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ABSTRACT

This paper examines the extent to which the implications of strategic behavior can
differ from those of non-strategic behavior, even when attention is restricted to
examining memoriless Markovian solutions in either case. The framework employed is
that of the dominant paradigm of dynamic economics, the neoclasical aggregative
growth model. This model has been widely utilized in the literature; yet investigation
has been conducted almost exclusively in an (implicitly competitive

representative-agent /social planner framework, with analysis focussing on the Markovian

solutions to the resulting dynamic programming problem. As is well known, such
solutions may be uaranteed to exist under mild continuity conditions, and to possess
strong regularity (€.g. monotonicity and turnpike) properties under convexity

restrictions.

We compare these Markovian solutions to their game-theoretic analog
(Markov—Perfect equilibria, or MPE), which arise when agents in the model behave
strategically, rather than competitively. A series of robust examples and general
propositions show that these solutions may differ remarkably. Firsi, even under the
continuity and convexity assumptions that guarantee existence of well-behaved
Markovian solutions to the planner’s problem, MPE may fail to exist in pure OrI mixed
strategies (Example I). Second, despite the fact that attention is confined to
memoriless game equilibria — s0 that threat-sustained behavior is ruled out — the
properties of the two solutions may differ dramatically: all Markovian solutions may
generate regular dynamics, but the unique differentiable MPE could be chaotic or
cyclical (Example 11). Finally, while all Markovian solutions of the undiscounted
neoclassical model converge to the so—called "golden—rule," there are always MPE in
the corresponding game which result in multiple steady-states, with at least one
steady—state being larger than the golden-rule stock (Propositions 5.1 and 5.2). The
last set of results show, in particular, that not only is a "tragedy of the commons" not
inevitable even in memoriless equilibria, but that underconsumption and
overaccumulation are actually robust possibilities.






1. Introduction and Summary

The representative—-agent aggregative growth model constitutes what is undoubtedly
the single most dominant paradigm in dynamic economic analysis. This framework —
and its heterogeneous—agent equivalent where a social planner maximizes 2 weighted
sum of utilities subject to technological constraints — h:s: been found useful for
examining a number of issues in many fields including macroeconomics, monetary
economics, and finance. At least a partial reason for the widespread acceptance of this
framework! has been its analytic tractability. Existence of a Markovian optimal policy
to the first—best problem is assured under minimal continuity and compactness
assumptions. Under added convexity restrictions, this solution exhibits strong
qualitative properties: the implied state trajectory is monotone, and converges 0 2
steady-state from any initial state. Under only slightly stronger assumptions, this
steady—state may be shown to be unique.

In this paper, we examine the continued validity (in a qualitative sense) of these
properties when agents in the model behave strategically, rather than competitively as
they are implicitly assumed to do in the representative—agent /social planner framework.
More precisely, we consider the strategic analog of the aggregative growth paradigm

obtained by modelling it as a dynamic game? along the lines initiated by Lancaster

tWe refer to this framework alternatively as the representative-agent, social
planning, or first-best framework.

20ur use of the term "dynamic game" is somewhat narrow and refers specifically to
the deterministic analog of a stochastic game (cf. Parthasarathy, 1973).



(1973), and Levhari and Mirman (1980),3 and examine answers to the following
questions:

(i) Are the continuity and convexity conditions that guarantee the existence of
well-behaved Markovian solutions to the first-best problem, also sufficient to ensure the
existence of Markov-Perfect Equilibria (MPE)# to the corresponding dynamic game?

(i) When MPE do exist, do they possess qualitatively similar properties (€.8.,
monotonicity of the state trajectory) to Markovian solutions of the first—best problem?

(iii) What, if anything, can one say about limit points of the state trajectory in
an MPE, even if monotonicity does obtain? In particular, does thé externality in the
strategic formulation resulting from the presence of many players inevitably result in a
"tragedy of the commons," i.e., overexhaustion (or anderaccumulation) relative to the
first—best?

We believe these questions are important for a number of reasons. The
aggregative growth model is the canonical paradigm of dynamic economics, and analysis
of this model in various contexts has focussed almost exclusively on its Markovian
solution. It is of natural interest to inquire as to how different the positive properties
of the first—best problem and the corresponding game can be under the same

informational structure (in this case, Markovian).5 But more importantly, the implicit

3Similar parametrized models have also been studied by, among others, Mirman
(1979), Easwaran and Lewis (1985), Reinganum and Stokey (1985), and Cave (1987).
More general analyses, without functional-form restrictions, may be found in Benhabib
and Radner (19883' Dutta and Sundaram (1989, 1990), and Sundaram (1989).

)

sMarkov-Perfect Equilibria are (sub ame—perfect) equilibria in Markovian strategies.
These equilibria are the exact analogs oig the Markovian first-best solutions. A precise
definition, in the context of our model, is given in section 2. The study of
Markov—Perfect equilibria in various settings has recently been the focus of a number of
studies. See, e.g., Bernheim and Ray (1987), Hellwig and Leininger (1988), Maskin and
’(I‘irole) (1988), or Dutta and Sundaram (1989), or chapter 5 of Fudenberg and Tirole
1990). '

5We remark that the neoclassical growth paradigm offers the ideal framework for -
examining this question combining as it does a genuinely dynamical structure with its



assumption of competitive behavior underlying the first-best problem may simply be
inappropriate in some contexts where there are a few large agents. A substantial
degree of divergence in the positive properties of the respective solutions would, in such
cases, weaken the basis for using the social-planner framework.8

We develop a series of robust examples and an associated set of general
propositions to examine each of the questions listed above. Our main conclusion is
that a strategic formulation makes for a remarkable difference on each count from

assuming a social-planner framework.

(i) Existence of MPE. Although MPE constitute a natural set of equilibria to first
analyze in dynamic games, and indeed have been the only class of equilibria studied in
many applications, there are no known general set of sufficient conditions which
guarantee their existence. The most complete results along these lines have been
recently obtained by Duffie, et al (1989), and Mertens and Parthasarathy (1987).
Unfortunately, neither paper ensures that the equilibrium demonstrated to exist will be
Markovian although the basic model is Markovian in both cases; mOIeover, both require
transition probabilities to be norm—continuous in players’ actions, which precludes

applications to deterministic settings such as ours.

position as a widely used framework. The former property is important if MPE are

not to be completely uninteresting as regards equilibrium behavior, as they would be,
for example, if one studied a repeated game. ,

§We are not contending that the first—best solution may not be a good
approximation when the number of agents is "arge," i.e., that i will not arise as the
limit of the MPE as the number of players goes to infinity. While an important open
question, this issue is peripheral to the objectives of the paper where we wish to
compare the two Markovian solutions when the number of players is a given finite
number. More generally, our analysis may be interpreted as inquiring into the
distinction between "price-taking" and strategic behavior when agents may have
non-trivial market power.



In Section 3, Example 3.1, we present a finite horizon version of the aggregate
growth model satisfying the usual convexity and continuity properties that ensure
existence of a well-behaved Markovian first—best solution. Yet, we prove that there
are mo non—trivial MPE in this game.’ Indeed, non—trivial MPE fail to exist even in
mized-strategies

While our example is quite robust, we think that such non—existence issues are
much more generally true than it suggests. A main reason is that non—convexities
appear naturally in a best—response environment, even if the primitive model possesses
all of the desired convexity and regularity properties.8 Within the context of our
model, for example, the consequence of a current consumption choice by a player is not
the gross output tOmOITow, but rather this output net of the other players’ planned
consumption choices tOmMOITOW. Unless the latter are convex functions of tomorrow’s
stock, the environment faced by a player seeking a best-response will not be convex.

It should be noted thai the heterogeneity in agents’ preferences is crucial to our
counterexample. Elsewhere (see Dutta and Sundaram (1990), and Sundaram (1989)),
we have shown that under strict convexity assumptions and Inada conditions, the
symmelric dynamic game, in which all players have identical payoff structures, always
admits an MPE. This assumption of symmetry plays a critical role in circumventing
the problems arising from the observations of the previous paragraph. Unfortunately,
the methods of those papers areé quite special and do not extend to the non—symmetric

case.

TFor the definition of non-trivial, see subsection 2.5. As noted there, trivial
equilibria can easily be ruled out, by imposing appropriate conditions.

8Such nonconvexities cause problems in demonstrating existence in models other
than ours also. See, for example, Leininger (1986), or Bernheim and Ray (1983, 1987),
for a discussion of the difficulties this creates in models of altruistic growth.



Finally, it is important to distinguish our example from those in the literature on
the non—existence of consistent plans (for instance, Peleg and Yaari (1973), or Hellwig
and Leininger (1988); see also Fudenberg and Tirole (1990, ch. 5)). The latter class of
examples deals with finite-horizon games of perfect information. Thus, backward
induction reveals the (unique) MPE if one exists. Non-existence is typically obtained
by constructing the game in such a way that the optimization problem resulting from
backward induction facing the first player (or one of the earlier players) fails to possess
a maximum. In contrast, ours is a simulianeous-move game, SO that proving
non—existence requires us to show the absence of a fized-point of the best-response
map. It is all the more important to emphasize, therefore, that this failure to possess
a fixed—point is obtained in a convez primitive model with time—separable preferences.
(i) State Dynamics. One of the most striking conclusions of the neoclassical growth
model is the extreme regularity of stock behavior over time, with monotonic growth or
decline occurring from every initial state. In Dutta and Sundaram (1989), we
demonstrated that if all players in the game had strictly concave payoff functions that
moreover depended only on own consumption levels (we call this a "strict neoclassical
payoff structure"), a weaker version of this property would continue to hold in any
MPE: namely, the sequence of stock levels from any initial state, would eventually
(i.e., within a finite number of periods) become monotone. In section 4, we reexamine
this issue under a more general class of preferences. Specifically, in our example,
players’ utility functions depend not only on (own) current consumption but also
incorporate a kind of "wealth effect" through dependence on the size of the current

stock.? This example has the feature that for each parameter value (in an interval of

9Strictly speaking, this assumption represents a departure from the "classical"
traidition that we adhere to in the other examples, where payoffs depend only on own
consumption. (We note, however, that many papers in the literature on multisectional
growth models have utilized payoffs that are defined directly on the space of stocks
rather than on consumption. See, e.g., Benhabib and Nishimura, 1985.) Within the
context of our model, several justifications may be given for such an assumption.



values under consideration), all first—best solutions display very regular behavior: the
stock sequence from any initial state is monotone and converges to a unique
steady-state independent of the value of the. initial state. Moreover, for each
parameter value the corresponding dynamic game possesses a differentiable MPE that is
essentially (in a sense made clear in Appendix II) the unique differentiable MPE. Yet,
as the parameter ranges Over the interval of feasible values, the dynamical system
determining the state trajectory in this MPE displays an astonishing range of possible
behavior, including cycles and chaos.

It is worth distinguishing the content of this example from the (considerably more
general) studies of competitive cycles or chaos in multisectoral optimal growth models
that have been undertaken in the literature (e.g., Benhabib and Nishimura (1985), or
Boldrin and Montrucchio (1986)). In those models, it is the Markovian first—best
solutions themselves that exhibit erratic state trajectories. In sharp contrast, first—best
dynamics in our example are very regular; indeed, the assumptions that typically drive
erratic state dynamics in those models, such as appropriate substitutability conditions
across sectors, are all absent in our example. Evidently, then, it is the fact of
strategic interaction — or, more generally, the fact that best-response environments
inherit properties in equilibrium that are not possessed by the primitive model — that
drives our results.

(iii) Asymptotics. It is commonly believed that in models such as the ones we
consider, the externality resulting in the strategic formulation from the presence of
many agents will lead to eventual underaccumulation relative to the first-best solutions,
i.e., will result in a "tragedy of the commons." Parametrized models studied in the

literature (e.g., Lancaster (1973), Levhari and Mirman (1980)) have appeared to

Think of the natural-resource—extraction interpretation of our framework, and suppose
that it is "easier" to extract from a larger stock.



vindicate this view. In Dutta and Sundaram (1989), we examined the validity of this
claim in a general convex model with a strictly neoclassical payoff structure. We
proved that a "tragedy" would always obtain under apparently weak conditions on the
MPE; yet, as we showed through an example, it was possible these conditions could be
violated, and indeed the reverse phenomenon of under—consumption and
over—accumulation could actually occur under an MPE. The important point to
emphasize here, as in the sequel, is, of course, that these results are obtained for
memoriless strategies. It is quite straightforward to obtain perfect equilibria in which
"high" steady-states are forcibly sustained through the use of punishment deterrents,
but such conditioning on history is precluded‘in an MPE.

In section‘ 5, we strengthen this result considerably by demonstrating over
accumulation (and underconsumption) to be a robust possibility in the undiscounted
game under strict convexity, but with no other restrictions. Specifically, we show that
the undiscounted symmetric game always possesses an MPE which results in
overaccumulation from at least some initial states.’® Secondly, under a different (in
fact, complementary) set of conditions, we show that there are MPE under which the
sole non—zero steady—state is one resulting in overaccumulation with all intitial states

not leading to this steady-state converging monotonically to zero.

Some final remarks before proceeding to the body of the paper. Firstly, it appears
important to emphasize that our results in this paper are not being driven on account

of indeterminateness of game equilibria. They are, especially, not restatements of the

10We confine attention to the symmelric undiscounted game partly because it is the
only case for which ezistence of MPE is known (cf. Dutta and Sundaram, 1990), and
partly to simplify notation. Similar techniques to those we employ can be used to
show that if the general undiscounted game possesses MPE in a particular class of
strategies, it possesses one resulting in overaccumulation.



principle!! that "anything cén happen" in a game if players are sufficiently patient.
Secondly, while our examples are obviously specialized, we believe each example is
reflective of more general principles (notably, the non—convexities that arise naturally in
the best—response environment of a convex primitive model) that distinguishes strategic
equilibria from non-strategic solutions in a fundamental sense. Thirdly, and lastly, in
restricting attention to Markovian game-equilibria alone, we only strengthen our Ccase€;
for, admitting more complex, history—dependent strategies, would merely enlarge the

scope of strategic outcomes.
Section 2 discusses the basic framework and collects definitions. Sections 3, 4, and
5 deal with, respectively, existence, dynamics, and asymptotics of MPE. The

Appendices contain proofs omitted in the main body of the paper.

9. The Framework of Analysis

9.1 The Basic Model!?
Since all our examples deal with the 2-player situation, we will, for notational
convenience, confine ourselves to describing that case. A generic player will be indexed

by i. In all statements pertaining to i, j will denote the other player.

t1As in the Folk-Theorems of Fudenberg and Maskin (1986) for repeated games, Of
Abreu and Dutta (1989) for stochastic games.

19Fach of the following three sections deals with a variant of the model described
here. The required modifications of definitions and concepts to cover these variants is
usually immeidate, and is detailed wherever necessary. Results on existence and
characterization of MPE in the basic framework itself, under strict convexity
assumptions, may be found in our earlier work (Dutta and Sundaram (1989, 1990), and
Sundaram (1989)).
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There is a single good which may be consumed or invested. Conversion of
investment to output takes one period, and is accomplished through a production
function £: R 4 R n We make the standard neoclassical continuity and convexity
assumptions on f:

Assumption 1. f is continuous and increasing on R with £(0) = 0, and f(x) > 0 for x

> 0. Further, there is X > 0 such that f(x) 2 xaxg X.

Assumption 2. fis concave on R, differentiable on R, and satisfies limxlof' (x) >
1/6.

(Here 6 € (0, 1) refers to the common discount factor of the 2 players. See
below.) Observe that f maps [0, x] into itself for any x > X. Since consumption levels
will not be allowed to take on negative values, we may, wlog, restrict attention to
initial states in [0, X]. We define S = [0, X], and frequently refer to S as the state
space.

Time is discrete and continues forever. Periods are indexed by t = 0, 1, 2, ...
In each period t of this infinite horizon, the stock y, available at thé beginning of the
period is allocated between the players’ consumptions (clt’ c2t)’ and period-t
investment x;. (See subsection 2.2 below for details.) This investment is then
converted to the stock y, +1 available at the beginning of the mext period as yi 1 =
f(xt), and the process repeats itself.

For the most part, we assume that players’ utility depends only on their own

consumption levels.13 Thus, player i’s utility from consuming ¢, in period t is ui(cit)’

13In Section 4 alone, we use a formulation where the utility a player obtains depends
on his own consumption, and also on the stock level. That is, the period-t utiity of
player i is ui(cit’ yt). Under the separability assumption we utilize there, it is not too

difficult to show that the monotonicity properties of the first—best solution obtained
under Assumptions 1 to 3 extend to cover this case also. We do not present this
alternative formulation here, in order to avoid cluttering notation.
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where u;: R 4 R is player i’s ulility function. The usual neoclassical restrictions are

imposed on the functions u;:
Assumption 3. For each i, u, is a continuous, increasing, concave function on R +

Finally, we assume that both players discount the future by the same factor

§ € (0, 1). The tuple {8, £, uy, uy, 6} completes the description of the basic model.

2.9 Histories, Strategies, and Payoffs

In the interest of presenting a unified framework for defining strategies and payoffs
in both the game and the first-best framework, it is worthwhile explaining, at this
point, how the available stock y; at the beginning of a period gets allocated between
the consumption vector (Clt’ C2t) and investment x, = ¥y — Cyq ~ Cot- In the
first—best framework, this is achieved essentially by diktat: a social planner arrives at
this division through solving for a first-best outcome as detailed in subsection 2.3. In
the game, on the other hand, players pick strategies independently and simultaneously
that specify for each player his desired (or planned) consumption, denoted (say) a4 for
player i, out of the available stock Yy at each t. [The criteria used by players in
arriving at these strategy choices is detailed in subsection 2.4]. If these plans are
collectively feasible (a1t + a2y, < yt), then each player receives exactly his planned

amount, so player i’s consumption Cj; equals a4 If plans are collectively infeasible
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(au1t + a9 > yt),“then we simply assumel that each player simply receives half the

available stock (so ¢;; = yt/2, in this case).

2.9.1 Histories. A generic history upto period-t (a t-history, for short), denoted h,, is

a list of stock levels and (planned and actual) consumption levels for the 2 players in
each period upto (t -1), and the period-t opening stock. Let H, denote the set of all

possible t-histories h .

2.9.2 Strategies.!® A strategy T, for player i, specifies a planned consumption level for
i at each date t, given the history ht upto that point. Of special interest from the
point of view of this paper are Markovian strategies, which prescribe the same

consumption level at a state regardlesss of the history by which that state was reached:

Definition. A (stationary) Markovian strategy for i is a function g S -+ S that

satisfies g;(y) € [0, y] at all y € 5.
Observe that the set of all strategies (resp. Markovian strategies) is the same for

either player. Denote this common set by I (resp. ).

14Tt is important to emphasize that the apparent discontinuity of this allocation rule
plays no role in the sequel. A variety of other rules could be used without changing
our results, including, for instance, continuous ones such as splits proportional to plans
under infeasibility, or ones under which collective infeasibility is never an equilibrium
possibility (see footnote 17 for an example of such a rule). For reasons explained in

subsection 2.5, the precise choice of allocation rules is irrelevant to the purpose of this
paper.

t5The reader will note that the definition does not allow for mized-strategies. This
is of no relevance for sections 4 and 5 where pure—strategy MPE possessing the desired
properties are proved to exist. However, it s an important issue for our non—existence
result of section 3. Since this is the only point in the paper which mixed strategies
are used, the definition of mixed strategies and other relevant issues, is postponed to

Appendix 1.2, where non—existence in mixed—strategies in this example i established.
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Two pieces of terminology relating to Markovian strategy profiles will be especially
useful in the sequel. The savings function Y associated with a particular Markovian
profile (g 8o) 18 defined by ¥(y) = max {0,y - gl(y) - gz(y)} for y € S. Secondly,
a Markovian profile (g, 8o) will be called interior iff at ally 2 0, gl(y) + gz(y) €
[0, y]. An important observation stemming from these definitions and the monotonicity
of f is the following: from any initial state y € S, the strategy profile (g g2) will
result in a monotone sequence of states whenever the associated savings function is

non—decreasing on S.

2.9.3 Payoffs. Let 6 € (0, 1) be given. A strategy profile (7, 7r2) induces in the
obvious maner, for each integer t > 0 and from any initial state y € 5, 2 t—th period
actual consumption level for i (= 1, 2), and, hence, 2 t—th period utility level for i,
denoted u);(vrl, 12)(y). The total discounted reward Wi&(rl, 7r2)(y) for i, from the

intitial state y, under the profile (7r1, 7r2) and the discount factor §, is then given by
W5(7r m)(y) = 5% ab(my, o))
(T T\ = 24=0 i\Tp MV

9.3 The First—Best Solutions

Given 6 € (0, 1), the set of all (Pareto—) optimal payoffs possible from an
arbitrary initial state y € S, are precisely those arising from solutions to the following

problem18 as « ranges OVel [0, 1]:

(21) Max Wiiry, 1)) + (1 - Wy, 1))
(7"1"”2)

160bserve that in_the specification of the problem we allow the social planner 0
pick any pair (7r1, 1r2) ¢ 1 x 11, ie., including those that might specify collectively
infeasible plans at some states after some histories. This is clearly unnecessary, but,

writing the problem in this form enables notational simplicity.
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The following characteristics of the first-best problem are well-known and are offered

here without proof. Fix o € [0, 1]. Then:

Fact 1. Under Assumptions 1 and 3, there is always at least one Markovian strategy

profile (b}, hy) that solves (2.1) from any y € S.

Fact 2. Under Assumptions 1, 2, and 3:

(i) Any Markovian solution (hJ, h3) is interio, with, in fact, hj(y) + h5(y)
<yataly>D0

(ii) There is at least one Markovian solution whose associated savings
function is non—decreasing on S.

(iii) If v is strictly concave, the problem admits exactly one Markovian
solution, which, by (i), always generates 3 monotone state trajectory. In this case,
moreover, the sequence of states resulting from any non—zero initial state converges to

a "golden-tule" stock ¥ 5*, defined by y 5* = f(x 6*)’ where 6f’(x 5* = 1.

Summing up, Markovian first—best solutions are guaranteed to exist under fairly
weak conditions; to exhibit well-behaved dynamics under minimal convexity restrictions;

and to always converge to a golden-tule stock, independent of the value of « € [0, 1.

2.4 The Dynamic Game and MPE

In the dynamic game—theoretic formulation of the model, each player takes the
strategies of the other players as given and attempts to maximize his own discounted
total reward over the infinite horizon. Agents’ utilities in this formulation may
continue to depend on own consumption levels alone; nonetheless, since any player’s

consumption level in a period affects — via the level of investment that period — future
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stock levels, and hence future consumption and payoff possibilities of all agents, the
need for strategic behavior arises, giving rise t0 2 dynamic game. Indeed, it is
precisely this explicit recognition of the production externalities of consumption
decisions, that differentiates players in the game—theoretic formulation from those in the
competitive model.

To ease notation, we suppress explicit dependence on the discount factor 6 in
describing equilibria of the game. Also, since our ultimate purpose is to compare
Marovian equilibria of the game with Markovian first—best solutions, we avoid spurious
generality in the definitions, by focussing on Markovian strategies alone. It is
important to note (see Remark 1 below) that this causes no loss of strategic flexibility
in picking best-responses. Recall that T' denotes the set of all Markovian strategies
available to either player.

Definition. gl* ¢ T is a best-response (BR) of player 1 to g2* e Iif

Wl(gl*’ gz*)(Y)'Z Wl(gl’ gz*)(Y) VyesV g € L.
A best-response of player 2 10 gl* ¢ T is similarly defined.

Remark 1. The specification that the BR to a Markovian strategy itself be chosen
from T is mot a restriction. A standard argument from dynamic programming theory
shows that a Markovian best-response to a Markovian strategy continues 10 a
best—response in the space of all strategies, i.e., even if the responding player may
condition his actions on histories (indeed, even if the responding player may also

randomize).

Definition. A pair of Markovian strategies (g; gy) is 2 Nash eguilibrium (NE) to the

dynamic game if fori, j=1,2, and i t ) g is a BR to By
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Remark 2. By remark 1, a NE in Markovian strategies is a NE in the space of all
strategies. Indeed, even more is true. The memoriless character of Markovian
strategies implies that they are actually subgame-perfect in a strong sense. Hence, the
phrase Markov—Perfect Equilibrium (MPE). |

95 The Existence Problem Defined: Interior MPE

The alert reader will have observed that under our specification of the allocation
rule under infeasibility, and, indeed, under any rule in which the amount alloted a
player is an increasing function of his own bid, "trivial" equilibria always exist, i.e.,
equilibria which result in collectively infeasible plans at some state(s). [For instance, it
is immediate that the pair (gl, g2) specified by gl(y) = g2(y) =yatalyeSisan
MPE under all such rules.] On the other hand, it is always possible to pick allocation
rules under which infeasible plans at any state are mever an equilibrium possibility.!?
This excessive dependence of non-interior equilibria on specification of the allocation
rule, a rule which is not a part of the basic neoclassical model, renders them suspect
candidates for comparison with first-best solutions. An even stronger reason for
restricting attention to interior MPE is the implication of Fact 2 of subsection 2.3 that
any first-best solution (b7, hy) is strictly interior (ie., satisfies hi(y) + ho(y) < v at
all y > 0). The question naturally arises whether interior MPE also exist under the
same conditions, and it is this we refer to as the existence problem.

However, even strategies that constitute an interior MPE under one allocation rule,

may no longer remain S0 under another. Consequently, in proving non-existence, it

11The following affords an example: whenever a; + 35 > 7, then player i receives
[a.y/(ay; + ag)], J # 1. We note that a related rule has been employed in a different
context by Moulin (1984). See also Van Damme (1987, ch. 7.7).
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becomes necessary to show. that no interior MPE exist for any choice of infeasibility
allocation rules. It is this strong result that we obtain in the parametrized model of
Section 3.18 A few words on the procedure may be useful. If (gl, g2) is an interior
MPE to the game (under any allocation rule), it is clear that g remains player i’s BR

to 8y j # i, even when i is restricted to choosing a BR from I‘(gj) c T defined by

I'g;) = {g: S~ Slg(y) € [0, ¥ - gj(Y)] Vye S}

Restricting players’ BR choices in this manner yields a "generalized game" in the sense
of Debreu (1954). It now follows that if the generalized game fails to possess an MPE,
then there are mno interior MPE in the original game regardless of the choice of
allocation rule.

Finally, a matter of terminology. Since all the remaining sections of this paper
deal only with interior MPE, we drop the adjective minterior," and refer to these
simply as MPE. Thus, phrases such as "ynique MPE" should be understood as

"uynique interior MPE," or, more precisely, "unique MPE of the generalized game."

3. Non-Existence of MPE: Example I

In this section we examine the first of the 3 questions posed in the Introduction:
namely, the existence of (interior) MPE under convexity conditions guaranteeing
well-behaved Markovian first—best solutions. By the observation made above, it suffices
to demonstrate lack of interior MPE to the generalized game, and this is precisely the

route we take. In subsection 3.1, we present 2 finite-horizon example which admits no

18n particular, if an allocation rule such as the one in the previous footnote is used,

this will result in non—existence of any MPE, interior oI otherwise.
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interior MPE. In Appendix 1.2, this result is extended to show non-existence in

mixed-strategies also.

3.1 A Finite Horizon Game

3.1.0 Model Specification

(a) The Production Technology. We assume £ R, - R, is given by

f(x) = Kx, x € [0, K-l]

=1, otherwise.
where K satisfies 6K > 2. Although f does not meet all our assumptions, these
violations are inessential. Observe that we may take the state space S to be the unit

interval [0, 1].

b) The Utility Functions. We assume u, is given by

ul(c) =c¢ c20

and that uy = 4, where u is any strictly concave function satisfying Assumption 3 and

the Inada condition, u’(0) = +o .

The horizon of the model we consider T = 3. Periods are indexed by t = 0, 1, 2.
Since the horizon is finite, there is a need to consider non—stationary Markovian
strategies. Such a strategy, say for player i, is a sequence of functions g = {git}rf:é
such that git(Y) € [0, y] forall y € S. The interpretation is that git(Y) is the

specification of player i’s planned consumption at y at date t. The definitions of
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t—best solutions and MPE are amended in the obvious mannner, and are not

We note that under Assumptions

firs
detailed here.

1-3, Markovian strategies suffice 10

—best payoff vector.

obtain any desired first
hat in the last period (t = 2), play

we will assume t

ers split equally

For simplicity,
example proceeds in 2 steps. First, we

e MPE. Clearly, this MPE
MPE of the 3-period
s no MPE of

The presentation of the

any available stock.19
(essentially) uniqu

show that the 2-period game has an
ategies of the last 2 periods in any

must form the Markovian str
g the example, we show that there 1

game. As the second step completin

3-period game that takes these strategies as continuations.

the

31.1 The 2-period Game
The solution to the following

1-person problem involving player 2 plays an

important role in developing MPE of the 2-period game:

(39) Rl fuleg) + By — e}

es show that there is a unique solution h: § » S for this problem;
¢ function ¢, defined by Wy)
} > 0 at all y > 0; and tha

Gtandard techniqu
—y-h(y) fory€ S, is

that the associated saving
continuous and increasing on S, with Wy t there is a
* ¢ (0, 1] such that ¥(y) = K'-1 for all y > ¥*
he 2-period game (t = 1, 2). Tt is clear that the Markovian

e an MPE to this game if, and onl

unique y
Now consider t
y if:

strategies (811> g21) constitut

19This assumption is consistent with our infeasibility allocation rule. However,
ule which exhausted terminal stock in some prespecified ratios woul

almost any other T
also work as well, with appropriate modifications.
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(3.4) g, (¥) € it . (y)]{ui@i) + S - e — )}

fori=1,2 forally €S. On the other hand, given the linearity of uy, it is not too
difficult to see that any best-response of player 1 to g9y in the generalized 2-period

game must be of the bang-bang variety:

: -1
g,(y) = 0,if y — gy (y) < K

=y - 8y(¥) - K—l, otherwise.
This enables proving the following lemma (formal proof in Appendix L1):

Lemma 3.1. The unique2?0 Markovian equilibrium of the two period game is given by:

0, y ¢ y*
81 ={y-y* y> 7
(3.4)"
h(y) y ¢v*
821(Y) = h(y*) y > y*

Further, the associated equilibrium investment is ¢(y) on y < y* and a constant %(y*),

y > y*. Finally, the implied continuation values are

NStrictly speaking the equilibria are unique on [0, y*], i.e. all Markovian equilibria
have the properties (3.4) on (0, y*]. Since all of the subsequent analysis is on this
subset of the state space, this weaker result suffices for our -purposes. The piecework
linearity of f plays no role in this uniqueness, which obtains under any f satisfying
Assumptions 1 and 2.
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LKy(y) » y<¢¥
(3.5) v,() = [7 -
Y (5-y*) + 50KYy*), ¥ > ¥*
Vy(y) = u(ux)) + ol Kyl ¥ <7
— u(b(y*) + &l KM, ¥ > ¥

Remark. That these strategies form an MPE is quite clear from (3.3) - (3.4), and the
form of 1’s best response. That they are the (essentially) unique MPE strategies is
less clear, and is the content of the proof in Appendix I

The important point to note is that the convexity of the model has no implications
for the shape of the optimal response, h (and hence the implied investment ¢ which

may well be non—convex). We now exploit this observation.

3.1.2 The Three Period Game

Tt is readily seen that g, i = 1, 2 is part of an MPE for the game iff

(3.6) goly) € xE[Oa};:s_rgéJ(cy)] {u;(y - &¥) - x) + 6V,(f(x))}

J
It is immediate in this example from (3.5) that the continuation value Vy for
player 1 has exactly the same shape as ¥ on [0, y¥]. By suitably picking a
non—convex ¢, the resulting non—convexity in V1 will enable us to demonstrate our
non—-existence result. Consider a 9 as pictured in Figure 1. (In Appendix I, we give

an example of a u, meting our assumptions, that results in such a savings function.)
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1728Kgl+)

~

y y
If such a ¢ obtains, it can be shown that:

Lemma 3.2. There do not exist functions g, i = 1, 2, satisfying (3.6). Therefore,

the 3-period generalized game admits no MPE.

Proof. It is evident by the linearity of U, that playér 1’s optimal period-0 action as a
function of the net stock (y — Bo(y)) has the following form:

C
1

y - ga(y)
Z

Denote 1(;') by 2z > 0. Now pick some y > 0 and consider player 2’s period-0

optimization problem ifc; = 0:



23

e oty =20+ BVl

Standard arguments using the strict concavity of u show that the correspondence of
maximizers (denoted ¢) to this problem is non—decreasing on S: y, y° € S and y > Yy’
5 x » x’ for any x € §(y), x* € $(y’). Moreover, u’(0) = o implies that 0 < x <y
for all x € ¢(y). Let 8% = {y € S|d(y) < z < y}. It is routine to check that

S* + ¢. We now show that there are no MPE strategies from y € S*.

Consider any such y. It cannot be the case in an MPE that player 1’s period—0
consumption ¢ at y is 0. For then, player 2’s period-0 consumption is ¢y =¥ — ¥
for some x € ¢(y). But this implies y — ¢y = ¥ < ;, so player 1’s optimal action is
¢ =X > 0, a contradiction. Similarly Cq cannot be 0, for this is possible only if
¢, =7 which is an inoptimal response against ¢y = 0 since y > ; So ¢y, €g > 0.
But ¢; > 0 is possible in a best-response iff T Cop In that case, ¢y > 0 and
u’(0) = o implies that in a best-tesponse against ¢; < ¥, player 2’s action would
satisfy c; + Gy < y, a contradiction again. Thus, ¢;, Co > 0 is also impossible,
proving the lemma.

Q.E.D.

Remark. It should be emphasized that although the linearity of player 1’s returns
make the computations very €asy, that restriction is in no way essential to the

argument. In general, continuation values V, are going to be mon—concave functions.

-

Then, in period 0, for a fixed y, we look for (cl*, c2*) s.t.

(3.8 c.*¥ € argmax { w(c.) + &6V.[k(y -cF - c.]}
) 1 CiE[O, y_cJ*] 11 1 ) 1
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Equation (3.8) defines a finite—dimensional fixed point problem, but with

non—concave objective functions. Hence, the non-existence problem.

4. Irregular dynamics in _the MPE: Example 11

We now turn to the second object of comparison between Markovian first—best
solutions and MPE of the corresponding dynamic game, viz. the extent of regularity
exhibited by the state trajectory in either case. The example we present here has 2
symmetric agents whose utility functions depend on (own) consumption and also the
size of the current stock, i.e., incorporate a kind of "wealth effect." This example has
the characteristic that for each possible value of the parameter (in an interval of values
under consideration), the state trajectory in any first—best solution 1s extremely well
behaved: from any non—z€ro initial state the sequence oOf stocks converges
monotonically to a unique steady state. Further, for each value of the parameter, the
corresponding game has a differentiable MPE that is also essentially the unique
differentiable MPE in strictly interior?! strategies. Yet, in sharp contrast to the
regularity of first—best state dynamics, this MPE results in highly complex state

trajectories (including chaos) for an interval of parameter values.

4.1 Model Specification

We adopt the following specifications for the various functions and parameters
involved:

(a) Utility functions. The agents are presumed symmetric, i.e., to possess identical

utility functions and discount factors. We consider a family of utility functions ug

21By "strictly" interior, we mean here that the savings function ¢ satisfies Wy) € (O,
y)forallO<yeS.
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indexed by the common discount factor 6. (u 5 is to be interpreted as the utility
function under consideration when the discount factor is 6.) Each agent’s instantaneous
depends on his own current consumption ¢, and the size of the current stock y, and is

given by

u6(c, y)=c¢ + Ab(y)

where for each 6, Ag R 4 R + is a strictly increasing ¢! function. In order to
compute the MPE of the game, an exact specification of A6() will be provided shortly.

We note that first—best solutions will be independent of the form of this specification.

(b) Discount factors. The common discount factor 5 is allowed to take any value in

the interval [1/4, 1/2).

(c) The Production Function. The technology f: R 4 R N for converting investments

into future stocks is given by:

4x , x € [0, 1/4]
i) = { 1 x> 1/4.

Since f maps [0, X] into itself for any x 2 1, we may, wlog, take the state space S to

be the unit interval [0, 1].

4.2 The First—Best Solutions

It is quite straightforward to see that in any first—best solution, the consumption

policy functions (hf, hg) must satisfy
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, yefo,1/4
, y > 1/4

6 by — |
hy(y) + ho(y) {y—l 1

The argument establishing this runs as follows. Suppose the policies prescribed a
strictly positive total consumption at some y £ 1/4. Consider transferring a "small"
amount (say, ¢ > 0) of current total consumption to ‘current investment. This results
in next period’s stock being 4e larger, sO that total consumption mext period can be
increased by 4¢, while maintaining the same continuation policy. Since Ug is linear in
c and increasing in y, and since 6 > 1/4, this alternative policy results in a strict
improvement of the objective from the initial state y. Therefore, total consumption
cannot be positive from any y < 1/4. Exactly the same argument establishes that
investment from any y > 1/4 must be at least 1/4, and, therefore, equal to 1/4. The
claim follows.

Observe that in any first—best solution, the sequence of stocks grows from any
y > 0 until it hits y* = 1, and then remains there forever, establishing regularity of

first—best dynamics.

4.3 Dynamics under the MPE

We now adopt a specific form for the functions A b() to demonstrate our claim
that MPE state dynamics can differ drastically from first—best dynamics. It should be
clear, however, that this is being done for the purposes of illustration, and that the
validity of the reasoning goes beyond the example. Indeed, even within the example, a
wide variety of other dynamical systems can be obtained as MPE, as explained in
Appendix IL

For now, let Qs = (1/26 - 1), and let Aé(-) be specified by:

M) = 5 Qe v S Se /a1
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Note that Q5 > 0 for all 5e [1/4, 1/2), s0 A b(') is indeed increasing on S for each 6.
In Appendix II, we show that for each & € [1/4, 1/2), the dynamic game with
discount factor & admits a differentiable MPE in interior strategies. This MPE is,
moreover, essentially unique (in a sense explained in Appendix 1) for 6 € [1/4, 1/3]
and is almost so for & € (1/3, 1/2). In addition, it is symmetric: the 2 players have

the same consumption policy function gg given by

gdy) = (1 - 1/48)y + Ay) » ¥y €S

Consequently, the savings function ¥ in this MPE is:

poy) = ¥ - 2845)
= (1/26 - 1) 7 = 2249
= Qg1 - ¥)

Since y(1-y) ¢ 1/4 for all y €S, and 62 1/4, so 1/16(37) < 1/4 for all y € S.
Therefore, from any initial state yg > 0, the sequence of stocks {yt} evolves according

to

Y41 = 4Qu,(1 - yg)-

ie, y, 18 just the t-th iterate of the famous quadratic (or logistic) map Fﬂ(y) =
py(l-y), where g = 4AQ4 As is well known, this map exhibits a surprising range of
dynamic behavior for values of p mear 4 (see, for instance, Devaney, 1989) including -

chaos for many values of p (eg, b =14 which corresponds to § = 1/4).



28

5. Asymptotics in the MPE

We now turn to the third and last of the questions posed in the Introduction:
how inevitable is a "tragedy of the commons" in an MPE? As in Dutta and
Sundaram (1989), we use the strict neoclassical framework to address this issue. In
subsection 5.3, we show that if £/(0) > 2, and the utility functions obey the Inada
conditions, the symmetric undiscounted game always pOSSESSES an MPE that does moi
result in a "tragedy." Subsection 5 4 adds to this result by showing that if £/(0) ¢ 2,
a somewhat stronger conclusion may be obtained, even without symmetry. Namely,
that thére are MPE in which from all initial states, the state path either converges to

0, or is overaccumulative.

5.1 Model Specification

(a) Utility Functions. The utility functions uy and u, are allowed to be any

pair of strictly concave functions meeting Assumption 3.

(b) The Production Function. The technology f is any strictly concave function

satisfying Assumptions 1 and 2.

Remark. The assumption of strict concavity of f 1s only a notation—simplifying device.
It ensures uniqueness of the "undiscounted golden-rule" (UGR), but plays no other role

in the sequel.

Also for notational simplicity, we normalize the upper—endpoint of S to unity, 8O
S = [0, 1]. Our focus in this section is on the undiscounted model (& = 1). Payoffs

for either player will be evaluated according to the long-—run average (LRA) criterion.2?

22Although the LRA criterion had well-known weaknesses compared with other
undiscounted criteria, such as the overtaking—criterion, it has been widely used in the
growth literature, and especially in game theory. This, combined with the simplicity of
the LRA as compared to other criteria, are the main reasons we retain it here.
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That is, if, in the notation of section 2, ug(gl, g2)(y) is player i's period-t payoff
under the strategies (gl, gz) from the initial state y, the LRA payoff from y under

(81> gz) for player i, denoted Wi(gl’ g2)(y), is given by
. 1 oI—1 t
Wi(ep, )3) = bmintr, | T Tizo %6 8)0) |

All relevant definitions from section 2 are modified in the obvious manner to cover this

case, and are not detailed here.

5.2 The First—Best Solutions

Under this specification, it is well-known that the state trajectory in any first—best
solution, converges, from any non—zero initial state, to the UGR y* defined by y* =
f(x*) where {’ (x*) = L. Assumption 2 ensures such an <* exists; the strict concavity

of f implies its uniqueness.

5.3 Underconsumption In the Symmetric Game: A General Proposition

In this subsection, we assume player—symmetric preferences (u1 = u2), where the
common utility function, denoted u, satisfies u’(0) = +o. We also assume f'(0) > 2.
Since our purpose in this subsection and the next is to examine the universal validity
of a "tragedy" in an MPE, we begin with a definition. Let yt(y) represent the t—th
period value of the state from the initial state y under a given strategy Dair (81> 8o)-
We say that (g, gz) leads to a "tragedy" from y if yt(y) is bounded away from the
UGR y* at a level strictly below it beyond some point in time; and that (g; 52) leads

to a "tragedy" if it leads to a "tragedy" from all y > 0. Formally:
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Definition. The MPE (87> g2) leads to a "tragedy" from ¥y if

- (5.1) limsupt_myt(y) < y*

If (5.1) holds from all y > 0, then we simply say that (g 8o) leads to a "tragedy."

WE now show that in the symmetric game, there is always at least one MPE that

does not lead to 2 "tragedy" from at least some initial states y:

B

Proposition 5.1. The symmetric game possesses at least one MPE (g, g2) such that

the resulting sequence of states yt(y) from at least some initial states y € S satisfies.

(5.2) liminf, ¥ t(y) > v*.

Remark. The bulk of the proof is devoted to showing that in the strategies we
construct as a candidate MPE, the responding player may, wlog, confine attention to
finding a BR from those strategies that always result in a monotone state path. But

for this complication, the proof is almost trivial.

Proof. In Dutta and Sundaram (1990), we show that the symmetric game possesses at
least one symmetric MPE (g, g)-22 This MPE possesses the following characteristics:
(1) the associated savings function ¢ is momnotone non—decreasing on S, and (i) the
LRA value to either player from y, denoted y), is a constant (= v, say) at all

y > 0.

23§ome additional assumptions are also required. See Dutta-Sundaram (1990) for
details.
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Property (i) implies that fory,y €S,iffy >y, then yt(y) yt(y ) for all t. Let
z = lim, yt(l) Then, z > lim, yt(y) for all y € S. Define xS = § by f(y - 2x(y))
—yforall yeS It follows easily from the definition of the LRA payoff that v =
u(x(z)).

There are 2 cases to comsider: (a) z 2 y*, in which case we are done, or (b) z <
y*. In case (b), we will show that there exists an alternative symmetric MPE (g%, g*)
such that (g*, g*) does mot lead to a "tragedy" from an interval of initial states. To
this end, define ;r by ;' > y* and u(u(;’)) — y. By the concavity of f such a ;r

exists. Now define g* by

g*(y) = g(y), v # y
= K(;’), Y= ;7

Let yt*(y) be the period—t value of the state from the initial state y under the
Markovian profile (g*, g*). By construction, yt*(y) y for all t. Hence, (g*, &%)
leads to overaccumulation from y and indeed from any y € S for which lim _)myt*(y) =
;r. [Observe that (g*, g*) gives rise t0 monotone state paths from each y, 50 this limit
is well-defined.] To complete the proof of the proposition, we now show that (g*, g%)
is an MPE.

Recall that v is the constant LRA payoff from any y > 0 in the MPE (g, g)- It
is easy to see that using g* against g* also yields an LRA payoff of v from any
y > 0. Since g and g* differ only at ;r, it evidently suffices to show now that there is
no strategy for the responding player (say, player 1) against g* that will yield him an
LRA payoff strictly greater that v from the initial state ;'
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The crucial step in establising this is the following. Each (not necessarily
Markovian) strategy 7 for player 1 in the generalized game results in a particular
sequence of states {yt} from ;r We show that there is no loss of generality in
restricting player 1 to using only those strategies that result in this sequence being
monotone. That there is 1o nmonotone" strategy that can do better against g* than
g* is simple 10 establish, completing the proof..

Since f is strictly increasing, and g* is a stationary Markovian strategy, we may
define the feasible set of LRA payoffs that player 1 may obtain from y~ directly on
the set of feasible state paths from ;r Let ¥ denote the set of all such paths, with

generic element Y:

g={Y={y}IVt20 ¥4~ f(y, - 8*(vy) — &)

~

c, € [0, y; — 8" Yo = v}

Let ¥(Y) denote the LRA payoff to player 1 from (the unique consumption path
corresponding to) Y € V. By definition, then, player 1 can obtain no more than V¥ in

an LRA BR to g* from ;r, where
= sup{AY)|Y € ¥}.

Now let \IIR, \IIT, and ‘IIM denote the respective subsets of ¥ in which y recurs

infinitely often (i.0.); in which {yt} follows a T—period cycle for T a positive integer;

and in which {y,} is monotone.

~

R = {Y e¥ly, =7V i.o.}

T [YeUlyp=vk=01L2]
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oM = {Ye¥ly,q 2V for all t, or

Vil <y for all t}

R T M

Finally, let v, v, V denote respectively the supremum OVer ‘IlR, \IIT, \IIM of ¥(+).

The following lemmata are €asy to establish:
Lemma 5.1. V* = A,

Lemma 5.2. ¥

il

SuUpp VT.

Lemma 5.3. M= u(«(;)) = v

Lemmata 5.1 and 5.3 are immediate consequences of the facts that g and g* differ
only at ;r, and (g, g) is an MPE. (For lemma 5.3, recall also that both (g*, g*) and
(g, g) generate monotone state paths.) To see lemma 5.2’s validity, note that for any
¢ > 0, there must exist {yt} =Y € ‘IIR, and integers m and n, m > 1, such that (i)
Y) 2 A - e/2, () ¥y = Ym+1 = ;r, but y, # ;r for n < t < m, and (iii) the
average payoff to player 1 between periods n and m (inclusive) is at least nY) - €/2.
Defining T = m — n DOW, We have VT > VR — ¢ Since € > 0 is arbitrary, SO VR <
sup I/T. The reverse inequality is, of course, immediate since \I!T C \IIR for all T.
This completes the proof by lemma 5.1.

These observations imply that 10 establish (g*, g*) is an MPE, it suffices t0 show
that v, the LRA value obtained by using g* against g*, satisfies v 2 VT for any T.

We prove this last step now. Simplify notation first by defining

(y) =y -gty) atally € S,
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ie., &(y) is simply the net stock facing player 1 at y. Pick any T > 2, and any

v ¢ vT. We shall show that v > ¥(Y).
s a T-period cycle of stocks {yO, s Y1)

of consumption levels (for the responding

Since Y € \IJT, so Y involve Let {c
Cp_ 1} denote the corresponding sequence

rt=0,1, .., T-,

player 1) in this cycle. By definition, yg = y, and fo

= E(yt) - f—l(yt+1),

where, of course, yp = V- Therefore, the total consumption over the cycle is

1) ¢, = Sy _gléty) - (5,7

_ ) - £6) + SEThEry - T oY)

e, for the last equality, we have used y, = y Y-

wher
[¢(y) - f_l(y)] is maximized at y = y, since y

Now note that, by construction,

_state consumption against g*. This now implies

guarantees the largest steady

Mo <1 [0 - 00 = Tg*(y)-

By the strict concavity of u, this translates to

5L u(e,) ¢ Tu(g"() = Tv
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But the LHS is just TY), so v 2 (Y) as desired. Since T and Y € o1 were

arbitrary, the proposition is proved.

Q.E.D.

54 A Second Proposition on Underconsumption

In this subsection, we replace the assumption that f-(0) > 2 with the
complementary assumption that f(0) € (1, 2]. The assumption that f-(0) > 1 is, of
course, made to ensure that the golden-rule y* is non-—zero. We also drop the
requirement that uy = Uy [Indeed, we do not even require that u, or u,y be concave,
but merely that they are continuous and increasing on R +.] Under these conditions,
we show that there are MPE under which the sole non—zero limit point of state paths

from any initial state is one resulting in overaccumulation.

Proposition 5.2. Under the conditions states above, there is an MPE (gl, g2) of the
undiscounted game, and a y € S, ¥ > y*, such that the resulting state path {yt(y)}

from any y € S converges either to 0 or to y.

Proof. Define z = max {f(1/2), y*}. (Recall § = [0, 1]). Let ¥ be any point in

(z, 1). Define the strategies (81> 89) by

g, () = 8(¥) =¥/2, ¥ #¥
= “(?)’ y = 5'-

where, as in subsection 5.3, «(y) satisfies iy — 2«(y)) = y- That (g;, 89) satisfies the
desired conditions is immediate since f(0) = 0. We show (gl, gz) is an MPE. Denote

by g the common function g; and g,.
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First note that since f is concave and f’ (‘0) <2, 50 f(y/2) < yforalye S,y #
0. Further, since y > z > £(1/2) 2 1(y/2) for any y € S, it now easily follows that no
matter what strategy is employed against g from any initial state y # y, the state path
converges to 0 monotonically. Consequently consumption by the player responding 1o g
also converges to 0, so that the only LRA payoff obtainable by the player responding
to g from any initial state y $7y,is ui(O). Since u; is increasing, it is also the case
that ui(u(ﬂ) > b (0), while deviating from the proposed strategies at y yields an LRA

payoff of ui(O) by the above arguments. Thus, (8 go) is an MPE.
Q.E.D.
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Appendix 1.1

Proof of Lemma 3.1. Suppose y € [0, y*]. It is easy to check that the strategies

)s form an equilibrium. Now suppose (gl,

given by (3.4 g2) is any Markovian

equilibrium. Pick an arbitrary y 2 0, and consider

Wy) = ¥ - &) — Bl

It is clear that ;ﬁ(y) < K. Suppose in fact that z/)(y) < KL Then, it must be the

case that y — éz(y) <K and gl(Y) =

P(y)-
On the other hand, if Wy)

But that in turn implies that 1/)(y)

= K—l, then (with gl(y) > 0), player 2 solves the

problem

Max {u(y - ¢y = %) + fu(3 5109}
x€[0, ¥—Co

The solution is Y(y — €5) < Wy) < kL. But by definition of equilibrium, Wy -

) = ¥(y). Hence, we have a contradiction.

We now show that Fig. 2 was "correct."

Proposition A.1. There is a strictly concave function wk, - R satisfying (A3) and

1/ (0) = w, such that

(A1) CkP)uy) s g T $ T
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(A.2) where Y(y) =  argmax {u(y - x) + 6u(%Kx)}
xe[0,y10 [0,K]

Proof. Consider e.g. u“(c) = ¢* for « € (0, 1). It is easy 10 check that if u = u,
then ¥(y) = ©(x)-y, where O(x) = [1 + %K(&K)l—“]—l. It then follows that ©(«)
increases in «. So, if u_ was the utility function, as « increases the first inequality is
satisfied for « € (0, ;) and the second for « € (;, 1). To see this is so, note that we

need to show
(A.3) Lke? <1+ 1K (K)' ™, « € (0, %).

At « = 0, this inequality is satisfied if %b"Kz(&—l) < 1, which of course holds for all &

€ (0, 1). On the other hand, the claim is that
(A.4) lke? > 1+ k()™ « € (x, 1)

At « = 1, this inequality is satisfied if (K8 - K > 2. Recall that the
productivity condition is K§ > 2. So suppose instead that K satisfies this stronger
condition, K6 > y 2+K . Then, (A.4) is established.

Now suppose «’ € (0, «), x”” € (x, 1) and

’

(A5) () = {c , ce€lo,c]

&+ B celc€)

Claim 1. There is ¢ > 0, s.t. for every ce(0, £, uis CO, c! except at ¢ and

strictly concave, with u’(0) = o, for an appropriate choice of .
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Proof. For every choice of €, there is clearly a f3 such that u is CO. Clearly, it is C1
except at ¢, and u’(c) = w. Note that the ratio of the slopes of u_, E—:—,— & L,
as ¢ | 0. So, there is £ > 0 such that a'c"l"l > tx"cm”—I’ c € [0, ¢. Pick any c
€ (0, £). The claim is proved.

Consider such a utility function. As ¢ | 0, clearly its optimal investment policy
uniformly approaches ©(x’’)y. But for any ¢ > 0, clearly on an initial segment, ¥(y)
= O(x’)y.

For an appropriate "small" choice of ¢, the associated ¢ is initially flatter that

f 1(y) and eventually sharper. It is also that the intersection of the two functions is

unique. The proposition is proved.
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Appendix 1.2

We show here that Markovian equilibria in randomized straﬁtegies also fail to exist
in the example of section 3. We begin with some definitions and notation. Since we
are only concerned here with the example, our definitions are’ tailored specifically for
this case.

For any measurable set X C R, let P(X) denote the set of all probability measures

on (the Borel subsets of) X. For any p € P(X), supp. 4 will denote the support of p.

Definition 1: A Markovian mixed-strategy for player i is a pair (7r , 1) such that for
each t = 0, 1, 1ri: S - P(S) is a measurable function satisfying supp. 7 (y) c [0, y] for
all y € S.

Let m = (w?, 7%) denote a generic Markovian strategy for player i.

Definition 2: A pair of Markovian strategies (7rl, 7rz) is said to be interior if for
t=0,1,and all y € 5, a1+a2<yfora,11a € supp. 7r(y) i=1,2

That is, a pair of Markovian strateiges is interior if the realized planned actions
are collectively feasible at y wp 1, at all y and for all t.

Players are assumed to use the expected utility criterion to evaluate payoffs from
mixed strategies. Definitions of MPE and interior MPE are immediate and not

detailed here. We are now ready for:

Proposition 1.2: There exists 10 interior mixed-strategy MPE in the game of section 3.

Proof: We will show that any interior mixed—strategy MPE is also a pure strategy
MPE, i.e., in any mixed-strategy MPE it must be the case that at all y and t, 7r§(y)

has 1-point support for both i. Since section 3 has established the impossibility of a
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pure strategy MPE, we will be done. For expositional ease we drop the word
"interior" from now on.

So let (7y, 7o) be an MPE. Consider period 1. For each y € S, define ai(y) by
ai(y) = inf {a|supp. r%(y) c [0, a]}. It is immediate from the definition of interiority
that

(1.6) a,(y) + ao(y) ¢ ¥ for all y € S.

Since (7r1, 7r2) is an MPE, so 7% is a BR to w} from each y € S in the 2-period game

beginning at period 1. Therefore, at any y € S, each ¢, € Supp. r%(y) solves:

(L) 0 {ule) + 6 [ u(glly = ¢y = &) rhyidep) |

Since u is strictly concave, and f is concave and increasing, the RHS of (1.7) is easily
seen to be strictly concave in co, and hence to possess a unique maximum. But this
implies w%(y) has 1-;point support for each y € S, and is therefore, equivalent to a pure
strategy, say géz S 5 S. From subsection 3.1.1, player 2 has a unique BR to each
pure strategy of player 2 in this subgame. Therefore, w}(y) also has 1-point support
at each y € S, so that, in fact, (wi, 7r:12) is simply the MPE (gi, gé) of subsection
3.1.1.

Thus, in the MPE (1rl, 1rz), continuation values after period 0 are simply those
given by equations 3.5 of lemma 3.1. Now note that player 2’s value in this
continuation is concave (in fact, strictly concave on [0, y*]), so that an identical
argument to that above now establishes that rg is equivalent to a pure—-strategy, say
gg: S 5 S. Once again from each y € S, each element ¢; € SuUpp- r(l)(y) must be a

pure strategy maximizer for player 1, given that continuation values follow the
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equations (3.5). But for any y such that the net stock y — g2(y) # z, player 1 has a
unique pure-strategy maximizer from figure 3.2. Thus, at all such y, V. (y) has 1-point
support. It remains only to show that for y such that y - g2(y) = gz also, player 1
must be using a pure strategy.

Suppose this were not the case for some y. Note that player 1's BR to net stocks
y - g2(y) below z is to consume everythmg, while the unique BR for net stocks above
; is to consume nothing. At net stocks of z, either action is optimal, and infact
constitute the only optimal actions (cf. figure 3. 2). Therefore, if r‘i(’) does not have
1-point support, it must be the case that 7rl(§) 0 wp p and wl(-) =z wp (1 - P)

for some p € (0, 1). Thus from y in the MPE (7r1, 7r2), player 2’s value is:

(L8) uy(80() + AoV, (i(z)) + (1 = PIV5(0)]

Given u, strictly concave and u2’(0) — + o, it is now immediate that (7y, o)
cannot be an MPE since player 2 would prefer to give up a little consumption DOW
rather than accept a continuation value of 0 with positive probability. For supppose,
player 2 consumed gg(ﬂ _ ¢ for some small e > 0 at y. Player 1's BR to the new
net stock ¥ - gg(ﬂ +e( =7, gay) is to consume nothing, so that this strategy has

worth

(L9) w(g)®) - & + Vo(iF )

By the Inada conditions and the strict concavity of U and Vo it is easily seen that
for sufficiently small € > 0, (1.9) strictly dominates (1.8).
Thus, (7r1, 1r2) must be a pure strategy equilibrium. By section 3, no such MPE

exists.
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Appendix 1Y

Let § € [1/4, 1/3] be given. In what follows, we Suppress dependence on § to €ase
notation.

Let (8 gy) be 2 differentiable MPE of the dynamic game in strictly interior
strategies. Let ¢ and y* denote respectively the saving functions under (g, g2) and

(g, g). We will show the following:

(i) On the set Sg* [0, 1/26 — 1], we must have g; = 8y = &

(i) For all y € S, the savings functions ¥ and ¢* satisfy f(y(y)) = 49(y) € S 6*’
H9*()) = WG € S
By (ii), S 6* is clearly the relevant set for dynamic analysis. Therefore, by (i), the
essential uniqueness of (g, g) is established. Note that S 5* 40, 1] as 6| 1/4, so that
in the limit full uniqueness of (g, g) is obtained.

[For 6 € (1/3, 1/2), a weaker version of the uniqueness result holds. Let Z be the
image of S under foy in the MPE (89, gz). Identical arguments that we use€ to prove
(i) will establish that g = 89 = g on Z.]

Finally, we will show that (g, g) is indeed an MPE of the game, completing the
proof.

The proof of (i) and (ii) is in 2 steps. First we show that on Z, the image of
foy), we must have g, = B9 = & so that ¥ = ¢* on Z. Then we show that for § €
[1/4, 1/3], f(¢(y)) € 2 for all y € S only if S(S* c 7. Since 9 and ¢* agree on 7, this
completes the proof.

Pick any y € S, and let (i) x= (y), and (i) X = W(i(x)). Cleatly, for j = 1, 2,

x solves

Max {5 @) - x A0 - g + ) = }
x€[0, y —8;(y)]
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so that, by interiority of the solution, x satisfies:

(A.2.1) 41+ 41 - gj’(f(;{)) + ()] = 0
or
(A.2.2) gj'(f(;)) — (1 - 1/48) + M ()

Notice that since 9 is continuous and 9(0) = 0, so Z is an interval [0, a]. By (A.2.2),

and since gj(O) = 0, the fundamental theorem of calculus yields:
(A.2.3) gj(z) = (1 - 1/46)z + Mz), z € Z,

ie., g = 89 = g.on 7. Therefore, ¥ = ¢* on Z, or Wz) = (%—5 — 1)z(1 - z), for
z € Z.

Next, we claim that Z D S 5*. To see this note first that we must have 1/2 € Z.
For suppose Z = [0, a] with a < 1/2. Then, f(9(a)) = 4a(l - a)(%—5 — 1) > a since §
< 1/3, or f(Y(a)) ¢ Z, which contradicts the definition of Z. But if 1/2 € Z, then
f(y(1/2)) € Z, or 4(%—5 - 1)1/4 = (%—5 ~1)€Z,s0%2) S5 as claimed.

Since (8y, g2) coincides with (g, g) on Z, so ¢ and ¥* coincide on Z (hence, on
S 6*)’ establishing (ii).

Finally, to prove that (g, g) is actually an MPE, it is easy to show through direct
calculation that terminating the game at any point, deviating, or continuing along g all
yield the player making a best-response t0 g, exactly the same value which at a state
y is izy

As a last point, we note that a variety of other MPE dynamics could have been
generated by using alternative specifications for A(+). To wit, any ¢! increasing

function A: R +° R + that satisfies
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() 201 - 1/48)y + 22(7)] € (0,y) Yy>20
and (i) [(1/26 - 1)y — 2X(y)] € (0, 1/4) Vy >0

generates a differentiable MPE (g, g) via
gly) = (1 - 1/48)y + Ay), ¥ € S.

This result may be proved by direct calculation.
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