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Abstract

Recent research has suggested that the aggregate economy behaves similarly at
seasonal and business cycle frequencies. This paper-argues that-inventory behavior—-
which accounts for some thirty percent of peak—to—trough changes in GNP—does not fit
this pattern. Whereas seasonal production—smoothing appears important for industries
with large seasonal fluctuations in sales, there is no evidence of smoothing behavior in
those or other industries at lower frequencies.

The paper also offers other evidence against production—smoothing as a significant
component of inventory movements, and offers evidence in favor of stockout—avoidance
-as an alternative theory. The paper derives a number of contrasting implications for.
the two approaches and then examines data from six 3—digit level industries. The
paper concludes that stockout—avoidance accounts for the stylized facts about inventory
behavior except that firms may smooth production in response to large seasonal
disturbances. Production—-smoothing is irrelevant -for most ‘seasonal-and all ‘business

cycle fluctuations.






Recent research has suggested that the aggregate economy behaves similarly at
seasonal and business cycle frequencies. This paper argues that inventory behavior—
which accounts for some thirty percent of peak—to—trough changes in GNP—does not fit

this pattern. Seasonal production—smoothing .appears important for.industries with large

- seasonal fluctuations in sales, but there.is no-evidence of smoothing behavior in those

or other industries at lower frequencies.

The paper also contrasts the predictions of the production—smoothing model and
the stockout—avoidance model. Despite the large fraction of the peak-to—trough decline
in GNP in the U.S. accounted for by changes in inventory investment, there is no
consensus even on what the primary motivation is for the holding of inventories by
manufacturers and retailers. In fact, the debate within the inventory literature
regarding the source of production volatility resembles the broader debate regarding the
sources of aggregate fluctuations: The production—smoothing models and stockout—
avoidance models emphasize demand uncertainty, while the cost—smoothing and
increasing-returns—to—scale models tend to emphasize supply—side or technological
factors. Since changes in inventory investment-are such a significant aspect of cyclical
fluctuations in GNP, one can argue that a better understanding of inventory behavior
will lead to a better understanding of aggregate fluctuations.

Using high—quality data on physical quantities at the three—digit industry level,
the paper shows that with the exception of those industries that smooth large seasonal
fluctuations, production-smoothing simply cannot account for basic facts about inventory
behavior, while stockout—avoidance can. Thus any significant role for production—
smoothing is clearly limited to high frequency activity and is of little consequence for
understanding business cycles. Moreover it would be a mistake to draw general
inferences about inventories on the basis of their seasonal behavior.

The paper proceeds as follows: Section 1 provides two simple models—the polar

cases of "pure" production—smoothing and "pure" stockout—avoidance—around which the



discussions of the data can be organized. Section 2 describes the data. Section 3
analyzes various features of the data in light of the -empirical implicationns of the

models from Section 1. Section 4 concludes.

1. Background

Models of inventory' behavior must .confront -a number. of basic facts. First, the
level ‘of inventories in the U.S. economy is approximately three months' worth of sales.
A good theory ought to account for the level of inventories as well as the dynamic
behavior. Second, there is considerable evidence that inventories do not smooth
production. This fact has been documented in terms of the relative variances of
production and sales, and in terms of the covariance of inventories with sales. On the
other hand, there is room for controversy: Recent research has called into question the
evidence about "excess" production volatility (see Fair, 1989, Krane and Braun, 1989,
Miron and Zeldes, 1989). - Some of the results below will clarify the sense in which
inventory behavior does violate the production—smoothing hypothesis.

Several explanations of the.primary role of inventories have emerged in recent
years as alternatives to the production—smoothing hypothesis. Some (e.g. Blinder,
Eichenbaum, et al.) have argued that inventories are used to intertemporally substitute
production in the face of cost or productivity shocks. A second approach invokes the
idea that inventories play a direct role in production and puts inventories as an
argument in the production function (e.g. Christiano, 1988). A third approach is the
hypothesis of production—bunching in response to increasing returns to scale (e.g.
Ramey, 1988, Cooper and Haltiwanger, 1989). Finally, the speculative, or stockout—
avoidance approach assumes that firms hold inventories in response to demand
uncertainty and a constraint that sales in a given time period cannot exceed

accumulated inventories (see Kahn, 1987, 1989, Christiano and Fitzgerald, 1988.)



Each of these approaches encounters difficulties of its own. The cost shock
hypothesis suffers from. the problem that attempts to explain inventory movements by
measurable changes in costs have not been very successful (see, e.g. Ramey, 1988,
~Kahn, -1989). - While to :some extent this poses -a-problem-for any rational model of.
inventory ‘behavior, it must be comparatively worse news for the approach that says
cost shocks are the primary-cause -of :fluctuations- in-inventory investment. - It is also.
“‘bad mnews:for ‘the increasing returns hypothesis, since this explanation also implies a -
systematic relationship between productivity and inventory accumulation.

The inventories-in—the—production—function approach is difficult to justify on
theoretical grounds for most types of inventory-holding. It has arisen largely because
of the difficulty of generating significant inventories in calibrated representative—agent
real business cycle models (see Christiano and Fitzgerald, 1988). As I will argue below,
a more conventional approach in a model with many goods has little trouble generating
levels of inventory-holding of the right order of magnitude.

The difficulties with the stockout—avoidance model are primarily technical. It is
hard to come up with -a-tractable model ‘that 'makes powerful predictions about  the
data without a considerable set of auxiliary assumptions. In particular it is difficult to
nest the stockout—avoidance model within the other traditional approaches, or vice—
versa. Nonetheless I will argue that even a relatively simple version of the stockout—
avoidance model can explain away a large number of the supposed anomalies associated
with inventory data.

Two common implementations of the production—smoothing hypothesis are the
class of linear—quadratic models (e.g. Blanchard, 1983, West, 1986) and the partial
adjustment model (e.g. Lovell, 1961). The theoretical difficulty with these models is
that the behavior predicted by them depends heavily on the arbitrary specification of
an inventory "target". The empirical problem with them is that while they fit the

data well (see Blanchard, 1983), they do poorly in explaining several very basic facts in



the data, among them:

"— the high level of inventories
- — the procyclical behavior of inventory investment (and the related
"excess" production volatility)
— the closely timed pattern of production and sales at seasonal

frequencies

This section describes the stockout—avoidance model and contrasts it with the two
standard versions of the production—smoothing hypothesis. It turns out that the
stockout—avoidance model can rationalize these anomalies at the same time as fitting

the data reasonably well.

1.1. The Production—-Smoothing Hypothesis

The production-smoothing hypothesis holds that the chief motive for the holding
of -inventories is to smooth production in the face of variable demand. It does not rule
out other motives, but (to have any content) does say they are secondary. Since it is
impossible to devise a metric for how much of inventory behavior is described by
production—smoothing relative to other explanations, the approach taken here is to
describe the '"pure" production—smoothing motive and then see how well it does in
accounting for inventory behavior. A poor performance does not rule out production—
smoothing as one motive, but it does rule it out as being of primary importance.

As far as macroeconomics is concerned, the focus of inventory models should be
to explain data at "business cycle" frequencies. Notwithstanding Barsky and Miron's
(1988) evidence for the similarity of the behavior of many macroeconomic variables at
seasonal and cyclical frequencies, the sine qua non of any hypothesis about inventory

-~.behavior-is-its ability to describe behavior at business cycle frequencies. One should be



cautious of drawing strong inferences about a model's implications for cyclical

phenomena on the basis of seasonal observations. This does not necessarily work for or

against production-smoothing: It simply says that both production—-smoothing and its

-alternatives should be evaluated primarily by their ability to account for cyclical -

phenomena.

This section presents a very simple version of a linear—quadratic model of

inventory behavior. It represents a special case of models considered by Blanchard

(1983) and West (1986) among others. Firms solve an infinite-horizon cost—

minimization problem treating sales as an exogenous stochastic process.

In order to

focus exclusively on the production-smoothing hypothesis, the firm's cost in period t is

assumed to be a function only of the level of production and inventories in period t,

i.e.

b
=2

2, dyo
vz + N2,

(1.1) c(Y 5

oNy)

where the variables are defined as before, and h and d are both positive.

the firm faces is to choose a sequence of production to minimize:

[0 0]

(1.2) E,_, [S Etﬁs_tc(Yt,Nt)]

subject again to the identity

(1.3) N, =N, + Y, - %,

The problem

where Zt is a stochastic process that can be arbitrary except that it cannot be

expected to grow at a rate that exceeds 1/4-1. Standard techniques yield an Euler

equation condition



(1.4) (I+7)Y, = B _(Z,) - N,_; + 7ﬂEt—1(Yt+1)‘

- where v = h/d. With a little algebra this can be expressed as a stochastic difference

equation for inventories:

(1.5) (AN, = ANy + BN, ) +
—V2y + WLy p)-

This equation can be solved by standard techniques to get feedback rules for inventory

investment. The equation can be expressed in the form

(1.6) (0L + (AU EN, | = 2,/6 - By(Z,,))-

where L is the lag operator (e.g. LE,Z, i T E7Z, +S_1), L7 the inverse lag or forward
operator, and § = [1+7(1+f)]/~. This yields a first-order difference equation of the

form

(1.7) N, = AN

t 1t

RSz - 2

where /\1 and ,\2 are roots of (1+6L + §L—1) and satisfy ﬂ/\1 = /\;1. This can be

simplified to get

® s+1-t
(1.8) Ng = ANy = M2 + (1_/\)Et{8§t(ﬁ/\) Zsii}

(where A = )\1). This in turn implies the following rule for production:



(19) Y, = (1NN + (VB S (1)),

Equation (1.9) makes intuitive sense: As A - 1 (which occurs as 7 - ), Var(Y) - 0;
as A -+ 0 (i.e. as 7 =-0), Var(N) - 0-and Var(Y) = Var(Z).1* Equation (1.9) also-shows
- why some-authors-(e.g.- Abel, 1985, Blinder, 1986) have-defined: production—smoothing-to
occur if |dY,/dN,| < 1.

This model has several important implications that will be discussed in more

detail below. These include:

1. Var(Y) + (1/y)Var(N) < Var(Z) for any stationary Z process.

2. Seasonals in ‘Z => Seasonals in Y are a moving average of seasonals in Z.

Fair (1989) also emphasizes the effects of future expected sales on current production as
an implication of production—smoothing (though in the context of a stock—adjustment
model like that described below). It will ‘be-clear, though, that such a finding is also
“consistent withstockout—avoidance. - It:-should also be:pointed -out that there is no:
clear implication for inventory levels, nor is there a clear structural interpretation of

error terms in estimated equations.

1.2. The Stockout—Avoidance Model

This section describes a simple version of the stockout—avoidance model. It is
closely based on Kahn (1989), and again is a polar case: Costs are assumed to be
linear, so there is no inherent desire smooth production. The key assumptions are,

first, that when the firm makes production decisions it is uncertain about the state of

IThe implications are expressed in terms of variances rather than levels because in
practice the variables corresponding to Y, Z, and N are prefiltered (demeaned,
detrended, seasonally adjusted, etc.g}, so the interpretation of the levels is less standard
than that of the variances.



demand; and, second, there is a non-negativity constraint on inventories. Consequently
sales in any one period are constrained by the firm's inventory stock. In deciding how
much to make available for sale the firm must therefore trade off the cost of stocking
out (lost profitable sales) and the cost of carrying inventory stock over to the
subsequent period.

- For :simplicity the output price p;-is assumed for now to be predetermined, and
- potential sales- X, ("demand") conditional on price are assumed to be stochastic and
exogenous. While these assumptions are somewhat restrictive, their purpose is primarily
just to facilitate the exposition; the qualitative theoretical results are robust to
variations in the economic environment. Another simplifying assumption is that the
firm cannot backorder its excess demand. Again the predictions of the model are not
sensitive to allowing backorders (see Kahn, 1987) so long as there is some cost—even if
the cost is only delayed revenue.

Upon observing the inventory stock at the end of period t-1, denoted N, and

taking account of any other information regarding future demand, the firm chooses

production for period t, Y,. Sales Z, satisfy
(1.10) Z,= min{N_+ Y,X.}.

If demand turns out to be less than the total stock made available by the firm (N, ,+
Y,), the firm carries the remainder into the next period as inventory Ny= N_,+ Y-
Z. If, on the other hand, the firm "stocks out", the result is lost sales, and N,= 0.2
It will be convenient to assume that demand can be decomposed into a deterministic

component plus a stochastic component with multiplicative uncertainty, i.e.

(1.11) Xe= X¢ + X,

2Kahn (1987) allows for backorders, with similar results.



where 5(t = E4(X;)U;, and where U, is an ii.d. random variable with E(U,) = 1.
The deterministic part of X can represent deterministic seasonality, backorders, or any
other part of demand that is known for certain. The quantity X, should be thought of
as potential sales conditional on price at time t. It differs from actual sales to the
extent there are stockouts.

With each decision the firm makes its objective is to maximize expected profits
over an-infinite horizon from that moment forward. The stock of goods the firm has
available for sale each period is equal to its inventory as of the end of the previous
period plus the current period's production. Actual sales equal either that period's
total demand or the amount available for sale, whichever is smaller. The firm
discounts profits in period t+1 as of period t by a discount factor denoted B,.

The production costs c(Y;w,) facing the firm are assumed to be linear in

production, i.e.
(1.12) o(Yyw,) = ¢ Yy

where ¢, is a scalar that varies stochastically over time and w, represents a vector of
factor prices. This cost function would be valid if the firm had a constant returns to
scale technology and were a price taker in factor markets.

The firm stocks out if X, exceeds the stock available for sale N, ,+ Y,, whereas
if N+ Y, > X, the leftover stock is carried over into the next period. It will be
convenient for the exposition of the model (though not necessary for the results) to
assume that at the time the firm chooses Y, it knows p, and c, and has a forecast of
Ci+y denoted E.c..q, and to assume that the innovation in Ci+1 18 independent of the

demand shock U,,,.
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“To get an explicit characterization of the target, given the assumption of
multiplicative uncertainty in demand, we can solve the firm's profit maximization

problem

[¢ 9]
(1.13) max Et_l{gtﬂs"[ptzt - ¢ Yy}

subject to (1.10), (1.11), and (1.12), using standard techniques. Let G denote the
cumulative distribution function (assumed to be continuous and strictly monotonic) for
the forecast error U,, and let A, = N,_; + Y,, the stock available for sale. The first—

order condition for the maximization problem is

(1.14) (P (1-CLA XY/ y(X]) = (¢eBiEeCon) Gl(AXY) /By (X,)] = 0.

We can then solve (1.14) for the optimal choice of A

(1.15) At = X§ + K(py/cpBiBiCen/co) Bya(Xy),

where K() = G[(p,—c,)/(py—B,E(Cy)]- Equation (1.15) says that the amount the firm
makes available for sale in period t equals a multiple K of its expected new demand.
Since G is non-negative and monotonically increasing, K (which is closely related to
the inventory—sales ratio, as will be seen below) is non—negative and depends positively
in its two arguments, as one would expect. The magnitude of K reflects the
opportunity cost of stocking out relative to the cost of carrying inventory over into the
next period. A higher markup means a higher cost of stocking out, while a higher
value f,E.c,,,/c, means production costs are lower in t relative to t+1, and therefore

implies a smaller cost of carrying inventories into the next period. K also depends in
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a more complicated way on the dispersion of U. The same intuition applies to the
behavior of production, given expected demand and initial inventories.

As an aside, it is interesting to compare the target specification in (1.15) with
that used by, for example, Blanchard- (1983) and West (1986)-in -the linear—quadratic

framework:
(1.16) Nty = KE¢y(Zy)

where N¥_, is desired inventories, which in their specifications can differ from actual
N,., because of adjustment costs. There are minor differences: Equation (1.4) includes
production in period t as part of the stock, and has expected demand rather than
expected sales. But the main difference is that in (1.15) K is a function of cost
variables, while in (1.16) it is assumed to be constant. The assumption in those
models that K is a fixed parameter necessarily implies that serially correlated deviations
of N from its target either fall into the residuals.or are attributed to adjustment costs.
. Moreover, while it is.difficalt to say for.sure -what the effect of misspecifying the target
is on econometric estimates of linear—quadratic models, it is at least possible that it is
responsible for rejections such as those found by West (1986).

We can solve for sales in terms of demand expectations and innovations. Letting

K, = K(p/ci, 0B Ci1/Cy), and recalling that Z;= min{AX,}, we have:
(1.17) 7, = X¢ + E,(X)V,
where V, = min{K,,U,}. Straight—forward -substitutions yield

(1.18) Yy = X + B y(X)Ky ~ Bpp(Xe)(Kiom Vi)
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and

(1.19) Ny = Et-l(Xt)(Kt = Vy).

- Equation: (1.17).says that-actual ‘sales .equal total -demand or the.stock available,. ...
whichever is smaller. A stockout occurs if U, > K,. Equation (1.18) can be
rearranged to show that production in t is the sum of three components: Certain
demand in t, the stochastic component of sales in t—1 (to replenish inventories), and
the change in the desired stock available for sale.3 Kahn (1987) shows that that
positive serial correlation in demand implies that Var(Y) > Var(Z) even if costs are
constant. Equation (1.19) shows that inventories do not reflect deterministic
components of demand. Thus, for example, inventory/sales ratios will tend to be lower
when a greater proportion of sales are attributable to backorders, seasonal demand, and
the like.

Note that (1.17) and (1.18) imply that seasonals or other certain components of
demand should be matched in both Y and Z, regardless of whether there are
~accompanying movements-in+output.--prices. :On- the other hand, seasonals'in K are- -
likely to result in movements in Y that are magnified relative to those in Y. To see
this, suppose that Xct1 =_0, that p, is constant, and that there are deterministic
seasonals in K. Consider two polar cases: If V, = U, Vt, then no stockouts ever
occur, and there are no seasonals at all in Z. If V, = K,, then seasonals in Z match
those in Y. In the intermediate case stockouts occur occasionally, as the theory
predicts, and seasonals in Y are larger than seasonals in Z. If there are corresponding

price movements, then these will induce some seasonality in Z, but presumably no more

3This derivation ‘assumes that the solution is always at an interior point. Kahn (1988)
takes explicit account of the non-—negativity constraint on production.
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than in Y. (Otherwise we would have the perverse result that firms would accumulate
inventories when costs are high because the price goes up more than proportionately.)4

‘Overall the results contained in equations (1.15) and (1.17) are simple and

»~intuitive.. They say that the.quantity A}, the firm's planned stock -available for sale in

period t, is the product of two factors: costs in period t (absolutely and relative to
period t+1), and expected demand in period t. Using small letters to denote the log

of the corresponding capital letter (e.g. z,= log(Z,)), we have from (1.15) and (1.17)

{ a, — ki + uy no stockout
ay stockout

where, again, v, = log(min{K,,U,}), and U, is orthogonal to anything known prior to
time t—which includes the other right-hand-side variables. Kahn (1989) estimates a
generalized form of (1.20) to test this model on the automobile industry data and finds
that while there are specific statistical rejections, for the most part the results are
supportive. In regressions of sales on a, and determinants of k,, the coefficient on a, is
very close to one, there is little evidence of serial correlation in the residual (which the
model implies is a truncated forecast error), and cost variables (except for the interest
rate) enter as predicted.

Note another implication of the model: That v, = z, — a, reflects truncation due

to stockouts.b If the underlying disturbances are symmetric (in logarithms), then this

4Another case to consider is exogenous changes in output prices, which might arise
when the firm or industry being considered is small relative to the market, and has
costs or demand that is not very correlated with other participants. This would look
like seasonality in K.

5Stockouts do not necessarily correspond in the data to zero inventories. Apart from
““issues of ‘timing, the quantities we observe are inevitably aggregates; so that there
generally will be stockouts of some goods and not of others at any point in time.
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observable quantity should exhibit negative skewness. For a given forecast error
distribution we would expect the skewness to be more negative the lower the
inventory-sales ratio.

-+ We can ‘summarize -the basic-implications -of ‘the:stockout—avoidance model as

follows:

1. Positive serial correlation in X => Var(Y) > Var(Z).
2 a. Seasonals in X => matched seasonals in Y and Z.

b. Seasonals in K => seasonals in Z are damped relative to seasonals in Y.
3. Cross—sectional implications for inventory levels.

4. Negatively skewed structural forecast errors due to truncation.

These will be discussed in more detail below.

2. The Data

This section describes the data and discusses ‘several stylized facts that a model of
inventory behavior should be expected to address. The data come from several sources.
Monthly auto industry data from 1966 to 1979 were provided by Olivier Blanchard. I
updated this data set through 1983 as described in Kahn (1988).6 Ray Fair has kindly
provided me with his monthly data from seven three—digit industries: cigarettes, cigars,
cement, tires, slab zinc, copper, and lead. Of these I focus only on the last five,
because of some problems with the tobacco industry data. Cigarette inventories and
sales appeared to have different trends (which is difficult to reconcile with any model),
while the data on cigars showed evidence of the effects of aggregation over different

sizes that made interpretation somewhat difficult. Except for the cement industry (for

6Kahn (1989) examines these data disaggregated to the level of divisions. The
characteristics of the industry aggregates are similar to those of the individual divisions.
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which the data are available only through 1964) the Fair data are available from 1947
to 1987.

One important difference between the automobile industry data and the Fair data
- is-that- the automobile sales data represent-final:sales-toconsumers, while the -other
sales data are really shipments to retailers or other manufacturers. Since the latter
may themselves hold inventories (either as retail inventories or materials stocks), we:
actually only see one horizontal slice of the whole picture. Economically it makes no
difference whether slab zinc inventories are held by producers as finished goods
inventories or by manufactureres as materials inventories, yet the data consist only of
the former.

Another difference is that the automobile industry has an annual product cycle
that makes it difficult to smooth production at business cycle frequencies. The annual
cycle also contributes to production volatility (and on a lesser scale to sales volatility)
because of the annual mid—summer retooling period. * But while it is therefore not
surprising to find that seasonally adjusted production is not smoother than seasonally
‘adjusted sales, the product:cycle cannot explain afailure to find smoothing at seasonal
frequencies (except for the contribution of the retooling period), nor can it explain why
seasonally adjusted production actually varies much more than seasonally adjusted sales.

What distinguishes this entire collection of data from the standard Commerce
Department data used in many studies is that they are data on physical quantities, and
thus are not subject to errors from the use of price deflators. (See Miron and Zeldes
(1988) for a discussion of problems with the Commerce Department data). For most of
the analysis the data have been pre-filtered as follows: The automobile industry data
(which show little evidence of trends) are either raw (except for an adjustment to
control for the number of days in the month) or additively seasonally adjusted with

month dummies; the other data have a common log-linear trend removed, and are
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analyzed with and without seasonal adjustment.” The data are adjusted for days in the

month as in Fair (1989). The results are not sensitive to this adjustment.

3. Stylized Facts

This section describes some general features of the data that a model of inventory
behavior should be expected to address. - This will lead to some natural tests or
-~ calibration  exercises for these models that will be discussed in the remainder of the
section. Table 1 provides summary statistics for a number of variables that will be
discussed below. Note that the variance of production exceeds the variance of sales (in
~some cases by a -considerable margin) in the seasonally adjusted data for all six
industries, while in some cases the unadjusted data indicate production—smoothing.
This -divergence -between behavior at seasonal and nonseasonal frequencies is of crucial
importance for understanding the nature of inventory: behavior, as will be discussed
below. ‘The remainder of this section will discuss these and other facts in light of the

models introduced in Section 1.

3.1 The Level of Inventories

One difficulty with the L-Q model emerges immediately: The steady state level
of inventory holdings in this model is easily seen to be negative for any permissible Zt
process. As indicated in Table 1, however, finished goods inventories are typically
between 1 and 4 months worth of sales. This shortcoming can be remedied with a

d

* *
variant of the cost function (1.19), e.g. C(Yt’Nt) = % Y% + §(Nt - Nt)Q, where N, >

0 and could be constant or time—varying, possibly a function of the sales process. This

is not, however, a very satisfactory fixup of the production—smoothing model. First, it

implies that the marginal cost of holding inventories is negative at low levels of Nt'

"West (1987) shows that the presence of a common log-linear deterministic trend in
inventories, sales, and production is congistent with the linear—quadratic model.
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Second, it is not clear where Nt comes from, and if it is time—varying what its
determinants are. In practice the only argument for such a specification is that there
..are stockout costs which make Nj a function of expected sales as in' the partial—

' adjustment’ model. “But then we no longer have a'pure production-smoothing motive
for inventories. The best one can say about the production—smoothing model regarding
inventory levels is that it is silent.

It could be argued that inventories are positive simply because they have to be
positive, and that the correct way to work out the production—smoothing model would
be to incorporate a non—negativity constraint into the problem. This argument fails on
two counts: First,. positive inventories clearly are no? a technological necessity; we
observe many industries in which backorders are present and inventories are negligible
or zero. Second, as we have 'seen, such a non-negativity constraint generates the
stockout—avoidance motive for holding inventories even without any desire to smooth
production (see also Kahn, 1987), provided the firm does not know the state of demand
when it makes its production decisions.

It would perhaps be useful to work out a model in which a firm does know the
state of demand when it makes its production decisions, has strictly convex costs, and
must hold non—negative inventories. It seems unlikely, however, that such a model
could rationalize the levels of inventories we observe with the very slight degree
production—smoothing (in the sense of Var(Y) < Var(Z)) that takes place. (See Section
3.3 for an elaboration of this argument.)

Given the explicit non—negativity constraint on inventories, the stockout—avoidance
model can obviously rationalize positive inventory levels without resort to an ad hoc
target level, though the predictions of the model can be sensitive to assumptions about
the length of the decision period. Suppose for simplicity we take the case in which
costs, markups, and interest rates are fixed, and assume a lognormal multiplicative

~demand process. = Equations (1.4) and (1.6) then imply that the formula for the average
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inventory sales ratio in this model is

(3.1) E(N/Z) = G {5 2:11602/2 -~

where G™' is ‘the inverse of the c.d.f. of the lognormal distribution, o2 is the log
forecast error variance, and p, B, and c are as defined earlier. With a quarterly
decision period, a real interest rate of 2 percent annually ($=0.995), and a 10 percent
markup (p/c=1.1), the producer will have stock available to satisfy the 95th percentile
of demand. This would generate an inventory—sales ratio of approximately one month
with a 20 percent standard deviation of demand. With a monthly decision period (so
that § ~ 0.9984) the producer will have stock available to satisfy approximately the
98.4th percentile, which corresponds to only about half a month of sales. Greater
demand uncertainty, a lower discount rate, or a higher markup would generate larger
inventory sales ratios. Also, regardless of the standard deviation, positive kurtosis (i.e.
fatter tails) would imply greater inventory/sales ratios as well.

It might appear that the simple stockout—avoidance model has some difficulty
generating observed inventory/sales ratios. In fact, however, once one recognizes that
even 3—digit level industry data are highly aggregated across goods, and that demand
uncertainty with respect to specific goods is potentially much greater than the industry
aggregates would suggest, it is no longer so clear that stockout—avoidance alone does
not account for inventory levels.8 Goods are distinguished not only by the usual
physical characteristics (size, color, etc., which might not be very important for primary
metals and other raw materials) but by location as well.

There are also cross—sectional implications of the stockout—avoidance model that

find some support from the inventory/sales ratio data. The stockout—avoidance model

8This is why Christiano and Fitzgerald's (1989) inability to generate significant
““inventory holdings ‘in an- aggregate one-good -economy is not- particularly informative
about the stockout—avoidance motive.
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would predict that, ceteris paribus, inventory/sales ratios for an aggregate of goods
would be positively associated with:the heterogeneity of the goods. This is because

~+ E(N/Z) isdriven-in part by the uncertainty -about demand for the representative
“homogeneous good (e.g. a tire with specific -attributes-such-as- size-and color), ‘which -
will generally be larger than the uncertainty about demand for aggregates.9 The model
also predicts that inventory/sales ratios would .be negatively associated with the
proportion of sales that are deterministic or known ahead of time (e.g. seasonals,
backorders, etc.).

Looking back at Table 1, we see that while the forecast standard errors are
roughly comparable in order of magnitude, the inventory/sales ratios in the automobile
and tire industries are larger generally larger than in the Cement, Lead, Zinc, and
Copper industries. The former group consists of aggregates over relatively
heterogeneous goods, while the latter are relatively homogeneous commodities. While
the data one would need to control for other determinants of the ratio (the true
forecast error distribution, the markup of price over marginal cost, and the length of
the decision period) are not readily available, the numbers in Table 1 arguably provide
some support for stockout—avoidance. At least one can say that the stockout-avoidance
model offers some guidance about inventory/sales ratios, whereas the production—
smoothing model is at best silent, and taken literally offers no reason why inventory

levels should even be positive.

3.2. Seasonality
The distinguishing feature of seasonality is that in most cases it reflects
movements in demand or supply that are more predictable, and usually much larger,

than those at lower or so—called "business cycle" frequencies. Focusing on the seasonal

9This effect would be mitigated to the extent the aggregates are over goods that
- consumers “consider close substitutes. In the limiting case of perfect substitutes the
aggregate would be equivalent to a single homogenous good.
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frequencies may therefore provide valuable information about firms' responses to
forecastable disturbances. At the same time, although Barsky and Miron (1988) have
argued- otherwise, it is certainly possible that the sources of disturbances at seasonal
- frequencies differ from those at lower frequencies, or that the response to the same
types of disturbances differs, so that it would be incorrect to extrapolate too much on
the basis of results obtained from seasonal movements.

‘The structural model itself may offer guidance as to the correct handling of
seasonality. Suppose we modify the Zt process to include deterministic seasonality, e.g.
Zy — 8 = p(Zt_‘1 - St—l) + ¢, 8 = 8., where k is the frequency of observations per
year. Either version of the LQ model (with or without 2y observable when choosing
Yt) would imply a pattern of seasonality for production very different from that of
sales. It is easy to see from (1.9) that the seasonals in production would be a moving
average of the seasonals in sales if the firm :were-behaving according to the LQ model
—though of course as 7 approaches zero the seasonals in production would approach
the seasonals in sales.

The stockout—avoidance model has very different predictions about seasonality. As
shown above, if the only source of seasonality is deterministic demand fluctuations, then
production and sales will have identical seasonal patterns. If demand seasonals are
stochastic, then production seasonals will match the forecastable part of sales seasonals.
On the other hand, if seasonality occurs on the cost side, then the seasonality in sales
may be damped or smoothed relative to the éeasonality in production. In short, the
pure stockout—avoidance model predicts that seasonals in production should be at least
as large as those of sales; larger when caused by seasonals in costs, equal when caused
by seasonals in demand.

Miron and Zeldes (1988) show that the Commerce Department data exhibit the

property that seasonal patterns in production and sales are very similar. While they

- -argue such findings suggest that production—smoothing may not be very important, one



21

cannot firmly conclude that without looking at inventory behavior as well. After all, if
the parameter 7 in the linear—quadratic model described earlier is very small,
production and sales could have very similar seasonal patterns, and yet inventories
would still be serving to smooth production. As we will see, what rules out
production—smoothing is the combination of this fact with the fact that inventories
themselves exhibit high variance.

Figures 1A -and 1B plot estimated seasonals for the six industries.l® In the auto
industry, the seasonals in production and sales match each other very closely, with
some of the production seasonals larger than the corresponding seasonsals in sales.
These large production seasonals occur in the July—August model year changeover. It
is perhaps not too surprising that production falls by less than sales. The same may
be said for the declines in December—January (due to holiday vacations), though there
may be demand effects here as well. On the whole, the seasonal patterns (except for
July and August) match each other very closely. Where they do not match, the
production seasonal is larger, arguably due to supply-side factors. This is precisely the
prediction of the stockout—avoidance model.

In the other three—digit industries there is also a high correlation between the
seasonal patterns, but with some evidence of production—smoothing in Tires and Cement
(324). With these two exceptions, the analysis of seasonals corroborates the Miron and
Zeldes finding that there is not much production—smoothing going on at seasonal
frequencies. The behavior of the seasonals (again with the possible exceptions of Tires
and Cement) is, however, perfectly consistent with stockout—avoidance. It is interesting
to note that of the five industries, tires and cement are the two with the largest
seasonal variation in sales. In the cement industry in particular, seasonality dominates

the data (see Figure 3A). Possibly the large seasonals lead to smoothing at seasonal

10Multiplicative seasonals were estimated using dummy variables, normalized so that
" they sum to zero. The scale in the graphs in-Figures 1A and 1B is logarithmic—for
example, the seasonal in tire sales ranges from +14 to —18 percent.
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frequencies because of capacity constraints, while such constraints do not lead to
smoothing at lower frequencies because of the relatively small' magnitude of those
- fluctuations. - This conjecture will be examined further when business cycle frequencies

are examined.

3.3. The Variance of Production and the Variance of Sales

West (1986) has shown that the LQ model from Section 1 implies that the
variance of production should be no greater than the variance of sales. While Blinder
(1986) and others have argued that this is violated in the data, more recent work has
questioned this (e.g. Miron and Zeldes (1989), Fair (1989), Krane and Braun (1989)).
What needs to be emphasized, however, is that the simple variance inequality Var(Y) <
Var(Z) is a very weak implication®of production—smoothing—much stronger statements
can be made. In particular, it is a statement that is true for the entire parameter
space (e.g. regardless of the value of 7). One can, however, also use the information
contained in the variance of inventories to rule out large portions of the parameter
space and thereby put a much tighter -bound on the ratio of the variance of production
to the variance of sales.1t

The parametric inequality derived by West (under the assumption of trend

stationarity of inventories, production, and sales) is
(3.2) Var(Y) + (1/vy)Var(N) < Var(Z).
This comes from the argument that it is feasible for the firm simply to set Yt equal to

Zt and Nt equal to zero. This would result in costs proportional to the right—hand

side of (3.2). What the firm actually does should be less costly.

1This is essentially the point of West's procedure in his 1986 paper.
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This inequality can be rearranged to yield a minimum value for 4 consistent with

~ thesthree variances (assuming they “are known):
(3.3) v > Var(N)/[Var(Z) - Var(Y)].

Note that 7y can be interpreted as the cost of production variability relative to
inventory variability. Thus, for example, for a given degree of production-smoothing
(as measured by [Var(Z) — Var(Y)]), a larger variance of inventories indicates a larger
value of 7.

We can use this lower bound on 7y to derive a more precise variance inequality
for production and sales. This will be done on actual data below, but for the sake of

illustration suppose Z, = Z(1-p) + pZ,_, + ¢, with mean Z and forecast error

t)
variance oi. Table 2 gives values for v and the implied ratio Var(Z)/Var(Y), assuming

f= .99:
[Table 2 here]

Thus to get a ratio above 0.9, for example, requires a combination of high serial
correlation and a relatively small value for 4. By such calculations we can see that
even those industries in which Var(Y)/Var(Z) < 1 there is still production variability
far in excess of what the model predicts. Applying this analysis to Fair's data in
those cases in which the seasonally adjusted data exhibits production—smoothing (that

is, Lead, Zinc, and Copper) we get the following results:

[Table 3 here]
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The point is that the variance of inventories is far too large to be consistent with the

- little-bit of "production—smoothing" (i.e.-the reduction -of- the -variance of production

- below the:variance of sales) that is taking place at business cycle frequencies. Simply

looking .at the variances of production and sales alone is not. an appropriate test of the
production—smoothing hypothesis. This is illustrated in Figures 2A and 2B with data
from the Zinc industry. The variance of production is less than the variance of sales,
but only very slightly, while inventories vary tremendously. Also note (and see Table
1) that inventories show no tendency to be negatively correlated with sales, as the
production—smoothing model would predict.

This analysis can be extended to the slightly more complicated case in which the
firm cannot observe Z, when it chooses Y, . Analagous to West's procedure in his 1986
paper, we can compare the value of the objective under a feasible suboptimal policy to
the value of the objective using actual data. Since the policy of setting-"Nt =0 WVt is
infeasible when Zt is not known, however, the .éimple comparison of variances as in
(3.2) is no longer possible. A feasible policy for the firm now is to set Y, = E,_,(Z)
(Z Maintaining the

+7 - E )12 This implies that N, = B, ,(Z,) - 7

=2\ "t-1 t
2

assumption that 7 is an AR(1) process, we have Var(N) = oy, and
(3.4) 7 2 [Var(N) = o%/[Var(Z) - 2po% — Var(Y)].
This clearly has ambiguous effects on the lower bound on 7, and therefore will not

necessarily mitigate a finding of excess production volatility. In fact, in the three cases

above this version of the test resulted in an even larger lower bound on 7.

12Note that simply setting Y, = E,,Z,, while feasible, implies that inventories are

“nonstationary. The proposed policy has the firm ‘make up for the -previous period's
forecast error.
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3.4. Frequency Domain Analysis

There is an easy way to examine the relative variances of production and sales by
frequency, to see more directly the properties of production and sales at seasonal and
business cycle frequencies. The power spectrum -decomposes the variance of a series by
frequency. Simply comparing the power of production versus sales at different
frequencies indicates whether "smoothing' is-going on at those frequencies. While the
evidence from Table ‘1 suggests that production variability is close to or exceeds that of
sales even after controlling for seasonality, there are problems with those statistics. In
many of the divisions and industries, the data are dominated by seasonal fluctuations.
Unless the seasonals are deterministic (and additive or multiplicative), it is very
difficult by time domain methods alone to filter out seasonal variation from these
series. Time-varying seasonals in the auto industry are documented in Kahn (1989).
Figures 3A—C illustrate another case in point: The cement industry. Even small
stochastic (or time—varying) elements in the seasonals mean that dummy variable or
other parsimonious methods leave much of the variance at seasonal frequencies
remaining. Figure 3A depicts the raw production and sales data, which indicate
obvious seasonal production—smoothing. Figure 3B shows the detrended and seasonally
adjusted (with dummy variables) data. It is clear that much of remaining variance
still reflects stochastic seasonals. Nonetheless it would be incorrect to conclude that
there is not a lot of cyclical variation in the industry. Figure 3C plots the 12th
difference of log production against the NBER reference cycles (1 = peak to trough).
This series has mean of 3.86 percent, a standard deviation of 8.65 percent, and a
correlation of —0.31 with the reference cycle dummy. Thus simple time domain
methods do not adequately control for seasonality, and it is useful, therefore, to move
to the frequency domain.

Figure 4 plots the power spectra of the seasonally adjusted production and sales

series. (Unadjusted data are, strictly speaking, inappropriate if the seasonals have a
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deterministic componenent, as they almost certainly do). In all of these figures the
plots are from 0 to /3, so that the midpoint is the seasonal frequency. For the Auto
“industry, the figures demonstrate that production-smoothing is taking place at neither

" seasonal nor business cycle frequencies. ' For the Tire and Cement industries, the. -
pictures dramatically confirm the results from Table 1: Whatever production—smoothing
is taking place is entirely at seasonal (or higher) frequencies. The variance of
production at business cycle frequencies is at least as great as that of sales. Though
less dramatically, the same can be said for the Lead and Zinc industries. The Copper
industry shows no obvious difference between low and high frequencies. The spectra for
the cement data (324) also illustrate the point made above that considerable seasonal

variance remains after dummy variable adjustment.

3.5. Nonstationarity

There is a problem with looking at variances if we are not sure the data are
stationary around a deterministic trend. If in fact the series are nonstationary, looking
at sample variances lmay be misleading. West (1987) suggests an alternative test (for a
slightly different hypothesis) that is robust to non—stationarity provided the series are
stationary in first—differences. This test works as follows: Note that Var(Y) < Var(Z)
<=> Cov(AN,Z) < —(1/2)Var(AN). (This follows from the identity (1.3).) While
both Cov(AN,Z) and Var(AN) generally exist when N and Z have unit roots, one
cannot use the convential sample analog of Cov(AN,Z). But we also have Z, = AZ,

+ AZy + AZ, 4 + . . ., 50 that

¢
(3.5) Cov(AN,Z) :SEOCOV(AN,AZ_S)
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. _—

Let Cg be a consistent estimate of Cov(AN,AZ_). West shows that ZOCS, where
§=

m - o as the sample size T —+ o, i3 a consistent estimator of Cov(AN,Z), provided -

' m/Tl/ 2 5 0. One statistic analogous to Var(Y)/Var(Z)'vvould then be

mo oo 97 9
05 - £0/117 3 (AN, - BAN)?,

which gives an estimate of the extent to which Cov(AN,Z)/Var(AN) is less than —1/2.
This was calculated for the five Fair industries and yielded results qualitatively similar
to those in Table 1. The statistics were —0.170, —0.184, 0.156, 0.245, and 0.259 for
seasonally adjusted data from Tires, Cement, Lead, Zinc, and Copper. (The value of
m for these tests was 15 for the Cement and 20 for the others.) The similarity of the
“results may be due to the fact that the only series that look like they might be non—
stationary are those from the Zinc industry.

Of course it is not clear what implications the production-smoothing model has
for numbers such as Cov(AN,Z)/Var(AN) when Z is non-stationary. While West
shows that bounds analogous to Var(Y) < Var(Z) can be calculated when the data
have unit roots, the derivation of the test in Section 2.3.1 is clearly not valid. This is
certainly an area that would benefit from more research, though it is not likely to alter

the conclusions in this paper.

3.6 Forecast Error Distributions

The stockout—avoidance model does not have strong predictions about stockouts
per se. Depending on the values of the determinants of k, stockouts could be so
infrequent as to be indetectable in the data, or could be extremely common.
Nonetheless the natural place to look for evidence of -stockouts in the data on the basis
of the model is in the shape of the error distribution. The simplest version of the

model (with k constant) predicts that the quantity z, — a, = v, — k should be skewed
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to the left, since v, reflects truncation due to stockouts. The idea is that large

‘negative demand disturbances have ‘a greater impact on sales than large positive

- ~demand disturbances, ‘because the :latter run up against stockouts. -

More  generally, .if one maintains the. assumption that the underlying stochastic:
terms k, and u, have symmetric distributions, then a finding that z, — a, is skewed to
the left would be evidence of stockouts in the data. Table 4 presents skewness
statistics for this variable for all six industries, both seasonally adjusted and
unadjusted.’3 (Note that the model suggests that seasonality in z, — a, largely reflects
seasonals on the cost side. The reason for looking at adjusted data is to control for
the possibility that cost seasonals might be skewed.) Negative skewness of z, — a,
shows up in five of the six industries. Moreover, the exceptional behavior of the Tire
industry data is entirely attributable to a single stretch or positive outliers in 1950-51.14
If one starts the sample at a an arbitrary later date the positive skewness disappears.
For example, starting in 1954 the skewness statistic for tires is —0.229, significant at 10
percent. While it is difficult to know whether the underlying disturbances are
symmetric, absent any compelling reason to think that they would be skewed in such a
way as to produce negative skewness in z, — a,, this finding provides additional support

for the view that stockouts are a relevant consideration for these industries.

4. Conclusions

The results in the paper demonstrate that the production—smoothing model cannot
account for the stylized facts about the cyclical behavior of inventories, while the
stockout—avoidance approach shows considerable promise. Data from 3—digit industries

show some evidence of smoothing at seasonal frequencies (only in the two industries

13Kahn (1989) also finds evidence of skewness with disaggregated automobile industry
data.

14] ‘have not been able to- determine whether the unusual behavior of the data is the
result of a strike, or because of the Korean war, or some other factor.



29

with the largest seasonals in sales), but none whatsoever at cyclical frequencies. Large

- . seasonal variations may lead to smoothing, due perhaps to:capacity constraints or. other

strict -convexities that only kick in for very large deviations from the mean. Since -
" business cycle fluctuations -are :much smaller than seasonal fluctuations, we would then
see some smoothing at seasonal frequencies but none at business cycle frequencies.

The results éuggest important modifications to the analyses of Barsky and Miron
(1989) and of Miron and Zeldes (1988). Barsky and Miron argue that seasonal cycles
look a lot like business cycles. Miron and Zeldes look at production and sales (2-digit
Commerce department data) and argue that the seasonals of the two series are very
similar. We have seen that when seasonals are very large there may be production—
smoothing at seasonal frequencies that is not present at business cycle frequencies.

‘This suggests that if 'we want to understand the role of inventories in business cycles it
may be important to filter out seasonal patterns rather than extrapolate from them.
While it is true that to explain non-seasonally—adjusted Qata the stockout—avoidance
model may need to be modified to have some sort of capacity constraint that binds for
" industries with very large-seasonal variations .(or a convexity in-costs that only kicks in
with large variations), the need for such a modification does not alter the view that

production—smoothing is not important at all at business cycle frequencies.
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-Table 1: Summary Statistics

Name Var(Y)/Var(Z) E(N/Z)t Cov(N,Z) S.E. of Z
NSA SA NSA SA Forecast?
Autos 1.294 1.191 2.519 0.545 0.595 0.092
Tires 0.950 1.114 2.349 0.462 0.485 0.081
Cement  0.373 1.130 1.179 —0.485  —0.234 0.161
Lead 0.934 0.936 1.716 -0.230 -0.204 0.140
Zinc 0.909 0.916 1.258 0.038  -—0.001 0.198
Copper 0.913 0.946 1.495 -0.479 0474 0.146

Notes: 1. N refers to the end—-of-period inventory stock.
2. The forecast standard error is the s.e. from univariate ARMA
equation in log(Z).



- Table 2: Implied Variance Ratios

Var(Y)/Var(Z)
a p=0 p=.5 p=.9
0.5 0.577 0.755 0944 -
1 0.446 0.657 0.915
5 0.216 0.422 0.813
10 0.154 0.332 0.751
50 0.068 0.174 0.567

100 0.048 0.127 0.476



Table 3: Implied Versus Actual Production-Smoothing

Var(Y)/Var(Z)
Ind. Jb p implied actual
Lead 298.1 0.75 0.158 0.936
Zinc 79.2 10.90 0.507 0.916

Copper 172.8 0.81 0.255 0.946



Table 4: Skewness Statistics

Name Skewness

NSA SA
Autos —0.423 —0.724%*
Tires 1.078** 1.433**
Cement —0.289* -0.074
Lead —0.651%*%  —0.647**
Zinc —0.400%* —0.376**

Copper  —1.075*%*  —1.049**

Notes: Auto data (SA only) were also strike-adjusted.
* Significant at 10 percent.
**- Significant at 1 percent.
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FIGURE 2B

Inventories and Sales, Slab Zinc
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Production and Sales, Slab Zinc
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FIGURE 3A

Production and Sales, Cement
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FIGURE 3B

Log Production, '"Seasonally Adjusted”, Cement Industry
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