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Abstract. Although many theorems have been proved on the existence of competitive equilib-
rium in production economies with an infinite set of goods and a finite set of consumers, nearly all
suffer from a major defect. Their consumption possibility sets are required to equal the positive
orthant. This rules out trade in personal services and it does not allow for substitutions between
goods on the subsistence boundary. We show both equilibrium existence and core equivalence for
economies with production and general consumption sets.

Our method of attack is similar to that introduced by Peleg and Yaari (1970). We first show
our economy has a compact core. We then consider the set of equal treatment allocations in the
core of replica economies, which is also non-empty and compact. As the equal treatment cores
are nested, they have an intersection. Take an allocation in the intersection and separate the set
of weakly preferred trades from zero. We first use prices in ba, and then modify them to obtain
a price vector in £ that still separates. This is our equilibrium price vector. Our proof also
shows that any allocation in the core of every replica economy must be an equilibrium. Standard
arguments show that the converse is true, yielding core equivalence.
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1. Introduction

Many theorems have been proved on the existence of competitive equilibrium with an
infinite set of goods and a finite set of consumers since the path-breaking papers of Peleg and
- Yaari (1970) and Bewley (1972). Many of these theorems also allow for production. However,

nearly all suffer from a major defect. Their consumption possibility sets are required to equal
the positive orthant. See Magill (1981), Aliprantis and Brown (1983), Jones (1984), Mas-
Collel (1986), Yannelis and Zame (1986), Zame (1987), and many others. An exception is
Back (1988). Back describes his consumption set as lying in the positive orthant. However,
all that he really requires is that the consumption set have a finite lower bound. Then moving
_the origin to this lower bound puts the consumption set in the positive orthant. What must
be avoided is the requirement that a lower bound lie in the consumption set. The relationship
between our models, which are not equivalent, is discussed in the conclusion. A consumption
set which is equal to the positive orthant has two major inadequacies. First, it does not allow
trade in personal services, even when production is absent and a fortiori it does not allow for
the use of labor services in production. Second, it does not allow for substitutions between

goods on the subsistence boundary of the possible consumption sets.

The need to consider economies with an infinite set of goods arises in the study of
economies which do not have a definite termination date. It may be reasonable to suppose
that an infinity of goods for delivery on one date belong to a compact space which can
be adequately approximated by a finite subset of goods. However, if we wish to deal with
an economy which has an indefinite or infinite horizon, this approximation is not available.
Goods for delivery at different dates must be regarded as different goods. It was a major
contribution of Value and Capital (Hicks, 1939) to provide a full-scale analysis of an economy
in which this fact is properly recognized. Then, if the horizon is infinite, the number of goods
must be infinite, even when deliveries are scheduled at discrete intervals. The infinity of goods
must be dealt with simultaneously since the market is analyzed as though all trades occur

at the beginning of time. This is a limiting form of the futures economy of Hicks. When



uncertainty is introduced in the manner of Debreu (1959) by also distinguishing goods by
the states of the world in which they are delivered, the sets of possible future states in each
period must be foreseen. It may be possible to do with only a finite number of states of
the world in each period, but to give an infinite horizon a finite approximation is difficult
unless an arbitrary truncation of time is used with goods in the terminal period valued in

an arbitrary way.

Our method of attack is similar to that used by Peleg and Yaari (1970) for an exchange
economy. However, unlike the generalizations of Aliprantis, Brown and Burkinshaw (1987),
our results apply not only to the case of an economy with production, but also with trade
in a variety of labor services. Their method of proof is based on a theorem of Scarf on the
nonemptiness of the core. Scarf’s theorem can be used to show the equal treatment core
of every replica economy is non-empty. Peleg and Yaari then show that any point in the
intersection of these cores is an equilibrium. In contrast to Back (1988), this approach has
the advantage of proving a core equivalence property. An allocation is an equilibrium if and
only if it is in the equal treatment core of every replica of the economy. By modifying Peleg
and Yaari’s methods, we are able to avoid interiority or properness conditions, which are not

appropriate in our infinite horizon setting.!

The proof of existence of equilibrium proceeds in several steps. We first show our economy
has a core. Moreover, the core is compact. We then consider equal treatment allocations
in the core of replica economies. Each of these is also non-empty and compact. These
equal treatment cores are nested, so they have an intersection. The final step is to show
that all allocations in the intersection are in fact equilibria. The prices are found by weakly
separating the set of weakly preferred trades from zero. We first separate with prices in
ba, and then modify these to separate with prices in £!. This is our candidate equilibrium

price vector. The last step of the proof is to show that the candidate price vector yields an

1 Aliprantis, Brown and Burkinshaw find that our preference assumptions are incompatible with uniform
properness (1989, p. 174), while Back (1988) finds that Inada conditions on utility can generate improper
preferences on £°°.



equilibrium.
In the course of proving the existence of equilibrium we have shown that any allocation
in the equal treatment core of every replica economy must be an equilibrium. Standard

arguments show that the converse is true, yielding core equivalence.

In Section Two, we set up the equilibrium model. Section Three shows that core alloca-
tions exist, and in Section Four we show that the intersection of the cores of replica economies
is non-empty. Section Five then proves the main results of the paper. Any allocation that
is in the equal treatment core of every replica is in fact an equilibrium. The existence of
equilibria is an immediate corollary. In fact, an allocation is an equilibrium if and only if it
is in the equal treatment core of every replica. Concluding remarks are in Section Six. Basic
facts about the space ba of bounded finitely additive measures (or charges) are presented in

the Appendix.

2. The Model

The commodity space s™ is the Cartesian product [],2, R"(¢), endowed with the product
topology where R"(t) has the norm topology (Berge, 1963, p. 78). If z € s" then z = [[ o, 21,
and z; € R"(t) represents quantities of goods in period t. We will use z > w to mean z;; > wy
for all goods ¢ and times ¢. The notation z > w means z > w and there is a t with z; > w;;

for all 2.

There are a finite number of traders, 1,..., H. The set of possible net trades for the
h** trader in period t is CF. The set of net trades for the A" trader over the infinite
horizon is C* C s™ where C* = [[2, Ck. We do not place any additional restrictions
on the growth of conceivable consumption sequences, even though the technology may be
bounded. In a decentralized economy the consumer does not take into account aggregate
technical possibilities when choosing a consumption sequence, but rather looks at what is
affordable. Any bound on growth of the optimal éonsumption path must come out of the

budget constraint.



In our model any endowments of goods are included in the specification of the consump-
tion set. For w! € CF, w! < 0 means that the quantity —w! of the i good is provided
by the h** consumer at time ¢ and w > 0 means that the quantity wk of the i** good is
received by the h** consumer at time t. For C} the h** consumer will be able to provide any
initial stocks of goods which he may possess, including produced goods. However, for C}

with ¢ > 0 the A** consumer offers only labor services and other unproduced goods.

A binary relation @ is said to be irreflexive if 2Q)z does not hold for any z. A relation is
said to be antisymmetric if zQy implies not yQz, and it is transitive if zQy and yQ)z implies
z@Qz. Note that a transitive, irreflexive relation is automatically antisymmetric. There is an

irreflexive and transitive relation P* of strict preference defined on C* and a correspondence,

also denoted by P", defined on C* by P*(z) = {w : w € C* and wP"z}.

The production setis Y = Y oo, ¥; where ¥; C {0} x- - -x {0} xR™ (t—1)xR" (t)x {0} x- - -.
The set Y; represents the possibilities of producing goods belonging to the t* period with
goods belonging to the (t—1)** period. Inputs are negative numbers and outputs are positive
numbers. Let Y; be the projection of Y; into the coordinate subspace R"(t — 1) x R"(%).
Then (u;_q1,v;) € Y; implies us—1 < 0 and v; > 0. The inputs and outputs of the production
sector include the capital stocks. These stocks do not appear in the consumer net trading
sets C* except for t = 0. In an economy with certainty, the ownership of capital stocks is
inessential. Only the value of investment is significant for the consumer and the sequence of
investment values over time is implicit in the pattern of consumption.

The economy £ is given by the list {¥,C*,...,C*, P',..., P¥}. Let P*(w) denote the
strictly preferred set to w. If z € P*(w), the trade w is less desirable to the trader than the
trade z. A lower section of the correspondence f : X — {subsets of X}, at a point y € X is
the set {z : y € f(z)}. The graph of f is the set {(y,2) : z € f(y)}. We define C = Y1 C*,
Let £ = {z € s™ : # is bounded over ¢} and £ = {z € s" : > °  |%] is finite} where |- |
is any norm on R". Define the preference relation R* on C* by z*R*y* if and only if not
yh PRzt We will say that z* is indifferent with y*, written " I*y*, if y*RPz"? and =" RPy".
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Recall that z is an extreme point of a convex set C if there do not exist distinct 2/, 2" € C
and o, 0 < a < 1 with & = aa’+(1—a)z". f I is asubset of {1,..., H} definez; = Y, ., z".
The economy is strongly irreducible if whenever I, I, is a non-trivial partition of {1,..., H},
and zj, + zp, € Y, there are z;, + z;, € Y with 2"Phgh for h € I, and for h € I,, 2" € C*
 when z" is not an extreme point of C* and z* € aC*? for some:a > 0 when z” is an extreme

point of C*.

This differs from the standard definition of irreducibility, although it is in the same spirit.
Unlike the standard definition, this definition requires in some cases that the I; consumers
be able to improve the trades of the I; consumers by actual moves to other trades in the
I, possible trading sets. This stronger form of irreducibility is needed to establish that
allocations to replicates of a consumer in the core of a replicated economy are indifferent.
When the trading sets are translates of the positive orthant, both irreducibility and strong

irreducibility are implied by strict monotonicity. The assumptions are:

ASSUMPTIONS.

(1) Y; is a closed, convex cone with vertex at the origin.

(2) Y; CR™ x RT with ¥; N ({0} x %) = {(0,0)}.

(3) Ch =TI, Ch is convex, closed, and bounded below. There is an interval [z, ]
such that z,%w € £*° and C* = (C* N [z, ®]) + s7.

(4) For all h the correspondence P" is convex valued and, relative to C*, is open
valued and has open lower sections. The preference relation P" is irreflexive and
transitive. The weakly preferred set R"(z) is the closure of P*(z) for all z € C",

(5) Let x € C*. If z > z then z € P*(z).

(6) The economy & is strongly irreducible.

(7) There is 3" € C* — Y with z* < 0 and z} = z" for all s and t. Moreover,
T = Efﬂ zh < 0. For any z*, let z* € R*(2") —Y and § > 0, then there is a 7o

such that for each T > 7y, there is an a > 0 with (2} 4 6eq, 28, ..., 2" aﬁ'cfr‘ﬂ, ...) €

RMz") -Y.



The technology exhibits constant returns to scale by Assumption 1. Of course, diminish-
~ing returns can be accommodated by introducing artificial entrepreneurial factors. Assump-
tion 2 implies Bewley’s Exclusion Assumption. It also insures that inputs precede outputs,
and that production requires inputs (Y Ns = {0}). Ky is in Y, yo = up < 0. Moreover,
if yo = 0, y = 0 since outputs require inputs. As-a result, ¥ — s% “can contain no straight
lines. To see this let z,—z € Y — s%. Then there are y,y’ € Y with z <y and —z < 3. But

0<y+yeY,soy+y =0. Finally, yo <0 and —y < 0,50y =0. As z,—2 <0, z =0.

In an exchange economy, a lower bound b* for C* has often been taken to be the neg-
ative of a vector of endowments held by the h* trader which lies in C*. In a production
economy where productive services are traded, the requirement that & lie in C* would be
very restrictive. Even in a trading economy it is not satisfactory since it implies that the
subsistence level for consumers allows no substitution between goods. Also, if personal ser-
vices are traded, and C* C s%, labor services provided by the consumer must be measured
in units of his labor time without distinguishing the type of labor performed. In our model

the last part of Assumption 3 makes 6" € C* unnecessary.

It is clear that given any C* that satisfies the first part of Assumption 3, a set satisfying
the second part may be derived by intersecting C* with a properly chosen interval (z, @) and
adding s7. However, we may give an explicit example. Consider a consumer who supplies two
different types of labor, and consumes an all-purpose consumption good. This consumer has
T units of potential labor time. The consumption set at time ¢ is Cy = {(¢¢, €11, €2:) 1 ¢t 2> 0,
T+ by +45>0,T+4; >0, T+ 4y > 0}. Then C = [];2, C; satisfies Assumption 3 with
z; = (0,-T,-T) and w; = (0,0,0). Note that the consumer may become satiated in each
type of labor when none is being supplied without violating Assumption 5, provided that the
all-purpose consumption good is always valuable. This also permits the use of entrepreneurial
factors that do not affect the consumer’s utility. This example is a prototype of the kind
of consumption set we are concerned with. Note the different marginal dis-utilities for the

different types of labor would preclude using aggregate labor time (or leisure) as a good here.



Assumption 4 will guarantee that preferences can be represented by a continuous utility
function. Note that R” inherits transitivity from P*. Assumption 5 (periodwise monotonic-

ity) is fairly straightforward. We have already discussed Assumption 6 (strong irreducibility).

The first part of Assumption 7 provides for a pa,th of production and consumption for
the economy as a whole in which all goods are in excess supply in.every period. This may
be thought of as a kind of Slater condition (see Uzawa, 1958, p. 34). It is also a weakening
of Bewley’s (1972) Adequacy Assumption. Requiring z" > 0 for all h would be equivalent
to the Adequacy Assumption. Also, take w* € C* and y € Y with wh —y =z" <0. By
monotonicity, w* — * € C*. Thus w* —z" € CPNY # 0.

The second part of Assumption 7 may seem a bit strange at first glance. It is important to
understand it since it plays a key role. Among other things, it implies for any consumer that
we can replace the tail of his stream of net trades after production with 0 and still remain
in R"(z") — Y, provided inputs are increased in the first period since R*(z*) + 7 C R"(z")
by Assumption 5.

Negative components of vectors in Y represent inputs, as do the positive components
of vectors in —Y. Thus, Assumption 7 says that if the initial stocks held by a consumer
are increased by a positive quantity of all goods, he can supply a uniform amount of all
goods in all periods after a time 7, using the production possibilities, and still be as well
off. In fact, it is enough that the production sector be able to supply uniform net outputs
of produced goods in late periods while still allowing each consumer to subsist and supply
unproduced goods. Capital accumulation models will often obey this stronger condition,

which is formalized below.

ASSUMPTION. Suppose that for ally € Y and § > 0 there is a b* € C* and 7 such that for

each 7 > 71, there is an a > 0 with y() = (—8eo + Yo, Y1, - - -, Yr, by — 0l (,.. ) €Y.

The vector b* may contain labor services. This assumption can be used to derive the
second part of Assumption 7. Suppose z* = w* —y € R*(2") — Y with w* € R"(z") and
7



y € Y. Let 7, b* and y(7) be as in the assumption, and take 7, with w"(7) = (6eo +

wh wh, .. wh bk, ..) € R*(a"). These vectors are in the consumption set and approach

h. The fact that preferred sets are open in C"

wh + (6e,0,...), which is preferred to w
implies that there is 7, with w”(7) € R*(z*) for 7 > 7. Now take 7 > 71,7, and subtract to
obtain wh(7) = y(7) = (wk — yo + 26e0, Wk = y1,... , Wk —y, 0zt ,,,...) € R*(z") - Y. This
implies the second part of Assumption 7.

Now consider a standard growth model with one produced good and using labor and
the produced good as factors of production. Output per unit of labor input is given by a
concave function f with f/ > 0. The set Y is given by the production function F' where
F(K,L)= Lf(K/L) for K,L > 0 and F(K, L) = 0 otherwise. Let Y; = {(u1¢, uat, v1¢, vat) :
0 < vy < F(—uyyy —ugt), vz = 0} where “1” indexes the produced good and “2” indexes
labor. There is one consumer with initial endowment k. The consumer can supply up to one
unit of labor in each period. Thus Cp = {(¢,€): ¢ > —k, £ > —1} and C; = {(¢,£) : ¢ 2 0,
> —1}fort =1,2,.... The utility function is u(w) = v(co+ k) + > oo, Bv(c;) where vis a
bounded continuous function with 0 < # < 1. Recall that the ¢; are quantities traded. The
actual consumption is ¢+ k for ¢ = 0, due to the initial endowment of k, and ¢; fort =1,....
For the sake of simplicity we assume that labor does not affect utility. Suppose there is a
k < k with f(k) > 2k. Now let z; = (—k/3,—1/3) and b = ((—k,—2/3),(0,-2/3),...) € C.
We may think of 1/3 unit of labor being devoted to a subsistence activity outside of Y. It
is easy to see that & is in C — Y since F(k/3,1/3) = f(k)/3 > 2k/3 allows vi; = 2k/3 and
uy = —k/3 yielding y1; = k/3. Let y € Y. Suppose inputs at time zero are increased by
Seg. Maintain consumption levels at each time, while accumulating capital stocks uy;. These
will be higher (more negative) at each time period than on the original path. At any time,
we may stop following y and devote this capital stock to maintaining steady output. If the
capital stock is at least k, we can follow 3, = b, — &, = (k/3, —1/3) henceforth, otherwise we

must settle for some fraction a of y;. In either case, Assumption 7 will be satisfied.

This example shows why some sort of joint condition on consumption and production



is needed. The production sector alone cannot necessarily produce positive outputs of all
goods after the first period. Inputs of labor or other non-produced goods may be required.
A joint condition on consumption and production is then needed to obtain positive output

of all goods.

The set of possible tfades with production for the A** consumer is C* — Y. The set of
admissible price vectors will be S = {p € s} : pZ < oo} where pz = > ;7 p;Z;. Unlike the
admissible price vectors in most models of the competitiire economy, the price vectors in S
are not all contained in the dual of the commodity space. The lower bound on C* insures
that pw is either finite or 4oco for all w € C*. We do not use the dual space (s™)* as our price
space. The elements of (s™)* have only a finite number of non-zero components. This means
that the price of all goods must be zero at almost all times, hence it is totally inappropriate
to consider prices in (s")*. For p € S the budget set of the h** trader is B*(p) = {z : z € C*
and pz < 0}. No bundles with infinite value are contained in the budget set. A competitive
equilibrium for the economy £ = {Y,C*,...,CH P! ... PH}isalist (p,y,2%,...,2%) such

that p is admissible and the following conditions are met.

COMPETITIVE EQUILIBRIUM.
(I) pz" <0 and z € P*(z") implies pz > 0.
(Il) y € Y where yo = ug and y; = uy + v, for t > 1. Also py_quyy + pvy =0 fort > 1,

and z € Y, with z; = u} + v}, implies p;_ju}_; + pv; L 0 for all t > 1.

() Yh et =v.

The first condition is the usual demand condition. The second condition is the profit
condition. The third condition is the balance condition. Qur objective is to prove that an

equilibrium exists.

3. The Core is Non-Empty

By an allocation of net trades we mean a list & = (z!,...,zf) such that z* € C* for all

9



h. A feasible allocation must also satisfy the condition Z{f:l z" € Y. Then the set of feasible
allocations for the economy is F = {(z',...,2") : 2" € C* for all &, and Yzt e Y}, Let
us say that an allocation {z"}!L, of net trades admits an improving coalition B if there is
an allocation {w”}rep over the members of B such that ¥, .5 w" € Y and w* € P*(z*) for
all h € B. The core of the economy € is the set of feasible allocations which do not admit -

any improving coalitions.
LEMMA 1. The set of feasible allocations is non-empty, compact and convex.

PROOF. By Assumption 7, (z,...,%7) € F, so F is non-empty. The set F is convex and
closed since Y and all the C* are both convex and closed. By Tychonoff’s Theorem (Berge,

1963, p. 79), it is sufficient to prove F' is bounded in each coordinate.

We first show that bounded inputs at time t—1 yield bounded outputs at time ¢. Suppose
not. There is a sequence (u_;,v?) € Y; and constant B with |u}_,| < B and |v]| — oo.
Consider (u_;,v{)/|vi| € Y;. Since this is bounded, it has a convergent subsequence with

limit (0,v) and |v| = 1. But Y; is closed, so (0,v) € Y;, which contradicts Assumption 2.

The second step is to show that bounded outputs at time ¢t imply that inputs at ¢ are
bounded. Let Z be the lower bound on the C* given by Assumption 3. Let & be a feasible
allocation with Ele wi‘ = y; = u;+v;. Since us+v; € C, Hz; < ug+vy, 80 HzZ—v, < uy < 0.
Thus bounded outputs at ¢ imply bounded inputs at t.

Finally, inputs at time zero are bounded since up € C. By induction, both inputs and

outputs are bounded at each time ¢. Thus z; = u; + v; is bounded too. QED

Let F* be the projection of F' into the h** consumer’s net trading set C*. The next
proposition uses standard arguments to show that preference order can be represented by a

continuous utility function on F*.

PROPOSITION 1. There exists a continuous function u" : F* — R such that z"P"z" if and
only if uh(zh) > uh(2).

10



PROOF. Since the preference correspondence is both open-valued and has open lower sec-
tions, and F* is compact, we claim there are best (b) and worst (a) elements of F*. Suppose
there is not a worst element in F*. For each y € F* there is some z € F" with y € P*(x).
It follows that {P*(z) : € F*} is an open cover of F". By compactness, it has a finite
subcover { P*(z,)}N_,. Take a worst element z* of {z1,...,zn}. By transitivity and irreflex-
ivity, * cannot be in any of the P*(z,). This contradicts the fact that the P*(z,) cover F.

It follows that a worst element of F* exists. A similar argument using open lower sections

shows that a best element exists.

Let J = {(1-6)a+60b:0 <6 <1} and define u*((1 — 6)a + §b) = 0. For arbitrary
z € F*, consider JN P*(z) and J N Pf(:z:) where P*(z) = {y : P"y} is the lower section of
P" at z. Both of these are open. Since J is connected, either one of these sets is empty, or
there is a unique § with z indifferent to (1 — 6)a + 6b. In the latter case, define u"(z) = 6.
If J N P(z) is empty,  must be indifferent to the worst point of F* and we set u*(z) = 0.
If J N P"(z) is empty, = must be indifferent to the best point of F* and we set u*(z) = 1.

For any z € F*, {y € F" : u*(y) > u*(z)} = P"(z) and {y € F* : uh(y) < ul(2)} =
P*(z) by transitivity of P* and R*. Since both of these sets are open in F™*, the utility

function is continuous. QED

Let u” be a continuous utility function representing P* on F*. Let U(%) be the vector of
utilities (u?(z")) and F = U(F). The set F' is the utility possibility set of the economy. Note
F is compact, hence bounded. For any coalition S define V(S) = {z € R : z, < u*(z?) for
all h € S with z* € C* and Y hes zh € Y'}. This is the set of utility vectors whose projection
on the utility subspace of the coalition S lies in or below the utility possibility set of S. Note

that V(S) is closed, non-empty, comprehensive (z € V(S) and y < z implies y € V/(5)), and

-~ bounded above in R5. Moreover, if z € V(S) and z), = y; for all h € S, then y € V(S).

Let B be a non-empty family of subsets of {1,...,H}. Define B, ={S€B:h€S}. A

family B is balanced if there exist non-negative weights wgs with >, g, Ws =1forall h. A

11



V-allocation is an element of V(1,..., H). A coalition S can improve on a V-allocation z if
there is a y € V(S) with y;, > z;, for all h € S. The core of V is the set of V-allocations that

cannot be improved upon by any coalition. The following theorem is from Scarf (1967).

THEOREM (SCARF). Suppose (g5 V(S) C V(1,...,H) whenever B is a balanced family.

Then V has a non-empty core.
THEOREM 1. Under Assumptions 1-4 and 7 the economy € has a non-empty core.

PROOF. Let B be a balanced family of sets with balancing weights ws and let (21,...,2H) €
Nses V(S). For each coalition S there are z} € C* fof heSwithy,szh=y"€Y
and u”(zh) > 2, for all h € S. Now consider z* = ZSeBh wgzh. Note that uf(zh) >
ut(zh) > 2, for some S € By by convexity of preferences (Assumption 4). Also Ef;l zh =
fo:l > ses, wszh = Y genWs (Dhes Th) = Dsen wsy® € Y. Thus (z1,...,25) is feasi-
ble for the entire economy due to the feasiblity of (z',...,zf). Therefore (z1,...,2m) €

V(1,...,H). Scarf’s theorem now shows the core of V is non-empty.

Now let # = (2%,...,2%) be in the core of V and take Z € F with U(%) > Z. It is clear

that Z must be in the core of £. Therefore the core of £ is non-empty. QED

4. Edgeworth Equilibria

We now replicate the economy €. In the rt* replica &,, there are r identical copies of
each trader in £. Each copy has the same trading set and preference correspondence as the
original trader. We will use the idea of equal treatment core. The equal treatment core K,
is equal to the set of allocations in the core of the replicated economy &, such that each
trader in &, who is a replica of a given trader in £ undertakes the same net trade. Then an
allocation in K, may be represented by {z"}, where {z"} is the allocation of net trades to
+the original traders and r is the number of replications. Let K, be the core of the economy

& = £. We must first show that the equal treatment core is not empty for any r.

Let {z"*}, represent an arbitrary allocation in the r** replica economy where the k"

12



replicate of the A** consumer in £ undertakes the trade z"*.

LEMMA 2. If {z"*},, h =1,...,H, and k = 1,...,r, is an allocation in the core of £,, then,

for h given, " I"z"* holds for all j and k.

PROOF. Let the allocation {z"*} where h = 1,...,H and k£ = 1,...,r lie in the core of
the economy &,. Suppose £ I*z** does not hold for some &, j, k. From convexity of P*(z),
it follows that R"(z) is convex as the closure of P*(z). Consider a replicate of original
consumer h with index hj(h) that satisfies z"* R*z"/(*) for all k = 1,...,r. That is, Aj(h)
has an allocation that is no better, and perhaps poorer, than the allocation of any other
replicate of h. Consider the coalition B = {1j(1),..., Hj(H)} of worst-off replicates, and
give hj(h) the net trade z* = (1/r) 32} _, z"*.

For each A it follows that z"R"z"® by convexity of R*(z), and, if z** Phz6) for some
i,k, then ' Piz/®), Now Eff:l ah = (1/r) Y, Efﬂ zh* € Y since {z"*} is feasible and Y
is a cone. Thus {z"} is a feasible allocation. Strong irreducibility and convexity allow us to
spread the gain received by :j(¢) to all Aj(h). Let I = {h: h # i} and I, = {¢}. This yields
a feasible allocation {z"} with 2*Phz" for h € I, since z' is not an extreme point of C.
Take the convex combination {Az" + (1 — A)z*} for 0 < A < 1. This is a feasible allocation,
is preferred by all h € I, to {z"}, and, for ) sufficiently close to 1, is also preferred by i.
It follows that z» PPz"/(*) for all hj(h) € B. Thus B is an improving coalition, and {z"*}

cannot be in the core. This contradiction shows 2™ I*z"* for all h, j, k. QED

LEMMA 3. The equal treatment core K, of £, is non-empty if the core of £, is non-empty.

PROOF. By Lemma 2, for any core allocation, the allocations received by the replicates of a
given h in the original economy are indifferent. Then by the convex valuedness of the relation
" R*, the equal treatment allocation in which each replicate of & receives z* = (1/r) Y7_, z™*,
satisfies " Rhz"* for all h, k. Since there is no improving coalition for the allocation {z"*},

there is certainly not one for {z*},. Thus {z"}, is in the core of &,. QED
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Since the core of &, is non-empty by Theorem 1, K, # § is an an immediate corollary of

Lemma 3.
COROLLARY. K, # 0 for any r > 1.

Our immediate objective is to show there is a common element in all the K,. Let
K =2, K,. That is, {z"} € K if {¢"}, € K, for all r. Any allocation in K is called an

Edgeworth equilibrium (Aliprantis, Brown and Burkinshaw, 1987).
THEOREM 2. K is non-empty.

PRrOOF. Fix r. We first show K, is closed. Since K, C F and F is compact, this will
imply K, is compact. Let {z"°}, € K,, s =1,..., be a sequence of allocations in K, which
converge to a limit {z*},. Suppose {z"}, is not in K,. Let w™ be a net trade for the ith
copy of the ht* original trader. There is an improving coalition B such that wh € P*(zh) for
hi € B and }_,,.5 w™ € Y. By the fact that P*(z*) has open lower sections, w* € P*(z™*)
will hold when s is large. This implies that B is improving for {zh2}, for large s, and thus
{z"*}, is not in K, for large s. As this is contradicts the hypothesis, {z"}, must be in K,

which is therefore closed and compact.

It is clear that the K, form a nested sequence of non-empty compact sets. Let {z*"} € K.
Since this sequence is contained in the compact set K7, it has a limit point {z"}. Moreover,
since the tail of the sequence past r is in K, and K, is closed, {z"} € K, for each r. Thus
{z"} € K. QED

5. The Existence of Competitive Equilibrium

To prove the existence of equilibrium we will show that (z',...,2f) € K implies that
there are p and y such that (p,y,a',...,zf) is a competitive equilibrium. Let G be the
‘convex hull of Ufﬂ‘Rh(xh). The key is to separate G — Y from zero. The vector that

performs this separation will be our equilibrium price vector.

The proof proceeds via a series of lemmas. We first show G is closed, hence G — Y

14



we:can choose. a further subsequence where each of the whs_conv,erge, w

is closed. The next step is to show G — Y does not intersect the negative orthant. We
then construct a vector ¢ which will be used to normalize prices. This allows us to define
e-price sets in ba which approximately separate G — Y from 0. Lemma 6 shows these sets

are non-empty.

We then show that the e-price sets form a decreasing sequence of non-empty compact
sets, and so have an intersection. We take an arbitrary vector in that intersection and use
the Yosida-Hewitt theorem to throw away its purely finitely additive part, leaving us with

an £! price vector p*. The normalization by € insures that p* is non-zero.

The next three lemmas show first that truncations of p* approximately separate G — Y
from 0, and then that p* itself separates G — Y from 0. At this point we only have a
quasi-equilibrium. Finally, the point Z together with strong irreducibility guarantees that

the cheaper point condition is satisfied, and that the quasi-equilibrium is an equilibrium.

We start by showing G is closed. The lower bound on consumption plays an important

role here.
LEMMA 4. G is closed in s™.

PROOF. By Assumption 3, each C* is bounded below by Z, and therefore G is bounded
below by Z. Suppose 2* € G and 2* — z. We must show that z € G. Let 2° = Ele wh® =

H H '
Y ohet ansz™ where ajs >0, Y7 aps = 1 and 2 e Ch,

The ay, are contained in the unit interval, so we may assume that they converge, by
passing to a subsequence if necessary. If any of the w** were unbounded, the fact that each
wh* is bounded below would imply 2° is also unbounded, contradicting the convergence of z°.
Therefore each of the w"® is bounded. Then the projection of each factor of the Cartesian

product lies in compact set, and the w"® lie in a compact set by Tychonoff’s theorem. Thus

h h

fo—a ™,

Let I = {h:a"”>0}. For h € I, w'*/ap, = 2" — w"/ay, € C*. For h ¢ I, oMz < wh*

where z is the lower bound on C"* from Assumption 3. Taking the limit shows 0 < wh.
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Now consider w”/ay, + w”, which is in R(z") by periodwise monotonicity. Moreover,
hel y p

> her an(Wtfon + Y hgr wh) = Y7 w* = z. Therefore z € G. QED
We will need the following theorem adapted from Choquet (1962).

THEOREM (CHOQUET). If Z is a product closed convex set in s™ which contains no straight

lines, then for any two product closed subsets X,Y of Z, the sum X +Y is closed.
COROLLARY. G —Y is closed in s".

PROOF. Recall G—Y C z+3s% —Y. Both G—% and Y are closed and contained in s} —Y.
Also, s — Y contains no straight lines (Assumption 2). Thus we need only show s} — Y 1s

closed and apply Choquet’s theorem.

Let 2" — z with 2" € Y — s7. Then there are y” € Y with 2" < y". Since z" converges,
the y? are bounded below. But y3 < 0, so the yj are bounded. By the proof of Lemma
1, this implies y” is bounded for each ¢. Thus y™ has a convergent subsequence with limit

y €Y. Since 2" <y", z<yand z €Y —s}. Thus Y — s} is closed. QED

LEMMA 5. If K # () then there is no z € G and y € Y such that z —y <0 (ie, z—y <0

and z, — y; < 0 for some t).

PROOF. Let P(%) be the convex hull of the P*(z"). In light of the periodwise monotonicity
assumption for preferences, it is sufficient to prove that thereis no z € P() and y € Y such

that z — y = 0. In other words, it is sufficient to show that ¥ N P(&) = 0.

Suppose not. There is a set of consumers I and weights o; such that ) _.; at=yeY,
o; >0,% ;0 =1,and z* € Pi(z'). An equivalent condition for 2* is that ), ; ai(zi—y) =
0. For any positive integer k, let af be the smallest integer greater than or equal to ka;.
For each i € I, take y' € C'NY and let wi = (ka;/af)(z* — y') + y'.2 As w} is a convex

combination of z* and y¢, it lies in C*. Moreover, wi, — z* as k — oo. Since the preferred

2 Except for this step, which has been modified to accommodate our consumption sets, we use the argument
of Debreu and Scarf (1963). In their case 0 € C*NY, so they can take y* = 0.
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sets are relatively open (Assumption 4), we have wi € P(z*) for large k, which we now fix.
’ k g

Also

Zafw}; = Z(ka;zi — kouy' + afy') = ky + Z(af — kai)y'.

1€l i€l i€l
As 0 < af —ka; <1, ¥ ; afwt € Y. Thus the coalition of a¥ consumers of type 7 for
i € I can improve on #. The improving coalition can be formed if the original economy
has been replicated max{ak} timeé. This is in contradiction to the hypothesis. Therefore
Y N P(#) = 0. In other words, {z"}, in the core for all r implies that the production set

Y intersected with the convex hull of the the preferred trades of the original consumers,

Ph(z*), is empty. QED

Choose a and 7 such that d* = (af + eg,2h,...,2" 0zt ;,...) € RMz") - Y by
Assumption 7. Let d* = d* + (2€,0,...). By the definition of d" and monotonicity,
d" € 1N (G-Y), as is & = d* — az" > d*. Note that ¢ = 0 fort = 7 +1,....
Let ¢ = (1/H) Ele ch = —az/H + (1/H) le d". For 0 < € < 1 we define the price set
S(e) = {p € bay :pc =1 and pw > —efor all w € (G —Y)NL*}.

We take an indirect approach, using price vectors in ba. In contrast, Peleg and Yaari
use price sets in s%. We could try to to define S(e) analogously in s%, with pw > —e
for all w € G — Y. However, Peleg and Yaari rely on the fact that a lower bound of the
consumption set (or the set of possible net trades) is in the consumption set. This allows
them to show their price sets are closed in s%, when boundedness yields compactness. 'In
our case, the lower bound is not in the set of possible net trades. We must replace it with a
cheapest vector in the set of possible net trades for any given price vector. To avoid defining
a different cheapest vector for every price vector, which causes technical difficulties, we settle
on a price vector first. Our S(¢) will be compact and have the finite intersection property.
We can then take a vector in the intersection of the S(¢), which can be modified to obtain
the desired price vector in £!. The next lemma shows that S(e€) contains a finitely non-zero

vector.
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LEMMA 6. For any ¢, 0 < € < 1, there is p € (s™)* such that p € S(¢) with |ps| > 0.

Moreover, whenever p € S(€), ps—1us—1 + pvy < 0 for all (us_q,v;) € Y, forallt=1,2,....

PROOF. For € > 0 let a(e) = (—eeo,0,0,...) where eg = (1,...,1). By Lemma 5, a(e) ¢
G —Y. By the Corollary to Lemma 4, G —Y is closed in the product topology. Also, {a(e)}
is compact. By a separation theorem (Berge, 1963, p. 251) there is a continuous linear
functional f € (s™)* with f # 0 such that f(z) > f(a(e)) + é for any z € G — Y and some
6> 0.

Any such f may be represented by a vector p € s™ with p # 0 but p; = 0 for all but

finitely many ¢. Thus

[o¢4

f(2)=pz = pez > —elpol + 6,

t=0

for any z € G — Y and some § > 0. Periodwise monotonicity and the separation condition

imply that p > 0. Thus we have for some p > 0, p # 0,
pz > —€|lpy] forallze G-Y. (1)

Now ¢ € RP(z") for all h and Y)F | & = y for some y € Y implies that 0 € G — Y. Setting
z =0 in (1) shows |po| > 0. |

Since d* € G—Y, we have pd" > —¢|po| by equation (1). Now pe" = 2|po| +pd" — apz" >
(2 — €)|po| by equation (1). Thus pe* > |po| for 0 < € < 1. Define p = p/pc. Consider
z€ G-=Y.If pz > 0, then pz > —e. On the other hand, if pz < 0, pz > pz/|po| > —e. Thus

p € S(e) for 0 < € < 1. This is the desired vector in S(e).

Now let p € S(e). SinceY =Y +Y and 0 € G-V, it follows that =Y C G—Y. Therefore
(1) implies pz < e for all z € Y. Since az € Y for any o > 0, it follows that pz < 0 for
all z € Y. However, (0,...,0,u;-1,v:,0,...) € Y for all ¢t = 1,2,... and (us_1,v:) € Y3
Therefore p;_1u;_1 + pvy < 0 for all (u;_q,v;) € Yi. QED

Recall that, for two topological vector spaces E and F, o(E, F) denotes the weakest
18



topology on E such that the map p — pz is continuous on E for each z € F. When E is

the dual of a Banach space F, o(E, F) is referred to as the weak™ topology.
LEMMA 7. The intersection of the price sets, S = [\occcy S(€) is non-empty.

- 'PROOF. Lemma 6 implies S(¢) is non-empty.  Furthermore, S(¢) is o(ba,£>)-closed since
the inner product is o(ba,£®)-continuous, and the inequalities that define S(¢) are weak
inequalities.

Now let p be an arbitrary element of S(€). Consider the point € + aZ/H, which is in

G — Y by construction. Thus pé + apZ/H > —e¢, or
—pz < H(1l+¢€)/a. (2)

Since p > 0, and Z is constant and strictly positive, S(€) is bounded by (2). By Alaoglu’s
theorem (see Appendix), weak* closed and bounded sets are weak® compact, so S(e) is

compact.

Finally, the argument of Theorem 2 shows that the intersection of the S(¢) is non-empty.

QED

Let p € S. The Yosida-Hewitt theorem (see Appendix) allows us to decompose p into the
sum of an £1-vector p*w and a pure charge. However, p* makes sense when w is any element
of G =Y, even if w ¢ £*. Define w; = 0 when w;; > 0 and w;; = wy; for w; < 0. For
w € C* z= < w~, hence w™ € £°. Now p*w = p*(w — w™) + p*w™. The first term is either
finite or +oo while the second term is finite. Thus p*w is either finite or +00. Now consider
y €Y. We can write y = 3 o0, y(t) with y(t) € ¥; C Y. Each y(t) € £*° and p*y(t) < 0 by
Lemma 6. Thus p*y is either finite or —oco. Combining the results shows that p*z is either

finite or 4+00 for z € G =Y.

The next step is to show that truncations of p* approximately separate G —Y (not just
(G —Y)N£*) from 0. We then use a limiting argument to show that p* itself separates
G —Y from 0.
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LEMMA 8. Let € > 0. Then Y ;_, p}z: > —¢ for T sufficiently large whenever z € G —Y .

PROOF. Let n > 0 and z € G —Y. Write z = Ele apz" with z* € Rh(z*) =Y. For 7
large, 2" = (neo + 25, 22,...,2%,0,...) € R*(z") — Y by Assumption 7 and monotonicity.
Apply p € S to find glps| + Yo7, pi% = p2 > 0 for 7 large. Rearrange and set € = n|py| to_
obtain the result. QED

As p* € £* and p* > 0, p*z achieves a finite minimum over C" at some point in the
o (£, £*)-compact set Ch = [z,®] N C*. Let 3* be a point in C" where that minimum is
achieved. Thus p*w" > p*2* for any w* € C*. Moreover, since Ch =TI52, Ch, pizf > piaf

for any 2" € CP.
LEMMA 9. The vector p* satisfies p*z > 0, forall z€ G —Y.

PROOF. Let z be an arbitrary element of G —Y. Thus z = w —y withw € Gand y € Y.
We will show p*z > 0 by showing p*w > 0 and p*y < 0. Now w = Z,}le apw* for some

wh € R*Mz") and a3 > 0 with Zle oy, = 1. Define

wh+8eg t=0
wh(r) = { wh t=1,...,7
2h t=7+1,...

Since Ch = Ct x CF x ---, we have w"(r) € C*. Moreover, the fact that P*(z") is open
relative to C* implies w*(r) € P*(z") for 7 sufficiently large. Define an increasing function

7(8) so that wh(7(8)) € P*(z*). Now set ¢} = w} — 2} and define ct(r(6)) by

c t=0,...,7(8)

C?(T(fs)):{
0 t=7(8)+1,...

Note that wh(r(6)) = ¢*(7(6)) + (6eo,0,...) + 2" and p}cf((6)) > 0 from the definition of
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Let € > 0. Now S aw?(r(6)) € G, so Lemma 8 yields a 7o with

H T
——eSZath*wf(T(é 6|p0|+zahZPtCt (7(6)) +Zathtzt
h=1  t=0

for T > 79. Thus for 7 > 79, 7(6)

H 7(8)

6pol + Zah Zpt 2 - Zah Zptzt

Since p* € £ and 2" € £, the right hand side approaches — Zle app*ih —eas T — co.
Let § — 0 so 7(6§) — oo. Then E:(? prch — p*c since the sum is monotone increasing. It is
possible that p*c® = +00. Now let ¢ — 0 to obtain p*w = EhH=1 alp*ct + p* 21}?:1 aph > 0.
Note that p*w may be +oo.

The argument in Lemma 6 shows p(0,...,0,%1,v,0,...) < 0 whenever (ut—1,v¢) € Yi.
But 5 = p* on such vectors. Since ¥ = Et}‘/}, p*y < 0 for all y € Y. Combining the two
results shows p*z > 0. QED

We claim that (p*,y,z,...,2"), where y = Zf:l z", is a competitive equilibrium for £.
By Lemma 9 p*z* > 0 for all A since zh € GCG-Y. But then 0 < Ele p*zh = p*y <0

as in Lemma 6. Thus p*z" = 0 for all A and p*y = 0.
To complete the proof that condition I holds we must show that wh € Ph(z") implies
wh ¢ BMp*) = {z" € C*: p*2" < 0}. Any point that is preferred by A to z" must lie outside

the budget set. A final result is:

PROPOSITION 2. If there is a w* € C* such that pw” < 0 and pz" > 0 for all 2" € P*(a"),

then pz" > 0 for all 2* € P*(z").

PROOF. Suppose z" € P*(z") and pz* = 0. Since P*(z") is open in C* by Assumption 4,
there is a point y" = aw" 4+ (1 — @)z such that y* € P"(z") and py" < 0. This contradicts

the hypothesis. Therefore, such a z" can not exist. QED
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THEOREM 3. Under Assumptions 1-7 the economy € has a competitive equilibrium with

prices in £1.

PROOF. From Proposition 2 we see that Condition I will be completed if it can be proved
that every consumer has a point 2" in the consumption set such that p*zh < 0. ‘Consider»
" € C*—Y. Then #" = w*—y for some w" € C* and y € Y. Then p*w" = p*:f’H—p*Q < p*zh.
Since Z = Eff:l z* < 0, at least one consumer has p*Z* < 0 and hence p*w" < 0.

Let I; be the set of indices h such that there is a 2" € Ch with p*z"* < 0. Let I, be the
complementary set of indices. We have just shown that I is non-empty. Suppose that I is
non-empty. Use strong irreducibility to obtain zf, € Cy, and y’ € Y such that y' = 21, + 21,

where 2" € P*(z") for all h € I;. Taking the inner product of both sides with p* gives
Py =p'zn + Pz (3)

Also p*z;, > 0 by Proposition 2 since z* € P"(z*) for all h € I;. Now consider the
h € I,. By strong irreducibility, z may be chosen so that z" € aC h for some a > 0, which
yields p*z* > 0 by the definition of I;. This means the right hand side of (3) is strictly
positive. But p*y’ < 0 by Lemma 6. This contradiction implies that I, is empty. In other
words, strong irreducibility of the economy implies that each consumption set has points with
negative value if any consumption set has a point with negative value. Then by Proposition
2, z* € P*(z") implies p*z" > 0 for all k. This establishes the second part of Condition I for

competitive equilibrium.

Condition II is implied by p*y = 0 and the proof of Lemma 6, and condition III follows
from the definition of a feasible trade. Therefore (p*,y,z,...,2), where y = Z{Ll zh is a

competitive equilibrium of £. QED

In fact, we have actually shown that any Edgeworth equilibrium is a competitive equi-
librium. Standard arguments show that any competitive equilibrium is an Edgeworth equi-
librium.
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COROLLARY. Under Assumptions 1-7 an allocation is an Edgeworth equilibrium of the econ-

omy & if and only if there is a price vector p* € £! for which it is a competitive equilibrium.

6. Conclusion

Our results have been presented in a general model of intertemporal equilibrium. The
advantage of this is that we can make assumptions that are economically natural. The

intertemporal structure is more specific than we actually require.

There are two directions of generalization — production and consumption. The key
properties of production that we used were the compactness of the feasible set, the fact that
Y —s% is closed and contains no straight lines, and Bewley’s exclusion assumption. Provided

these hold, our proofs are still correct.

As for consumption, we have used more continuity than necessary. If we assume that
preferences are represented by an upper semicontinuous utility function, Scarf’s theorem still
applies. Although lower semicontinuity is used in Lemmas 2, 5 and 9, and Proposition 2,
all but Lemma 9 only need lower semicontinuity on line segments. Lemma 9 requires lower
semicontinuity when the tail of a trading stream is replaced by the tail of 2. Both of these

conditions are weaker than lower semicontinuity in the product topology.

These facts suggest that the same proof applies to continuous time capital accumulation
models, using the compact-open topology. Becker, Boyd and Sung (1989) contains the

relevant details on continuity and compactness in this topology.

As far as existence of equilibrium is concerned (rather than core equivalence), many cases
covered by our model are also covered by Back (1988) when feasible paths are uniformly
bounded. However, growing economies pose some extra problems in Back’s model. The
space must be renormed to allow for growth. But then the Adequacy assumption must also
be strengthened if ]éack’s proof is to apply. It is not enough to find 7 and z" with gj——zfﬂ zh
bounded above zero. The bound must grow at the maximal growth rate of the economy. In
contrast, our model handles growing economies without modification.
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Another possible application of our results is to a model with uncertainty, such as the
model of Debreu and Hildenbrand presented in Bewley (1972). As long as there are countably
mahy states of the world, our techniques could be used in such a setting. By weakening the
continuity requirements, our methods may also apply when there are uncountably many

states of the world.

Appendix: The Space ba

The dual of £* (under the norm topology) is the space ba of finitely additive measures.
A finitely additive measure (or charge) is a mapping g from a o-field F to the real numbers
such that ||p|| = sup4 |#(A)| < co and u(AU B) = p(A) + 1(B) whenever AN B = 0. We

can define an integral in the usual way.

In our case, F is the collection of all subsets of the positive integers. The measure
corresponding to p € (£°)' is defined by p(A) = p- I4 where I, is the indicator function of
A. Note that ||u]| = ||p||. When A, are disjoint, ZnNzl I, does not converge in £, since
| SSN Ly, =M || = g, || = 1. Tt follows that we cannot conclude that the finitely
additive measure p is countably additive.

An example of a charge that is not countably additive is a Banach limit. Let ¢ = {z €
¢ : lim z, exists}. Let S be the shift operator (Sz); = 141. A Banach limit is any linear
functional on £*° with liminfz, < p(z) < limsup z;, and p(z) = p(Sz). (See Rudin, 1973,
p. 82.) A Banach limit may be obtained by using the Hahn-Banach theorem to extend
p(z) = limz; defined on c to all of £2°. For « > 0, pz > 0 since liminfz; = 0, so a Banach

limit must be positive. They also have the interesting property that p(z) = 0 whenever there

isaT withz; =0fort >1T.

A non-negative finitely additive measure such that no non-zero countably additive mea-
sure v obeys 0 < v < p is called purely finitely additive (a pure charge). A charge is pure if
its positive and negative parts are pure charge. The measure generated by a Banach limit

is a pure charge since it assigns zero measure to each point in the positive integers. Yosida
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and Hewitt (1952, p. 52) prove:

YosIDA-HEWITT THEOREM. Any non-negative finitely additive measure g has the form
b = o + feo Where pg is non-negative and countably additive and pi., is non-negative and

- purely finitely additive. Moreover, po and p, are unique.

Since countably additive measures on the positive integers correspond to summable se-
quences, the Yosida-Hewitt theorem lets us uniquely decompose any element of (£°)' into a

summable part and a purely finitely additive part.

We also require Alaoglu’s Theorem, a form of which may be found in Rudin (1973, p. 66).

ALAOGLU’S THEOREM. Any weak* closed, bounded set in the dual of a Banach space is

weak* compact.

Since ba is the dual of £*°, this implies that any o(ba,{*)-closed and bounded set is
o(ba, £*)-compact. We should also note that such sets are not necessarily metrizable. As a
result, sequences cannot characterize the topology. In particular, we cannot conclude that a

bounded sequence in ba has a convergent subsequence, only that it has a convergent subnet.
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