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1. Introduction

"How to make the punishment fit the crime?" is an ancient question
still widely debated in many different disciplines of studies. While this
ancient question remains pertinent in modern times, the frequency and the
scope of crimes have continued to increase and expand. Perhaps the most
recent and noticeable one is corporate crime (or business/white-collar
/organizational crime). The emergence of corporate crimes has attracted
considerable attention because they appear to be widespread and often
involve huge amounts of money. For examples, insider tradings, bank frauds,
large oil spills, and safety regulations violations frequently occupy news
headlines. The $650 million fine on Drexel Burnham Lambert Inc. in a
security fraud case in the United States in 1989 illustrates the large
amount of money involved.

One of the most influential arguments in optimal punishment theory is
the economic approach put forth by Becker (1968) who argued that social
welfare will be increased if fines are used whenever feasible. Suppose
corporate offenders are punished by fines rather than by imprisonments, how
should the optimal fine be set? Becker (1968, p.199) suggested that "If
compensation were stressed, the main purpose of legal proceedings would be
to levy fines equal to the harm inflicted on society by constraints of
trade." He then elaborated the argument in a footnote (p.199, £n.55):
"Actually, fines should exceed the harm done if the probability of
conviction were less than unity. The possibility of avoiding conviction is
the intellectual justification for punitive, such as triple, damages against
those convicted." Posner (1977, p.171) spelled out the principle more

explicitly: "The optimum penalty is simply the social cost of the unlawful



act divided by the desired probability that the penalty will in fact be
imposed." Recently, Becker (1989) reiterated his principle: "The penalty
should be a multiple of, rather than simply equal to, the harm caused. That
is because many violators of the law go unpunished. If companies that are
convicted pay only for the damages they cause, the deterrent effect of fines
would be too weak, because companies that are not caught pay nothing." To
give an example, suppose an oil tanker leaked oil and damaged the
environment. If the social cost was $0.1 per gallon of oil leaked and the
probability of conviction was 1/10, then the optimal fine should be $1 per
gallon of oil leaked.

Becker's approach offers a simple way to set the optimal fine. It has
been applied to explain treble and punitive damage awards [e.g., Becker
(1968), Posner (1976), Ellis (1982)] because the optimal fine is a multiple
of the damages caused. Many legal scholars and economists have advocated
using Becker's approach to sanction corporate offenders [e.g., Posner
(1980), Farber (1980), Levinson (1980), Ellis (1982)]. Twenty years after
Becker proposed the approach, it began to gravitate toward the public
policy-makers’ circle in the United States. The approach was endorsed in a
July 1988 discussion draft on business crime prepared by some members of the
U.S. Sentencing Commission (Becker 1989). The subsequent preliminary draft
on sentencing guidelines for organizational defendants (U.S. Sentencing
Commission 1989) revealed the influence of Becker'’s approach on the
Commission’s proposals. The proposed guidelines have generated some serious
concerns from the business community. Critics often argue that Becker's
approach is unacceptable because the multiple fine imposes too heavy penalty

on corporate offenders [Smart and Galen (1990), Mandel (1990)]. The debates



ijllustrate the subtleties involved when economic theory is applied to
important public policy-making [Polinsky and Shavell (1990)].

Despite the increasing popularity of Becker'’s approach, several
critical issues have remained neglected by both the proponents and the
opponents of the approach. The most notable one is the issue of dynamics.
Becker’s original analysis and the work that follows [e.g., Polinsky and
Shavell (1984), Craswell and Calfee (1986)] have been confined to a static
environment. All the models on the determination of the optimal fine in the
literature are static one-period models. Although some work has been done on
modeling dynamic criminal behavior,1 none has rigorously investigated
dynamic optimal punishment theory.2 In this paper, I analyze how to set the
optimal fine in a dynamic setting. The most striking finding of the analysis
is that Becker's claim that the optimal fine should be a multiple of the
social cost of the crime cannot be generalized to a dynamic environment.
This casts serious doubts on whether the sentencing guidelines for corporate
offenders proposed by the U.S. Sentencing Commission will generate optimal
outcomes. The dynamic model examined in the paper reveals some important and
subtle aspects of criminal behavior which have gone unnoticed in previous
studies. It shows that setting the optimal fine in a general environment is
a much more complicated task than that suggested by the static approach.

The plan of the rest of the paper is as follows. Section 2 briefly

reviews Becker's model and then contrasts it with another static model.

! The earliest one is the dynamic income tax evasion model in
Allingham and Sandmo (1972).

2 Two exceptions that appear recently are Nash (1989) and Polinsky and
Rubinfeld (1989). However, the approaches and the focuses of these two
papers are different from those of the present paper.



Section 3 formulates a dynamic model of criminal behavior and derives the
optimal fine from the model. The optimal fine is shown to be substantially
different from the one derived from Becker’s model. A detailed analysis on
the distinctions between the static and the dynamic models is provided.

Section 4 concludes the paper.

2. Two Static Models

In this section, I first present Becker’s approach through a simple
static model (S1) and then compare it with another static model (S2). The
purposes of comparing the two static models are threefold. First, it reveals
that Becker's approach is based on a restrictive assumption which has never
been noticed in the literature. By making a different assumption, model (S2)
shows that Becker’s claim will no longer hold even in a static setup.
Second, there are some shortcomings in model (82) which serve to motivate
the need for a dynamic analysis. Third, model (S2) captures some important
features of the dynamic model and hence facilitates the comparisons between

static and dynamic optimal punishment theories.

2.1. Model (S1)

Suppose an offender’s returns from engaging in some criminal activity
are given by B(c), where c is the offense rate (crime rate). Without loss of
generality, assume c € [O,lj. A fine 6(c) will be levied if the offender is
convicted. Let P be the probability of conviction, then the offender's
decision problem is to

(S1) Max [B(c) - Pé(c)]. @D)
c

Let C(c) be the social cost (damage) of the crime and assume that B(c) is

4



also the social benefit of the crime, then the social planner’s problem is
to

Max [B(c) - C(e)]. (2)
c

It follows that the social optimal offense rate is given by
c* = argmax [B(c) - C(c)]. (3)
Comparing (1) and (2), it is clear that the offender will choose c* if the
fine is set according to
§(c) = C(c)/P, (4)
because the offender’'s objective function B(c) - P{C(c)/P] will then be
identical to the social planner’s objective function B(¢c) - C(c). Thus, the
optimal fine is not just the social cost C(c); a multiplier 1/P has to be
included. Since P is usually strictly less than one, therefore the
multiplier is always strictly greater than one. Hence, the optimal fine is a
multiple of, instead of equal to, the damages done on the society. This
multiple fine is the core of the debates between the proponents and the
opponents of Becker's approach to optimal punishment.
Becker's approach can be conveniently labeled as the "static multiplier
approach" since it is based on a static model and the multiplier is the
most important and distinctive implication derived from the model. Model
(S1) presents a simple and reasonable way to formally describe Becker’s
approach. Notice that enforcement costs are ignored here. It is easy to
bring enforcement costs and other considerations (e.g. uncertainty) into the
analysis, but the model may no longer be able to generate Becker’'s claim
that the optimal fine is the social cost divided by the probability of
conviction. In fact, Stern (1978), Polinsky and Shavell (1984), Craswell and
Calfee (1986), and others have already evaluated the robustness of the
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results in Becker (1968) in many different ways. By focusing on dynamics
(instead of the static setup in the literature), this paper takes another
route to evaluate Becker’s claim. To accomplish this goal, it is necessary
to assume that the above static model is valid and use it as a starting
point to examine whether the result on the multiplier can be carried over to
a dynamic setup. Accordingly, the criticisms which previous studies have
made that may alter Becker’'s results in the static setup will not be

considered in the paper.

2.2. Model (S82)
Instead of (1), suppose the offender’s decision problem is to

(82) Max (1-P)B(c) - Pd(c). (5)
c

There are some crucial differences between models (S1) and (S2). Model (S1)
assumes that the offender commits the crime and enjoys the benefits before
he faces the possibility of punishment. The gains B(c) are guaranteed. The
offender does not have to pay the fine if he is not arrested. He will gain
B(c) with certainty and lose f#(c) with a probability of P. In model (S2),
the gains B(c) are not guaranteed. The offender will gain B(c) with
probability (1-P) and lose 6(c) with probability P. Put differently, the
offender can be caught in the act so that he has to pay the fine and gains
nothing at all. In contrast, model (S1) assumes that the offender will never

be caught in the act.3

3 As in footnote 17 in Becker (1968), one may interpret model (S1) by
writing the objective function as (1-P)B(c) + P[B(c)-8(c)], which allows for
the possibility that the offender may be caught in the act. This implies
that the offender will gain B(c) with probability 1-P and B(c)-8(c) with
probability P. Clearly, this interpretation is unappealing because it
essentially assumes that if the offender is caught in the act, the law
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What is the optimal fine in model (S2)? It is easy to see that the
optimal fine is given by 8(c) = [(1-P)/P]C(c). Hence, the optimal multiplier
is (1-P)/P, which is smaller than the optimal multiplier 1/P of model (S1).

More importantly, the multiplier (1-P)/P may be less than one, because

(1-p)/P > 1 if P < 1/2, and (1-P)/P < 1 if P > 1/2. Therefore, the optimal
fine in model (S2) may be a fraction, not a multiple, of the social cost of
the crime. If the multiplier 1/P is applied to model (S2), then the sanction
on the offender will be too heavy. As a result, the offender will
overcomply, and the social optimum cannot be attained.%

One may criticize model (S2) because of the unrealistic assumption that
the returns from the crime will all be lost if the offender is caught in the
act. This can be dealt with by making an additional assumption that only a
portion of the returns is lost. Let o (0 < a < 1) be the proportion of B(c)
that the offender has already reaped when he is caught, then the expected
returns become (1-P)B(c) + PlaB(c)-6(c)]. Clearly, the optimal multiplier is
(1-P+aP) /P, which again is smaller than the multiplier 1/P and is not
necessarily greater than one. One can further relax the restriction that a
is a constant by letting it be a random variable with distribution function
G(a).5 In this case, let a = f% @dG(a) be the mean of «, then the expected

returns become (1-P)B(c) + P[aB(c)-8(c)], i.e., the a in the previous case

enforcement agency will still pay B(c) to him and fine him §(c). In any
case, the amount B(c) is always guaranteed.

4 The proof is straightforward. 1f the multiplier 1/P is applied to
model (S2), the decision problem becomes Max, [(1-P)B(c) - C(c)], and the
first-order condition is (1-P)B'(c) = C'(c). with the standard assumptions
B"(c) < 0 and C"(c) > 0, this implies ¢ < c*, where c¥ is the social optimal
offense rate defined by (3). Therefore, the offender will overcomply.

5 This case was first analyzed by Heineke (1975). However, the focus of
his analysis is different from the present one.
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is now replaced by the mean &. Again the multiplier (1-P+aP)/P is smaller
than the multiplier 1/P and may be smaller than one. Notice that neither o
nor & in this type of one-period models is a fully specified quantity in the
sense that they are not determined within the model. Any value of a or &
assumed is clearly arbitrary. These shortcomings can be removed in a dynamic
analysis. It will be shown in the next section that the dynamic model offers
a clear structural determination of a (or &) within the model and therefore
does not suffer from the arbitrariness.

In reality, which model fits better the arrest process of a law
enforcement agency? It seems clear that for most criminal activities, the
law enforcement agency will not deliberately wait until the offender has
completed the crime. This is particularly true for those criminal activities
in which the flow of returns occurs over a period of time, so that there is
a positive probability that the offender will be caught in the act. For
example, speeding in highways is usually caught in the act; the gain from
driving fast is lost and the fine is based on the speed of the automobile at
the time the offender is caught. One may argue that in the case of
pollution, a firm usually pollutes first and then faces the possibility of
punishment. Hence, the firm has already reaped the gains from the pollution.
It is easy to cite other crimes in which the offenders have enjoyed the
gains from the crimes long before they are arrested and convicted. But the
argument should not be based on the ex-post outcomes. The crucial point is
ex-ante: whether the offender considers the possibility of being caught in
the act in his decision. It appears that offenders do take this possibility
into account. As long as an offender presumes that there is a non-zero

probability (no matter how small) that he may be caught in the act, then



model (S2) will be the right model to analyze.6 This consideration points to
the need for a rigorous dynamic analysis because the possibility of "caught

in the act" clearly rests on the premise that the environment is dynamic.

3. A Dynamic Model

Instead of facing a one-period decision problem, the offender now has
to choose a path of offense rate (crime rate) over an infinite horizon.’ At
any time t, an increase in the offense rate c(t) (c(t) € [0,1]) will not
only increase the returns mj(c(t)) from the illegal activity but also the
hazard rate of arrest h(c(t)). If the offender is arrested, he will be
convicted and has to pay a fine of #(c(t)), which depends on the offense
rate at the time the illegal activity is detected.8 After the offender is
convicted, he can no longer participate in any illegal activity and will
earn mp (a constant) from some legal activity thereafter. Therefore, the

offender faces the following decision problem:

(D1)
Max J =J e'rt{ 71 (c(t)) [1-F(t)] + [-e(c(t)) +J e'r(s't)vr2ds]f(t) }dt
c(.) 0 t
(6)
subject to £(t) = h(c(t))[1-F(B)], (7)

6 In model (S1), if the law enforcement agency forces the offender to
return the benefits from crime, then the total fine is B(c)+C(c) and the
objective function becomes B(c) - P[B(c)+C(c)] = (1-P)B(c) - PC(c). Hence,
if restitution is a component of the penalty, then model (S1) will become
model (S2), and the optimal multiplier is (1-P)/P (not 1/P).

7 The assumption of an infinite horizon is justifiable in the present
context since the offender is a corporation and not an individual.

8 For analytical convenience, detection, arrest, and conviction are
assumed to happen at the same time. This assumption can be relaxed and the
main results of the analysis will not be affected.



where r is the discount rate, f(t) and F(t) are respectively the density
function and the distribution function of the time of arrest. The constraint
(7) follows from the definition of the hazard function.? Problem (D1) is an
infinite horizon optimal control problem with control variable c(.) and
state variable F(.).10 The objective function J can be simplified as
follows. By Fubini’s theorem,

® o It[[® o T(S-Elr ds]E(t)dt = [B e TtryF(t)dt

= -3 e Ttry[1-F(t)]dt + mp/r.

Substituting the last equality into (6), J becomes

J =ny/r + J e'rt[ [r1(c(t))-mp] - 6(c(t))h(t) |[1-F(t)]dt. (8)
0

There is a nice interpretation for (8). If the offender participates in
the illegal activity, the net gains at each time t will be mj(c(t)) - 7y -
§(c(t))h(t) with a probability of 1-F(t). Thus, the offender receives with
certainty the amount np/r from the legal activity and an additional expected
amount from the illegal activity given by the second expression on the
right-side of (8). Let B(c) = mj(c) - m9 and J=J - wz/r.ll Since mny/r does
not depend on the control variable of the decision problem, therefore,

problem (Dl) is equivalent to

9 The hazard rate (function) provides a convenient way for modeling
dynamic behavior. See the surveys by Heckman and Singer (1986) and Kiefer
(1988) for details.

10 The mathematical structure of this dynamic model of criminal
behavior is similar to the dynamic limit-pricing model formulated by Kamien
and Schwartz (1971). Davis (1988) also uses a similar model to study some
aspects of dynamic criminal behavior.

11 por convenience, the symbols B(c) and C(c) in section 2 will also
be used in this section. Strictly speaking, the variables B(c) and C(c) in
section 2 are stock variables whereas they are flow variables in this
section.
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(D2) Max J = J e‘rt[ B(c(t)) - 6(c(t))h(t) ][1-F(t)]dt, (9)
c(.) 0

s.t. (7).
Applying the theorem in Leung (1990), the optimal control problem (D2) is
equivalent to the optimization problem:
B(c) - 8(c)h(c)

(D3) Max . (10)
c r + h(c)

Problem (D3) is an important simplification of problem (D2) because the
former is just an ordinary optimization problem which is clearly much
simpler than the original infinite horizon optimal control problem. It also
implies that the optimal path of offense rate c(t), t € [0,], that solves
(D2) is constant over time; and the value of the constant can be found from
(D3).12

Two separate cases are considered below. The first one deals with the
case where the hazard rate of arrest is exogenously given, i.e., h(c) is a
positive constant h. This simple case serves to illustrate the economics of
the problem and it reveals several important and subtle differences between

the static and the dynamic models. The second case allows h(c) to depend on

12 There is a technical point which is worth mentioning. Kamien and
Schwartz (1971) provide a proof of the equivalence of (D2) and (D3) in the
context of a dynamic limit-pricing model. The proof has been used by Kamien
and Schwartz and many others (e.g., Davis 1988) to solve similar infinite
horizon problems in different contexts. It is shown in Leung (1990) that the
Kamien-Schwartz proof is erroneous because it assumes that the
transversality condition is a necessary condition for optimality. It is well
known that the transversality condition is in general pot a necessary
optimality condition for an infinite horizon control problem. Although there
are several results in the literature that provide sufficient conditions
under which the transversality condition is a necessary optimality
condition, Leung (1990) shows that none of these results provides a
satisfactory justification for the transversality condition in this type of
models. An alternative proof of the equivalence of the two optimization
problems is offered in Leung (1990).
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c¢. The analysis becomes more complicated and the implications are

drastically different from the first case.

Case 1: The hazard rate of arrest is a constant
When h(c) = h (a positive constant), problem (D3) becomes
B(c) - #(c)h

(D4) Max . (11)
c r +h

What is the optimal fine in this case? Since r and h are constants, it is
obvious from (11) that the optimal fine is given by

6(c) = C(c)/h, (12)
where C(c) is the social cost of the crime. It follows that the optimal
multiplier is 1/h, the inverse of the hazard rate of arrest. The most
important implication of this result is that the optimal multiplier is not
necessarily greater than one because the hazard rate h is not bounded
between 0 and 1. Hence, the optimal fine may not be a multiple of the
damages caused by the illegal activity. Therefore, Becker's approach will
not generate the optimal outcome in a dynamic environmment. In fact, it is
highly likely that the approach will cause overcompliance because the
multiple fine imposes too heavy penalty on the offender.

Why is there a difference between the multipliers in Becker'’s approach
and the dynamic one? One may argue that Becker's claim fails in the dynamic
case because of the continuous time formulation of the dynamic model, and
therefore it is not surprising to find that the multiplier 1/P is replaced
by 1/h because the hazard rate h is the continuous time analog of the
probability P. This argument is incorrect for two reasons. First, the

hazard rate is the conditional density and is not analogous to the
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probability. For any short time interval At, the probability of arrest in
[t,t+At] is f(t)At, whereas hAat = £(t)At/[1-F(t)] is the conditional
probability of arrest in [t,t+At]. Thus, it may be more appropriate to
regard £(t) as the continuous time analog of P. Second, the discrete-
continuous time distinction is mnot crucial. In fact, the dynamic model (D4)
closely resembles the static model (S1) because B(c)/(r+h) and #(c)/(r+h)
can respectively be regarded as the B(c) and #(c) in model (S1). The only
real distinction lies in the‘terms P and h. Furthermore, the objective
function (11) can be written as {[1-F(t)]B(c)-£(t)0(c))/{(x+h)[1-F(t)]},
which is similar to the static model (S2) because the numerator [1-F(t)]B(c)
- f(t)f(c) is analogous to the objective function (1-P)B(c) - Pd(c) of model
(82).13 This interpretation shows that the critical difference between the
static and the dynamic models arises from the dynamic and stochastic nature
of the arrest process, regardless of whether the process is in discrete time
or in continuous time. In a dynamic environment, the flow of the gains from
the crime can be sustained only if the offender has not yet been arrested.
As a result of this conditioning, the probability in the static model has to
be replaced by the conditional probability in the dynamic model, which leads
to the differences between the implications of the two models.

The dynamic model does not suffer from the shortcomings of model (S2)
because a is no longer an arbitrary number. The quantity aB(c) in model (S2)
is now fully specified and determined within the dynamic model, and has a

nice structural interpretation. It describes the gains that the offender

13 This similarity in the objective functions is the most important
feature of the dynamic model (D4) that is captured by the static model (S52).
This is the main reason for constructing model (S2) to compare with model
(s1).
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obtained from the time he started engaging in the crime to the time when he
is caught. In the dynamic model (D1), it is just the returns n1(c(t)), t €
[0,T], that the offender has already reaped before he is caught at time T.
Hence, a dynamic model is preferable to a static model because the former
formulates and addresses this aspect explicitly.

The two static models (S1) and (S2) illustrate the differences between
the static and the dynamic models. The key lies in the assumptions on the
timing of the benefits and costs of the illegal activity. In the dynamic
model, the returns come in continuously over a period of time until the
offender is caught. At each moment, the offender may be caught in the act so
that the flow of returns will end immediately. The fine is then based on the
offense rate when he is caught. The static model implicitly assumes that the
flow of returns can be aggregated into a lifetime (or one-period) income.
While one can justify the aggregation assumption in the case of the returns
from legal activities, it is more difficult to justify it in the case of the
returns from illegal activities. In the present setup, the key distinction
between legal and illegal activities is that the flow of returns from
illegal activities can be terminated suddenly at any time (when the offense
is detected). Ex ante, it is impossible to aggregate the flow of returns
from illegal activities into a lifetime or a one-period income because of
the presence of uncertainty. To take into account the uncertainty, the
conditional probability argument is required, and this drives the

differences between the static and the dynamic models.

Case 2: The hazard rate of arrest depends on the offense rate

When the hazard rate of arrest is allowed to depend on the offense

14



rate, the problem becomes more complicated and the results are strikingly
altered. The first is that the optimal multiplier 1/h(c) in case 1l is no
longer optimal here.l# The difference arises because the discount factor in
(11) (r+h) is a constant, whereas the discount factor in (10) (r+h(c)) 1is
endogenously determined.

What is the optimal fine in this case? To proceed, first notice that
the first-order condition of the optimization problem (D3) is given by

[r+h(c)][B'(c)-8'(c)h(c)-8(c)h’ (e)]-[B(c)-f(c)h(c)]h’(c) = O, (13)
which can be rearranged to yield
[B(c)+rb(c)]h’ (c)

B'(¢c) = + 8'(c)h(c).
r + h(c)

Since B'(c) = C’'(c) at the social optimum c*, hence the optimal fine 6(c)
must satisfy the equality
[B(c)+ré(c)]h’(c)

C'(c) = + 8'(c)h(e) (14)
r + h(c)

at ¢ = c*. Therefore, one way to determine the optimal fine is to find a
function #(.) such that the functional equation (14) is satisfied for every
c. Although (14) is a complicated functional equation, it can be rearranged

to yield a first-order nonhomogeneous differential equation:

8'(c) + M(c)f(c) = N(e), (15)
rh' (c) C'(c) B(c)h' (c)
where M(c) = and N(c) = - .
[r+h(c) ]h(c) h(e) [r+h(c) ]h(c)

Consequently, the problem of finding the function 6(.) from (14) becomes

more manageable because it amounts to solving the differential equation (15)

14 This can easily be checked by substituting f(c) = C(c)/h(c) into
(D3) and verifying that the ¢ that solves (D3) is different from the social
optimal offense rate.
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for 6(.). To solve the differential equation, first rearrange (15) to obtain

d [ h(c)b(c) ] h(e) [ C’' (c) B(c)h'(c) ]

dc r+h(c) r+h(c) h(c) [r+h(c) ]h(c)

Assume h(0) = O and integrate both sides of the last equation from O to c,

(16)

[r+h(c)] c C'(x) B(x)h' (%)
f(c) = —— dx.

h(c) Jo [ r+h(x) [r+h(x)]1?

Thus, the optimal fine #(c) is related to the functions B(.), C(.), and h(.)
in a complicated way. It is clear from (16) that the optimal multiplier
§(c)/C(c) is not necessarily greater than one.

Both the results from cases 1 and 2 demonstrate that the multiplier may
be smaller than one in a more general dynamic setting. The dissimilarities
between the results of cases 1 and 2 arise from the endogeneity of the
hazard rate of arrest. In case 2, the term r+h(c) distorts both the gains
and the costs of the crime because the gains and the costs are essentially
B(c)/[r+h(ec)] and 6(c)/[x+h(c)] respectively. In case 1, r+h(c) is a
constant so that there is no real distortion on the gains and the costs
since r+h is just a scale factor. In case 2, the distortion is in effect
because an increase in ¢ raises both the gains and the hazard rate, and the
results on the real gains B(c)/[r+h(c)] and the real costs 8(c)/[r+h(c)]
become ambiguous. These ambiguities transmit to the optimal fine function
and result in the complicated expression in (16).

Since the implicationé of cases 1 and 2 are so different, it would be
useful to know whether the hazard rate of arrest indeed depends on the
offense rate. This is mainly an empirical question which depends largely on

the operations of the law enforcement agencies and on the type of crimes

involved. For example, consider a polluting factory and assumes that the
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factory will be indicted whenever the amount of pollutants discharged into
the environment (the offense rate) is found to be above the legal standard.
If the environmental agency has a regular schedule of inspecting the
environment surrounding the factory, then the hazard rate of arrest will not
depend on the offense rate. (0f course, the penalty may depend on the
offense rate).15 On the other hand, if the environmental agency does not
have a regular inspection schedule and only inspects the environment when
the agency receives complaints, then the hazard rate of arrest will increase
with the offense rate because the likelihood of complaints increases with
the amount of pollutants discharged. These considerations indicate the

complications involved in setting the optimal fine in a dynamic environment.

4. Conclusion

Previous studies on optimal punishment have ignored dynamic
considerations. In this paper, I have investigated dynamic optimal
punishment theory. In particular, I demonstrate that the optimal fine
derived from a dynamic model is drastically different from the one obtained
from a static model. The analysis shows that Becker's (1968) celebrated
result in the static setup (the optimal fine is a multiple of the damages
done) is no longer valid in a dynamic setting. In fact, the multiple fine
that Becker advocates may be too heavy and may lead to nonoptimal outcomes
because of overcompliance. This result calls into question the validity of

applying Becker’s approach to sentence corporate offenders, as currently

15 Speeding in highways is a similar case. In this case, offense rate =
speed of the car - speed limit. Police will ticket the driver when the speed
of the car exceeds the speed limit, and the hazard rate of arrest does mnot
depend on the number of miles per hour above the speed limit (i.e., the
offense rate).
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proposed by the U.S. Sentencing Commission.

Even if one ignores the dynamic analysis, the results of the two static
models suggest that Becker’s approach should at least be amended in the
following way. Since model (S2) is also a static model and may be a better
description of reality than model (S1), the optimal multiplier should be set
between (1-P)/P and 1/P. This implies that (1-P)C(c)/P and C(c)/P should be
the lower and the upper bounds of the optimal fine. Using the oil spill
example in section 1, the optimal fine should be between $0.9 and $1 per
gallon of oil leaked. Although setting the bounds may not necessarily
produce the optimal outcome, it seems to be a better strategy since it
reduces the range of errors, given that both models (S1) and (S2) are
plausible descriptions of reality.

In many circumstances, the crime process is a dynamic one and the
dynamic model is a better description of reality than the static model.
Hence, the dynamic analysis cannot be ignored. To set the optimal fine in a
general dynamic setting, three crucial pieces of information are required:
the gains from the crime, the social cost of the crime, and the hazard rate
of arrest. Admittedly, little is known about these empirical aspects of
criminal behavior. Therefore more research is needed before optimal
punishment theory can be confidently applied to public policy-making. In
view of the present state of knowledge, the widespread acceptance of

Becker's approach seems to be premature.
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