previous
lot, [x;, x; + 5;). The total transport cost of the two households is the same as the
lots are the same, while the total cost of z—consumption is reduced as is shown by the
last expression. Thus, the original allocation was not efficient, a contradiction.
(c) Finally, suppose x; < X; U < U, and s; = 8 = s’. Then, since Zs(s’, ui) >
ZS(s’, uj) [by (2.7)] and s* > 0 by definition, and since Z (", u) is continuous and
increasing on (0, w), there exists a positive As such that s — As > 0 and
Zs(s’ - €, ui) > Zs(s’ + ¢ uj) -t Y e € [0, As],

which implies - j%SZS(s' - € u)de > j%s[Zs(s' + €, uj) — t]de, and hence Z(s’, uj) -
Z(s* - As, u;) > Z(s’ + As, uj) - Z(s’, uj) - tAs, or

Z(s’, u) + Z(s’, uj) > Z(s* — As, uy) + Z(s* + As, uj) - tAs.
Now consider reducing the land consumption of i from ME si) to s — As and
increasing that of j from s’(z sj) to s* + As. By the last expression, this reallocation
of land reduces the total cost (of z—consumption and transportation) by the two

households (while maintaining the same utility levels). This implies that the original



12

allocation was not efficient, a contradiction. Therefore, we can conclude that (d) must
be true. |
(iii) Namely, x; < X s u < U and s; < s; Then, since x; # X by definition,

1 ] J
we can immediately conclude that (2.18) and (2.19) hold. Q.E.D.

Relation (2.18) implies’that at any efficient allocation, households with larger lots
locate farther from the CBD than households with smaller lots, while (2.19) means that
households with higher utilities never locate closer to the CBD than households with
lower utilities.
Given any Problem A(ul, Uy, oy U n), without loss of generality we can assume

that

Uy <y, <o $u (2.21)
Furthermore, if u = uj, then the two households i and j are identical for the purpose
of our analysis. In this case we can switch indices i and j with each other whenever
necessary. Therefore, if {(si, Z;, xi)}?=1 is a solution the Problem A(ul, Uy, oo un),
then considering Lemma 2.3, without loss of generality we can assume that

x| < Xg < .o < X (2.22)

8; < 8g < e < 8 (2.23)
That is, in any efficient allocation, if we number households in order ascending with
utility level, the order is also ascending with distance (from the CBD) as well as with

land consumption.

Conditions (2.17) and (2.22) together imply that

i—1
x; =0, %= .Els. fori =2, ..., n.
J=

Therefore, given any target utility vector (uy, Uy, ..., U that satisfies condition (2.21),
& 8 1% n

considering equalities (2.16) we can restate the corresponding Problem A as follows:
A( ) I)_% Z( ) IZII igl (2.24)
Problem A‘’(u,, Uy, ...y U_): min s., u.) + t S, 2.2
1’ "2 n S5+ -8y =1 V1 =2 j=1 j
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n
8.t. T < (2.25)

5, > 0 VieNl (2.26)
[Here, for mathematical convenience, we use a land constraint (2.25) instead of (2.17).]
This problem has a solution, and its solution is unique.

To see this, let F = {(s;, 895 -+ s,) € R™: Etilzlsi <hs >0 VY i € N} be the
feasible set of the problem. Since each function Z(-, u;) is strictly convex on (0, )
and limg lOZ(S’ ui) = w, it can be readily seen that the objective function (2.24) attains
a minimum in the relative interior of F and is strictly convex and continuous on F.
Therefore, there exists a unique solution to Problem A’(ul, ey un).

Notice also that the feasible set F is convex, and it has interior points. Hence, if
we define the Lagrangian function as
i—1 n
EmEs
then the following Kuhn-Tucker conditions [together with (2.25) and (2.26)] represent

n
L= I I(s, uy) +
i=1

n
Lt
1= i=

1=2

the necessary and sufficient conditions for optimality:

3-27631 = ZS(Si’ ul) + t(n - l) + pn = O, i = 1, ceey I,

n
Py > 0 and (iilsi - l)pn = 0,

n
which implies p, = - Zs(sn’ “n) > 0 [by (2.5)], and hence ) 8, = | as was expected.
i=1

Therefore, these conditions can be restated equivalently as

Py = — Zs(si’ ui), ie, s = S(pi, ui), VieN,

p; =P, + t(n — i) for i = 1, ..., o1, ie, p_y; =P + t for i =2,...,n.
Summarizing the results, we can conclude as follows.
Proposition 1: Given any target utility vector (ugs Ugy +osy u )€ R", the unique
solution to Problem A(ul, Uy, -+ un) provides the (unique) efficient allocation attaining
this target utility vector. If we adopt convention (2.21) and let {(s;, z;, xi)}r.ll=1

represent this efficient allocation, then the following conditions hold:
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u(s, z) = u, ie z = Z(s;, v), Vi €N, (2.27)
8; < 89 < . < 8, (2.28)
i—1 ) n
X, =0,%= E 5; fori =2, .., 1, E 5 =X, + 8, = I (2.29)
=1 i=1
and thus
(2.30)

X; < Xg < o < X
Conversely, let (ul, Ug, ooy un) € R® be any target utility vector that satisfies
condition (2.21). Then, {(s;; 2, xi)}ril=1 is the unique efficient allocation satisfying this
target utility vector iff conditions (2.28) and (2.30) hold and there exists a vector
(pl’ Py - pn) € R such that

p; =~ Zs(si’ ui), ie s = S(pi, ui), VieN, (2.31)

p; =P, + t(n) for i=1, .., n-1, i.e, p,_y = p; + ¥

for i=2, ..., n (2.32)

Before closing this section, we introduce the additive land price model of
competitive land markets due to Alonso [1], and demonstrate the efficiency of its
equilibrium solutions. Suppose that the given n households, i = 1, 2, ..., n, are to
choose their residential locations inside the area, X = [0, ], under a competitive land
market. The entire land of this area is owned by absentee landlords. All n
households have the same utility function, U(s, z), that was introduced previously.

Each household i € N = {1, 2, ..., n} commutes to the CBD [located at the origin of

X], and earns a fixed income Y, > 0.

A function, P:X-R " is called a land price (density) function if it is integrable on
X. Given such a function P, if a household chooses a lot, [x, x + s) ¢ X, then the
household is assumed to pay the (total) land rent, j§+SP(y)dy, and to pay the

transport cost tx (where t is the same constant as before). In this context, it is
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postulated that the residential choice behavior of each household i € N can be described
by the following utility maximization problem:

max U(s, 2), st z + X TP(y)dy + tx = Y;, (2.33)
8,2z,X

where s > 0,z > 0, x > 0, and x + 8 < I The utility function U is assumed, as
before, to satisfy Assumption 1. We call this competitive land market model for n

households the additive land price model (the ALP-model) of residential land market.

When we emphasize that incomes of n households are fixed at Yl’ Y2, ey Yn
respectively, we call it the ALP(YI, Yo oy Y n)—model.

*k
Given a land price function P and an allocation {(s;*, z.* xi*)}ril=1, we say that

1 b

[P*, {(s;%, z.%, xi*)}lilzl] represents a competitive equilibrium for the

ALP(Yl, Yo, wos Y n)—-model if the following four conditions are satisfied:
*
U(s;*, z*) = max {U(s, 2z): z + j’;HP (y)dy + tx = Y;, 8 > 0,2 >0,

$,2,X
x>0, x+s<l},VieN, (2.34)
n
U [x* x* + 8% C X, (2.35)
Rt B i
[, x* + %) N [xj*, xj* + Sj*) = @, Vi,j € N with i#j, and (2.36)
* n
P (x) = 0 at each x € (X \ U [x* x* + 8:*])- (2.38)
i=1
In this event, we call {(s;, %, xi*)}lil=1 an equilibrium allocation. The last condition

(2.38) means that on the vacant area, land price must be zero.

Proposition 2 (The First Welfare Theorem): Every equilibrium allocation is efficient.

*
Proof: Let [P, {(s% z.¥, xi*)}lil____l] be a competitive equilibrium for the

ALP(Y{, Yg, - Y_ )-model. Suppose the allocation, {(s;*, 2%, xi*)}ril=1, is not

efficient. Then, there must exist a feasible allocation {(s5 " xi')}lil___1 that

Pareto—dominates {(si*, zi*, 'xi*)}lilzl, i.e., such that

U(Si” zi’) > U(si*, zi*), YieN, and

n n
T (z + tx’) < I (z* + tx¥)
iop 1 i =1 i
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with a strict inequality for at least one relation. By continuity and nonsatiation of the

utility function U, then it must be the case that
xi'+Si' % i* i* * .
z' + . P (y)dy + tx;” 225 + [y« P (y)dy + tx*, Vi €N, and
i i
n n
’ ’ * *
iEl(zi + tx;7) < iEl(zi + tx%)
with a strict inequality for at least one relation. Thus,
4 X

T L 'P(ydy+ Z(z +tx)2 X[ o« P (y)dy + I (z* + tx.%),
i=1"%j i=1 ! ! i=1 % =1 ! 1

and
n n
iEl(zi’ + tx,7) < i_23_:1(zi"‘ + tx¥),
with a strict inequality for at least one relation. This implies
n Xi' Si, * Il Xi*+Si* * I *
S L TP (ndy > B[ TP (y)dy = foP (y)dy [by (2.38)],
i=1% i=1"%

which is impossible. Therefore, it must be true that the equilibrium allocation {(Si*’
Zi*’ xi*)}?;_1 is efficient. Q.E.D.

Proposition 2 holds under any continuous transport cost function Ti(x) and any
continuous and locally non—satiated (even location dependent) utility function U.(s, 2,

x) where U, can differ for each i € N.

3. An Example with Two Households

In this section, we consider a simple example with two households. Efficient
allocations, along with the first-order conditions that characterize them, are illustrated
using a modified Edgeworth box diagram. Using the competitive land market of the
ALP — model, a land price function that supports a given efficient allocation is
constructed. The basic ideas and techniques of proof used in the next section are

explained within this simplified framework.
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Suppose that the two households, i = 1,2, are to be accommodated in the area X.
To illustrate efficient allocations for the two households graphically, it is convenient to

consider the following maximization problem, which is dual to problem A:

%
Problem A : max U(s,,2)
E— 11
{Siazi’xi}
s.t. U(sq:Zg) 2 Uy, (3.1)
2y + 29 + tx; + Xy < C, (3.2)

and [xpx +8) U BgXotsy) € X, Ixpx)+8) N roxotsy) = 0, (33)
where u, and C (>0) are given constants. The problem is to find a feasible allocation
that achieves the highest utility for household 1 while satisfying the given target utility
constraint (3.1) for household 2 and the material balance constraint (3.2).

If we know the highest value of the objective that can be obtained in Problem A*,
then using lemma 2.3 we can determine which household should locate closer to the
CBD at the optimal allocation. However, in the absence of such information, we can
determine the efficient spatial order of the two households only by guessing. Hence, let
us first assume that household 1 locates closer to the CBD than household 2. Call
this locational configuration Pattern a. Since no vacant land should be left in X at
the optimum, it must be the case that X = 0, xo = 8y, and 8) + 89 = L
Furthermore, at the optimum the material balance constraint holds with equality.
Thus, Problem A* can be restated as follows:

%K
Problem A —oz max U(Sl’zl)’

{8503

8.t. U(s2,z2) 2 U,
s1+s2=landz1+z2=C—tsl.
If the transport cost ts, were absent, this would be a typical example of a resource
allocation problem in a standard Edgeworth box. However, in the present context, the
net amount of composite commodity left for consumption, C - tsy, depends on the land

allocation (81’82)' Hence, it is necessary to modify the standard Edgeworth box
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diagram as in Figure 1. The entire figure represents the feasible allocations for the
two households in

Figure 1

the absence of transportation cost ts,, where Oi represents the origin of the
consumption space for household i. With transport cost ts;, the net amount of
numeraire available to the economy decreases in proportion to §;. This is represented
by the slanted line ending at Oé. With transport costs, the origin O, is moved to
Oé, and an indifference curve u, of household 2 shifts downward by ts, for each 8-

This shifted indifference curve is represented by the broken curve o in Figure 1. [The

equation of the new indifference curve w, under the initial origin O, is given by z, =
Z(sqyuy) + t(I - s5).) Given this utility constraint for household 2, the highest utility

attainable for household 1 is determined by the indifference curve u1 (of household 1
with origin 01) that is tangent to the w, curve at point G in Figure 1. Since
—Zs(s’{,u:) = —Zf(s,g,uz) + t at p:)int G, if we define

P = ~Z(s1,91), Py = ~Z(89,15), (3.4)
then

Py =Py + ¢ (3.5)
as required by (2.32). Relation (3.5) reflects the following fact: A unit increase in the
land consumption of household 1 pushes outward the front location of household 2's lot
by a unit distance, which in turn increases the transport cost of household 2 by t.
Therefore, the social "price" P; of the last unit of land allocated to household 1 (which
is directly in front of household 2's lot) must be t dollars higher than the social
"price" of the last unit of land allocated to household 2 (which is located at the end of
X).

At the solution to Problem A*-q, if uy 2 u; (the highest attainable utility level of
household 1), then from Lemma 2.3, our use of Pattern ¢ is vindicated. If this

inequality does not hold, then the reverse spatial ordering (called Pattern B) is the
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optimal one. In this case, Xy = 0 and X; = 89 imply that the optimal allocation can
be found by solving the following problem:

*
Problem A -4 { max U(Sl’zl)’
S

i%
s.t. U(sz,zz) 2 Uy,
sl+sz=la,ndz1+z2=0—ts2.

As a consequence, the contract curve (the locus of efficient allocations) is not
connected (see Figure 2).

Figure 2
The curve 0;AQ, (curve O2B01) represents the locus of optimal allocations under the
spatial ordering of Pattern a (Pattern §). The households achieve the highest common
utility level, say U, at points A and B. Each allocation on the broken curve AO2
(BO,) is dominated by some allocation on the solid curve BO, (AO;). The contract
curve consists of two segments, OlA and OQB, such that for each point on OlA
(OZB)’ household 1 (household 2) occupies the lot closer to the CBD, and we have u,
>ﬁ>uz(uz>ﬁ>u2)3.

The question of main interest is as follows. Given any efficient point on the
contract curve in Figure 2, can we find an appropriate combination of a land price
function (P) and a pair of incomes (Y,,Y,) such that the selected allocation is realized
as a solution to the corresponding ALP — model? To investigate this question in our

modified Edgeworth box, let us focus on the efficient allocation G in Figure 1, where

* X X * * % * k% * * *
(Sl,zl,Xl) = (Sl,Z(Sl,Ul),O), (82,Z2,X2) = (Sz,Z(Sz,u2),Sl) (3.6)
We also assume without loss of generality that the point G belongs to the segment
* ~ * *
OlA in Figure 2, and hence u; < u < u, and 8) < 8o
Given any land price function P and a utility level u € R, for each (s,x) such that

s>0,x20andx+s$l,letusdeﬁne

X+8 :
E(s,x;P,u) = Z(s,u) + f x P(y) dy + tx (3.7
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which represents the total éxpenditure necessary for a household to achieve the given
utility u (when the household chooses the front location x and lot size s). Define

E(P,u) = min {E(s,5;P,u) : 8 > 0, x 2 0, x + s < I} (3.8)
E(P,u) represents the minimum expenditure necessary to attain the given utility level u
under the land price function P.

It is readily apparent that a land price function P is a supporting land price
function of allocation (3.6) if and only if

B(s;,0:Pu,) = B(P.u}), ElsysyiPotg) = E(Puy). (3.9)

~ * ~

Setting Y, = E(P,ul) and Y, = E(P,u2), the allocation (3.6) is clearly an equilibrium
allocation for the ALP(Yl,YQ) _ model under the land price function P.

Given the conditions of optimality (3.4) and (3.5), consider the following function
as a candidate for a supporting price:
P°(x) _ {pl for 0*5 x < S:

p2for sl<x$l,
where p; and p, are defined by (3.4). This land price function is depicted by the step
function HIJM in Figure 3.
Figure 3

It clearly cannot support the allocation (3.6) due to its discontinuity at x = s:. Since
-—Zs(s,{,ui) = p; > Py, if the allocated lot size of household 1 is increased by one
marginal unit, then -Zs(s;,ui) units of expenditure on numeraire are saved, while
expenditure on land is increased only by py.

The price function must be modified to eliminate this key discontinuity and
provide price support. There are many ways to accomplish this, which we will return
to later. For now, let us propose a second natural candidate for price support (recall

that S is the Hicksian demand function).
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; * *
Py for 0 < x ¢ S(pl,ul) =5
* * *
P(x) = —Zs(x,ul) fors; <x¢ S(p2,u1) (3.10)
*
Py for x > S(pz,ul)

This - price function is depicted in Figure 3 by the curve HIKLM. Next we give a
sketch of the reasoning behind why this is a supporting price function. Recall that
expenditure minimization for each household is necessary and sufficient for a price
function to support in our framework. Consider first household 1. If household 1
changes its allocation of land so that its front location is still zero but the quantity of
land s, is expanded, then at each s, € [SI’S(pQ’ul)] the marginal cost (= P(s)) is
equal to the marginal willingness to pay (= —Z(s,u 1)) of household 1 for additional
land; the utility level and total expenditure of household 1 stays constant. If 8 is
expanded beyond the point K in figure 3, the marginal cost exceeds the marginal
willingness to pay. If the front location x, for household 1 is moved away from zero
while keeping lot size at 8 < S(p2, ul*), then the transportation cost increases faster
than the price of land decreases. If the front location x; is moved away from zero
while keeping lot size at S(p2,u;), land price savings exactly offset transport cost
increases. When the front location x; reaches point I in Figure 3, a further increase in
X, causes a greater increase in transport cost than land cost savings. Hence, household
1 attains the minimum expenditure ]E)(P,uI) if the front location is kept at zero and
the end location is chosen at any point between I and K in Figure 3, or if its lot size
is kept at S(pz,uI) while thé front location is chosen at any point between H and I in
Figure 3.

Now consider household 2. If household 2 moves its front location x, closer to the
CBD without changing so(= s ) then as long as its end location s, + X, i8 beyond
point L in Figure 3, land price increases exactly offset transport cost savings. When
the front location x, reaches zero, the end location x, + s, is at point L. In this

%*
situation, if household 2 reduces its lot size s, then at each 89 < 8y the increase in
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the cost (= ~Z (82"12)) of numeraire to maintain the utility level exceeds savings (=
p2) in the cost of land. Hence, household 9 can attain the minimum expenditure
E(P u2) iff its lot size is kept at 52 and the end location is chosen at any point
between L and M in Figure 3. Therefore, we can conclude that the land price function
(3.10) supports the efficient allocation G.

The reader might already have noticed that the supporting price function proposed
above is not the only supporting price function for the efficient allocation G. In fact,
there are many supporting price functions that differ in shape. For example, if we

define a land price function 13 by

Py for 0 < x ¢ S(pl,uz)
il *
P(x) = -—ZS(x,uz) for S(pl,u2) < x¢ S(p2,u2) = 8 (3.11)
*
Py for x > 54,

then the same arguments used for P show that P also supports the efficient allocation
G. This land price function is depicted by the curve HINLM is Figure 3. It is also
not difficult to see that any land price function P* such that lg(x) 2 P*(x) > P(x) for
all x € X [where P is given by (3.10)] also supports the allocation G.9 In the next

section, we generalize these land price functions to the case of an arbitrary number of

households and make the argument given above formal.

4. Price-Supportability of Optimal Allocations

A land price function P is said to support a feasible allocation {(si,zi,xi)}lil=1 if for

-~ ~ ~ a -~ -~ X'+S'
each i and for any bundle (Si’zi’xi) with Ui(si’zi) > Ui(si’zi)’ z; + j; 11 p(y)dy +
i
- xi+si )
tx; > z; + f P(y)dy + tx;. The objective of this section is to show that:

X.
1
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Proposition 3 (The Second Welfare Theorem): Every efficient allocation has a

supporting price.

In order to prove this proposition, choose an efficient allocation {(si,zi,xi)}ri;l.

Let U(Si’zi) =y € RYieN Without loss of generality, condition (2.21) is assumed
to be satisfied. Recall that relations (2.28) — (2.30) are satisfied for this allocation.
Furthermore, if p; is defined as in (2.31), then (2.32) follows.

We propose below a land price function that generalizes the function P defined by
(3.10) in the previous section. However, before introducing the formal definition, it is
useful to explain the basic idea behind our generalized land price function. To this
end, recall the following prominent feature of the land price function P depicted by the
curve HIKLM in Figure 3. If household 1 sets the end location, x;+s; = k, of its lot
at any point between I and K in Figure 3 so that p; > P(k) > po, and if the optimal
lot size s; = S(P(k),uz) is chosen, then the expenditure function E(s,x;P,uI) is
minimized: i.e.,

B(P,u}) = E[S(P(K).uy), k - S(P(K);u;);P,u;]

for all k € X such that p; > P(k) > p,.
We wish to develop a land price function that assures that the same condition holds
for each household i=1, 2, ..., n-1: i.e., for each i < m, |

E(P,u) = EIS(P(K)u), k — S(P(K)u):P.u]

for all k € X such that p, > P(k) > p; - 4.1)
In other words, if household i (< n) sets its end location at any point k € X such
that p; > P(k) > p; 44 [and chooses the optimal lot size S(P(k),ui)], then expendituré
is minimized over all bundles generating utility ui.1° To find such a land price function,

let us observe that if we set u = u,, then the first—order (Kuhn-Tucker) conditions for
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(s, x) to be a solution to the expenditure-minimization problem on the right-hand side

of (3.8) are given as follows (provided that x + s < I):1t

P(x) < P(x + 8) + ¢, (4.2)

P(x) = P(x +8) + tif x >0, (4.3)

P(x + 8) = —Zs(s,ui), ie,s = S(P(x + s),u). (4.4)
Setting x + s = k, these conditions can be restated as

P(k - S[P(k),y]) < P(k) + t, (4.5)

Pk - S[P(k),y]) = P(k) + t if k — S(P(k),u;) > 0. (4.6)

Therefore, to assure that relation (4.1) holds for each i < n, it is necessary to design a
land price function P so that for each i < n, conditions (4.5) and (4.6) hold for all k
e{keXp > P(k) > p; +1}. Even though condition (4.5) or (4.6) is only necessary
for expenditure minimization, in order to construct our price function we require that
they hold on these intervals. Based on this consideration, we ask that our land price
function P satisfy the following set of conditions:
(i) P is continuous and nonincreasing.
(i) P(x) is decreasing on each interval X, = {x € X: p; > P(x) > py +1},

where i=1,2, ...,n-1.
(i) P(0) = py P() = by
(iv) S(P(x)u;) = x for all x € X;.
(v) For each i=23, ...,n-1, P(x - S[P(x), y}) = P(x) + t for all x € X..

Notice that (iv) implies that for i=1, condition (4.5) holds at each k € X,. [To see
this, set x = k in (iv), and use (ii) and (iii).] Similarly, (v) implies that for each
i=2,...,n-1, condition (4.6) holds at each k € X,. the remainder of the conditions are
natural extensions of the properties of the function defined in (3.10).

It turns out that these five conditions, (i) to (v), uniquely determine a land price

function. To show this, first observe that for each 1=2,3,...,n-1, by (2.32),



25

x € X &p > P(x) > p., & P; > Px) + (r - jt > Piy1 for all j < r. (4.7)
Next, (i) implies that for each i < n, the inverse of P exists on the interval X,. We
call this inverse f.. Now, let us fix i € {2, ..., n-1} and x € X,. Since
P(x — S[P(x),u;]) = P(x) + t by (v) and p;_; > P(x) + t > p; by (4.7), we have
P > P(x - S[P(x),w)) > p; which implies x — S[P(x),y;] € X;_;- Thus,
fi—l(P(x) +1t) = fi—l(P(x - S[P(x),u])) = x - S[P(x),y;]. Setting x;_; = fi—l(P(X) +
t), we have that

x - S(P(x),y;) = X;_; € X,y and P(x, ;) = P(x) + t. (4.8)

In turn, x.

i € X0 implies that P(x,_; - S[P(xi—l)’ui-l]) = P(x;4) + t by (v) and

Pi_g > P(xi—l) +t>p_; by (4.7), provided i > 2. Thus, p; o > P(x_; -
S[P(xi__l),ui_l]) > p;_;, Which implies x;_; - S[P(xi—l)’ui—I] € X; o Hence, as in
(4.7) and (4.8), by setting x; o = fi—2(P(xi—1) + t), we have that

Xy ~ S(P(xi—l)’ui—l) = X;_9 € X; 9 and P(x;_o) = P(x) + 2t.

Continuing the process, it follows that

X; = S(P(xj),uj) = X4 € Xj—l and P(Xj—l) = P(x) + (i-j-1)t for 2<j<i. (4.9)
Finally, for j = 2, (4.9) implies x; € X;, 80 we have by (iv) that
S(P(xl),ul) = Xy (4.10)
From (4.8) through (4.10), it follows that for each i < n,
i
x= Y S(P(x) + (i-jt, u) for p; > P(x) > pi4q- (4.11)
=1 ) 1 1+

Notice that relation (4.11) defines the inverse f, of the land price function P on each

interval (p; ;s p;)- Namely, for each i < n,

fi(P) =

J
Furthermore, to satisfy conditions (i) and (iii), these (n-1) segments of the land price

1
21 S(p + (i)t v, ¥ P € (Pyypr By)- (4.12)

curve [defined by (4.12)] must be connected by horizontal lines at each p; (i < n);
thus, a unique land price function has been obtained. This observation leads us to the

formal definition of our land price function. Define
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5" =5 (p1+1’ u;), 80 -Z (s , u) Pypi=1 2, .., n-1. (4.13)
Since p; > P41 = P; — & (2.11) and (2.31) imply that
5< 87,1 =1,2 ., oL (4.14)

Next, for each i=1, 2, .. n-1, define the function f. as follows:

f(p) = J§1 S(p + (i)t, u) for p € (pyyq, Py)- (4.15)
Then, it is clear from Lemma 2.2 that fi is continuous and decreasing on (pi 41 pi)'
Moreover,

lim = E < E o= 1i f.(p). 4.16

mp1p, (P) i 25 2 .’mplpi_h1 i(P) (4.16)
Hence, the inverse f; exists for x € (23:1 S5, E}zl sj’). Now we propose our
candidate P for a supporting price function:

Py for x € [0, s,]
P(x) = P; for x € [El__l i Z‘j_l j] where i > 1 (4.17)
i
fy (x) forxe(J =1 5 23—1 J)where1<n

See Figure 4 for an illustration of the price function when n = 3.
Figure 4
P is a well-defined function on X with the following properties:

Lemma 4.1: P is a positive, continuous, nonincreasing function on X such that:

i) P(x)=p) & xE€ [0,5,], (4.18a)
P(x) = p; & X € [El_l i El ] i= 2. (4.18Db)
p; > P(x) > pjyq = Pyt & X € (2l =15 2.1]= 15 ‘), i =1, .. 0L (4.18c)
(ii) For each i = 1,2, ...,n-1,
dP(x)/dx < 0 for x € (_, 55 2}=1sj'). (4.19)
(iii) For each i = 1,2,...,n-1 and x € X,
X € [zi. s 2}_1 7] & zi._ SIPG) + ()t = x (4.20)
(iv) x€[s;, 8 ] = P(x - S[P(x) ul) < P(x) + t, (4.21)
X € [2‘ -1 5 J_ ;7] = P(x-S[P(x),uy]) = P(x) + t, i=2,....;0-1. (4.22)
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Bm_gf_ By construction, P is a positive, continuous, nonincreasing function (on X)
having properties (i) and (ii). In (4.20), the left-to-right relationship (2) follows by
construction and continuity of P. Usihg (2.11), (2.32) and (4.18), it is easy to prove
the converse relationship (&) in (4.20). Next, by (4.20), x € [sl,sl’] 3 S(P(x),uy) = x
3 P(x - S[P(x),y;]) = P0) =py <py +t= P(x) + t for x € [sl,sl'], which proves
(4.21). Finally, to show (4.22), fix i € {2,3,....,n-1}. Then, by (2.32), (4.18c) and

(4.20)
. . p; > P(x) > Pisq
x € (o 5 Tmr) )

| 2}__:1 S(P(x) + (i-dtuy) = x

p; > P(x) + t > p;
= i1

1 x- S(P(x),u;) = 23=1 S[P(x) + (i—j)t,uj].
Furthermore, since S(p,u) is decreasing in p, p; > P(x) > Piy1 implies that

7L sp; + G(-itug < BI7 SIPG) + G-ty < $TI8pyyp + (9t

=1 ) . 1
= 23;} S(pyuy) < 2};’} S[P(x) + (i)tuy < z};} S(pj4 1) by (2:32)
= 23’;} 5; < 23;} SP(x) + (-)tu] < Jj 5y
= PO SP( + (-t = 6L (3] SIPG) + G-ty by (417)
= £1,(87] SP() + ¢ + (-1t
= £1(5,,(P() + 1)) by (415)
= P(x) + t
Therefore, x € (2}=1 5 zij=1 5;7) # Plx = SIP(), ) = P(z;} S[P(x) + (i-i)t;)

= P(x) + t. By continuity of P and S, we can conclude that (4.22) holds. Q.E.D.

Showing that the land price function P supports the efficient allocation is
equivalent to showing that

E(s; x;Pou;) = E(P,u), Vi € N, (4.23)
where functions E and E are defined by (3.7) and (3.8) respectively. Note that for
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.
.

o ) L i
each i = 2,3, ...n, 8 + X, = §; + Elj=1 5 by (2.29)] = )y

i=1 5 and s; = S(pyy;) =
S(P(213=1 Sj)’ui) [by (4.18b)] = S(P(s; + x;),u;). Hence, setting x = §; + x; (= )33:1

Sj) in (4.22), for each i = 2,3,...,.n we have that

P(x,) = P(x; + s;) + t and §; = S[P(x; + 5,):4;]- (4.24)
Similarly, since x; = 0 and §; = S(pyuy) = S(P(s).uy) [by (4.18a)] = S(P(s; +
xl)’ul)’ using (4.21) we can see that condition (4.24) also holds for i = 1. Therefore,
for each i € N, the first-order conditions (4.2) to (4.4) for expenditure minimization
[implied by the right-hand side of (3.8)] are satisfied at (s;x;). Hence, if these
first-order (necessary) conditions were also sufficient for the expenditure minimization,
we could conclude that (4.23) holds. Unfortunately, it turns out that for each i € N,
these first—order conditions are satisfied at (uncountably) many combinations of (s,x)
that are not minimizing E(-, -;P,u,). Therefore, we prove (4.23) using an alternative
approach involving several steps.

Define

*
E;(k) = min {E(s,x;Pyu;) : 8 > 0, x 2 0, x + s = k}
8 ,X

= min {E(s,k-sP,y;) : 0 <8¢ k}, (4.25)
8

which represents the minimum expenditure of household i necessary to achieve utility
level u, when household i is constrained to have the end of its lot, x + s, at k.

Notice that for 0 < s < k,

OB (s, k—5;P,u)/ 05 = Zg(s,u;) + P(k-s) — t. (4.26)
If P(y) is differentiable at y = k — s, then
02E(s,k—s;P,ui)/ &% = Zss(s’ui) - dP(y)/dy]| y=k-s" (4.27)

Since Zss(s’ui) > 0 by (2.7) and dP(y)/dy|y=k 5 S0 wherever P is differentiable.
Thus, 32Ei(s,k-s;P,ui)/6s,2 > 0 provided that P(y) is differentiable at y =k —s.
Since P(y) is not differentiable at a finite number of points only (by definition), we
can conclude that Ei(s,k—s;P,ui) is strictly convex in s on (0,k]. By (2.4), limg 10
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E(s,k—s;P,ui) = o Therefofe, given any k € (0,4, E(s,k—s;P,ui) achieves its minimum
at a unique point of (0k]. We denote this point by s:(k). Then by definition

E;(k) = E(s;(K) s (K);P,w,). (4.28)
Smce E(s,k-s; P,u) is differentiable (but not necessarily twice differentiable), the

necessary and sufficient conditions for s, (k) to be the unique minimizer of E(s,k-8;P,u;)

on (0,k] are:
If 5;(k) < K
OE(s,k—s;P u)/asls_S ) = =17 (s (k)u,) + P(k-s; (k)) -t=20 (4.29a)
If s (k) = k,
limgpy, Bk .m)/ 5] 1) = 7 (s (0).;) + P(k—s; (K)) — t < 0 (4.29b)

Since E(sk-s;P,u;) is strictly convex in s, it follows that
s(k)—k«:Z(ku)+P(0)—t<0 (4.30)
Since P(0) — ¢ =p1—t—p2, (ku) + P0)-t<0 e Z(ku) > py & k<
S(pyuy). The last step follows using (2.7) and (2.10). Finally,
s*(k) <k & k> S(pyu) (4.31a)
8. (k) =k &k S(p2,u) (4.31b)
Using conditions (4.31a) and (4. 31Db), the following characteristics of function E can be
derived (see Appendix 1 for a proof):

*
Lemma 4.2: For each i = 1,2,....n, Ei is continuous on (0,]. Furthermore,

(i) for each i = 1,2,....m, Ef(k is differentiable at any k € (0,5(po,u;)), where
i 271

* < 0 for k < 54
dE, (k)/dk (4.32)
=0fors; <k< S(p2,u1) = sl'
dE. (k)/dk <0 for all k < S(p2,u) i=12,. (4.33)

(ii) For each i = 1,2,...,n, E, (k) is differentiable at k € (S(pz,u) l) iff

k # 2 8; + S(P(E s)—tu) and k #E sJ + S(P( Z S )—tu) for any r = 1,2,...,n-1.
=1 =1 =1 =1
When E, (k) is differentiable at k € (S(pz,u) D,
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dE}(k)/dk S 0 as PR-S(P()up) 2 P() + t, (4.34)
where P(k — S(P(k),u;)) is defined to be o if k - S(P(k),;) < 0.

For the relation (4.34) to be useful, it is necessary to know whether
P(k-S(P(k),u;)) is greater or smaller than P(k) + t at each k € (S(pysy;),]. The next
lemma provides this information (see Appendix 2 for a proof).

Lemma 4.3: Let P(k-S(P(k),u;)) = w if k < S(P(k),u;). Then, we have:

(i) P(k-S(P(K),u;)) < P(k) + t for all k € (S(pgyuy),l. (4.35)
(ii) For i = 2,3,...,n-1,
> P + t for k € (S(pguy), zi_2 s (4.362)
P(k-S(P(k),u;)) {= P(k) + t for k € [EJ 18§ 2‘ p 84 (4.36b)
< Pk) + tfor ke (Ele sj,l] (4.36¢)
(iii) P(k-S(P(k),u,)) 2 P(k) + t for all k € (S(pguy ),4. (4.37)
It follows from (4.34) and Lemma 4.3 that for each i € N, wherever E (k) is
differentiable,
dE;(k)/dk 2 0 for k € (S(pgyuy),D, (4.38)
* <0 forke (S(pz, ), 2;_1 55
dE;(k)/dk { =0 forke (EJ 155 2; p 8§] where 1 <i<m, (4.39)
>0 forkE(J=1 j,l)
dEX(k)/dk < 0 for k € (S(pgsup)s - (4.40)
Now, for each i € N, define
13:i = min{E;(K) : 0 < k < B, (4.41)
= {k € (0,] : E, (k) = E} (4.42)

By deﬁmtxon K represents the set of lot endpoints at which expenditure is minimized.

Recall that Ei is differentiable on (S(pz,ui),l) except at a finite number of points.
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Using (4.32), (4.33), (4.38) through (4.40), and recalling the continuity of E,: on (0, {,

we can oonclude that

[2‘_1 o Zim1 S J] C K for each i = 1,2,...,n-1, (4.43)

2‘; 1sJ—IeK (4.44)
Next, we claim that

E(P uy) = E(s;:xPoyy ) = E(k,0;P,u,) for all k € [s1:81]- (4.45a)

(P ) = E(s;x;;P, u) = [S(P(k),ui),k-S(P(k),ui);P,ui]
for all k € [23_1 E}zl sj], where 1 < i < n, (4.45b)
E(P,u ) = E(sx ;P o (4.45¢)
*
To see (4.45a), notice that k € [s), s si] » k <87 = S(pz,ul) + s)(k) = k [by (4.31b)] =

Ej(k) = E,(k0;P,u;) [by (4:28)]. Furthermore, by definition E(Pu,) =

ming 1 ¢ E:(k). Hence, using (4.43) and recalling that x; = 0 we can conclude that
(4.45a) ;mlds To show (4.45b), let 1 < i < n. Then k € [Ei_l 85 E} 1 85
+ 8y > 89 = S(pyg) 2 S(pgyu;)  k > S(pg, u) 3 s, (k) < k [by (4.31a)]. Using

st] # k 2 8

(4.29a), for each k € [21 =1 5 E}___l J] s* = s, (k) is uniquely determined by the

following equation in s*:
Z (s*u;) + P(k-s*) -t = 0.
Notice that for each k € [2}=1 s, 2}21 (), Z(S(P).)w) + P-S(B(R)u)) - ¢ = -
P(k) + P(k-S(P(k),y;)) -t = O. The last step uses (2.10) and (4.22). Hence,
% . * 3
s; (k) = S(P(k),u;). In particular, when k = z; 1 5 si(El.=1. ) = S(P(z:‘_1 5)u;) =

S(p;,u;) [by (4.18b)] = s, and 2‘ S(P(E‘ -1 5 ) = B, 5 - Slopny) = 2‘_}

i = % Therefore, since E(P u) = rnm0 <k<l E. (k), using (4.43) we can conclude
that (4.45b) holds. Similarly, using (4.29a), (4.31a) and (4.44), we can prove (4.45¢).
Since (4.45a) through (4.45c) imply (4.23), the proof of Proposition 3 is now complete.

Next, let numbers ¢; (i = 2,3,...,n) be defined as follows:

Pi1 Si-1
6= o, @) -5 f.7 CRfemy) - )i (4.46)
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where the last identity follows from (2.10), (2.31) and (4.13). Define also
Y, = = E(s;x;; Py, ), i €N (4.47)
Recalling (3.7) and using (4.17) and (4.46),

Y, = Z(syuq) + Pysys (4.48a)
= Z(spy;) + {pj3; + J —9 eJ} + t- E‘_l it i=2 ..,n (4.48Db)

Now for each i € N, define z, = Z(s;;u;) and income Y, as (4.48). Then, since E(P,u,)
= E(si,xi;P,ui) =Y,, we can conclude that [p,{si,zi,xi}rilzl] is a competitive equilibrium
for ALP(YI, . Yn). This observation leads us to a constructive proof of equilibrium
existence in the next section.

Finally, as in the two—household case in section 3, the reader might have noticed
that P [defined by (4.17)] is not the only supporting land price function for the

efficient allocation {s.,zi,xi}lilzl. For example, let

= S, (pl 1,u) i=223,..n, (4.49)
o) - 5, S(p + G - Dt u) for p € (pypyy), | = 23eem (4.50)
and define a new land price function P by!?
Py for x € [0, 85°]
i +1 .
- P; for x € [El-__ El s:’], i = 2,...,n-1
P) = { =2 ° ] (4.51)
P, for x € [En l]
-1 _
k f, (x) for x € (ZJ _g 8% 21_2 8. ), i= 2,..,n

Then we can show that P also supports the efficient allocation using the same
arguments as used for P. Furthermore, it can also be shown that any land price
function P* such that la(x) > P*(x) > P(x) for all x € X supports the efficient
allocation. As will be shown in the next section, these price functions can generate
equilibria that differ in the rent collections of landlords as well as the utility levels of

households.
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5. Existence of a Comoeti'_cive Equilibrium

In this section we demonstrate that an equilibrium exists for any set of positive

endowments of numeraire.

n

4 there exists a competitive

Proposition 4; Given any (Yy, .- Y ) €R
equilibrium for the ALP(Yq, ..., Yn) — model.

In the following we present a comstructive proof, which is based on the land price
function P in the previous section. Beginning with an arbitrarily chosen Py by
inductive steps we construct a land price function P(-;pl) which has essentially the
same shape as P. By demonstrating that there exists a number p; such that the land
consumption of the n households under P(-;p:) sums to ! (= the size of the land area),
the proof is completed.

Before starting the proof, it is necessary to define the indirect utility function.
For each p>0, Y>0, define

V(p,Y) = max{U(s,z) : §>0, z>0, z + ps = Y}
Without loss of generality, order households so that Y1 < Y2 <. € Yn‘ The proof
now proceeds by inductive steps.
Step 0:  Arbitrarily fix p; > (n-1)t.
Step 1: Define

u,(p) = V(o Yy

5,(p;) = S(ppuy(py))-
Then it follows by definition that

Y, = Z(Sl(Pl)’ul(Pl)) + P81 (5.1)
Define
si(py) = S(oy-t0,(py) 52)
Si(pl)

o) = i (p,) FLEu(e) - Broldp (5.3)
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Step i (i > 1): From step i-1 we have Sj(pl)’ Si(pl) and uj(pl) for j = 1,2,...,i-1.

We also have e, (pl) for j = 2,..,i. Define
i
Lip) =Y - ¢ JE 55(py) j§2 ¢(py); (5.4)
ui(pl) = V(pl—(l—l)t,li(pl)),
S‘(pl) = S(pl—(i—l)t,u-(pl)).

Using these three definitions,

Y; = Z(s;(py)uy(py)) + {(py~(i- t)s;(py) + 2 f(pl) + t 2 N i®y)- (5.5)

Also define
s{(p;) = S(py - itu(pp), (5.6)
641(Pp) = fs( [Z<su(p1)) (p;-it)]dp- (5.7)

Continue the induction until step n is complete [where the definition of ¢ +1(p1) is

omitted in step n]. Finally, define

n
Xn+1(p1) = jE_lsj(pl) for each p, € ((n-1)t,0).
Lemma 5.1:

(i) Xy s continuous and decreasing on ((n-1)t,x).

(i) limpll(n—l)t xn-i-l(pl) = limplToo xn+1(p1) =0

Proof: For (i), continuity is obvious. That x is decreasing follows from the fact

n+1
that land is a normal good.
For (ii), first we show that u.(pl) < ui+1(p1) for i = 1,2,....,n-1. Recalling (5.1) and
(5.5), and using (5.7), we can readily see that for each i = 1,2,...,n-1,
Y, = 2si(pp)y(py) + {@r-it)si o) + Bipgey)} + v z;_lsj(pl) (58)
For each i = 1,2,...,n-1, from (5.1), (5.4), (5. 5), and (5.8),
Z(S’(pl) u, (pl)) + (pl.'it)si(Pl)
= Y - El+25](p1) - t'E}=1 Sj(Pl)
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L) = (g = Y5 (59)
From (5.6) and (5.9),
ui(pl) = V(pl‘ita1i+1(P1) - (Yi+1—Yi))
< V(py-it,L +1(p1)) [since Y; ;2 Yi]
=u, +1(pl) [by definition].
Hence, ui(pl) < ui+1(p1) for i = 1,2,....,n-1, as was to be shown. Since land is a
normal good, it follows Sn(pl) = S(p; - t(n——l),un(pl)) > S(py - t(n-1),u;(p;)). Hence,
lim  J(a-1) ¥o+2(P1) 2 B0 5 1g(n-t) S(p; - Hn-1),u1(py))
= lim pllt(n—l) S(py — t(n-1), lim p, lt(n-1) V(pysvy))
= lim plo S(p,V(t(n-1),Y,))
= .
Next, for p; > t(n-1), define
5(p,) = Y, /Ip, - t(a-D)]
Then
Si(pl) < §(p1) for all i = 1,2,...,n,
and
limple s(py) = 0.

Therefore limp 0. Q.E.D.

Lo Xp41(Pp) =

From Lemma 5.1, there exists a unique pI such that
* n *
K1 (01) 22 5(Py) = 1
Next a number of definitions are proposed:
8 = Si(PI)
s = 5{(py)
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%
0 = ui(pl)
* * .
p; = p; = py — (F1)t.
Define f; as in (4.15) using the definitions of the parameters given just above. Now

define a land price function

* %
P for x € [O,Sl(Pl)]
* * i—1 * 3 * .
P(X§P1) = 1P; for x € [23=1 Sj(pl), =1 Sj(pl)],l > 1

f;l(x) for x € (E}=lsj(pI),ﬁzlsj(p;)),i< n.

Finally, for i = 2,3,...,n, define
* % L I i—1 *
xl(pl) = 0, Xi(pl) =j£18j(p1)

and for i = 1,2,...,n, define

* * *

Zi(Pl) = Z(Si(Pl)aui(Pl))-

Employing these definitions in the arguments in section 4 (which we will not repeat
here for the sake of brevity), it is clear that P(-;pI) is a supporting land price
function for the feasible allocation {(si(pI),zi(p:),xi(p:{))}?zl. Therefore,
(P50}, {(5,(p}) 25 (P (Py)}2_ ] s & competitive equilibrium for the ALP(Yy,...Yy) -
model. This completes the proof of Proposition 4.

As the reader may have already noticed, the competitive equilibrium obtained
above is not the only competitive equilibrium for ALP(Yl, vy Yn). For example,
using the shape of the land price function P given by (4.51), another competitive
equilibrium can be found. It is easy to see that this new competitive equilibrium
yields a,4 larger total land rent collection by absentee landlords and lower equilibrium
utility levels for all n households compared to those implied by the competitive
equilibrium constructed above. Similarly, employing different shapes of land price
functions, we can generate a continuum of competitive equilibria that differ in the rent
collections of landlords and the utility levels of households. All of the equilibria are

Pareto optimal.
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6. Conclusions

In this paper, we have attempted to apply the tools of modern economic analysis
to Alonso's classical model. We have shown that the welfare theorems hold and that
equilibrium exists provided that the standard assumptions are satisfied and all
households have the same (well-behaved) utility function. It is clearly desirable to allow
households to employ different utility functions, and this should be a priority for future
work. It appears that techniques similar to those used here might be used for this
extension. In particular, the same techniques appear to be applicable if incomes and
steepness of bid rent order the consumers and yield identical rankings.

We have also shown that there is a continuum of supporting prices for each
efficient allocation. In addition, there is a continuum of equilibria for any distribution
of endowments. This contrasts with both the canonical general equilibrium model as
well as the standard monocentric city model. All of these equilibrium allocations are
efficient (even if passive landlords are included in the model). It would be interesting
to investigate this phenomenon further. We conjecture that this unusual result is a
consequence of the discreteness involved in ordering the location of the consumers.

It is interesting to ask how the indeterminacy of equilibrium changes as the
parameters of the economy change. The answer to this question might provide a clue
to the connection between the discrete model and the standard density model discussed
in the introduction.

In this paper we have considered a bounded (one—dimensional) land area because
we intended to make our problems as similar as possible to those of traditional
microeconomics. In contrast, the standard density model often employs the assumption
of an unbounded land area together with a given opportunity cost of land. We can,

however, readily see that with appropriate definitions of efficient allocation and
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competitive equilibrium, all the results of this paper (mutatis mutandis) hold for a

model with an unbounded land area.13
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Footnotes

1Some recent research has addressed this problem. See, for example, Papageorgiou
and Pines [11]; Asami, Fujita, and Smith [3]; Kamecke {7); and Berliant and ten Raa

[6]. However, it seems that much is left to be done in this area.

2Namely, the demand correspondence is not convex valued. For discussion, see

Berliant [5, chapter IIIJ.

3Given the form of transportation cost, it seems unlikely to us that the finite
model used in this paper can be derived from a continuous density model using the

approach given in [11].

4More generally, we may assume that the transport cost associated with a lot,
[x, x + s), equals tfax + (1 = «)(x + )], whre « is a given constant such that
0 < « <1 It would not be difficult to show that the main results of the paper hold

under this generalization (mutatis mutandis).

5Throughout this paper, we let R, R 4 and R 4t denote the real numbers,
nonnegative reals, and positive reals, respectively. The terms "increasing" and
"decreasing" are taken to mean "strictly increasing " and "strictly decreasing"

respectively.

6Strictly speaking, Assumption 1 alone cannot prevent the possibility that each Zu’
Zss and Zsu becomes zero on a set of points with measure zero. However, this minor
difference does not affect our results in any essential way, and hence we neglect it in

the folloWing discussion.

TFor simplicity, the opportunity cost of land is assumed to be zero. For a
reformulation of the problems arising from a positive opportunity cost of land, see

footnote 13.
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8This result is closely related to Mirrlees' "unequal treatment of equals."
Maximization of a Benthamite social welfare function (where households are equally
weighted) can result in higher utility levels for households located farther from the
CBD compared with households located closer to the CBD. There are many articles
that discuss this phenomenon; see, for example, Mirrlees [9], Arnott and Riley [2], and

Wildasin [13].

oIt is not difficult to see that the land price function P [given by (3.10)] represents

the lowest land price curve among the family of supporting land price curves (of

allocation G) that are nonincreasing on X. The question of the existence of a broader

class of supporting land price functions is deferred to future research.

10In (4.1), if equality holds for all k such that p; > P(k) > p; 41 then it also
holds at both ends of the interval {k € X : p; > P(k) > p, +1}. However, we cannot
replace this interval by the set {k € X : p; 2 P(k) 2 p; +1}' For example, if n=2 and
i=1, then we can see from Figure 3 that the set {k € X : p; 2 P(k) 2 p2} coincides

with the entire location space, X.

uIf x + s = [, then the first-order conditions are: P(x) < —Zs(s,u) +t, P(x) =
—Zs(s,u) +tif x >0, and P(J) < —Zs(s,u).

12The land price function Pisa generalization of the function (3.11) in Section 3.

13Specifically, set X = [0, ») and rewrite (2.14) as
where R, represents the agricultural land rent (or the net revenue from each unit of
land used for agricultural production). A new cost term, E’ille ASp must be added
where appropriate after (2.14). In the definition of a corhpetitive equilibrium in section

2, (2.38) must be rewritten as



P*(x) > R, for all x € X, and

* n  x x *
P (x) = Ry at each x € X\ U [x;, x; + 5:])-
i=1

41
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Appendix 1: Proof of Lerrima 4.2

Proof of Lemma 4.2(ii):

Recall from the discussion above equation (4.28) that given any k € (0],
E(s,k-s;P,u;) achieves its (finite) minimum at a unique point s;*(k) in (0,k]. Suppose
S(pyyy) < k <L Then using (4.29a) and (4.31a), s;*(k) is the unique solution of the
following equation in s*:

Z(s*u;) + P(k-s*) -t = 0. (Al1.1)
Provided that P(y) is differentiable at y = k — s*, it follows that
Zss(s*,ui)ds* + P/ (k-s*)(dk — ds*) = 0,

where P’(y) = dP(y)/dy. Then
ds* —P/(k — s%) (AL2)

& T IS ) - Pk
%
Hence si(k) is differentiable at k € (S(p2,ui),l) iff P(k-s*) is differentiable at

y = k — s*. In this event, since ZSS > 0 and P’ < 0, we have that

0 —q— < L (A1.3)
Now suppose k € (S(pyu;),] and k — 5,%(k) = y for some y € R. [Due to (4.31a), this
implies | > k - si*(k) =5 > 0] It follows from (Al.1) that s;*(k) = S[P(i)—t,ui]
and hence

k =5 + S[PE)-t.u).

r
¥ s: for any
=1’

r € {1,..,n-1}. Since § is differentiable, 5;%(k) is differentiable at k € (S(p2,ui),l) iff k

r
By construction, P(y) is differentiable at y € (0, Diffy+ X 8; and y #
=1

I r r T
4 Bs. + SP(2 s)tu]andk# I s:+ SP(E s¢)-t,u;] for any r € {1,...,n-1}.
=11 =11 1 j=11 j=11

By definition,
Ei*(k) = Z(Si*(k),ui) + Jlﬁ_si*(k)P(Y)dy + t(k - Si*(k))- (Al.4)
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E*(k) is differentiable iff s;* is differentiable at k. Therefore, the first half of Lemma

4.2(ii) is proved. Next, notice that condition (Al.1) can be restated as

5 = S[P(k-5*)tu]. (AL5)
Hence, when s;* is differentiable at k € (S(pysuy),)), it follows from (Al.4) that
dE*(k) ds* ds;* ds*
—dk = ZS(Si*(k),Ui)‘-HK— + P(k) - P[k—Sl*(k)](l - dk ) + t(l - —HE—)
= P(k) + t — Pk — s;*(k)]. (A1.6)

The last step follows using Zs(si*(k)’ui) = ZS(S[P(k—si*(k))-—t,ui],ui) [by (A1.5)] = -

{P(k—si*(k))—t} by (2.10). Hence
dE;*(k) ¢ S
—qg— S 088 Plk-s.*(k)] 2 P(k) + t. (A1.7)

For notational simplicity set s* = si*(k). Then
P(k-s*) = P(k) + t = s* = S[P(k),u] by (Al.5)
= P(k-S[P(k),u;]) = P(k) + ¢,
and
P(k—s*) < P(k) + t = P(k—s*) - t < P(k)
= s* = S[P(k-s*)-t,u] > S[P(k),u;] by (A1.5) and
since S(p,u;) is decreasing in p
= k - S[P(k),y] > k - §*
= P(k-S[P(k),u;]) < P(k—s*) since P is nonincreasing
= P(k-S[P(k),u;]) < P(k) + t.
Recalling that P(y) = o if y < 0, similar reasoning yields
P(k-s*) > P(k) + t = P(k - s*) —t > P(k)
= s* = S[P(k-s*)-t,u] < S[P (k)]
= k - S[P(k);y] < k - g*
= P(k-S[P(k),y;]) 2 P(k-s*) since P is nonincreasing
on (-w, |

= P(-S[P(K)u]) > P(K) + t.
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Setting s* = si(k),
Plk-s*(K)] 2 P(K) + t as P(k-S[P(K);y;]) 2 P + t. (A1.8)
(A1.7) and (A1.8) together imply (4.34).
Proof of Lemma 4.2(i):
Suppose that 0 < k < S(py,u;). Then, s;*(k) = k by (4.31Db).

Hence,

Ej(K) = E(s;*()k—s;*(K)Pwy) = Z(ku) + [GP(¥)dy (AL.9)
which is differentiable at any k € (0,S(pyy;)). Also

dE; (k) '

—— = Zg(k, 1)) + P(X). (A1.10)

By construction of P,

=p; < —Zs(x,ul) forx < s;
P(x) { = - Zs(x,ul) for s; <x <8 (A1.11)
> — Zs(x,ul) for x > 7

(A1.10) and (A1.11) together imply (4.32). Then, for i=1, (4.32) implies (4.33). To
show (4.33) for each i > 1, observe that Zsu(s,u) < 0 by (2.7), and u; 2 u; by

assumption. Hence, at each k > 0,

Zs(k’ul) > Zs(k’ui)’ (A1.12)
Using (A1.10) through (A1.12),

dE; (k)

—qF = Zs(k’ui) + P(k) ¢ Zs(k’ul) + P(k) < 0 for k < s1. (A1.13)

Furthermore, since u; 2 uy, by (2.11) 8* = S(pyuy) < S(pgyu;); since P(s{) = py and P
py for k 2 sf; by (2.10) and (2.11), k < S(py, u;) & Zs(k,ui)

A

is nonincreasing, P(k)

< Py Therefore

*
dE. (k)
——ék—— = Zs(k’ui) + P(k) < -py + P(k) < 0 for 8] <k < S(p2,ui). (A1.14)

(A1.13) and (A1.14) together imply (4.33) for i > 1.
Finally, the continuity of the function E, on (O,S(p_zgi),) follows from (A1l.9)

[because Z( ',ui) and P are continuous|. Recall also that on (S(QQAEi)_IL -Ei is



45

differentiable except at (N¥2 )x2 points. The continuity of E—x at these (N-2)x2 points,
at k = 5(22‘11&)-‘ and at k = I can be confirmed by using the continuity of Z(-.u ) and

P. Therefore, _E_)i is continuous on (0.]. Q.E.D.

Appendix 2: Proof of Lemma 4.3

Since relations (4.35) and (4.37) are special uses of (4.36), (4.36) is proved first.
Since (4.22) implies (4.36b), only (4.36a) and (4.36c) need to be proved.
Proof of (4.36a): Fix any i € {2,..,n-1}. Then since i > 2 implies that S(pZ’Ui)

> S(pz,ul) s: it follows that

1
i i—1 r 1+l T T
Sy, I sl =(U (D2 sJ>}u{ er RUDIELRY (A2.1)
j=1 r=1 j=1 J =1 =2 J-l
(a-1) Suppose that
r 1+l
ke(Es,Es)forsomerE{l i-1}. (A2.2)
= 1‘]] 17

Then, P(k) = p.,; by (4.18b). Hence,
P(k-S[P(k),y;]) < P(k) + ¢t
# P(k-S(pyy1uy) < Pryg 8 =P

r
k — S(pr+1’ui) > .E 55 by (4.18)

=1
3k > JE 8; + S(pr+1’u)
r+1
3k > Y¥s (A2.3)
=1

The last step follows because r < i-1 31271 + 132 S(pr+1’ui) > S(pr+1’ur+1) =841

However, (A2.3) contradicts (A2.2). Hence, it must be true that

kel : 181 r+1 s;) and 1 € {1,...,i-1} = P(k-S[P(k),5)) 2 P(k) + t. (A2.4)
j=17]=

(a-2) Next, observe that

ke[Zs Es]forsomere{z i}
j=175=1"
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3 P(k-S[P(k),u]) = P(k) + t by setting i = 1 in (4.22)

3 P(k-S[P(k),y;]) 2 P(k) + t. (A2.5)
The last step follows because r < i = S[P(k),u] < S[P(k),u;) = k - S[P(k),u} 2 k -
S[P(k),u;] 3 P(k-S[P(k),y;]) < P(k-S[P(k),uy;]). (4.36a) follows from (A2.3), (A2.4) and
(A2.5).

Proof of (4.36c): Notice that for each i € {2,. .n—l},
n—-1 r —1

(Es.,q {U(Es'Zs)}U{U [Es
j=11 i=1j=1 JJ‘— ] r= 1+13--11.]--1J

(c~1) Suppose that

r T+l
ke (3 st B s.) for somer € {i,..,n-1}. (A2.7)
=1 Vj=17

Then P(k) = p.,; by (4.18b). Hence,
P(k-S[P(k),y]) > P(k) + t

N P(k-s(pr+1’ui)) >Pryp T =D
r—I1
k - S(p,, ,u.) < X st by (4.18)
r+1"7i i=1 )

s¢]}. (A2.6)

r—1

= k < jilsj + S(pr+1’ui)
r

= k < 2233 (A2.8)
j=

The last step follows because r > i implies that S(pr +1,ui) < S(pr +1’ur) = s;.

However, (A2.8) contradicts (A2.7). Hence, we must have that

r 1+l

ke (X 8%, ) s) and r € {i,...,.n-1} = P(k-S[P(k),u;]) < P(k) + t. (A2.9)
=1 Vi=1

(c~2) Next, observe that

ke[Zs Es]forsomer€{1+1, .,n-1}
J-lJJ—l

= P(k-S[P(k),u]) = P(k) + t by setting i = r in (4.22)
= P(k-S[P(k),y)) < P(k) + t. (A2.10)
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The last step follows because T i+ 1= S[P(k),u ] 2 S[P(k),y, +1] > S[P(k),y;] = k -
S[P(k),u] < k - S[P(k),u;] = P(k-S[P(k),u]) 2 P(k-S[P(k)u;]). (4.36¢) follows from
(A2.6), (A2.9), and (A2.10). This concludes the proof of (4.36).

Proof of (4.35): The method of proof used for (4.36c) is completely valid even when i
= i. Therefore (4.35) holds.

Proof of (4.37): The method of proof used for (4.36a) is valid for i=n if we replace

i n—1 i or T
U with U in the middle term, { U [ & s;, % st]}, of the right hand side of
r=2 r=2 r=2 j=1 ] =1 ]

(A2.1). Therefore (4.37) holds. Q.E.D.
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Figure 3. A supporting land price function (n=2).
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Figure 4. A supporting land price function (n=3).

T



