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ABSTRACT

This paper develops a theory of estimation and inference in linear
regression models with non—stationarity arising in the variance. This
contrasts with the main thrust of recent theoretical literature on linear
regression with integrated processes. Non-stationarity in the variance is a
plausible candidate for describing the behavior of many financial variables.
A tractable model of non—-stationarity in the variance, called b1—1ntegrat10n,
is proposed and evaluated. A test for the existence of bi—integration is
derived from the theory of Chow sequences.

The primary purpose of the paper is to develop a theory of ordinary least
squares and instrumental variables regression under the assumption that the
data are bi—integrated. The conditions for identification of the regression
slope parameter are obtained. These identification conditions are
unconventional in two senses: (i) Consistent estimation of the reduced form
is not necessary for consistent estimation of the structural parameter; and
(ii) Identification does not depend upon the stochastic structure of the
non-stationary variances. T—statistics for the regression slope parameter
are asymptotically normal if a variance estimate robust to heteroskedasticity
and serial correlation is used.






1. Introduction

The classical linear regression model assumes that the data (regressors and
regression errors) are independent over observations and identically distributed. The
theory has been gradually extended to cover non—iid situations. It is well known
that independence may be replaced by some form of asymptotic independence (such as
mixing) and homoskedasticity may be replaced by some form of bounded
heteroskedasticity. White (1984) provides an excellent exposition of this theory.

More recently, econometricians have examined more severe departures from the
classical model. Many variables measured in levels or log—levels may be usefully
described as integrated processes (difference stationary), which are neither
asymptotically independent nor of bounded heteroskedasticity. A theory of regression -
for integrated processes has emerged in a series of papers, including Engle and
Granger (1987), Phillips (1987), Park and Phillips (1988) and Phillips and Hansen
(1990).

Even after differencing, however, many economic (especially financial) variables
are still non—classical in that there appears to be substantial conditional
heteroskedasticity. Following the lead of Engle (1982), many researchers have used
likelihood techniques to estimate parameterized models of conditional
heteroskedasticity, including ARCH (Engle, 1982), GARCH (Bollerslev, 1986) and
E—GARCH (Nelson, 1989b), as well as several othef variants. Bollerslev and Engle
(1986, 1989) suggest that many financial variables are well described by low—order
GARCH processes very close to the region of "integration". Consider a GARCH(L,1)

process which may be written



;= e ¥ o}y + egx g
= g + (o + a)op 16y - HARCEEDE
This process is "integrated" (I-GARCH) if o) + ay = 1. In this case the
unconditional variance of X, is infinite. |

Since the I-GARCH process seems to be an empirically important member of
the ARCH family, it is of interest to develop an asymptotic theory for estimation
with I-GARCH processes. Nelson (1989a) has made a major step in this direction.
The difficulty of the task stems from the fact that I-GARCH processes are
non—linear with an infinite unconditional variance. (Standard theory under infinite
variances requires linearity.) This makes application of existing theory quite
challenging.

I-GARCH models are estimated not because they are "true" descriptions of
reality, but because they capture an impdrtant characteristic of the data: persistence
in the variance. If the question of interest is the behavior of standard statistical
techniques (such as ordinary least squares and instrumental variables) using data
displaying persistence in the variance, it seems quite reasonable to begin with

alternative models which are tractable in a linear framework.

Consider a stochastic process which can be written as
X, = 016 {e,} 1id
and 'at is stochastic yet "slow—moving". Note that the GARCH model generates
a% by an ARMA process with "innovations" x% . This makes o, a complicated
non-linear function of {ej , j < t} . To impose linearity, we instead postulate
that oy follows an ARMA process with some innovation 7, . For simplicity, take

an AR(1):

ot = aat_l + nt.



Persistence in variance is obtained by setting « = 1 . (More generally, requiring a
unit root in the AR process for Ut') We may allow arbitrary dependence between
& and 7, . This process, which is a special case of the general bi—integrated
process introduced in the next section, has the favorable property that an asymptotic
theory of regression can be readily obtained. A disadvantage is that maximum
likelihood techniques are not immediately available.

A feel for the behavior of bi—integrated processes can be given by sample plots

of their trajectories. Figures 1 and 2 display the time paths of two bi—integrated

processes where
X =
t %t

op =0y g+ b, op =1

€ . 1 p
[nt} iid N(0,0), Q=[p 1].

The correlation p is set to zero in figure 1 and set to unity in figure 2. The
sample paths of X, 'display the "volatility" which is commonly observed in financial
data.

The plan of the paper is as follows. Section 2 introduces bi—integrated
processes and derives some general results on the behavior of sample statistics.
Section 3 introduces a test for bi—integration using the theory of Chow sequences and
reports a simple application. Section 4 develops a theory of regression analysis for
bi—integrated variables. For simplicity, attention is restricted to a single regressor
and 4a single instrumental variable. The conditions for identification of the structural
parameters are unconventional,k in that the reduced form estimates need not converge
to constants.. Section 5 discusses the problem of inference. It is found that the
non—stationarity requires the use of robust variance estimates which yields asymptotic

normality of t—statistics under suitable conditions. - Section 6 concludes. Proofs are



collected in an appendix.

Throughout the paper, I use "=3" to denote weak convergence, "=" to denote
equality in distribution, and "[-]" to denote "integer part". Brownian motions
B(r) on r € [0,1] are often written as B , and integrals such as /[ (l)B(r) are
frequently written as [ (l)B and sometimes as [B , to achieve notational economy.

All limits are taken as the sample size T tends to infinity.

2. Bi-Integrated Processes

Definition. x, is a Bi—Integrated process of order d , denoted BI(d), if X,

has the representation
(1) x, =

where Adat = I(0) , and = I(0) . It is convenient to normalize ¢ so that

R
2
E(e;) = 1.
The terminology "bi—integrated" is motivated by the concept of "bi-linear"

processes, introduced by Granger and Andersen (1978). A simple bi—linear process is
Vo = @i tog T Bpa6as

which is a non—linear function of the innovations {et} . The "bi-linearity" arises

from the product term y, j€_; . Thus the product involved in (1) motivates the

term "bi—integration". In this paper, we restrict attention to the leading case_of

BI(1) processes, so o, = I(1).

Define u, = (¢, Acy)’. We need



Assumption 1. {u,} is strictly stationary and satisfies

(i) En =0 ,
(ii) Elu,;utl2p < o, forsome p>1,
(iii) Z;=1 argp—l)/ P <« » , where {a,} are the strong mixing

coefficients of {u;} , and

: . e c _ T
(iv) limp , T E(SpS) = @, Sp=1X

1Y% -

Under assumption 1 we have the invariance principle

Bl(r) }

B,(r) BM(Q) .

T—1/2S[Tr] = B(r) = [

We partition €2 as

W w
I
21 “22

and assume w;y > 0, wyy > 0 . Some interesting general distributional results

are given in the following theorem.

Theorem 1. Under assumption 1

o 1T 1
(a) X = T8 x, = [oBydBy + Ay ) Aoy = 2?=1E(A“16j)’
® o = TTN(x, - X)? satisfies T6° = [iB],
(c) (&%r)‘lr'zD (x, - X)(x,_, ~X)  —_  E(eey)

t=k+1 t 1—k P k0’

(X = Ay

(d) g 2 oz, 1= [,/1—p§-N+ pr] Vol

(23

W) JWaw
—==—, N = N(0,1) , independent of D, =
V1192 Jrw?

where p =

, W = BM(1).



Theorefn 1 states the following. Part (a) says that the sample mean of a
bi-integrated process converges to a limit random variable. The mean of this limit
distribution is A,;. Part (b) notes that the sample variance diverges at rate T,
but when appropriately standardized, converges to a random variable. This
underscores the fact that a bi—integrated process has a mon—stationary variance. Part
(c) says that estimated correlation coefficients converge to the correlations of the
process {et} . In many applications, it is quite reasonable to suppose that {et} is
white noise. In these cases, estimated correlation coefficients will be close to zero (af
least in large samples). This result points out that bi—integrated processes, while
possessing a non—stationary variance, display stationary behavior in the correlations.
Part (d) shows that t—statistics have limiting distributions which are given by a
scaled mixture of a standard normal and a Dickey—Fuller t—distribution, the mixture

depending on the long—run correlation between the processes {¢;} and {Ag,} .

3. Testing for Bi—integration

It is desirable to have a test which can detect the existenbe of bi-integration.
One cons_istent test is to split the sample and compare the estimated variances in the
subsamples. This is known as the Chow test for change in the variance. The null
hypothesis in this case is that the (unconditional) variance is constant throughout the

sample, so we have

Ho:xt=aet, €

If the sample split is in period t , the test statistic is

2 a2y e O T O, )
(2) Chow, = (o} —op)/V, , 0, =t 21xj , om = T Elxj



and V, is an estimate of the variance

¢
V, = Va(® - 53) = Var(s?) - Var(s3)
= E(t-lﬁinj)z . E('r'lz:'fnj)2
= wplt - wT = ['tl'_%’]‘”n
where
no = x%—Ex% , w, = limp E T—l(ETnt)z.

A consistent estimate of this variance is given by

M T

1 1 1] » =1{sT -2 -
(3) vV, = [——— ]w , w = T [En + 2 Y kX 777)_] ,
t Tt Ty ] 17 me=1 M 4oy b
- 2 ~2
f,o=%X, — o k, = 1 —m/(M+1) .

The above choice for the function k= is the Bartlett kernel, but any other
standard kernel can alternatively be used. The lag truncation number M should be
selected so that M goes to infinity much slower than T . The optimal selection
for M in testing problems is unknown, although Andrews (1989a) gives some results
for minimizing the mean squared error of estimated variance parameters. Under
standard assumptions (namely, assumption 1 plus consistency of &Jn), this Chow test
statistic is asympotically x% under the null hypothesis.

This Chow test would be useful in testing the hypothesis of a constant
variance against the alternative of a variance which changes at a single (known) time
t. If the alternative is bi—integration, this may not be particularly powerful. A
more reasonable procedure may be to look at the entire sequence of Chow tests
evaluated for each changepoint t . Test statistics can then be found by taking
either the maximum or the average value of the Chow sequence over some range,
such as R = [15-T, .85-T] . This test is examined in some detail in Andrews
(1989b), Chu (1989), and Hansen (1990), and is quite similar in this context to the
CUSUM test proposed by Pagan and Schwert (1989). The statistics are



(4) MaxChow = Max Chow,
t ER
MeanChow = 1 ¥ Chowt
.6-T teR

Asymptotic critical values under the null of no change in the variance are given in

table 1. -
Table 1:
Upper percentage points from
Asymptotic Chow Test Distributions
-100 075 050 025 010
MaxChow 6.9 7.6 8.5 10.1 12.0
MeanChow 2.15 2.42 2.86 3.62 4.61

Source: Hansen (1990)

The robust covariance estimate of y in (3) allows for the squared x, to
possess serial correlation under the null hypothesis, as long as the squared process
satisfies an asymptotic independence condition. This should allow GARCH processes
to be included under the null hypothesis. (This is not a rigorous statement, for the
existing theorems assume that the data satisfies a strong mixing condition, yet it is
unknown whether GARCH processes are mixing.) The theorems require that 77%
has at 1east 2+6 moments finite, which requires X, to possess finite unconditional
4+2§ moments. This does not hold for all GARCH processes, especially for those
close to the region of I-GARCH. When E(nf) = o , the asymptotic theory is
invalid. Although an asymptotic theory has not been developed, it is a reasonable
. conjecture that if one could be found, it would involve convergence not to Brownian
motions, but to Levy processes (continuous time martingales whose finite dimensional

distributions are stable). The test statistics would not diverge under the null, but

converge to an alternative distribution, and therefore tests using the critical values



from table 1 would have misleading size. It is thus unclear how well the
Chow—based test can discriminate between bi—integrated and GARCH processés with
infinite unconditional fourth moments.

I applied these tests to the U.S.—Swiss exchange rate series discussed in Engle
and Bollerslev (1986). The data are weekly observations on the differenced logarithm
of the exchange rate between the U.S. and Switzerland from July 1973 through
August 1985. Figure 3 displays the Chow test sequence for the hypothesis of
constant variance. The sequence was calculated using a long—run variance estimate
using a Bartlett kernel with four lags (M = 4 in (3)). Table 2 reports the test
statistics, both of which are significant, suggesting that the variance is non—constant
in the sample. Note that Engle—Bollerslev found that a fitted GARCH model was in
the neighborhood of "integration" in the I-GARCH sense. .

Table 2 : Tests for Constant Variance

MaxChow 11.43 (significant at 5% level)
MeanChow 232 - (significant at 10% level)



10

4, Bi—integrated regression: Identification

This section will examine conditions for consistent estimation of a simple model

of bi—integrated regression. The regression model is
(5) Vi = B+ aXy + Xpy, t=1,..,T.

The scalar variables Yy and Xoy are observed, and X14 is an unobserved
disturbance term. The variable Xg4 Ay be endogenous, so some observable Xqy
will be used as an instrument for Xot - Least squares obtains as the special case
Xgp = Xgy The maintained assumption in this section is that regressor,
instrumental variable and regression error are all bi—integrated processes. Since
bi—integrated processes have non—stationary variances (unconditionally infinite), it is
an interesting question how standard regression techniques will behave.

The variables (x4, Xoy, xét) are generated by
6)  xyp = oW Xot = Tgylat - X34 = O3tUgt -
Aoy = vig s Aoy = Vo » Aogy = Vg -
Define the innovation vectors v, = (vlt’ Vo v3t)' ) U = (ult’ Uy u3t)’ ,
and 7, = Xgoxpy — Blxgpxy).

Assymption 2: {v,, u,} is strictly stationary and satisfies

(i) Evt =0 Eu, = 0
(i) {vp» ut} has strong mixing coefﬁcients o of size -p/(p—2)
for some p > 2,
() Byl < o, Blupl® < e,

. . "'1 r: t ’ 7 /
(iv) limp, T ESpS¢ = @, 8 = E_(v uj m)
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Assumption 2 is sufficient for the invariance principle

(1) T‘l/zs[Tr] — B(r) = BM(Q).

Partition B and € as follows

B = (V/a UI; 7’)/ ) V = (V]_7 V27 V3) ) U = (U17 Uza U3) .

Q Q
vv vu vy
= | Oy By Yyl B = [wvij]ij €, = [wuij]ij’

Q Q
nvoom M

To exclude degenerate cases we need w, q > 0, >0,i=123. Define the

vi “uii
covariance function for u:
%y = Bloygug)
Equation (5) is estimated by instrumental variables, using x5, as an

instrument for x,, (least squares is the special case xg, = Xo4)- ‘We have the

following condition for identification of bi—integrated regression coefficients.

Theorem 2. The necessary and sufficient conditions for consistent estimation of «

in (5) under assumption 2 are
(i) 139 $+0, (ii) T31 & 0.

Condition (i) is analogous to the classic relevance condition, and is satisﬁedbby
the OLS"estimator. Condition (ii) is analogous to the classic assumption of
orthogonality between the instruments and the regression errors. Note, however, that
the conditions for consistent estimation are completely independent of the properties
of {alt’ oy U3t} , the "variance parts" of the regressors, errors, and instruments.

Identification is obtained solely by the behavior of the process {ut}.
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A standard way of thinking about identification in instrumental regression is to
view the IV estimator as indirect least squares (ILS) solved from OLS estimation of
the reduced form. In this case the estimated reduced form equations are

Xop = By + foxgy + Wy

~

Vi = Ky + ﬁyx3t + Woi
so that
a = ﬁy/ ﬂz .

The relevance condition is normally thought of as holding when the first stage
regression of the regressor Xy on " the instrument Xg asymptotically yields a

significant coefficient; i.e. if ﬁ —_ f, # 0 . This does not necessarily hold in
& 2 2

p
the context of identified bi—integrated regression.

Theorem 3. If assumption 2 and the identiﬁcafion conditions are satisfied,

(2) B, = V2 rlv,y
2 0'3733) J0V3V2732
(b) SR P W
y 0V3733] JoV3'2732%
(c) a —_ .

p

The reduced form coefficients converge in probability to constants only if To

and 0dg, are cointegrated, i.e.

(C1) V, = ¢V, ,

in which case

(d) vﬁz —p C'Y32/'733’ By —’p 00732/733
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Theorem 3 states that the reduced form coefficients converge in general to
non—degenerate random variables, although the structural coefficient is consistently
estimated. The only case in which the reduced form coefficients are consistent for
the underlying parameters is when the variance processes of the regressors and the
instruments are cointegrated, which obtains for OLS. Similar results were found by
Phillips and Hansen (1990) in the context of IV estimation of cointegrating
regressions among I(1) variables. In a study of identiﬁcation of simultaneous equation
models with identities, Brown (1985) found that structural identification does not
necessarily require identification of the reduced form.

The next result gives the asymptotic distribution of the IV estimators.

Theorem 4. If assumption 2 and the identification conditions are satisfied,

(a) (k—p) = fVldUl )

(b) [Ta-a = [jV3V2732]"’1 [jV3V1dn + VLA, n]
V11

where AL, = 2?=1E[ v31]nj]

Theorem 4 points out that the constant term p is not estimated consistently
by linear techniques. This is equivalent to the failure of the sample mean to

consistently estimate the population mean of a bi—integrated process in theorem 1a.
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5. Bi—integrated 'Regression: Inference

Theorem 4 in section 4 gave the asymptotic distribution of the instrumental
variables estimator of the regfession coefficients in a bi—integrated regression. The
asymptotic representation in that theorem is not particularly useful for inferential
purposes. To keep the attention concentrated, we will restrict attention in this
section to identified least squares estimation. Theorem 4 simplifies in the OLS case

to
A -1
ST -0 = [jV2722] [szvldn + j(Vl,Vz)Avn] = 1, say.

Here, A E

v =1

] ] , and ”j = u2ju1j'

This distribution is not generically a mixture of normals. To facilitate

inference we add an assumption.

Assumption 3. For all t,j, E[u =0.

1t%¢ | Vt+j]

Theorem 5. Under assumption 3, A__=0, Q_ =0, and

v A\
_ ol/2
i, = s/’

where N = N(0, 1) is independent of S

(V) [ 1vaVien) Vo)

Theorem 5 shows that assumption 3 allows & to have an asymptotic
mixture of normals distribution. The limiting variance, however, is of the form which

requires a robust estimator. Consider

: s a-l 9T, o 12
S = 851519811 Spp = 27 (xg4—%9)"
- __3 M M -~ ~
S = T 3 k) B xoXp XX o

m=-M 2 t=m+1

where km is a kernel function as discussed earlier, and ilt are the OLS residuals.
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Theorem 6 Under assumptions 2 and 3 , and M = o(Tl/ 4) ,

& 2
(a) 519 = jVZViwnn )
(b) T/S (¥ —a) —y N(O,1).

Theorem 6 suggests that standard inferential methods can proceed

conventionally even in bi—integrated regressions if robust variance estimates are used.

6. Conclusion

This paper studied the properties of ordinary least squares and instrumental
variables regression in models with non—stationary variances. Part of the motivation
for a study of this nature is the empirical observation that. economic and financial
data seem to display non——const#ncies in the variance. Although the model used in
this paper — bi—integration — is distinct from the popular GARCH model, the
insights found here can be interpreted as suggestive for a broader class of models with
time—varying variances. Identification using instrumental variables is possible, but in
the unconventional sense that reduced form parameters need not be consistently
estimated in order to achieve conmsistent estimation of the structural parameters.
Inference requires variance estimates which are robust to heteroskedasticity and serial
correlation, as is frequently done in practice. Kim and Schmidt (1989) found in a
Monte Carlo study of unit root tests in the presence of GARCH errors that the
White heteroskedasticity—robust variance estimate improved the behavior of their test

statistics. This study suggests that such results may be generic.
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Appendix

The proofs will make repeated use of three lemmas proved in Hansen (1989).

For reference, they are reported below as lemma A.1, A.2, and A.3.

Lemma Al Under assumption 2, for any strictly stationary, ergodic and square

integrable {et} ,and for 1 =123, j=1.23:

—2¢T 1
T “Yio.,0.e = jOViVjE(et) .

173t7jtt

Lemma A.2. Under assumption 2, and for i = 1,23, j = 1,2,3:

_3/24T 1 1 1
T8y oon, = [oViVidn + JoViZiem Blrpm) + JoVifm B0 m)-

Lemma A.3 Under assumption 2, M = o(Tl/ 2) , and if

T k % ) — W
m=-M @ t=m+1 ¢ R P M

then

M M »

—3 2 2 1:,2,2

T ¥ kX 05,07, M7 = [VoVi w .
m=—Mmt=m+1 2171t t—m 0°2°1 "y

Proof of Theorem 1. Part (a) is given in Phillips (1988). For part (b) note that

1.2 =2T.2 152 2T 22 -1
T ¢ = T78x; —T X% = T "Ejoj€ +Op(T )
102 o 2y 1n2
= [oBy E(¢) = JoB3
using lemma A.1. For part (c) note that

—2 7 G —2 —1
T Et(xt__x)(xt——k_x) = T Yoo, €6 3 + Op(T )

-2 ' 152
= T “Yoo66 3 + op(l) = [ BaE(e; € _4)
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again by lemma A.l. Combining with result (b) we find

T
2 -1 1,2]-1,1,2
Fr7 s xx = [jOBz] 11B2E(ee) = Elee) as.

since [ éBg > 0 a.s. Weak convergence to a constant is convergence in

probability. To show part (d), we combine parts (a) and (b) to find

mE e (A ) = [ e,

-~

o

/25

2:1/2 .
Decompose B; as B; = lel [(l—p ) / W, + sz} , where W, = woo/ "B, is

independent of W, = BM(1). This random variable equals
1,21-1/2,1 2\1/2 ‘ 1,21-1/2,1
[[1032] P38 yaw, 1=+ [foB:z] P38 oaw }V w1y

N(0,1)(1—p )1/2 [IO 2]_1/2fow szP \/UTII . o

Proof of theorem 2. We first prove sufficiency. Under assumption 2,

T T
(A1) [ﬁ—u} _ $ 212t z%lt }
a-a DRt 21"3t 2% T Xg4%1y
1 1T
_ 1 Et 94 —1{ T Elxlt ]
= | -2 -2 _2.T
T "Bxgy T "ExgXo, T “¥1xge%,
_ [ JV,dU, JV,dU, 1 [V,dU, JV,dU,
0 JVgVorse| | [V3Vi73 0 [VgVar3g 0

Since [VaV, # 0 as and 739 # 0, (&-0) — 0.
We now show necessity. If Tg9 # 0 and 75, # 0, then (A1) shows that

(&—a) converges to a non—degenerate random variable, so @& is inconsistent. If
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Yo = 0 and Y31 = 0, then

-1 1T
A = —3/2 -3/2 —3 /24T :
. a-a T ""hxg T Ty Xg4Xoy T T xg4%yy

Now T 3%5xgmy = T/ B0g00may, , where 75y, = uguy, isa
zero—mean square integrable stationary random variable by assumptions 2 and 3 and
the fact that 739 = 0. By lemma A.2, this sum converges to a limit random
variable which is non—zero almost surely. Similarly, T—3/ 2Etx3tx2t converges to an
almost surely non—zero random variable. Thus (A2) converges weakly to an almost

surely non—zero random variable, and a is inconsistent. o

Proof of theorem 3. Conventional formulae yield

Yy —2¢T - 2|1 {m2T -
By = [T z1("3t""3)] [T 21(x3t""3)"2t]
and '
5 T - \2|-1[T -
by = [21("3t“"3)] [21("3t""3)yt]
C [=20T,. o \2)=1[m2T,. - 2T, .
= [T 21(x3t—x3)] [T % (x5—Xg)xgi0 + T El(x3t—x3)x1t],
where %, = T 151x,, = O (1). Note that
3 1%3t ptl):
2T, .2 _ m=2.T.2 —1{—1cT. 12
(A3) T 7% (xg4%q)" = T “Byx3, — T [T 21x3t]
20T 2 2 1 2
= T “Ejogug, +Op(T ) = IV3733 > 0 as.

using lemma A.1. Similarly, we find that
(A4) T2 (o —Ro)%o, = [V,V
11%3t73/ %2t 3'2732
: —2u7T -
(A5) T 5] (xg,%g)xy, = [VaVi73y = 0

under the identification condition. The stated results follow by the application of the

continuous mapping theorem to (A3), (A4) and (A5). o
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Proof of theorem 4. Under assumption 2 and the identification condition
u 3 2 —1
[ (3 - u) 1 P25y, x
VT(a — a) -3/2 —2 7—3/2
T 2 xgy T "hyxgXo Et 3t%1t

1 0 -1

JV,dU,
0 [VgVy739

=
IV3V1dn + ](V3 ’Vl)’\vll

where the final convergence applies lemma A.2. a]

Proof of theorem 5. By assumption 3, for all j, E(vlnj) = E[v,E(u;, 2t|v1)]

thus

A= z?zlE[[vu] nj] =0,

Vo1

| 2 -1 .
and f o= [1V2722] jV2V1dn Similarly

|V
o E[ 11
v J=w V21

which implies that 7 is independent of V = (V; V,)".

0 <t <1). Then conditional on 9;, , f a is distributed

SO s [ ) ()

and is therefore independent of S .

0 ] =0
n =0,

Define ‘the o—field .7v

= o(V(1) ;
1

N(o, S)
where N = N(0,1) does not depend upon S, O

Proof of theorem 6. We have

S 3% 3
= T k X, X Xq,X
12 m=-M ™ t=m+1 2t72t—m™1t 1f;——m

33 kp 3
= T X,
me—M 24%24-m*1t*1t—m



M
-3 N n -
- T X km Etx 2tx2t—mx1t[x2t(a =) + (- p)

m=-M
3 M .

=T mE———M km ztx2tx2t—mx1tx1t-—m + Op(l)
3 M

=T mE—M km zx2tx2t —m*1t*1t-m Op(l)

M
-3
= T ¥ k ¥ o0 R + o (1)
m=—M 1_‘2t 267171t " "t—m P

= ]02Vw

by lemma A.3, and the fact that our assumptions give

-1 1}14 k3
T
m=-M m tntnt—m _'p wn

(see Newey and West (1987)). This gives (a).

By the continuous mapping theorem,

§ = 5= (i) vaVien) Vo)
Assumptions 2 and 3 guarantee by theorems 4 and 5 that
JT(&—a) = SsY2n
thus
]T-/é (a-a = SHY%Y2x = N = N, 1)

20

Weak convergence in R is convergence in distribution, completing the proof of part

(b). o
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