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Abstract. In this paper, the pure strategy subgame perfect equilibria of general stopping
time games are studied. It is shown that there always exists a natural class of Markov perfect
equilibria, called stopping equilibria. Such equilibria can be computed as a solution of a
single agent stopping time problem. A complete characterization of stopping equilibria is
presented. Conditions are given under which the outcomes of such equilibria span the set
of all possible outcomes from perfect equilibria. Two economic applications of the theory,
product innovations and the timing of asset sales, are discussed. Finally, we show that if
players can commit themselves for some length of time, subgame perfect Nash equilibrium
may fail to exist. o

1. Introduction

In this paper we study the pure strategy subgame perfect equilibria of a general class
of stopping time games. A stopping time game is described by a stochastic process {X¢ :
t > 0} and payoff functions / and f. Without intervention by the players, a state variable
evolves according to the given stochastic process. At any time, either of two players can
“stop” the process. If player i stops the process at state z then his payoff is I(z) and that of
the other player f(z). Simultaneous moves result in a payoff of al+(1—a)f, for some fixed
a € (0,1)!. Our formulation in fact includes the possibility that the process continues to
evolve after i’s move, that j optimally selects a move thereafter and the stochastic process
continues to evolve after both of their moves. In this case the payoff functions are the
present discounted values of future returns.

*Parts of this paper were presented at seminars at Chicago, Rochester and Rutgers and
we acknowledge helpful comments.






Almost any of the well known games of timing is an example of a stopping time game,
with the added simplification that the “stochastic process” is just time itself, i.e. z(t) =t
for all . Two classic examples of games of timing are the war of attrition and pre-emption
games (see, Fudenberg-Tirole (1989), chapter 6). In the (symmetric) war of attrition,
f(z) > l(z), for all z, whereas in pre- emption games, f(z) < I(z) at least over some
states. Games of timing have been extremely useful in understanding issues as diverse
as patent races (Fudenberg et al. (1983), Dasgupta-Stiglitz (1980)), exit from declining
industries (Ghemawat-Nalebuff (1985), Fudenberg-Tirole (1986)) and the adoption and
diffusion of new technologies (Fudenberg-Tirole (1985)). Stopping-time games were in-
troduced in Bensoussan-Friedman (1977).2 In many applications, a pure game of timing
framework 1s unduly restrictive. Generalizations in at least those directions appear essen-
tial. Firstly, one needs to incorporate a (possibly) stochastic mechanism to capture the
effect of uncertainty on the stopping problem.

For example, in evaluating a trading mechanism, price uncertainty is a crucial element
of the decision problem, when to buy or sell an asset. Secondly, many problems involve,
naturally, a number of dimensions other than time alone. For example, it may be important
to analyze the effect of quality or production costs or size of the market, in addition to time,
in evaluating the potential of a new product innovation. Further, in some applications,
the assumption that the state variable is monotonically increasing, which is true when
the state is nothing but time, is unrealistic. Our formulation of the problem allows such
generality. Moreover, we do not make any qualitative assumptions on the payoff functions
other than continuity. This contrasts with all of the above literature, in which concavity
and/or monotonicity restrictions are typically imposed on [ and f.

Formally, stopping time games are examples of stochastic games (see, for example,
Parthasarathy (1973) or Fudenberg-Tirole (1989)) with the proviso that each player has
an irreversible action (“stop”) that either terminates the game or fixes the player’s pay-
off in the consequent subgame. In the absence of such an action, the game environment
evolves according to the exogeneous process {X; : ¢t > 0}. In particular, unlike a game of
timing, although there is only one relevant action, there are different environment histories
on which players can coordinate in choosing that action. So, in principle, there are many -
perfect equilibria of a stopping time game, with a multiplicity of equilibria sustainable by
perhaps folk theorem-like logic.

In our first result (Theorem 1), we completely characterize a sub-class of the perfect
equilibria in a stopping time game, a class we call stopping equilibria. Stopping equilibria
are a subset of the set of Markov Perfect Equilibria (MPE) of the game. These equilibria
have several useful properties. First, they are solutions to single agent stopping problems
and hence can be computed by solving an optimization problem (rather than more in-
tractable fixed point exercises). Secondly, different stopping equilibria can be naturally
ordered by the implied degree of cooperation for different regions. Let us clarify this point.
We let Ci, k € K denote the countable family of (connected) sets on which® [ > f. Each
set Cy should be thought of as a potential cooperation region. On this set each player has
a private incentive to stop and earn a reward [, which exceeds the reward to the follower, f.
A player will cooperate and desist from such move only if he is sure that the other player
will not preempt him. Could players desist from moving on a potential cooperation region
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C¥, so that they both benefit from the state evolving, as a consequence, to a mutually more
advantageous position? Each stopping equilibrium corresponds to a particular subset of
K, that on which the two players do cooperate. We give a simple incentive compatibility
condition to determine whether any such subset can be cooperated on, and the condition
is in terms of the stopping value generated by not cooperating on the complement of this
subset. Naturally, different stopping equilibria generate a partial order on payoffs. Fur-
ther, the number* of such equilibria is clearly bounded by the cardinality of the power set
of K. Finally, a stopping equilibrium always exists.

Next, we turn to the issue: how large a subset of equilibrium payoffs or outcomes is
it, that stopping equilibria generate? Clearly, it would be of interest to know under what
circumstances the computational ease of stopping equilibria is not compromised by ruling
out too many other outcomes. Proposition 3 shows that if {X; : t > 0} is a single
dimensional, increasing process,® the set of outcomes to stopping equilibria is almost the
same set of outcomes, that the more general class of MPE generate. In a sense made precise
in the sequel, almost here means that the outcomes generated by a variant of stoping
equilibria, stopping® equilibria, are precisely those generated by MPE. Hence, from an
observational viewpoint, the two classes of equilibria are equivalent. Further, in Proposition
4 we show that if the environment is single- dimensional and evolves deterministically, then
the set of outcomes under stopping* equilibria is the same set as under that generated
by any perfect equilibrium. It follows from Proposition 3 and 4 that all equilibrium
outcomes in games of timing are, in fact, outcomes of stopping* equilibria. In particular,
all equilibrium outcomes can be derived by solving a stopping time optimization problem,
rather than through a fixed point argument.

All of these results are in Section 4 which follows the game formulation in Section 2 and
the existence and characterization of stopping equilibria in Section 3.

We consider two economic applications of the theory in Section 5. In the first one, we
briefly present some results from a product innovation problem, which we have developed
in detail elsewhere (Dutta-Lach-Rustichini (1990)). In the second, we analyze trading of
an asset, in particular exploring the intuition: when there is more than one informed trader
in a market, the implied competition might lead to early sales. The two models are simple
abstractions, but serve to illustrate the applicability of the results and framework in the
general case.

Finally, in Section 6 we turn briefly to a related question. In the stopping time game
formulation we explicitly assume that no commitments can be made. Since the equilibria
turn out to have interesting implications for the degree of cooperation that is achievable,
we next ask how the introduction of commitment horizons changes the equilibrium set.
Such incorporation of commitment possibilities has a surprising consequence. Equilibria
may fail to ezist for long commitment horizons. The intuition is very similar to the cause
of non-existence in Hotelling spatial models (for example, see D’Aspremont-Gabsewicz-
Thisse (1979)) and we discuss this briefly. That commitment may destroy equilibrium
existence, seems to be a new and hitherto, unnoticed phenomenon.

2. Stopping Time Games: The Model
This section formulates a stopping time game. A detailed explanation of this framework
may be found in Bensoussan-Friedman (1977) who analyzed the issue of the existence of
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Nash equilibria in such games, without the additional constraint of the equilibria being
subgame perfect.

2.1 Notation and A Preliminary Result

Let (2, F) be a measurable space and X be a topological space. A progressively mea-
surable stochastic process is a triple (X, Fy, P*) where F} is an increasing family of sub
o-fields of a o-field F and X; : Q — X is measurable with respect to Fy, for all ¢. A
stochastic process with range R™ is said to be increasing if for all x and ¢, P*(z¢ 2 z) = 1.
A Markov Time in a map T': Q — Ry, with {T <t} € F; for every t, and T < 400 a.s.
Eztended Markov Times are Markov times with T' € +00 a.s.; they are denoted by M.

An optimal discounted stopping time problem is the choice of Markov times to maximize
discounted lifetime returns; i.e. is given by

6T
maxe™ g(zT).

The following result is used repeatedly in the sequel (see for instance Fakeev, (1973)).

THEOREM 0. Let X; be continuous with probability 1 and suppose ¢ is a continuous
function. Then the optimal discounted stopping time problem has a solution given by

T=inf{s:s20, z,€ A}

for some fixed Borel subset A of R™.

In the game there are two players, 1 and 2. The index i will refer to a generic player.
In all statements involving player 7, j will refer to the other player.

2.2 Stopping Time Game
An abstract symmetric leader-follower game or stopping time game is given by a triple

((Xt, Fy, P*); 1, f) where

i) (X¢, Ft, P®) is a stochastic process with range given by a set X C R", with the
Borel o-field B(X). )

i1) [, f are real valued functions on X (and stand for the payoff to the leader and to
the follower respectively).

For the present, we analyze the symmetric game. We return to the more general asym-
metric formulation at the end of Section 3. The game proceeds as follows: in the absence
of any action by either player, the game environment evolves according to the stochastic
process (X;,t > 0). Each player has a single action, which we shall interchangeably call
“stop” or “entry.” If player i stops or enters at z, then i’s payoff is I(z), and that of
J, f(z). One could either think of play terminating at z, with [ and f as terminal payoffs.
Alternatively, after i’s entry, j solves a single agent stopping time problem. The value
for that problem is f(z), and I(z) would then be the implied return for the first mover.
Simultaneous entry yields b(z) = al(z) + (1 — a)f(z),a € (0,1).

We shall always assume the following conditions:

(A1) The stochastic process is a Markov process with continuous sample paths.
(A2) [, f are continuous functions.



In all of the applications mentioned above these conditions are satisfied.

2.3 Strategies

At time ¢ > 0, the history of the play has two components: the sample path of the state
(which depends on the action of “nature”) and the actions of the two players. Formally at
time ¢ the set of histories is

H, =C([0,1],X) x ([0,#) U {+00})%.

A typical element of H; is h = (z,t1,t2) where z is the path of the state until ¢, and ¢; < ¢
denotes the time at which player ¢ has entered. With the convention t; = +oco if player ¢
has not entered, this gives a complete description of the play until ¢.

We denote by G¢ the smallest o-algebra on C([0, +00), X) generated by the finite cylin-
ders of the type

{YeC:Y(ti)eB;, BieB(X), i=12,....,m; t; <t}

where B(X) are the Borel subsets of X. A strategy for a player is a family of functions
{o¢}ez0, where each oy : Hy — {0, 1} is progressively measurable with respect to G;. Here
0 stands for “no entry” and 1 for “entry” respectively. Since a player can move only once,
a further restriction on a strategy is that, for every h¢ s.t. t; < oo, a4(hs) = 1.5

A strategy is said to be stationary Markovian if actions depend only on the current
state. In particular, if a player i has not moved yet at ¢ then whether or not a move
happens is decided solely as a function of z;. Formally, a stationary Markovian strategy
is a measurable function, ¢ : X — {0,1}, such that o4(h) = ¢(z¢), for all ¢t.

As in other stochastic games, Markovian strategies incorporate all payoff relevant factors
(and hence imply a minimal degree of rationality), yield equibria which are equilibria even
when the larger class of history dependent equilibria are admissible and are computation-
ally and analytically more tractable (for these and additional arguments, see Maskin-Tirole
(1988) or Fudenberg-Tirole (1989, chapter 5).

To any pair of strategies and any initial state is associated a stopping time T : Q —
R} x {0,1,2}. The first coordinate indicates the moment in which some player enters; the
second coordinate indicates the identity of the player who enters: 0 denotes simultaneous
entry. We write therefore T = (¢,7) to denote the time of the move, and the player who
moved, respectively.

The payoff in the game with X, = z a.s. is defined for player 1, say, by:

m(ot,0?)(z) = Ere ™ {l(ze)x (iz1) + F(2e)X {i=2) + b(Te)X {iz0} }-

2.4 Equilibrium

The game is one of complete information and the equilibrium concept we adopt is that
of subgame perfect equilibrium. Note that a proper subgame starts at the end of every
partial history A, i.e. in the node originating with z;. Let o;(h:) denote the continuation
after history h,, of strategy o;. Then, (o5(h:),03(h¢)) form a Nash equilibrium after h; if

mi(07 (ht), 05 (he))(zt) = (04,05 (he))(2e), for every o;.
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The pair (oF,0%) forms a subgame perfect equilibrium if of(h¢), o5(he) forms a Nash
equilibrium for all histories h; and all t. If o}, 05 are (stationary) Markovian, they are said
to form a Markov Perfect Equilibrium (MPE).

3. Stopping Equilibria

As was clear from the discussion of the stopping time game and admissible strategies in
Section 2, the set of equilibria is potentially large.

In this section we characterize a particular sub-class of MPE, which we call stopping
equilibria.

Stopping equilibria will be shown to be solutions to a single agent stopping problem.
The intuition behind these equilibria is simple. Suppose player j is a “passive” player,
in that he never unilaterally moves. He does move if the other player does, when faced
with an immediate loss, i.e. if i moves at z such that I(z) > f(z), then so does j. Given
such a strategy of j, i has to decide his unilateral moves, if any. What these will be i1s
completely determined by which of the potential cooperation regions C, the two players
can (implicitly) agree not to move on. Such an “agreement” is enforceable for i if his
unilateral moves are consistent with the degree of cooperation and vice-versa. For j, they
are enforceable if cooperation is incentive compatible.

All this is shown to be captured by a single stopping problem and a pair of associated
incentive conditions.

3.1 A Modified Stopping Problem

Let {Cx}rex be the connected components of {z € X : f(z) < I(z)}. Clearly K is at
most countable, since [ and f are continuous functions.

For a finite subset of K, I say, we define the modified stochastic process {yl,t > 0} as
follows. Let H denote the hitting time of the set U;e7rCj, that is:

H(z)=inf{t 20: z; € UierCi;30 = r}.
Now define the stochastic process {y¢, Ft, Py} as

Yt = TeX{t<H} T THX{t>H}

In other words, the process {y;,t > 0} is “absorbed” at the boundary of the region
UierC;. For notational convenience, denote Cy = UierC; and C—y = UieguuCi. C-risa
potential cooperation region.

We then define the optimal stopping time problem : choose a Markov time M so as to

PLjy max E.e *Ti(yl).

As recalled above (Theorem 0), the problem P Ly has a solution with an optimal stopping
time T defined by T = inf{t > 0, X; € Ay} for some Borel subset Ay of X.

We shall denote V;!(z) the solution of the PL; problem. Recall Vil(z) 2 l(z) for z € CI,
and Ar = {z : Vi{(z) = I(2)}.



3.2 Stopping equilibria-
THEOREM 1.
i) The pair of (stationary) Markovian strategies (61,01), defined as

0 if ArucC
O’{(mt)z{ 1 $t¢ I I

1 otherwise
a { (z¢) = {

0 lfitt ¢ CI
1 1f:ct € CI
is a subgame perfect equilibrium of the stopping time gante if f
Vi(z) > l(z), z€C-r (1)

ii) A subgame perfect equilbrium for the game always exists, and is given by the pair
of strategies (af¢, a{).

i) If K is a finite set of, say, n elements, there are at most 2n+1 equilibria of the type
described in 1.

PRrROOF: We drop the index I for simplicity.

Notice that from the condition Vi(z) > I(z) for z € C_, we have zr € X\C_; almost
surely, or f(zT) > [(z7) almost surely. We now prove that the pair (71, 03) gives a subgame
perfect equilibrium. Notice first that since each component of the pair only considers the
present states (so that all subgames starting from the same state are identical), we only
need prove that they give a Nash equilibrium on any subgame beginning at any { € X. If
£ € Cy, then clearly (07,0,) is an equilibrium pair.

For any ¢ € X\Cr we have

1(6) < Vi(€) = Ege*Til(zq,) < Bee " f(am,) = Vi(€). (3)

The first inequality follows from the hypothesis, if £ € C_r (and here the inequality is
strict), and from the basic properties of V; for every other z. The inequality Vi(z) > I()
(with a strict inequality if z ¢ A) insures that the leader will not deviate and make his
move before the state reaches A. On the other hand, the inequality E¢e %7 f(z7,) > 1(¢)
if £ € X\C7 insures that the designated follower will not preempt before the state reaches
the set A.

The converse is obvious: for £ € C_g, if Vi(z) = {(z) then the designated leader would
enter, and since f(z) < I(z) the best response of the follower is to enter too. If C_y is
empty, (1) is vacuously satisfied. From this ii) follows. 1

It follows from the theorem that the equilibria can be given a partial order induced by
the inclusive partial order over the subsets of K. More precisely:

COROLLARY 2. If I; C I,, and the corresponding pairs (a{‘,ag‘ , 1 = 1,2, constitute an

equilibrium, then V,I1 > V,I"’. In particular V/X is the worst equilibrium for the leader.

PRrOOF: Immediate from the fact that the equilibrium payoff for the leader is determined
by the solution of the PLj, problem, and in PLj, the stopping time T* = inf{t > 0:z: €
A1, UUier, Ci} gives Epe~*T I(afh) = V(). 1
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4. Outcomes in Equilibrium

How restrictive is the behavior implied by stopping equilibria? The question is impor-
tant, of course, because the number of equilibria, in this as in all games, may be very large.
Since anyway we can only observe the outcomes of an equilibrium, it is natural to restrict
the analysis to them. In this section we ask how large is the set of all possible equilibrium
outcomes. Further we want to determine how many of these equilibrium outcomes corre-
spond to the outcomes of stopping equilibria. The set of outcomes for an initial state z
and a pair of strategies o = (01, 02), O;(€) can be identified with the implied stopping set

O:(0)={2€ X :0i(z)=1,i= lor 2, and P*(«(T) = z) > 0}. (4)

Notice that we impose the condition P*(z(T") = z) > 0, i.e. that the game goes to state
z with positive probability.

It is easy to see that in the general class of stopping games, with no restriction imposed
on the nature of the stochastic process, the equilibrium outcomes may have a very arbi-
trary nature, more complicated than the simple form imposed by the stopping equilibria.
Consider however the following simplifying hypothesis:

(A3) {X4,t > 0} is a single dimensional, increasing stochastic process.

Games of timing are, of course an interesting instance which satisfies this condition.

Under this simplification, the set O,(¢) for a markovian strategy o consists of a singleton;
O.(0) = inf {z€ X :0i(z) =1,i = lor2}.
2z

The following example shows that stopping equilibria are not quite sufficient (although

Proposition 3. will show that they almost are) to generate the equilibrium outcomes of all
MPE.

Example. X = Ry, ¢ = 1. Suppose that 0 < a < 4, and let (0,a) be an interval on
which [ > f, and then on (e, 3), I < f. Finally, l = f on {0, a, f}and outside [0, 1].
Suppose that

e 5=D(a) > l(z), z€(0,0) (8) .
e =21(8) > I(2), = € [a,B) (6)
e~ =Ai(z) < U(B), = € (B, ). (7)

It is clear that oi(z) = 1 for 7 = 1,2 if and only if z = {0, a, 8} constitutes a MPE.
For any z € (0,a), the equilibrium outcome is . On the other hand the outcomes
corresponding to the only two stopping equilibria are either z, or §. Notice that in this
example the outcome a cannot be generated by stopping equilibria because they require
the players to either cooperate on the entire interval (0, a) or not at all.

This example suggests a minor modification of the definition of stopping equilibria, which
we now introduce. Stopping equilibria are indexed by the degree of potential cooperation
that is “offered” by a passive player on the set where I > f. An immediate extension
of this concept would be to consider, additionally, potential cooperation on the set of
states where leading and following give the same payoff, that is where [ = f. Denote
S={z e X:Ilz)= f(z)}. We shall define a stopping* equilibrium through strategies
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which induce non-cooperafion over the region Cr and also on an additional region of non-
cooperation, S* C S. In other words, let

H*(z)=inf{t >0:2; € CrUS*; Xy = z}
and as in Section 3.1 define

Yt = ZtX{t<H*} T THX{t>H*}-

Notice that the cardinality of the set of stopping* equilibria may be in principle very
large. It is easy to see, however, that if the set of points where the two payoff functions {
and f are equal is finite then the number of stopping* equilibria is again finite.

Let V,I‘ define the value to stopping the stochastic process {y; : ¢ > 0} and suppose
that A7 is the stopping set (well-defined by Theorem 0). Then, consider the strategies

- {0 ATucCruS*
dw={] LEfC

1 otherwise
* ( ) { 0 x ¢ Crus*
ox(z) =
2 1 otherwiese

The above strategies are a candidate for a stopping* equilibrium. The incentive com-
patibility condition is precisely (1). Stopping* equilibria are clearly a more general class of
equilibria than stopping equilibria, in that they reduce the latter when S* = . Further,
they have the same conceptual and analytical clarity that stopping equilibria possess. We
can now prove:

PROPOSITION 3. Suppose (A3) holds, and consider any MPE o and an initial state «.
Then, there is a stopping* equilibrium o* such that O,(c) = O(c*).

The proof of proposition 3. can be found in Appendix A.

Notice that a generic MPE of the stopping game can be described as follows: there are
stopping sets S;,7 = 1,2 such that o;(z) = 1 if and only if z € S;. Stopping* equilibria
are constrained to stopping sets of the special kind: S; = Cr U S* and consequently
Si = ATUCruU S*). It should come as a surprise to the reader that although stopping
sets can in principle be extremely arbitrary subsets of the state space, in equilibrium they
can be restricted to the very regular stopping sets of the stopping* equilibria. The crucial
result we use in the proof is Lemma A.1 in Appendix A. This result shows that on any
interval on which {f > [}, only one of the players can be active. This yields the conclusion
that without loss of generality S; N (Cy U S)¢ is non empty for either : = 1 or 2 but not
both. ;jFrom that Proposition 3 follows.

MPE are, in turn, a subset of the whole class of subgame perfect equilibria in stop-
ping time games. We present a result now which gives conditions under which the set
of outcomes under this much more general class of equilibria is precisely the same set of
outcomes as under stopping equilibria.

(A4) X C R and {X;;t > 0} is a deterministic process.

9



Note again that games of timing are a case in which this condition is satisfied. Note
that the process need not be increasing and, indeed for a deterministic increasing process,
there is really no distinction between history dependent and memoryless strategies. Given

that the process is deterministic, there is a unique history for any initial state . Denote
this history h¢(z¢). Then, denote T = ix;%{a,-(ht) =1, =1 or 2}, and

Oz,(0) = {=(T)}.

PROPOSITION 4. Suppose that (A4) holds. Then, for any initial state zo and a subgame
perfect equilibrium o, there is a stopping* equilibrium o* such that

Ozo(a) = Oxo(a*)

The proof of Proposition 4. can also be found in Appendix A.

5. Product Innovation and Asset Sales
We present now two economic applications of the general theory. In the first we study
product innovation.

5.1 Product Innovation

A technology or idea or quality level arrives into an industry at date zero. Over time,
the basic technology or idea grows and matures, on account of the firms’ own efforts in
assimilating knowledge and also possibly from a flow of exogeneous information. One of
the interesting issues in this context is the extent of maturation and the pace of diffusion
of the original idea. The basic idea eventually generates a host of differentiated products,
characterized by the maturation and improvement that each undergoes. The precise ques-
tions that one is interested in, in this context, are: i) how much maturation precedes the
first introduction into the market, the level of innovation, and ii) how diverse are subse-
quent innovations? It should be noted that this approach is different from, and we believe
a valuable complement to, the usual view of the innovation process. In the latter, the role
of the first breakthrough is emphasized and all analysis relates to homogeneous products .
[(see, e.g. Reinganum (1989) for a survey)]. Greater detail on our approach and a more
comprehensive model can be found in Dutta-Lach-Rustichini (1990). For completeness we
report a detailed analysis in Appendix C.

There we show that this game has two stopping equilibria. The first one, which is
the classic preemption equilibrium, involves a race by all firms in the industry to be the
first to innovate. This results in rent equalization among firms, and comparatively little
maturation of the basic idea. In the second and more interesting equilibrium, which we
call maturation equilibrium, there is no preemptive race. The leader chooses optimally the
time of entry, anticipating a later entry of the follower, after a maturation period. Entries
are staggered, no rent is dissipated, but the leader has an equilibrium payoff lower than
that of the follower.

5.2 Asset Sales
The price of an asset is appreciating. What is the best time to sell it? If there were
a single trader, the answer to this question is simply found by solving a stopping time
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problem, that trades off discount costs to waiting against the benefits of a higher price.
Suppose instead that there is more than one trader, for simplicity two. When 1 sells, it
drives the price down for j. The asset price will rise again, but from this lower base. Does
competition among traders lead to pre-emptive sales, and a quick unloading of the asset
before its price has sufficiently improved? We do not attempt anything like a comprehensive
analysis of this problem, but merely offer a simple model in which to explore the question.

Again we refer the reader to Appendix B for a detailed discussion of the model and its
analysis . Here we outline the main results.

We may distinguish two basic disinct possibilities, according to the loss in value of the
asset after the first sale. In the first case, the asset depreciates heavily: indeed we consider
an extreme case in which the price falls to zero. This results in preemptive "fire sales” in
which the asset is offloaded early before its value can appreciate.

In the second case, the fall in the price of the asset is dependent on its current price.
Again there may be preemptive equilibria. Now, however, if the fall in price is propor-
tionally lower at higher valuations of the asset, then we show the existence of equilibrium
outcomes in which traders are willing to forego short term gains. By cooperating initially
they build up the asset value before the sale.

6. Commitment Horizons.

In the analysis so far we have allowed players to move at any time of their choosing.
In several applications, however, there are both natural constraints (like the length of the
day, or of the year, legal and institutional conditions) which make this complete freedom of
choice impossible. Also, players may have available institutional arrangements that allow
a committment to a specific course of action in the future.

What is the effect of allowing players in a stopping time game to possibly commit to
their actions? For instance, suppose that a player could credibly commit to not move over
the next 7 length of time. More generally, suppose every 7 periods, players can make
“announcements” or “prepare for a move.” At t if such preparation is not made, a player
cannot move between t and t + 7. Having made such a preparation a player can always
forego a planned move at some f € [t,t + 7), but a move can only be made at t. How does
such commitment possibilities affect the set of equilibria? Conventional wisdom suggests -
that one should be able to enlarge cooperation possibilities. Somewhat surprisingly, we
show that if long commitments are possible, equilibrium may fail to exist. The reason
is not very different® from the non-existence problem that plagues the Hotelling spatial
location problem. To keep matters simple, consider 7 = oo, and a pure game of timing,
ie z(t)=t,t20.

Is there a Nash equilibrium if player ¢ picks ¢;, 7 = 1,2, his move time, and commits to
it in the sense that he can pass up his move but cannot move at another time? The choice
of such a time is much like the choice of a location in a spatial model. If ¢’s choice is “low”
(small t;), j prefers taking the “high” end, ¢; > ¢; and vice-versa. But a middle ground is
never a best response.

Let the payoffs | and f be further decomposed as follows. The flow payoff to a first
entrant is a function of the time of entry. Denote this 6R(%;). After the second entry,
the two players earn returns which depend on t; and t;. For simplicity assume that these
returns only depend on the difference in entry times t; —t;. Denote these returns or(ti—t;)

11



and ér(t; —t;) respectively, for players ¢ and j. The optimal second entry is then given by

WX e %%r(8)

Assume that the solution to this problem is unique, and denote it by 8*. Then

f(t) = e r(6%)
I(t) = (1 - e %)R(t) + e~ % r(—6*)

(see Appendix B for further details.) Let r(¢;,t;) = r(t; — t;). Strategies are choices of
ti, t; and the payoffs, with ¢; < t; are given by e.g.,

mi=e {1 — e PG TN R(t;) + e (2 — 1))

w; = 6_6tjr(tj - t,‘)

PROPOSITION 5. There are concave increasing functions r and R, such that there is no
Nash equilibrium to the commitment game, for some length of the commitment.

PROOF: We shall briefly outline the proof.
Let s be the choice of entry time of player 1 say, and compute the best response for
player 2. We consider two cases.

Case 1. If he decides to follow, the best entry time ¢, with ¢ > s is the solution of

I¥1>axr(t — s)e™ %", which is a constant, A say. Call ¢(s) the best entry time, and F(s) the
=3

value of being a follower.
Case 2. If he decides to be a leader, then he is solving ma,x}W(t,s), where W(t,s) =

{t:1<s
R(t) (e — e ) 4 r(t — s)e™%e.
To choose between the leader or the follower position, finally, the player chooses
max{F(s), L(s)}.
If we now set R(z) = (max{z,0})";r(z) = (max{z,0})* we find
1. A solution to the case 1 and case 2 problems exists.
2. There exists an s* such that F(s) > L(s) if and only if s € [0, s*].

Fig. 1 here

The best response correspondence is upper semicontinuous but not convex valued.
One can prove (an unattractive exercise in calculus) that for some values of the param-
eters (6,7, a) no equilibrium exists.

12



Appendix A: Proof of Proposition 3. and 4.

To prove Proposition 3 we first establish an additional property satisfied by any MPE.
Pick an z¢ € X and let O;,(0) = a. Clearly, a € {f > [} since a is an equilibrium outcome.

LEMMA A.l. Suppose (A1)-(A3) hold. If 01(a) = 1 for a € {f > 1}, then o2(z) = 0 for
every z in the connected component of {f > [} which contains a.

PROOF: Define
- { inf{z: f(z) <l(z), =z >a}
T+ oo, if this set is empty.

Let M; = {z € [a,b) : oi(z) = 1}; since a € M;, we claim My = §. Letting d(M;, M)
denote the distance between M; and M, with the convention d(M;, M;) = 400 if M, = 0,
we claim first that +o0o > d(My, M2) > 0 is impossible. Supposing otherwise we conclude
in fact that there exist two points C;, 1 = 1,2 such that ¢;(C;) = 1, 0y(z) = 0 for any z in
the interval with extreme points C; and C;. We may assume w.l.o.g. that C; < C;. Then
1. I(C1) > Eg,e %Tes f(C;) (because 01(Cy) = 1);
2. I(C1) < Ec,e%Te2](C;) (because o3(z) =0, z € [C1,C5)).
But 1 and 2 give a contradiction.

On the other hand, d(M;, M,) # 0. Supposing otherwise, we can find b; € M, and, for
any 6 > 0, a pair (C1,C2) such that C; € M;, C; € [a,b1], ¢« = 1,2, and (again w.l.o.g.)
§ > Cy — C; > 0. But this contradicts, for § small enough, that 01(C1) = 1 is a best
response, as it follows immediately from Proposition 1. and the fact that f(z) > (),
T € [a, bl] |

PROOF OF PROPOSITION 3: Let o be a MPE and denote O,(c) = a,a # z. It must
be that f(a) > l(a). Else, by continuity of the payoffs, there is a state z in some left
neighborhood of a, such that

I(2) > E.e”*T{al(a) + (1 — a)f(a)}

where T = inf{t : z; = a;z¢ = z} In this case, some player can deviate and enter by
unilaterally moving at z. If player ¢ is the entrant at a,then a is an optimal move in
anticipation of j’s next “state of entry,” say b > a. Suppose l(b) < f(b) (and hence
b > a). Then, let us denote (C, D) to be the interval such that b € (C,D), and I(C) =
f(C). Consider now a pair of stopping™ strategies such that, 0;(C) = ¢;(C) = 1, there is
cooperation on all potential cooperation regions Cy, between a and b, and no cooperation
on any cooperation region beyond b.

For states between z and a, the prospect is exactly as in o, so the previous behavior
(which was in accordance with stopping* strategies) is still an equilibrium. Moreover,

l(a) > Ee T f(b) > Ee~*TI(b) > Ee’"1(C)
where
T=inf{t >0: 2z, =b;20 = a}
Z

r=inf{t 20: 2 = C;z0 = a}
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The last inequality follows from Lemma A.1 and the fact that player j given a choice of
any entry date in (C, b), actually picked b.
The argument for {(b) = f(b) is identical.

We now turn to the proof of Proposition 4.

PROOF: Suppose O,,(c) = {a}. Then, it follows that along h(zo), =+ # a,t < T. Else, a
player who moves at T, could move before T at the same state a, and given discounting,
make strictly more in payoffs. In particular, then no state repeats between z, and a.
Otherwise, the process would merely cycle and never get to a. So z+ converges either from
above or from below from z4 to a.

As in Proposition 3, consider stopping strategies which do not stop over potential coop-
eration regions in (zg, a) or (a,zo) and stop over all other cooperation regions Ci. They
constitute an equilibrium.

14



Appendix B: Continuity of the payoff functions

In this Appendix we explore some “primitive” formulations which are covered by our
stopping time game framework. In particular we have in mind cases in which the payoff
functions / and f are not given as primitive elements of the game, but arise as solution of
the decision problem faced by the follower.

Let the game environment evolve, as before, according to the stochastic process {X; :
t > 0}. Suppose now that player ; moves at a state z. Consequent to this action, ¢ gets a
flow payoff per period of §R(z), till such time as j moves. Let the state at J’s move by y.
Then, in the subsequent stage, i gets a payoff of 6r(z,y) per period, and j gets ér(y,z).
We shall always assume that the functions R and r are continuous. These last payoffs may
be interpreted in some contexts as the outcomes of one shot games in which ¢ and ;7 have
“states” z and y respectively. We refer to Section 5. for one concrete application.

Consider j’s stopping problem,

—5T
max Ee™""r(yr, )

The value of this problem can be denoted by f (z), and the total value that the player ¢
will receive as a consequence is then I(z). So in either an “exit” or an “entry” interpretation,
stopping time games covers a variety of economic problems.

Now we proceed to demonstrate sufficient conditions on r and R which guarantee the
continuity of [ and f. In the following we consider special cases.

I L1r(z,y) =s(z—y);
1.2 X =R™;
1.3 The stochastic process is spatially homogeneous.
Note the I. 1,2,3 above imply that
a) f(z) = f(0) = supe 7 s(zt, ), so Ty is a stopping time independent of z, and f is
Ty

a constant;
b) (z) = E.{R(z)(1 — e™°T7) + s(z — X1,)e"5T1} = R(z)C; + s(z — X1,)Cs where
C} and C, are constants, and gy, ~z=AER™ as. )
III1 X=R
I1.2 The stochastic process is increasing, with the drift coefficient of the infinitesimal
generator given by a continuously differentiable function M, and with a derivative
M' satisfying 0 < M' < 6.
I1.3 The function £ — r(z,y) is strictly concave for every y.
HOI II.1 X = R, or X = Ry, and a reflecting barrier at the origin;
IT1.2 the stochastic process is given as solution of the stochastic differential equation

dz = Mdt + odW, with M € R, W a standard Brownian motion;
IIL.3 the function z — r(z,y) is concave for every y; and r(z,y) = 0if z < y.

For both cases II and III above, the proof of the continity of ! and f consists of observing
that the optimal stopping time of the follower is determined by

Ty(z) =inf{t > 0: z; = A(x)}
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and the function £ — A(z) is continuous because it is determined as the tangency points
of two concave functions: r(z,y) and the solution u of the equation Lu = 0, where L is
the infinitesmal generator associated with the stochastic process.
It follows that
f(2) =r(A(z),2)Ee~ ")

and

I(z) = R(2)E-(1 — e~*T/®)) 4+ r(A(z), 2)Eze~ T+ ()

are continuous.
Collecting all of the above, it follows that

PROPOSITION B.1. Under the conditions I, or II or III, the payoffs to leader and follower
in the associated stopping time game are continuous functions of the state.
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Appendix C: Product Innovation and Asset Sales

C.1: The Product Innovation Model

An initial idea or technology, with a payoff relevant real valued variable z, is available
at date 0. Over time this technology evolves. Suppose that the technology process {X;
t > 0} is increasing.? For expositional ease, let us also take it to be deterministic and
single dimensional,’® and hence by renormalization, X(t) = ¢, t > 0. At time ¢ either
firm can introduce a product, incorporating attribute ¢, and consequently earn monopoly
returns per period of §R(t), till the other firm enters the market. After the moment of
the two innovations, at ¢; and t; say, 1 and j respectively make flow profits of ér(ti —t;)
and ér(t; —t;).1* This specification means, of course, that returns only depend on relative
quality or vintage. If firms attempt to move simultaneously, each actually moves with
probability of %
Stopping Equilibrium

Suppose firm 7 moves at ¢t. Firm j’s stopping problem is

max e~ %%r(6). (1)

b

Suppose the maximand in (1) has a unique solution #* > 0. Then, with ! and f denoting
the payoff to the leader and the follower as usual,

f@)=e%r (6%, tz0

I(t) = (1 — e %)R(t) + %% r(—6%). @)

If the monopoly returns §R(t) improve with the monopolist’s quality t, then the first
mover’s payoffs increase with the state. The follower’s payoffs are clearly constant, say ¢.
Fig.C.1 here

Let us suppose that [(0) < ¢ < I(0),'? and define tp, as {(t,,) = ¢. Clearly, both firms
move beyond t,,, if neither has moved till then (alternatively, Cx = (tm,0), #K = 1).
Note,

_ .y
W(t)‘oe[’é,‘?jf-t]e (t+6), tel0,tn)

_ st —5(t+6)
= ¢’ maxe I(t+6). (3)

Suppose finally that e~%%l(z) is quasi-concave (and hence single peaked) on [0,t,,].
Denote the position of the peak to be t*. We have two cases:

Case 1. t* < t,,. Then, A = {t € [t*,t,,]}

e6t[e—6t' l(t*)] t < t*

v ={

I(t) t>t* (@)
B e&t[e—ﬁt‘f(t*)] t <t
Vi(t) = { £(2) >,

In this case Theorem 1 and Proposition 4 yield
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ProrosITION C.1. i) Ift* < t,,, the unique’® subgame perfect equilibrium in pure strate-
gies is the stopping equilibrium,

{ 1 on [t*, 00) »
oit) = : .,
0 else =121 #;

1 on[ty,)

oile) = { 0 else.

In particular, the outcome in equilibrium (from initial state 0) is ¢ moves at t*, j moves at
t* + 0*. Further, payoffs are respectively Vi(t*) and Vy(t*), with Vi(t*) < V(t*).

Elsewhere, (Dutta-Lach-Rustichini (1990)) we have called this a maturation equilibrium
to emphasize the fact that a second mover waits optimally to innovate, makes higher
payoffs by doing so and consequently does not dissipate the monopoly rents of the first
mover.

On the other hand,
Case 2. t* =t,,. Then, A = {t,} and (4) holds with t* =t,,.

ProrosiTioN C.2. ii) If t* = t,,, the unique subgame perfect equilibrium in pure strate-
gies is the stopping equilibrium

1 on (ty,,o0)

oi(t) = o3() = {

0 else.

The outcome is t.,, t, + 0*. Payofs are l(t,,) = ¢, for each firm.

A fuller discussion of the issues pertaining to product innovation may be found in Dutta-
Lach-Rustichini (1990).

C.2: Asset Sales

The price of an asset appreciates over time. For example we have in mind a situation in -
which the market demand for the asset increases over time. Any sale satisfies some surrent
demand and lowers the market price. Subsequently the price rises again due to long term
demand increases.

Suppose that the price process is increasing, single dimensional, and purely for exposi-
tional ease, deterministic. Let price at time ¢ be ¢ itself.}* If trader ¢ sells at time ¢, his
(present discounted) value of returns is R(t) '°. Let m(t) denote the market price after
i’s sale at time t, m(t) < t. Trader j can then decide how much longer he waits before
he sells. As before, simultaneous attempts at selling result in each trader selling with a
probability of %

The Stopping Equilibria of the Asset Sales Game
Trader j’s stopping problem, after ¢’s sale at t, is

max e R[m(t) + 6] = !™® max e~mO+0R[m(t) + 6]
920 m(t)+6

18



Suppose e~%% R(z) is quasi-concave (and hence single peaked) on R.. Let the peak be at
t* > 0. Then,

I(t) = R(%)
fio = { IR, mO < )
| R(m(2)) m(t) > t*.

- Fig. C.2 here

As is clear from (5), the features of the payoff f are completely determined by the market
price adjustment function m. We do not model that explicitly here but merely point to a
couple of interesting possiblities.

Case 1. m(t) = 0, for all £.1% Then, fi(t) = e R(t*) = ¢, t > 0. Let t,, define,
I(tn) = ¢. It follows then that t, < t* and we are in the second case of the Product
Innovation Model.

ProPosITION C.3. i) If m(t) =0, t > 0, the unique subgame perfect equilibrium in pure
strategies is the “pre-emptive sales” stopping equilibrium
1 on (tym,o0),0i(tm) =1
) =oiy={y o L) 7t
0 else,0i(tm) = 0.
The outcome is sales at t,,(< t*) and t,, + t*. Payoffs are l(t,,) = ¢ for each firm.

Hence, a single trader would wait till the price rose to t* and earn a present discounted
value at period 0 of ¢. A competitive trader sells at ¢, < t*, and makes returns, evaluated
at period 0, of e %m ¢ < ¢.

On the other hand, suppose the market adjustment process is subject to increasing
returns for intermediate prices and hence leads to fs.

Fig.C.2 here

Then, the cooperation regions are Cy = [t;,1;] and Cy = [t3,00). Clearly, there cannot
be cooperation over Cy. So, the only question is, could the traders desist from selling the .
first time first mover advantage in payoffs appears, i.e. over C;. From Theorem 1, this
can only be if

Vi(t) = e  max {e *“tOR(t+6)} > R(t), teC;.
()= max (IR0} > RE), teC
By the quasi-concavity of e~®* R(z) and the fact that ¢; < t*, i = 1,2, 3, we have
Vi(t) = e®[e~*®= R(t3)] > R(2).
Hence, cooperation over C; is supportable.

PROPOSITION C.3. ii) In Case 2, there are two subgame perfect equilibria. In the “good”
equilibrium,
1 on [t3,00)

oi(t) = a?-(t) = {

L0 else
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The outcome is sales at t; and t3 + (t* '-—hm(tg)). Payoffs are equal and evaluated at
t=0, e ¥ R(t;) = e Ot [e5m(ts) @],
In the “bad” equilibriu m,
1 on [tl,t2] U [t3, OO)
w0 =o0=1{,
The outcome is sales at t; and t; + (¢* — m(t1)). Payoffs are equal but even lower at
e—atR(tl) — e"stl [eSm(t1)¢].

There are always pre-emptive sales. Some pre-emptive sales are worse than others!

else



Footnotes

. Later we show how we can accomodate different soecifications of payoffs.

. Bensoussan-Friedman’s formulation also allows for flow payoffs before the process
is stopped, that depend on the “state” of the system. This generalization is ignored
here.

. The symmetry assumption here is important. The extension to the non symmetric
case seems non trivial.

. Note that in some games of timing, backward induction leads to a unigue equilib-
rium. However, the arguments invariably involve iterated elimination of (weakly)
dominated strategies, starting from the “end.” Hence, they require that there be
an “end” to a game of potentially infinite duration, i.e. there be a time, beyond
which a player will “always stop” or “never stop,” regardless of the other. This itself
implies strong restrictions on [, f which in particular applications may be natural
but are unreasonable to impose in general. Further, with uncertainty in the game
evolution, conditions ensuring the existence of outcomes to iterated elimination, are
even more restrictive.

. Of course, the process could still be stochastic.

. Notice that, with T, = inf{t > 0: X; > a}, a strategy defined by
o(s,w)={lif s € T, +U,[1/2n,1/2n+1); 0 otherwise}

is progressively measurable because it is left continuous.
We want to be able to say the player stops at a; in order to exclude situations like
the case described above, we impose the following regularity conditions on strategies

limsup o(t, w) < o(to, w) a.s., for every t,.
tlto

. Note that the public randomization here involves, in some sense, an even greater
degree of sophistication than in the case of repeated games. Players in our game
act but once. Hence, correlation is enforced to achieve “abstinence from action,”
rather than to bring about particular actions as with repeated games.

. The difference is that non-existence arises in the choice of “location” rather than
at the Bertrand price competition phase.

. The reader could imagine alternately that a firm improves its technology by keeping
its laboratory open, and only by doing so. Alternatively, technology improvements
happen in the public domain (e.g. at universities and government research labora-
tories) and are accessible by all firms in an industry. In the former interpretation,
there is some periodic cost of doing research which we normalize to zero. That does
not affect the results.
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That the two applications we discuss both involve deterministic, single dimensional,
increasing processes, should not of course suggest that the general theory is inappli-
cable otherwise. Our inquiry was motivated precisely to address applications outside
this pure game of timing framework. For expositional clarity we revert to the timing
framework. None of the arguments, of course, hinge on these simplifications.

Think of these returns as profits under Cournot or Bertrand competition. Note

also that a fixed cost of introducing a product could be incorporated without any
difficulty.

If the first inequality is violated, we have a pure pre-emption game, and if the second,
a pure war of attrition. The equilibria in these two cases are obvious: respectively,
both move immediately at ¢ = 0 and ¢ moves at arg r{l;Lgce—'Stl(t), 3 follows after 6*.

Modulo permutation of the identities of the identical symmetric players.

That prices are unbounded does not drive any of the analysis as the reader is invited
to check. An alternative formulation, with X (t) = P(¢), for a bounded P, would
suffice just as well.

For instance, R(#) is the lifetime return to ¢ dollars in the best future investment.
Note, incidentally that it does not much matter for our purposes as to whether ¢
gets to sell all of his asset at price ¢ or at some price below ¢. All that is needed
is that the average price i sells at is strictly more than the price after his sale, i.e.
m(t).

As can be checked exactly, the same arguments work when prices adjust to some
fraction of the previously prevailing price, i.e. m(t) = o, a € (0,1).
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