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1. Introduction. We examine the problem of fairly allocating an infinitely divisible good
among a group of agents whose preferences are single-peaked: - Up to some critical level,
an increase in- the consumption of the good increases an agent’s welfare; beyond that
‘level, the opposite holds (the critical level not being necessarily the same for all agents).
Our search will be for well-behaved- procedures to identify for each such-problem one or
several satisfactory allocations of the good. Such general procedures will be called
solutions.

This model, which was recently considered by Sprumont (1989), can be given several
interpretations. Sprumont offers the following two. First is distribution at disequilibrium
prices: consider a two—commodity economy in which resources are supposed to be
allocated via the Walrasian mechanism. However, prices are in disequilibrium; they may
not have had the time to stabilize, or an unanticipated shock may have destroyed some
existing equilibrium, or prices may have been kept from adjusting in order to achieve some
social objective. Distribution must take place however, so a rationing rule has to be
defined. If consumers’ preferences are strictly convex, then, when restricted to the budget
lines, they are single—peaked.!

Another situation for which the model would be appropriate is when a certain
quantity of labor has to be supplied by a team in order to complete some task, and the
problem is to divide the task among them. If workers are paid an hourly wage and their
disutility of labor is concave, then their induced preferences on the labor they supply are

single—peaked.

ff preferences were only convex, then their restriction to the budget lines would have a
single "plateau". Our analysis would require only small changes to be applicable to that
case. Sprumont’s model does not actually fit the typical problem of fair rationing in all of
its details. See Section 8 for a slightly different model which would be more descriptive of
that situation.



Next is the standard problem of distributing a good among agents who become
satiated when their consumption reaches a certain level, in situations where the good is
not freely disposable.

Imagine that a fixed amount has to be allocated among a group of consumers when
each of them cares not only about what he consumes, but also about what others
consume. Assuming, as is quite natural, that he cares mainly about himself when his
consumption is low, and about others when his consumption is high (theirs is then
correspondingly low), then his preferences over his own consumption are single-peaked.

Finally, models with single-peaked preferences have also been extensively analyzed in
social choice theory and they are popular in political science.

Sprumont established the existence of a unique efficient and anonymous solution,
which he named the "uniform rule", having the property that, for every agent, truthfully
announcing his preferences is a dominant strategy in the associated revelation game.

Here we pursue the analysis of this model. Our focus, however, is on equity. We
apply several of the equity notions that have been used in the literature on fair allocation.
We also define a variety of solutions that make use of the specific features of this model.
Then, we evaluate these solutions.

Much progress has been made in the last few years in the understanding of fairness
issues based on ordinal concepts, that is, concepts that depend only on agents’ preferences,
and not on concepts of utility. (For a review of this literature, see Thomson, 1989b).
These issues have been studied in a variety of different situations, but mainly in the
standard context of allocating infinitely divisible goods among agents with monotonic
preferences. We draw on the conceptual apparatus that has been developed in the analysis
of such "classical" problems of fair division. In particular, one of the central concepts in
our analysis is that of an envy—free allocation.

Qur main conclusion is that the uniform rule should be considered to be the most

important solution to the problem of allocating an infinitely divisible good among agents



with single-peaked preferences. Indeed, it satisfies a greater number of desirable properties
than any other solution. First of all, it selects efficient allocations. It is also
single-valued, that is, it always makes a very precise recommendation. It responds
appropriately to changes in the amount to be distributed. Its recommendation for any
economy always "agrees" with its recommendation for associated subeconomies, and it is
essentially the only rule for which this.is so. It also satisfies a converse of this property.
It is the only allocation to survive under certain asymptotic enlargements of the economy.
Finally, there are several combinations of these properties that the uniform rule is the only

one to satisfy.

2. Notation. The model, and much of the notation, follow Sprumont (1989). There is an

amount M € R + of some infinitely divisible good that has to be allocated among a set N

= {1,...,n} of agents. An economy is a list R = (R;); of n continuous preference
relations defined over [0,M]. These preference relations are single-peaked: for each i, there

3 * ’ : , * 5 * ’
is x¥ € [0,M] such that for all x;, x{ € [0,M], if x{ < x £ xj, 0r if x¥ > x > xi, then

XiPiXi (Pi denotes the strict preference relation associated with Ri’ and Ii the indifference

relation).? Let p(R) € R 4 be the preferred consumption according to R;. Let p(R) =
(p(Rl),...,p(R n)) be the vector of preferred consumptions. Each preference relation R. can

be described in terms of the function e; [0,M] - [0,M] defined as follows: Given x. <

i =
p(R,), &(x;) > p(R,;) and x,Le.(x;) if this is possible, and e(x;) = M otherwise; given x;

> p(Ry), ¢(x) < p(R;) and x;Le(x;) if this is possible, and e(x,) = 0 otherwise. (e;(x;)
is the consumption on the other side of agent i’s preferred consumption that is indifferent
for him to x;, if there is such a consumption. If there is none, ei(xi) is the end—point of

the interval [0,M] on the other side of his preferred consumption.)

20ur analysis below would apply, with straightforward modification, to the case of
preferences with a single "plateau", (footnote 1), i.e. preferences for which the set of
maximal elements is a segment, instead of a singleton.



A feasible allocation is a list x = (Xi)ieN € IR_Iil_ such that ingi = M. Note that
free disposal of the good is not assumed.3 Let X be the set of feasible allocations.

Our objective is to distribute the amount M equitably. A solution is a mapping ¢
which associates with every admissible preference profile R a non-empty subset ¢o(R) of
the set of feasible allocations. Each of the points in ¢(R) is interpreted as one possible
recommendation.

An example of a solution is the following:

Pareto solution, P x € P(R) if x € X and there is no x’ € X with x{R.x; for all i,
strict preference holding for at least one i.

We will search for well-behaved solutions. In general, we would prefer being able to
make precise recommendations and to impose on solutions the requirement of
single-valuedness. However, this property is a luxury we can rarely afford in economics.
Few are the domains where it can realistically be expected. It is therefore of great
interest that the domain under consideration allows for a nmumber of such solutions; we will
introduce and discuss a variety of them.

We will often refer by comparison to the domain of "classical" economies, where
there is a finite number of infinitely divisible goods and a finite number of agents with
monotone preferences.

We will find it convenient in later sections (5, 6 and 7) to assume preferences to be
defined over R n instead of [0,M]. On such a domain, solutions may be required to depend
only on the restriction of each R, to [0,M], or they may be allowed to depend on the
whole of each Ri‘ The former choice is equivalent to the formulation we have adopted

except in situations where M may vary, a possibility that we will also examine. We will

come back to this issue latter on. Finally, we could choose preferences to be defined over

30therwise, for each i, we would replace Ri by a preference relation that is strictly
monotone up to p(R;) and satiated above p(R;). The analysis of the resulting allocation
problem would be very much like the analysis of standard problems.



some fixed interval [O,MO], where M0 is possibly different from M. This would be
appropriate in the case of allocating a task among workers, M0 being the maximal amount
of time each worker can work.

Domain restrictions of interest are when for all i (i) 0LM. (This restriction would
apply in the fix—price interpretation of the model, when indifference curves are asymptotic
to the axes), and (ii) R, admits a concave numerical representation.

The intersection of two solutions ¢ and ¢’ is denoted pyp’.

3. Some properties of the Pareto and no—envy solutions. First, we establish some
elementary properties of the Pareto solution and of the "no-envy" solution, which is
undoubtedly the most important ordinal solution to the problem of fair allocation. The
set of efficient allocations has a much simpler structure here than in classical economies,
but the set of envy—free and efficient allocations has a complicated structure, just as in
classical economies.

We start with the Pareto solution. As noted by Sprumont, x € P(R) if and only if
x € X and (i) when Ep(Ri) > M x < p(Ri) for all i, and (ii) when Ep(Ri) <M x>
p(Ri) for all i. From this characterization, it follows directly that P(R) is convex, a fact
that will be useful later on.

For each i, let u;:[0,M] - R be a continuous numerical representation of agent i’s
preferences, and let u(X) = {u € R"|3x € X with u; = u(x;) for all i}; u(X) is the image
of the feasible set in utility space. The set u(X) need not be comprehensive (S C R is
"comprehensive" if for all t, t’ € R™, if t € S and for all i, inf{t'i'|t"eS} <t < then

t- € S). This is an important implication of the fact that no free—disposability
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The set of feasible allocations and its image in utility space.

Figure 1

assumption is made. For example, suppose that p(Rl) = M and p(Rz) = 0. Then, P(R)
= {(M,0)} and u(X) is a monotone path with endpoints (ul(O),u2(M)) and (ul(M),u2(0)).
Figure 1 indicates some of the features of u(X) for a typical 2—person economy.
Note that for the example u(c) Pareto—dominates u(d) but in general, there need be no

Pareto—domination between u(c) and u(d).

The next concept will play a central role in our analysis.

No—envy solution, F (Foley, 1967): x € F(R) if x € X and for all i, j, XiRin‘

There always exist envy—free and efficient allocations in our model. Indeed, the
"uniform allocation", introduced later, always exists and has both properties.

In classical economies, the set of envy—free and efficient allocations usually does not
have a simple structure, even for small numbers of agents and commodities. This remains
true here, in spite of the special features of the model. In particular, in contrast with
P(R), FP(R) is not convex.

For n = 2, FP(R) is a countable union of closed intervals. Here is a procedure to

construct FP(R). Suppose, without loss of generality, that p(Ry) + P(Ry) > M and that
P(R;) < P(R,). This implies that p(Ry) 2 M/2. In Figure 2, the solid line is the graph



of a numerical representation of Ry, uy. The dotted line is its symmetric image with
respect to the vertical line of abscissa M/2, i.e. the graph of the function pul:[O,M] - R

defined by p(u;(x;)) = u;(M—x,) for all x; € [O,M]. If x = (x;,%y) € X, then x; and x,
1 2

are symmetric of each other with respect to that vertical line. Let M/2 > X; > x] > ..
and M/2 < x% < xg < ... be the successive points of intersection of the two graphs.

Note that x! = (xi,xé), X2 = (x%,xg),... are all feasible allocations. To simplify, we

assume that all intersections are transversal.4 If x € P(R), then x; < p(R;) and x, <
p(R,).

Since p(Rz) > M/2, agent 2 does not envy agent 1 at x € P(R) if and only if x; <
M/2. Then, agent 1 does not envy agent 2 if and only if the graph of uy is above that
of p(u;) at x;. If p(R;) < M/2, the best allocation in FP(R) for agent 1 is (p(R;)x3)
for p(R,) > x5 = M-p(R;) > p(R;). Starting from this point, we progressively transfer

the good from agent 1 to agent 2 and indicate when the resulting allocation is

u

u ez e pluy)
A

el \
7 D

X ox p(R)  M/2 x5 < 34 M

Determining the set of envy—free and efficient allocations
for a two—person example.

Figure 2

4This is the generic case. The description of the envy—free and efficient set will only be
slightly different if some intersections were not transversal.



envy—free. If x; € [xi,p(Rl)], (x;,M—x;) € FP(R). If x; € [x?,xi], (x;,M—x,) ¢ FP(R).
Then again, if x; € [xi,x%], (x;,M—x,) € F(R). This alternation occurs until x, reaches
M - p(R,) (efficiency requires xy = M - x; < P(R,))-

The construction of FP(R) in the case p(R;) > M/2 is analogous and we omit it.

We now turn to the n—person case. -Again, without loss of generality, -suppose. that
Zp(Ri) > M. If agent i does not envy agent j and x5 > X, then he does not envy any
agent k with x, > X; As a result, to check whether x € FP(R) it suffices to check that
an agent would not prefer to consume the next greatest amount consumed by anyone else.
Then, if x € FP(R), there is L € N, a list 0 < a; < a5 ... < ap, and a partition {Il’

I,,..., IL} of the set of agents with the following two properties:

2
(i) for all £ = 1,..,L, and for all i € I,, x; = a3, < p(Ri),

(ii) for all £ = 1,..., L-1 and for all i € I, ei(xi) < a9

An example with n = 8 is represented in Figure 3. There, L = 4, I;= {1,2,3}, L
= {4}, 13 = {5}, and I, = {6,7,8}.

‘ug ‘11_7 -
<
ug u3v . U4
\ -
Uy s . ug
PE \ N\ :
\ IR
\\ v - I
~ -
xt es(x1) es(xs) § X1 eq(xs) X5 e5(xs) )’2
X2 ez(xz) Xg

x3
A typical envy—free and efficient allocation in an 8-—person example.

Figure 3

5In order not to clutter the Figure, utilities are normalized so that ui(xi) = uj(xj) for all i,
j and their graphs are drawn only in some interval containing their preferred consumptions.



4. Other equity notions. Although the no—envy notion has remained the central concept

in the literature on equitable allocation since its introduction, other notions have played

important roles. In this section we apply these notions to the present context (subsections

b, ¢), but we also propose others that make use of the specific features of the model under

study (subsections d,e,(f,g). First, however, we discuss solutions simply defined by

operating from equal division two solutions commonly discussed in economics (subsection

a).

(a) Individual rationality from equal division. Core from equal division. We start with

the requirements that an allocation Pareto—dominate equal division or that it be in the

core from equal division.

Individual-rational solution from equal division, I,z x € 1 4(R) if x € X and xR;(M/n)

for all i.

Core from equal division, C ; x € C, d(R) if x € X and there is no S ¢ N and (x{);cg

such that '?Sxi = |S|M/n and x{R;x; for all i € 5, strict preference holding for at least
1

one i € S.

In classical economies with n = 2, any allocation that is individually—rational from
equal division is envy—free. However, as soon as n > 2, an allocation in the core from
equal division may not be envy—free (Feldman and Kirman, 1974). Here, the same
conclusions hold, although different proofs are required because of the different structures

of the models.

6The following definition due to Pazner and Schmeidler (1978), as well as variants and
extensions of it, have been very useful in other contexts: The allocation x € X is
egalitarian—equivalent for R if there exists a reference amount x such that x.I.xq for all i.

Let E*(R) be the set of these allocations. Here, this concept will not be useful, since
E*P(R) will typically be empty. Suppose for instance that there is x € X such that x; =

p(R;) for all i. Then, {x} = P(R). As a result, if for at least one pair {i,j}, p(R;) #
p(Rj), then E*P(R) = 0.
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Proposition 1. Let x € Ied(R)‘ If n = 2, then x € F(R). Let x € Ced(R)' Ifn>2 x
may not be in F(R).
Proof Let N = {1,2} and let x € I, dP(R). Without loss of generality, suppose that x,
< M/2 < x,. Since x;R;(M/2), p(R;) < M/2, but then (M/2)R;x,. Therefore, x;R;x,
and 1 does not envy 2. Since xoR,(M/2), p(R,) > M/2 but then (M/2)Rox;. Therefore,
x2R2x1 and 2 does not envy 1. This proves the first claim. It is easy to construct
examples showing that the inclusion F ) Ie 4 may be strict.

To prove the second claim, let N = {1,2,3}, p(R) = (4,11,11), e2(9) =12, and M =
24. Let x = (4,9,11). Note that x € X. Since x; < p(Ri) for all i, x € P(R). For
each i, XiRi(M/3)' Since agents 1 and 3 receive their preferred consumptions, {1,3} cannot
improve upon x. If {1,2} can improve upon x, it is with (yl,yz) such that y;, = x4 and
Xy < ¥g < ez(x2). Then, y; + y5 < %y + e2(x2) =4 + 12 = 16. Since 2M/3 = 16,
no improvement is possible. If {2,3} can improve upon x, it is with (y2,y3) such that x,
< yq < e2(x2) and yg = xg. Then, 9 + 11 = x, + X3 < ¥y + ¥g. Since 2M/3 = 16
< 20, no improvement is possible. Therefore, x € C_4(R). Since xgPoxy, x £ F(R).

Q.E.D.

Note that I 4(R) is a convex subset of X. Since P(R) has that property too, the
solution I el 18 convex—valued.

Finally, we observe that unfortunately the core is not guaranteed to be non—empty.
Proposition 2. There are economies R for which C_;(R) = 0.
Proof Let N = {1,2,3}, p(R) = (2,4,4), and M = 9. Then, M/3 = 3. Let x € X. If
given access to 2M/3, agents 1 and 2 can both receive their preferred consumptions. For
{1,2} not to be able to improve upon x, we need x; = 2 and xy = 4. Since agents 2
and 3 have the same preferred consumptions, we also need Xg = 4. But this is impossible
since then X+ Xy + X3 = 10 > M.

Q.E.D.
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(b) Fair treatment of groups. Next, we consider concepts designed to evaluate the
relative treatment of groups, instead of-individuals. - First, we compare groups.of equal
cardinalities.

No—envy solution for groups, G (Schmeidler and Vind, 1972): x € G(R) if x € X and for

all groups G, G’ ¢ N with |G| = |G’], there is no (y;); g such that Yy =2 X;
ieG _]EG’

and yiRixi for all i € G, strict preference holding for at least one i € G.

Note that if x € G(R), then x € P(R) (simply take G = G’ = N). It might be
argued that it is more natural to only compare the welfares of distinct groups, or omly
those of non-overlapping groups. Then, efficiency would have to be required separately.

Clearly, any group envy-free allocation is envy—free.

The set G(R) can be characterized as follows: If x € G(R), recall that x € P(R)
and assume without loss of generality that Zp(Ri) > M, so that x, < p(Ri) for all i.

Then, x passes the test if and only if for all G, G- ¢ N with |G| = |G’[, ¥ x <
ieG” ~

T xoor ¥ oe(x) <X ox
ieG ! ieG ieG’ !

The existence of group envy—free allocations will be discussed later on (Corollary 1).
The next definition allows us to compare the welfares of groups of different sizes.

Strong no—envy solution for groups, G*: x € G*(R) if x € X and for all groups G, G* C
N, there is no (y;);q Such that 3 y, = Gl » x and yRx, for all i € G, strict
i€G €G- )

preference holding for at least one i € G.
Clearly G*(R) ¢ G(R) and again, if x € G¥*(R), then x € P(R). Also, supposing

without loss of generality that Zp(R.) > M, so that x; < p(R.) for all i, x passes the test
if and only if for all G, G ¢ N, {81 3 x < % x or 3 e(x) £ {gr B X
ieG’ ' T ieG ieG ieG’

(c) The Proportional solution. The next definition. (mentioned by Sprumont) is based on

the principle of proportionality, which underlies much of the theory of allocative fairness
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(Young, 1988 quotes Aristotle: "What is just ... is what is proportional and what is unjust
is what violates the proportion").

Proportional solution, Pro: x = Pro(R) if x € X and there exists A € R, such that x,

+
= Ap(R;) for all i.

~Note that for this rule to be- well-defined, the preferred consumption of-at least one
agent should be positive. Unless Ep(Ri) = M, at.a proportional allocation, no agent with
a positive preferred consumption reaches it. Clearly, a proportional allocation is necessarily
efficient, but it need not be envy-free.

The following variant might be useful. It has the advantage of treating units of the
good above or below the preferred consumptions symmetrically, as do all of the other
solutions that we will discuss.

Symmetrically proportional solution, Pro*: x = Pro*(R) if x € X and (i) when ¥p(R,) >

M, there exists A € R, such that x, = Ap(R;) for all i, and (ii) when Ep(R;) < M, there

+
exists A € R, such that M—x, = A[M-p(R;)] for all i.

+
(d) The uniform rule. The following selection from the no—envy solution will play an
important role below.
Uniform rule, U (Sprumont): x = U(R) if x € X and (i) when ¥p(R;) > M, x =
min{p(R;),A(R)} for all i, where A(R) solves Imin{p(R;),A(R)} = M, and (ii) when p(R;)
< M, x; = max{p(R,),A(R)} for all i, where A(R) solves Emax{p(R;),A(R)} = M.

The uniform allocation is obtained by successively making the agents who receive the
least as well-off as possible. Here are the payments as a function of M (Figure 3
illustrates the rule for n=3). For M small, all agents receive the same amount; this holds
until all have received an amount equal to the smallest preferred consumption. Then, the
agent with the smallest preferred consumption does not receive anything for a while.

Instead, any increase in M is divided equally among the remaining agents until each of

them has received an amount equal to the second smallest preferred consumption. Then,
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the agent with the second smallest preferred consumption does not receive anything for a
while... This process continues until each agent has received his preferred consumption.
Any increase beyond Zp(Ri) goes first to the agent with the smallest preferred consumption
until he has received an amount equal to the second smallest preferred- consumption.- A
further increase is divided equally among the agents with the two smallest preferred
consumption until they have received an amount equal to the third smallest preferred
consumption ... This goes on until all agents have reached the largest preferred
consumption. Afterwards, they share equally any further increase.”,8 Figure 3 illustrates

the rule for n=3.

X) = Xg = X3
p(Ra) X3 .
X3 Xt = Xz
. P(Ra) -
X3 = X3
p(R:) =
Xt =| Xg = X3
(R 3n(Ry) Yp(Ri)  Ip(Ri) + 3p(Ra) M
B0 Ry e (Ra) o i) B

An illustration of the uniform rule in the three-agent case

Figure 4

"This way of describing the uniform rule is not quite in agreement with the model as
formulated so far, where preferences are defined over [0,M] for some fixed M. We have
adopted it anyway because it is very convenient and 1t yields equivalent results. See
Sections 5 and 6 for a further discussion of the issue of domains.

8The similarity between the uniform rule and the rule proposed in the Talmud for the
adjudication of conflicting claims (O’Neill, 1983; Aumann and Maschler, 1985; Young, 1987)
should be noted. Indeed, the algorithm describing that solution is identical up to the
point where each agent has received his preferred consumption, by replacing the vector of
preferred consumptions by the vectors of claims divided by two.
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The uniform rule can be criticized on the grounds that it gives full satisfaction (i.e.
their preferred consumptions) to some of the agents (those with low preferred consumptions
if ¥p(R;) > M; those with high preferred consumptions if Ep(R;) < M) at the expense of
the others. But, Sprumont showed that it is essentially the only strategy—proof rule. On
that basis alone, it should be taken very seriously. In addition, it has a number of other
very desirable properties, as we will discover throughout the remainder of this paper. In
fact, it satisfies many more of these properties than any other solution. However, we
have:

Proposition 3. The uniform rule does not satisfy no—envy for groups.
Proof Let N = {1,2,3,4}, p(R) = (1,2,3.5,5), and M = 10.5. Let x = (1,2,3.5,4), G =
{1,4}, and G’ = {2,3}. Note that U(R) = x. Let y; =1 and y, = 4.5. Then, y;+¥,
= Xg+Xq = 5.5, lelxl and y4P &4 Therefore G envies G’.

Q.E.D.

Proposition 3 confirms that no—envy for groups is indeed stronger than no—envy for
individuals, since the uniform rule picks envy—free allocations. The next result relates the
uniform rule to two of the criteria seen earlier.

Proposition 4. The uniform allocation Pareto—dominates equal division but it may not be
in the core from equal division, even if the latter is not empty.

Proof Let R be given and x = U(R). Without loss of generality, suppose that ¥p(R;) >
M. Then, x; < p(Ri) for all i. For any i such that x; = p(Ri), then of course
xiRi(M/n). If x, < p(R;) for some i, then X £ % for all j, which implies M/n < x.
But then again xiRi(M/n). This proves the first claim.

To prove the second claim, let N = {1,2,3}, p(R) = (2,5,6), e2(4) = 55 and M =
"12.  Then, U(R)-= (2,5,5). Note that x = (2,4,6) € C_4(R): - Indeed, x;R;(M/3) for all i,
so that x € I, d(R). If given access to 2M/3 = 8, {1,3} cannot improve upon x since

both agents receive their preferred consumptions at x. For {1,2} to improve upon x with
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(v1:¥5), we need y; = 2 and y, € 14,5.5] so that y;+yy < 245.5 = 7.5 < 8. For {2,3}
to improve upon x with (y2,y3), we need y, € 14,5.5] and yg = 6 s0 that y, + y3 >
4+6 = 10 > 8. Finally x € P(R). = Therefore, C, d(R) + 0. However, if given access to
2M/3 = 8, {1,3} can improve upon (2,5) with (2,6).

Q.E.D.

(e) The Equal-distance solution. We suggest next to compare distances from preferred
consumptions unit for unit as opposed to proportionately (in contrast with c), and to
select allocations at which all agents are equally far from their preferred consumptions. It
is, of course, not in general possible to ensure that all agents be at the same distance
from their preferred consumptions since boundary problems may occur. So, instead, we
offer the following definition.
Equal-distance solution, Dis: x = Dis(R) if x € X and (i) when Up(R;) > M, there exists
a > 0 such that x, = max{0,p(R;)-a} for all i, and (ii) when Zp(R;) < M, there exists a
> 0 such that x, = p(R,) + a for all i

The proportional solution (and the symmetrically proportional solution), as well as

the equal—distance solution produce efficient, but not necessarily envy—free, allocations.

(f) The preferred—consumption—mazimizing solutions. Since the uniform allocation is
defined by giving their preferred consumption to the agents with the smallest preferred
consumption, one might think that at that allocation, the number of agents reaching their
preferred consumptions is greater than at any other envy—free and efficient allocation. But
this is not true: Let N = {1,2}, p(R) = (4,5), ¢((1) = 5, and M = 6. Then, U(R) =
(3,3). However, at y = (1,5) € FP(R), agent 2 reaches his preferred consumption while at
U(R), no one does. We propose below selection procedures from P and FP based on the
number of agents reaching their preferred consumptions.

Given x € X, let pk(x,R) = [{i|]x, = p(Ry)}H-
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Definition. P*(R) = {x ¢ P(R)|pk(x,R) > pk(y,R) for all y € P(R)}.
Definition. H*(R) = {x ¢ FP(R)|pk(x,R) > pk(y,R) for all y € FP(R)}.

Neither one of these solutions is single—valued.

(g) The Equal-sacrifice solution. Finally, we propose evaluating allocations x € X on the
basis of the difference between what agent i receives and what the equivalent bundle is on
the other side of his preferred consumption. This is because the number ci(x) = |eg(x;) -
xi| is a measure of the size of agent i’s "upper contour set at xi", that is, the size of his
"sacrifice at x". Selecting efficient allocations for which sacrifices are equal across agents
would of course be appealing but, such allocations will not exist in general. As second
best, we recommend the allocation at which sacrifices are as "equal as possible".
Equal-sacrifice allocation, Sac: x = Sac(R) if (i) when Ip(R;) > M, there exists o > 0
such that ei(xi) -x <0 for all i, strict inequality holding only if x; = 0, and (ii) when
Zp(R;) £ M, there exists ¢ > 0 such that x, - e(x;,) < o for all §, strict inequality
holding only if X, = M.

It is easy to check that this solution is well-defined. It is mot so straightforward
however to define a similar selection from the envy—free and efficient correspondence. One
possibility is to pick the allocation at which the vector of sacrifices is lexicographically
maximal. Selection procedures based on lexicographic operations are standard in game
theory and social choice.

Formally, let E be obtained by rewriting the coordinates of t € R™ in decreasing
order. Given t and t’ € [Rn, say that ¢ is lezicographically smaller than ¢’, written ¢ <[
b, if [t;< t{], o [t; = t{ and ty < 3], or .. Also, let c(x) = (¢;(x),,c ().
Definition. H**(R) = {x € FP(R)|c(x) gy, ¢(y) for all y € FP(R)}.

In contrast with rules ¢, d, e, f, the rules defined here have the advantage of not

depending only on the preferred consumptions.
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5. Resource monotonicity. In the next sections, we turn to properties of solutions
.pertaining to changes in the parameters of the problem.- First, we consider changes.in the
amount to be divided, limiting our attention to single-valued solutions. An economy is
now denoted by the pair (R,M).

Up to this point, we have always taken preferences to be defined over the interval
[0,M], where M is whatever amount is to be divided. This implies that even in situations
where the natural domain of definition of preferences would be larger, only their restriction
to the set of "realistic" consumptions of each agent was deemed relevant for the evaluation
of an allocation. Since the property we study next pertains to variations in resources, for
its formulation to be in line with the above interpretation, the domain over which
preferences are defined should be allowed to change.

Then we have two choices. Either we require solutions to depend only on the
restriction of preferences to their realistic domain, or we allow them to depend on features
of preferences outside of their realistic domain. . The latter choice enlarges the class of
possible solutions. To illustrate, there now exist two natural ways of defining the
proportional solution. Given a preference relation Ri deﬁnéd on R and given M € R, let
p(Ri) be the preferred consumption of R, on R (the "unconstrained" preferred consumption
of R;), and p,(R) be the preferred consumption of R; on [0,M] (the "constrained"
preferred consumption of Ri)‘ Using this notation, our earlier definition of the
proportional allocation of (R,M) would be the feasible allocation x such that for some A,
X, = ’\pM(Ri) for all i. If each p(R,) is finite, we can now give an alternative definition,
by choosing the feasible allocation x such that for some A, x, = Ap(Ri) for all i. Most of
the results to be established below do not depend on which formulation is adopted and we
will limit ourselves to the first one.

Suppose now that-the amount to be divided increases. If agents had monotone
preferences, it would be desirable that all gain. This property has been the object of

much attention recently in the context of classical economies (Chun and Thomson, 1988;
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Moulin and Thomson 1988). This is also what we would like to require here if even after
_the increase there is not too much of the good, so that each agent is initially to the left
“of his preferred consumption and remains so, as efficiency requires. If what is to be
divided increases so much that agents are forced beyond their preferred consumptions, then,
at some point, some of them may have to be negatively affected, and the natural
requirement in that case is that if one of them is indeed negatively affected, then they all
are. If there is initially "too much" of the good, so that all agents have already passed
their preferred consumptions, the opposite would be appealing: all agents should continue
losing. In general, the property that we will want to consider is that all agents be
affected in the same direction: all lose or all gain.

Resource-monotonicity. For all (R,M), (R,M"), either ¢,(R,M")R,¢;(R,M) for all i, or
(pi(R,M)Ritpi(R,M') for all i. Strict resource monotonicity holds if, in addition, whenever
one of the preferences is strict, then they all are.

We omit the straightforward proof of the following result.

Proposition 5. The uniform rule, the proportional solution, the equal-distance solution,
and the equal-sacrifice solution are all resource monotonic.

Note that the uniform rule is not strictly resource-monotonic. Indeed, as a function
of the amount to be divided, what each agent i receives increases to p(Ri)’ remains
stationary for a while, then increases again (Figure 4). Correspondingly, his utility
increases, then remains fixed, then decreases. Similarly, neither the equal-distance solution
nor the equal-sacrifice solution are strictly resource monotonic.

The proportional solution is strictly resource—monotonic if all preferred consumptions
are positive.

By redefining the equal-distance and equal-sacrifice solutions by using the whole
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preference relations instead of their restrictions to the interval [0,M],® then we would
-obtain two strictly resource-monotonic solutions.

Does there ‘exist a strictly resource-monotonic-selection from the envy—free and:
efficient correspondence? Certainly, the answer cannot be yes-if no restrictions are made
on preferences: If an agent’s preferred consumption is 0, then efficiency requires him to
consume 0, for any M € [0, Ep(Ri)]. The question in the case of all positive preferred

consumptions is open.

6. Variable population. Next, we formulate properties pertaining to changes in the
number of agents. Previous studies of the problem of fair allocation in economies of
variable size are Chichilnisky and Thomson (1987), Thomson (1988) and Tadenuma and
Thomson (1989a,b). The first two references consider classical economies and the latter
two economies with indivisible goods.

To allow for changes in the number of agents, the notation has to be adapted again.
There is now an infinite population of "potential agents", indexed by the integers, N. Let
Pbe the class of finite subsets of N. An ecomomy is a pair e = ((Ri)ieQ’M)’ or simply
(RQ,M), where Q € 2 Let X(e) be the set of feasible allocations of e. As in the
previous section, we will assume preferences to be defined over R " (However, see the
remark following Proposition 10.)

The following property pertains to single-valued solutions. On classical domains
where preferences are monotone, it is natural to require that all agents initially present be
affected negatively when newcomers arrive with claims as valid as theirs, resources being
kept fixed. In the present context, this requirement can also be imposed if in the initial

economy, agents have not reached their preferred consumptions. On the other hand, if

9In the case of the equal—distance solution, this requires all preferred consumptions to be
finite; in the case of the equal-sacrifice solution, this requires that the function & be

well-defined on ]0,xl.
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there is so much of the good that agents are initially beyond their preferred consumptions,
 the-arrival of additional-agents may help and it becomes natural to require that if-one of
- the agents initially present- gains, then they all do. -In general, the.requirement that will
be useful here is that all agents be affected in the same direction, as Chun (1986) had
proposed in a different context.

Population Monotonicity. For all Q, Q' € 2 with Q' ¢ Q, for all (Rq,M), either
wi(RQ,M)Ricpi(RQ,,M) for alli € Q’, or ‘Pi(RQ"M)Ri‘pi(RQ’M) for all i € Q’. Strict
Population Monotonicity holds if in addition, in each of the previous cases, whenever one
of the preferences is strict, then they all are.

Our first result is rather negative:

Proposition 6. The uniform rule, the proportional solution, and the equal-distance solution
do not satisfy Population Monotonicity.

Proof To prove the result for U, let Q’ = {1,2}, p(RQ,) = (1,3), and M = 5. Then,
U(RQ,,M) = (2,3). Let Q = {1,2,3} with p(R3) = 2. Then, U(RQ,M) = (1,2,2).

Agent 1 gains from agent 3’s arrival, whereas agent 2 loses.

To prove the result for Pro, let Q' = {1,2}, p(RQ,) = (1,2), el(.5) = 1.5, e2(1) =
5and M = 6. Then, Pro(RQ,,M) = (2,4). Let Q = {1,2,3} with p(R3) = 9. Then,
Pro(RQ,M) = (.5,1,4.5). Agent 1 gains from agent 3’s arrival, whereas agent 2 loses.

To prove the result for Dis, Q' = {1,2}, p(RQ,) = (1,2), el(.5) = 1.5, e2(1.5) = 4,
and M = 5. Then, Dis(RQ,,M) = (2,3). Let Q = {1,2,3} with p(R5) = 3.5. Then,
Dis(RQ,M) = (.5,1.5,3). Agent 1 gains from agent 3’s arrival, whereas agent 2 loses.

Q.E.D.

Another open question is whether there exist population monotonic, or perhaps
strictly population monotonic, selections from the envy—free and efficient solution? As far
as the stronger property is concerned, the answer cannot be an unqualified yes since if an

agent’s preferred consumption is zero, then he should get 0 at any efficient allocation in
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any economy such that Ep(Ri) < M. The inequality is preserved by the addition of new
agents.

It should be noted that population monotonic selections from the Pareto solution
exist; the equal-sacrifice solution is one, as formally stated next. We omit the
straightforward proof of this result.

Proposition 7: The equal-sacrifice solution satisfies Population Monotonicity.

Next, we consider a property that has played a very important role in some recent
literature (reviewed in Thomson, 1989a). Essentially, it says that if x provides a desirable
division of M among some group Q, then the restriction of x to any subgroup Q’ € Q
constitutes a desirable division among the members of that subgroup of what they have
collectively received at x, namely, ¥ X;.

ieQ-
Consistency (Cons): For all Q, Q' € 2 with Q’ ¢ Q, for all e = (RQ,M), for all x €

w(e), Xq, € w(ta,(e)), where ta,(e) = (RQ,,EQ x;). (The economy ta,(e) will be
€O

called a reduced economy.) Bilateral Consistency (B.Cons) is the weakening of consistency
obtained by requiring |Q’| = 2.

The Pareto solution is consistent; so is the no—envy solution and so is their
intersection (Consistency is preserved under intersection). The uniform rule is consistent
too. The proportional solution is consistent if it is defined by imposing proportionality to
the unconstrained preferred consumptions but not if the constrained preferred consumptions
are used (see Section 5 for a discussion of these two formulations). None of the
individually-rational from equal division and efficient correspondence, the core
correspondence from equal division or the preferred—consumption-maximizing solution of
section 4(f) are comsistent. We only give proofs for onme positive result and one negative

result.
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Proposition 8. The uniform rule satisfies Consistency. The preferred
consumption—maximizing selection from FP does not.

Proof Let e = (RQ,M) and x = U(e). Without loss of generality, we suppose that

Y p(R;) > M. Then, for all i € Q, Uj(e) = min{p(R;),A(e)} where A(e) solves

ieQ -

Y min{p(R;),A(e)} = M. Since U;(e) < p(R;) for all i € Q, it follows that given any Q’
i€eQ -

cQ X TUle) £ ¥ p(Ry) Therefore, in the reduced economy e’ = (RQ”M’) where

ieQ’ T ieQ
M’ = ¥ x;, we have M’ < ¥ p(Ri)‘ Then, for all i € Q~, Ui(e') =

ieQ’ T ieQ
min{p(R;),A(e’)} where A(e’) solves X min{p(R;),A(e’)} = M’. But the solution to this
i€eQ’

equation is A(e) = A(e’). Therefore, Uj(e’) = U.(e) for all i € Q”. U does not satisfy
Cons.

To prove the claim concerning H*, let Q = {1,2,3,4} and M = 12. Suppose that
p(R) = (2,3,4,5) and that e (1) = 3 and ey(1) = 4. Let x = (2,2,4,4). Then pk(x,R) =
2. We claim that there is no y € FP(R) with pk(y,R) > 2. There are four cases to
consider.
(i) y; # p(Ri) only for i = 1. Then, by feasibility, y; = 0 and 1 envies 2.
(ii) y; # p(Ri) only for i = 2. Then, by feasibility, yo = 1 and 2 envies 1.
(iii) y; # p(Ri) only for i = 3. Then, by feasibility, y; = 2 and 3 envies 2.
(iv) y; # p(Ri) only for i = 4. Then, by feasibility, y, = 3 and 4 envies 3.

Clearly, there is no y with pk(y,R) = 4. Therefore, x € H*(R).

Now, let Q' = {24} and ¢ = (R~,,2 x). Note that pk(x~,Rn,) = 0. Also,
H*(e’) = {(3,3),(1,5)} since at each of these two allocations y, pk(y,RQ,) = 1 and there

is no y € X(e’) with pk(y,Rq,) = 2. Hence XqQ ¢ H*(e’). H* does not satisfy Cons.
Q.E.D.
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We now ask whether there exist consistent selections from the no—envy and efficient
~solution other than the uniform rule. The answer is a very limited yes. Indeed, our next
result is that essentially any such solution has to contain the uniform rule. The only
additional requirement we use is the very mild requirement that small changes in the
amount to be distributed never lead to large changes in the desired allocation. A
characterization of the uniform rule can then be obtained by demanding the rule to be
single-valued.

M-Continuily (M=Cont): Let {M"} be a sequence in R, converging to M. For each v €

+
N, let x” € <p(RQ,MV). If x¥ - x, then x € w(RQ,M).

Proposition 9. If a subsolution of the envy—free and efficient solution satisfies Consistency
and M—Continuity, then it contains the uniform rule.
Proof Let e = (RQ,M) be given and let x = U(e). Without loss of generality, suppose

that Ep(R;) > M.
ieQ -

Let 0 < a; < ag .. < ap be the ordered list of distinct non—zero amounts received
by the members of Q at x. Since the case M = 0 is trivial, we assume that L > 1. Let
Q ={ieQ|x;=00rx =a,for £ < L} and Q, = Q\Q, (note that Q; could be

empty). Since ¥ p(R;) > M, it follows from the definition of U that x; = p(R,) for all i
i€eQ -
€ Q; and that x; < p(R,) for all i € Q,.
The economy e = (Rq,M) is now augmented as follows. Let (~Q be a group of L
new agents indexed by 4 Q" = Q U 62, and M = M + Y.a, Let N = {v eN1l/v <
£eQ -

al}. In what follows, v will be an arbitrary element of N. For each i € Q, let Riy = R,.

For each £ € C:), let R'Z be such that p(R'Z) = a, and efa/1/2v) = M. Let e’ =
(Ré,,M’). Let x’ € IRQ’ be such that xQ = x and Xy = 3 for all £ € Q

‘Note that x’ € X(eV). Also, since ¥ p(Ri) > M by hypothesis, p(RIij ) = p(Ri) for
ieQ -

all i € Q by construction, and E-p(RIZ) = a, also by construction, it follows that
£eQ
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% p(RY) > M + 3.a, = M’. Therefore, if X € P(e”), then X; < p(RY) for all i € Q.
2 = i= i
ieQ eQ
Since x’ has that property, x’ € P(eV ).

Now, let y” € ¢(e¥). Since ¢ C P, y'i/ < p(R'i/) for all i € Q’, as we just saw.
Therefore, (i) y’ij < x{ for all i € Q; and y'Z < x for all £ € (:2 Obviously, (ii) y’i/ <
M~ for all i € Qy-

We now claim that (iv) p(RIZ) -1/v < ylé < p(RIZ) = a,for all L€ (E) If not, by
(i), there is £ € 62 such that yz < p(RIZ) ~ 1/v. Then, for agent £ not to envy any i €
Q, at y”, we need y’i/ < y'Z or y'; > e’Z(yIZ) > M’. Using (i) and (ii) we then obtain

(iti) y; < ¥y < xj < x{ forall i € Qy. But then (i) and (iii) together imply X y; £

ieQ ' T
¥ x{ 4+ X xz,‘ + xp - lfv=13% x{-1fv =M - 1/v < M’, in contradiction
i€Q ' eQ\{4 1€Q’
with y¥ € X(e¥). This proves (iv).

For each i € Q with x; > 0, let £ € (:) be such that a, = X;. From (i), agent i
does not envy agent £ at y” only if (v) yli/ > y’Z. Together with (i) and (iv), we conclude
that (vi) x{ - 1/v < yli/ < x{ forall i € Q. Now (iv), (v), and (vi) together with the
feasibility condition %y} = M- imply (vii) x{ - 1/v < y; < x{ + (1Q’|-1)/v for all i

i€Q’ =1 =
€ Q. Therefore, by (vi) and (viii), yé - X as vV - o

v v
By Cons, y(s € w(ta(ey)), where té (") = (RQ,MV) and M” = % y'i/ satisfies
ieQ
IMY—M]| < 1Ql/v. As v~ o, yé 4+ x and MY - M. By M-Cont, x € ¢(e).

Q.E.D.

Remark. We indicate here how the proof would have to be modified if solutions were
required to depend only on the restrictions of preferences to [0,M] where M is whatever
amount is to be divided. First of all, in the statement of Consistency the definition of a
reduced economy should be changed to (RQ'|[O,M’]’M') where M’ = iEQ'Xi' Then, for

each i € Q, take RY to be a preference relation on [0,M‘] whose restriction to [0,M] is R,
i i
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and such that p(RiV ) = p(R;). (The need to specify the preferred consumption of R'i/ may
arise only for i € Qz.) For each £ € (~Q, take R’Z to be a preference relation on [0,M’]
such that p(R'Z) = a, and efa,1/2v) = M. In the last step, consider the reduced
economy (RQ | [O,MV],MV ).

The next two results are direct consequences of Proposition 9.
Theorem 1. The uniform rule is the only single—valued selection from the envy—free and
efficient solution satisfying Consistency and M—Continuity.
Corollary 1. There are economies that have no group envy-free allocations.
Proof This is a consequence of the fact that the group no—envy solution G satisfies the
hypotheses of Proposition 9 and that U is not a subsolution of G, as established in

Proposition 3.

Q.E.D.

Consider now the following converse of consistency, which allows us to deduce the
desirability of an allocation for some economy from the desirability of its restrictions for
the associated reduced economies: Given a feasible allocation x for the large economy, if
for every subgroup of two agents, the restriction of x to that subgroup provides an

-equitable way of -allocating between them the sum of what they have received, then x
itself is desirable for the whole economy. Many of the models where conditions of this
type have been found useful are reviewed in Thomson (1989a).

Converse Consistency (Conv.Cons): For all e = (Rq,M), for all x € X(e), if for all Q’ ¢

Q with |Q’|=2, Xq- € (p(RQ,,iféQ,xi), then x € ¢(e).

Proposition 10. The Pareto solution, the no—envy solution, their intersection, and the
uniform rule all satisfy Converse Consistency. However, neither the individually rational

from equal division and efficient solution nor the core from equal division do.
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Proof Let e = (R,,M) and x € X(e). Suppose xn, € P(R5,, % x;) for all Q" C Q
Q Q Q ieQI 1

with |Q’| = 2. Using the characterization of P, we conclude that for every such group
Q, x < p(Ri) for all i € Q" or x; > p(Ri) for all i € Q’. This implies that either x,
< p(R;) for all i € Q, or x; > p(R;) for all i € Q. Therefore, x € P(e). P satisfies
Conv.Cons.

The result for F and U is clear, and we omit the proofs. The result for FP follows
then from the fact that Conv.Cons is preserved under intersection.

Now, let N = {1,2,3}, p(R) = (1,3,7), e2(1) < 4, and M = 9. Also, let x =
(1,1,7). Note that x € P(R). Also, since agents 1 and 3 receive their preferred
consumptions, their consumptions dominate equal-division in any reduced economy they
may belong to. Finally, observe that xolp[(x;+x,)/2] and that Xy Ro[(x9+x5)/2] = 4.
Therefore, XqQ ¢ Ied(RQ”iEQ,Xi) for all Q’ g N. However, x ¢ I ,(M/3) since M/3 =
3Py, Therefore, Ie 4F does not satisfy Conv.Cons.

Since in the previous example, it so happens that XQ/ e C, d(RQ” Y Xi) for all Q’
i€Q-

g N, if follows that C ed does not satisfy Conv.Cons either.
Q.E.D.

Next, we turn to the group no—envy solution. This solution coincides with the
no—envy solution in the 2-person case, so we should of course not expect it to satisfy
Converse Consistency. In order for the hypotheses of Converse Consistency to have any
power, they should say something for subgroups of at least four persons since this is the
smallest number of agents needed for a meaningful comparison of the welfares of groups
(i.e. groups containing more than one person). In the next Proposition, Converse
Consistency should be understood in this weaker sense. It will be referred to as Weak
Converse Consistency. Yet we have:

Proposition 11. The group-no—envy solution does not satisfy Weak Converse Consistency.
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Proof Let Q = {1,2,...,6}, R, = R,, el(O) = 4, Ry = Ry = Ry and e3(1) = 1.5,
66(2) =25 and M = 5. Let e = (RQ,M) and x = (0,0,1,1,1,2).

It is easy to check that at x no "one—person" group envies any other "one—person"
group. The laborious proof that no group of cardinality 2 envies any other such group is
relegated to the appendix.

We conclude by noting that {1,2,6} envies {3,4,5}. Indeed, let y, = y, = .25 and
Vg = 2.5. We have V1 +HY9tye = Xg+x,+xg. Also, ylPlxl, y2P2x2 and y6R6X6'
Therefore, G does not satisfy Conv.Cons.

Q.E.D.

For the next result, we return to Converse Consistency as originally stated.
Theorem 2. The uniform rule is the only single-valued selection from the envy-free and
efficient solution satisfying Bilateral Consistency, Converse Consistency, and M—Continuity.
Proof TFrom the proof of Proposition 9, we deduce that if ¢ C FP satisfies B.Cons and
M-Cont, then p(e) 3 U(e) for all e = (Rq,M) with |Q| = 2. Since both U and ¢
satisfy Conv.Cons, p(e) 2 U(e) for all e = (RQ,M) with |Q| > 2. But by
single—valuedness of ¢, ¢ = U.

Q.E.D.

We conclude this section with another characterization of the uniform rule based on
individual rationality from equal division instead of no—envy.
Theorem 3. The uniform rule is the only single-valued selection from the
individually-rational from equal division and efficient correspondence satisfying
M-Continuity and Bilateral Consistency.
Proof. We have already seen that U satisfies all the properties listed in the Theorem.
Conversely, let ¢ be a solution satisfying all the properties. We first show that ¢ = U
for all e = (RQ,M) with |Q| = 2. Let x = U(e). Without loss of generality, suppose
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that EQp(Ri) > M, Q = {1,2}, and X £ Xy If x; = x,, then x; = Xy = M/2 and
i€ - -

Ied(e) = {x}. If x; < x,, then by definition of U, x; = p(R;). If x; = 0, then P(e) =
{x}. Ex; >0, letnelNbe such that 0 < y, = (xz—xl)/(n—2) < x;. Note that n >
2. Let xy = xy-y, Forall veNN such that 1/v < x, let e/ = (R(S,,M') be such that

Q = {l,..n}, M’ = nx (=M+(a-2)x), R{ = R R, = R

1 Ro o and for each i € {3,...n},

v .
R. satisfies p(R'i/ ) = x; and e'i/(xl) = x, — 1/v.

Let 7 = ¢(e”). Note that 3 p(R'i/) = % p(R) + (n-2)xy > M + (n-2)xy =
ieQ’ i€eQ -

Q
M-, and since ¢ C P, it follows that (i) y’i/ < p(R'i/) for all i. Since M’/n = x;, and ¢

€ I g, it follows that (ii) yy = x; and (iii) for all i € {3,...,n}, y; € [xg-1/vx]. By (@)
and (iii), we obtain that (iv) for all i € {3,..,n}, y; € [x;=1/wxg). Then, (i) and (iv)
. v
together yield (v) y, € [x5,%g + (n-2)/v].
v .
By B.Cons, (y}vy) = W{Rq¥1+¥5). By (i) and (v), (y1,y3) = (x;%,) and vy +
yg + M. By M.Cont, x = ¢(e). Therefore, ¢ coincides with U for two—person economies.
Now, let e = (RQ,M) be an arbitrary economy and let x = ¢(e). By B.Cons, Xq
= w(RQ,, ¥ xi) for all Q” ¢ Q with |Q’| = 2. By the previous paragraph, Xq. =
ieQ’

U(RQ,, ¥ x;). Since U satisfies Conv.Cons, x = U(e).
i€Q’
Q.E.D.

7. Economies with a large number of agents. In classical economies, the case of a large
number of consumers is of particular interest. Indeed, when preferences are smooth and
sufficiently diverse, the equal-income Walrasian allocations are the only envy—free and
efficient allocations (Varian, 1974). In the present context, one solution also plays a
special role. Once again, it is the uniform rule!

- Here we will-assume for convenience that preferences are defined over the interval

[0,M] for some fixed M. For the problem to remain interesting, we will increase the
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amount to be divided along with the number of agents, and assume that the per capita
-amount to be divided is always equal to M.

One standard way of enlarging an economy is simply by replication. Note first that
most- of the solutions we discussed are invariant under. replication. For example, take the
no—envy solution. If ek is obtained by replicating k times some model economy e, and
two agents are of the same type in ek, then they receive the same amount at any
allocation in F(ek). Ifye F(ek), then y is the k-teplica of some x € F(e). Conversely,
the replica of any x € F(e) is an element of F(ek).10 (Similarly, the individual rational
from equal division and efficient solution, the uniform, equal-distance, and equal-sacrifice
rules are all invariant under replication.) Here too, it is only when preferences are
sufficiently diverse that the set of envy—free allocations will shrink. The sketch of a
simple convergence result appears in the appendix.

Can any statement be made about G*(ek) as k » o? Since G may be empty
(Corollary 1) and G* c G, there is no assurance that G*(ek) remains non-empty for all k.
However, if it remains non—empty for all k, then the only allocation that can belong to all
replicas, when correspondingly replicated, is Ufe):

Theorem 4. Let e be some economy and x € P(e). If for each k, the k-replica of x
belongs to G*(ek), then x = U(e).

Proof Without loss of generality, suppose that Zp(Ri) > M so that if x € P(e), then x;
< p(Ry) foralli Ifye P(ek), it remains true that y, < p(R,) for all i. Let x € P(e).
Let a; < a5 <..<ap be the various distinct amounts received at x by the agents in e.

For each £ < L, let i be such that x; = a, Suppose that x; < p(Ri)' Then there are
K
group composed of k’ agents of type i and K — k’ agents of type }, where j is any agent

K, k’ € N such that x, < < p(Ry). In the K-replica of e, let G’ be a

such that xj = 3.4 In eK, any one—person group composed of one agent of type i

10The no—envy solution is also invariant under replication in classical economies.
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would prefer the average holdings of any such group G’. Therefore y ¢ P(ek).
Q.E.D.

8. The case of different initial endowments. A slightly different situation from the one
considered up to now is when each agent is initially endowed with some amount of the
good and the problem is to reallocate these initial endowments in some fair way. This is
more typical of situations where rationing has to take place.

Let w, € R n be agent i’s initial endowment and Xi = [ai,bi] be his consumption set,
satisfying w, € X,. An economy is now denoted ((Ri)ieN’(wi)ieN’(Xi)ieN)’ or simply

(R,w,X). The set of feasible allocations is the set X = {(x;);.n| 2 *x; = % w and for

ENTeNT  jeN
each i, x; € Xi}‘ We will still designate by M the total resources of the economy: M =
% w;.
ieN

The traditional concepts, as well as the more specific solutions that we have found
useful above, can be adapted with no difficulty to this situation. We just give a few
examples: t € RY is an envy—free net change for (R,w,X) if U, =0, t + we X and for
no i, j, (wi+tj)Pi(wi+ti); x € X is an individually-rational allocation for (R,w,X) if x,R.w.
for all i; t € RY is a uniform net change for (R,w,X) if 3. = 0, t + w € X, and (i) when
Yp(Ry) 2 M, ¢, = max{p(R;) —w;, -A(R)} if P(R) < w and t; = min{p(R;) - w, A(R)} if
P(R;) > w, where A(R) is chosen so that %t; = 0.)

9. Conclusions. We have considered the problem of fairly allocating an infinitely divisible
good among agents with single-peaked preferences. This specification of the domain has
significant implications. The properties of the standard equity notions when applied to
this problem are indeed quite different from what they are when these solutions are
operated on classical domains. Also, on this domain we could define a variety of

appealing solutions that have no counterparts on classical domains.
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Our second most important conclusion is that the uniform rule, a solution that had
. previously- been - shown to be extremely well-behaved from the viewpoint of incentives, is
also the best—behaved from a variety of other .vi‘ewpoints. Indeed, it is
resource—monotonic, consistent, and- conversely consistent. It is the only single-valued
selection from either the no—envy and efficient solution or from the individually-rational
from equal division and efficient solution to be consistent and to respond continuously to
changes in the amount to be divided. Finally, it has certain asymptotic properties shared
by no others. Rare are the situations where the same method so generally dominates all
others. Usually, one finds that some solutions perform well in some situations and others
perform well in some other situations. On the basis of what we now know, the uniform
rule can wholeheartedly be advocated as the best solution to the problem of fair allocation

in economies with single—peaked preferences.
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Appendiz

Proof of Proposition 11. We supply here the proof that no group of cardinality 2 envies
any other group of the same cardinality.

For convenience, we indicate the compositions of groups by their holdings at x; for
instance a group denoted (0,1) is any group containing agent 1 or agent 2, together with
agent 3 or agent 4 or agent 5. The proof is in several steps:

(a) No group envies another group of the same composition.

(b) No group (0,0) (say {1,2}) envies any group. Indeed, if y;R;x; and y,RoX,,
then y; < .4 and y, < .4, 50 that y; + y9 < 8. Since the holdings of any group (0,1),
(0,2), (1,1), or (1,2) are at least 1, we are done.

(c) No group (0,1) (say {1,3}) envies (0,0). Indeed, if y;R;x, and ygRgxs, then y,
> 0and y3 > 150 that y; + y3 2 1. Since the holdings of (0,0) are 0, we are done.

(d) No group (0,1) (say {1,3})envies any group (0,2) or (1,2), or (1,1). Indeed, if
lelxl and y3R3x3, then ¥ £ 4 and yg £ 1.5 so that y1 +¥3 £ 1.9. Since the
holdings of any group (0,2), (1,1) or (1,2) are at least 2, we are done.

(e) No group (0,2) (say {1,6}) envies any group (0,0), (1,1), or (0,1). Indeed, if
lelxl and y6R6x6, then y; > 0 and Ve 2 2, so that y; + yg 2 2. Since the holdings
of (0,0), (1,1), or (0,1) are at most 2, we are done.

(f) No group (0,2) (say {1,6}) envies any group (1,2). Indeed, if y;R,x; and
YeReXg) then y; < 4 and yg < 2.5, 50 that y; + y5 < 2.9. Since the holdings of (1,2)
are 3, we are done.

(g) No group (1,1) (say {3,4}) envies any group (0,0), (0,1), or (0,2). Indeed, if
y3R3x3 and y4Ryxy, then Vg 2 land y, > 1, s0 that Y3 + ¥4 2 2. Since the holdings

of (0,0), (0,1), or (0,2) are at most 2, we are done.
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(h) No group (1,1) (say {3,4}) envies any group (1,3). Indeed, if yaRqxg and
y4Ryxy, then yq < 1.5 and y, < 1.5 s0 that yo + y, < 3. Since the holdings of (1,2)
are 3, we are done.

(i) No group (1,2) (say {3,6}) envies any other group. Indeed, if ysRoxg and
y6R6x6, then Y3 2 1 and Ve 2 2. Since the holdings of any other group are at most 3,

we are done.

Sketch of a convergence result (Section 7).

Assume preferences to be drawn from a pool with the following characteristics. The
support of the distribution of the preferred consumptions is the whole interval [0,M]. For
each preferred consumption p in [0,M] and for each 0 < %, < p, (resp. p < x; < M), the

support of the conditional distribution of e;(x;) is the entire subinterval (p,M) (resp. [0,p]).

Let {ek} = {(u_ ,M;)} be a sequence of economies of increasing cardinality (|Nk| - o)
N
k

ordered by inclusion (k’ > k implies N, ¢ Ny .) and such that MS

— M|N¥| for all k.
Then, we claim that the set of envy—free and efficient allocations converges to the uniform
allocation, in the following sense: Let {xk} be a sequence such that = € FP(e, ) for all
k. Then, for all ¢ > 0, and for all i, there is k such that for all k > k, |xll( - Ui(ek)l
< €.

We assume without loss of generality that for k large emough, if x € P(ek) then
¥p(R;) > M|Ny|. Suppose by way of contradiction that there is ¢ > 0 and some i such
that for some k € N, i € Nk for infinitely many k > k and xli( < p(Ri) — ¢ infinitely
often. Then in each ek,, no agent j can consume any amount in [p(Ri)—e,ei(p(Ri)—e)],
(otherwise agent i would envy agent j at xk,). Since there is a positive proportion of
agents with preferred consumptions in that interval, each of these agents should consume
xli( (otherwise they would envy agent i at xk,). But then, for k large enough, the union

of the "forbidden intervals" [xl;,ej(xlj?)] taken over all j such that p(Rj) € [p(R,) - &;p(R;)]
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is essentially the whole of [p(Ri)—e,M]. Therefore, almost all agents consume less than

e e mp(R{)—e. . This.is in contradiction with feasibility, since the endowment per capita is equal

to M.
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