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1. Introduction

Consider a process [Y(t) : t > 0] on [0, w) given by a stochastic differential
equation

ay(t) = m(t) + v*/%(t) dB(t), Y(0) = ¥ (1.1)

where [B(t) : t > 0] is a standard Brownian motion and [m(t), v(t)] are nonanticipative
controls chosen from a set A. Suppose further that the process is absorbed at the
origin and let T denote the random time of absorption. The choice [m(t),v(t)] yields a
flow payoff at instant t which is denoted U(m(t),v(t)). At the time of absorption the
decision maker receives a terminal payment ¢ (and from hereon we normalize the
severance payoff to zero). Future payoffs are discounted at a rate § € (0, ) and the
control problem is to pick an admissible strategy to maximize expected discounted
lifetime payoffs:

Maximize E §f ¢ ¢ U(m(t),v(t)) dt (1.2)

Let U = sup U(m,v), (m,v) € A. Clearly for the problem to be interesting it
must be the case that U > 0. From hereon we maintain this specification and call
this a survival problem. A variant of this problem is one in which U < 0 and the
state space is (-w,0] (with absorption at zero again). This variant we will call the race
problem. In the former case optimization involves a tradeoff between instantaneous
payoffs and a movement away from zero while in the latter the tradeoff is between
flow payoffs and a rapid approach to zero.

A number of papers have analyzed the pure survival or pure race version of this
problem: the control problem in which U(m,v) = c for all controls in A, where c is
some non—zero constant. (See Heath—Orey—Pestien—Sudderth (1987),
Orey—Pestien-Sudderth (1987), Dupuis—Kushner (1989), Majumdar—Radner (1989)).! In
many applications of this problem, in economics, finance and game theory, the pure
survival formulation is unduly restrictive. (We provide some specific examples below).
This paper analyzes the general control problem (1.2).2 As will become clear in the
sequel, allowing controls to have direct returns increases the analytical complexity in a

non—trivial manner.

In the pure survival or race problem there is no tradeoff between immediate



payoffs and continuation values. This allows an explicit computation of the optimal
policy (which turns out to be the usage of a constant control regardless of history).
When controls have direct payoffs constant controls are typically not optimal. This
has two well-known implications: a) it is impossible except in special cases to directly
"guess" an optimal policy (and use a verification theorem to establish its optimality).
Hence we have to establish the existence of a value function with appropriate
differentiability properties and the existence of optimal policies by analytical methods.
b) since optimal policies depend on history (and stationary optimal policies depend on
the state) one has to characterize this dependence. In this paper we will investigate
the existence and characterization issues. We will also present two examples of
explicitly computable problems.

Section 2 presents some basic notation and definitions. Sections 3-5 discuss the
survival problem. The main results on existence and characterization are stated and
discussed in Section 3. The proofs of these results are contained in Section 4. We
present examples in Section 5. Section 6 contains the analysis of the race problem.
Section 7 discusses possible applications and extensions.

2.  Basic Definitions and Assumptions
Let [B(t):t > 0] be a standard Brownian motion on some probability space (Q, §,
P). Let §; be the smallest family of sub o-fields generated by the Brownian motion.

Let [f(t): t > 0] be a $,—adapted process® which further satisfies

t
i) P[w:ffz(w,s)ds<m]=l,forea,chtZO.
O

A strategy is a stochastic process 7 = [m(wt),v(wit): w € @, t > 0] with values in
A, which is progressively measurable. It will be convenient to also develop a subset of
strategies that directly condition on the set of histories of the controlled process. Let
C[0,0) be the space of continuous functions Y, t € [0,0); let H, be the smallest

o—algebra of subsets of C[0,w) which contains all sets of the form {Y[0,»): Y, < a, sct,
a€R}. Let H, denote the set of histories, i.e. H, = { Y(s): s<t}. A natural strategy,
[r(t) = m(t),v(t): t 2 0] is a specification =(t):H, - A, for all 20, such that = takes

values in A, is Ht—ada.pted and there exists atleast one solution to the stochastic



differential equation (1.1) which is §, measurable. A natural strategy is said to be a

t
stationary Markov strategy if #(t) = fA(y(t)) for some function S.

As explained above the problem is terminated when the process hits the origin,
with a terminal payment of zero.4 Prior to this date, the agent’s instantaneous payoff
or utility is U(m(n(t)),v(n(t))). The agent’s optimization problem is:

T(n)

(P) Max B6 [ &% Um(x(t)), v(x(t)) dt

where T(7) is the first hitting time of zero,(with Y(0) = y > 0 in the survival
problem and Y(0) = y < 0 in the race problem.), under the strategy =. (P) is clearly
a stationary dynamic programming problem, and we shall denote its value function by
V(y). Any solution of (P) will be called an optimal strategy or policy. If an optimal
policy picks controls which depends only on the level of the current state, i.e. if a
Markov policy is optimal in the class of all strategies, it will be called a stationary
Markov optimal policy.

The following assumptions on U and A are maintained (except in Section 5):

(A1) The utility function U(m,v) : R x R, - R is continuous and strictly concave.

+
(A2) Variances are bounded away from zero: there is ¢ > 0, s.t. (m, v) € A 23 v > a
(A3) The set of feasible controls is convex and compact.

3. The Survival Problem: Existence and Characterization

Actions are chosen by the agent in order to optimally trade—off the maximization
of instantaneous utility against future payoffs. Future payoffs depend on the expected
continuation values whose determination involves the marginal valuations and the degree
of local risk aversion exhibited by the value function (i.e. the first and second
derivative of the function). Hence optimal policies are likely to be state dependent.
Further, this dependence will not generally be as simple as a constant or linear
relationship. Indeed even the problem of determining the "efficient frontier" in the
space of controls (i.e. determining which controls will never be used) is a non-trivial
one when the agent’s action has effects on three dimensions; mean, variance and v
immediate utility. In short, with a three-dimensional choice space the simple trade—off
between instantaneous utility and future prospects has no simple trade—off in control



space to determine the efficient frontier of controls. Of course determining such a
frontier is only part of the solution anyway since the more difficult problem is to
determine the order in which the controls on this frontier are utilized as y increases.
We present now existence and characterization results. Note that all proofs are in
Section 4.

The following theorem is the basic existence result:

Theorem 3.1  The value function is C2, V(0)=0 and lim V(y)=U and satisfies

Yoo
Max {1/2vV'(y) + m V(y) -6 V(y) + 6§ Um,v)} = 0 (3.1)
(m,v)eA
Furthermore, V is the unique solution of (3.1) in the class of functions which are
twice continuously differentiable on [0,0) and gqual to the endpoints 0 and TU.
Finally, there is a continuous function f , such that the stationary Markov
strategy formed by this function is an optimal policy.

Remark 1: Theorem 3.1 is similar to a result proved in Krylov (1981, Theorem 1.4.5).
There are two main differences between the results. Firstly, Krylov’s result is valid
when the domain of the state space is a compact interval (and indeed it does not seem
that the proof would extend to unbounded domains). Secondly the result proved there
requires the immediate payoff function U to satisfy a Lipschitz condition (which
Theorem 3.1 does not require). On the other hand, in Krylov’s formulation, state
dependence in the payoffs is admissible and he does not impose the condition of strict
concavity on the payoff function.

Remark 2: The sufficiency or verification result, that any solution to (3.1) is in fact
atleast as great as the value function is of course true even if the immediate payoffs
are not concave.

We turn now to the characterization results:

Theorem 3.2 i)*The value function is strictly increasing in y.
ii) Suppose that r is an optimal natural strategy. Then,

V(y) = V/(0) Ee“ST*(Y) (3.2)
where,

TH(y) = min {t: Y(t) = 0 | Y(0) = y, m*}.



iii) The value function is strictly concave. Further V” is increasing in y.

Remark: The characterization (3.2) is extremely useful, as we shall see in the sequel.
Its proof critically uses the fact that the level of the state variable does not directly
affect the instantaneous utility of the agent. An interesting point to note is that the
monotonicity and strict concavity properties of the value function -are true-even -when
the immediate payoff function is not concave.

Armed with the optimality equation characterization, it is easy mow to develop
several alternative characterizations of the optimal policy. Allowing a choice over the
diffusion coefficient creates many analytical difficulties. This may be seen concretely
from (3.1). We know from Theorem 3.2 that the value function is strictly concave and
strictly increasing and has an increasing second derivative. However in order to derive
properties of f§*, the selection of maximizers of (3.2), we additionally need to know how
V[V’ behaves in y. In general, this information is impossible to deduce. We now
present results which develop alternative and increasingly more detailed characterizations
of f*, under some further restrictions.

X ¥
Proposition 3.3 Suppose y’ > y. Let f (y) = m,v and § (y’) = m’,v’. Then, it
must be the case that either or both of the following monotonicity relations are
satisfied: i) v’>v ,ii) m’<m and m’/v’ < m/v.

Remark: The proof of Proposition 3.3 does not use the concavity of the utility
function. Indeed the result is true for any selection from the optimality equation and
“holds without any assumptions whatsoever on U. It is our conjecture that under
monotonicity and strict concavity restrictions on U, both i) and ii) will hold for the
optimal policy. We have however been able to prove this only under some further
conditions that are discussed in the immediate sequel. We do have counterexamples to
show that, without concavity assumptions, only i) or ii) but not both need hold (see
Section 5).

We shall say that §* is an interior optimal policy if f*(y) € int A, for all ye

R, Suppose that U is differentiable and define H_: A — R as H(m, v) = U(m,v) -

vU,y(m,v) - mU, (m,v).

Proposition 3.4. Suppose f§* is interior. Then, y’ > y implies that
i)  H(m’,v’) > H(m,v) (3.3)



i) U(m,v) > U (m,v)
iii) Uy(m’,v’) < Uy(m,v)

Further,the optimal policy §* is a one to one function.

So (3.3) establishes that there is an order of usage of the optimal controls.
However, in general that order is nothing as straightforward as the mean-variance ratio
or some other such simple index (unlike the pure survival problem).

We shall say that the utility function is separable if there exist functions ¢(m)
and ¢(v) such that

U(m, v) = {(m) - ¢(v).

Proposition 3.5 Suppose that §* is interior and U is separable. Further suppose
that utility is decreasing in m and increasing in v. Then, y’ > y implies that
m’ < m, v’>v and U(m’,v’) > U(m,v).

Incidentally, boundary conditions that are widely used in economics and finance
(sometimes referred to as Inada conditions)s would guarantee interiority of the optimal
policy. If the feasible set A has more structure, we can even dispose of the interiority
assumption...We say that A is a rectangle if A = [m, m] X [v, v], 0 < v < V.

Proposition 3.6 Suppose that A is a rectangle and U is separable. Then
y’ > y implies m’ < m, v’ > v, U (m’,v’) > U(m,v).

4. Proofs of Section 3

It is simpler for a logical development of the proofs of Theorems 3.1 and 3.2 to
actually prove them in approximately the reverse order. More precisely we will first
prove that the value function is increasing and if cl it satisfies (3.2). This will be
used to prove Theorem 3.1 after which we will conclude by proving Theorem 3.2iii).

Proof of Theorem 3.2 i)  Consider two initial states y and y’ with y> > y. A
candidate policy from y’ is: use the constant control that generates U (say a) till the
first time the state hits y. Thereafter, use 7 where 7 is e—optimal from y. Then,

V(y) > U (1 - BeT) 4+ 57T (v(y) - ¢ (4.1)
where T = min {t: Y(t) =y | Y(0) = y’, = = a}



Since € is arbitrary and U > V(y), it follows from (4.1) that the value function is
monotonic (it will in fact be seen to be strictly monotonic from the strict concavity
property that we will shortly prove). -

Proof of (3.2) when the value function is ¢! and there is a natural optimal strategy:
Let 7 be any natural strategy. We will first describe a ©-translate of 7, where
© € R. To begin with, suppose in fact that © > 0. For any partial history {Y(s) : 0
< s < t}, a O-translate of the history is {Y(s) - © : 0 < s < t}. A ©-translate of =
is now defined as: for every partial history take its ©-translate. If the ©-translate
has not yet hit zero, i.e. Y(s) — © > 0, for all 0 < s < t. then the action for {Y(s) :
0 < s < t} is identical to the action under = for partial history {Y(s) — © : 0 < s £
t}. If Y(s) — © = 0, for some 0 < s < t, then the action may be somewhat
arbitrarily chosen. For concreteness, suppose it is @ € A where U(m,v)>0. If 5 is Ht

measurable then so is a @-translate of .

Fix y > 0. Consider an alternative starting state y + ©, © > 0. Let 1r* be an
ola)ktimal policy. Let the ©—translate of 7* be the policy from y + ©. Then letting
T* (y) denote the first time of hitting @ with initial state y + 6 and the f-translate of
7 as policy, we have,

V(y + ©) - V(y) > BT ) v(e) (4.2)
It immediately follows that
V/(y) » v/(0) BTE) (4.3)

Consider instead the starting state y — ©. Again consider the (—©)-translate of 7*, as
a policy for starting state y — ©. By arguments as above we have

Vi) - Viy - 0) < 5T 59) (o), (4.9)
where

T'(y, ®) = min {t : Y(t) = © | Y(0) = y, 7}
From (4.4) it follows that

Vi(y) < v(0) BT () (4.5)



(%5) is true by the dominated convergence theorem, utilizing the fact that T*(y,G)) 1
T (y) a.e. From (4.4) and (4.5), (3.2) follows. In the immediate sequel we prove that
there is a stationary Markov optimal policy and the value function is c?. (3.2) then
immediately yields the strict concavity of the value function. =

Proof of Theorem 3.1: In proving Theorem 3.1 the following notation will be useful:

F(a, b, c) = max {% va + mb - b + bU(m,v)} (4.6)
m,ve A

F, (b,c) - max { 2y 204 20 y(m, v)} (4.7)
mve AL Y

For a stationary Markov policy G:R 4 A and a C2[0,m) function w, define
1
Law(y) = Bw () + B 3w (y) — ow(y) (4.8)

where A(y) = :61(}'); ﬂz(Y) =m,V

Flwl(y) =  max {vw(y) + mw'(y) - dwly) + 6U(m,v)
m, ve A
= F(w(y), w(y), w(y)) (4.9)

The proof of Theorem 3.1 will be in two steps.

Step 1. Consider the k—step truncated optimization problem, in which the agent
controls the diffusion process starting at some y € (0, k), where k > 0. The process is
absorbed the first time it hits either 0 or k. Let Vi denote the value function for this

problem. Continue to assume that returns after absorption are normalized to zero,
irrespective of whether the absorption was at y = 0 or y = k.

Lemma 4.1 i) V, is C? and is the unique solution to the constrained Bellman

equation

FV,I) = max A{%VV’I’{(y) + mVi(y) - 8V, (y) + JU(m,v)} — 0, ye[0, k)(4.10)

?
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ii) There is M < w, independent of k, such that

Vil + Vi + Vil < M (4.11)

where ||-|| denotes the sup—norm.

Step 2.  We shall then let k | o, and argue that limits are well-defined and indeed
define the value function of the k = o problem.

Lemma 4.2 There is a C° function \.’, such that (V,, Vi) - (\}, \.’,) Moreover,
F[{’](y) = 0, for all ye [0, w). Further V=V

Proof of Lemma 4.1: The proof proceeds by way of several auxiliary lemmas. The
underlying idea is the Bellman-Howard improvement routine. Parts of the proof are
adapted from Krylov (1980, Theorem 1.4.5).

Lemma 4.3Suppose f : [0, k] - A is a continuous function. Then

i)  there is a unique C? function w3 such that
Lgwgly) + 6U(A) = 0, yelo, (4.12)

wﬂ(O) = Wﬂ(k) =0
ii) there is My < w, such that

gl + gl + g ll < My (413)

Proof: This result is proved as Lemma 1.4.6 in Krylov (1980). u

The next result is standard and shows that the function w ; given by Lemma 4.3

is in fact the lifetime returns from using § as a stationary Markov policy.

Lemma 4.4 Consider the stationary Markovian policy in which "(Y[O, t]) = ﬂ(yt)

where f is continuous. Let



11

L) = By 6 [ 5 U(a,) ds
g B0 8
where T =min {t : Y(t) = 0 or k | Y(0) =y, £}

Then, Iﬂ is the unique C2 function that solves Lﬁ]ﬂ + 8§U(B)= 0, ye[0, k], and further
satisfies Iﬂ(O) = Iﬂ(k) = 0.

Proof: By Lemma 4.3, there is a unique c? solution of (4.12). Since g is
continuous, from Theorem 5.2 of Skorohod (1982), the stochastic differential equation
(1.1) has a solution [Y(t): t > O],unique in probability law. By an application of Ito’s
lemma to e twﬂ(yt) we get

TAt —6(TAt)

W) = By {51 vlatr)) ¢ as + A wlypy )

Letting t + ®, T A t - T, and an application of the dominated convergence
theorem yields

T
wis) = By 8 ] ¢ U(Aly) ds .

Let ﬁo be an arbitrary continuous function, and denote its associated lifetime
returns w,. Consider,

Fwgl () = max fwwrgls) + mogly) = bwo(a) + 60(m)} (413

b

By the strict concavity of the utility function and the convexity of A, the argmax
in (4.13) is single-valued. By the Maximum Theorem (Berge (1963), p. 116), the
function of maximizers is in fact a continuous function. Denote this function ﬂl and

the associated returns Wy In this manner, we can construct a sequence of C2

functions W and stationary policy functions ﬂn,n > 0 such that

ann + wn =0z Ln+1Wn + 6Un+1
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(where L w = Lﬂn, U, = U(4) etc.)

Lemma 4.5 For all n, ye[0, k], w_ +l(y) > w_(y)
Proof: Let the continuous function hn > 0 be defined by

Ln+1(wn+1 —Wn) + 6hn =0

Then, an application of Ito’s lemma to the function w 41" Y yields

n
Wn+1(Y) —wy(y) = E$ é &% h(yg) ds 2 0 |

To continue the proof of Lemma 4.1, let us now define w = lim w_. This limit
N~

is well-defined by Lemma 4.3, for all ye [0,k]. Further w; is uniformly bounded.

Since

N

w (¥) - w (z) = w'(x) dx (4.14)

it follows that w 1 is in fact an equicontinuous family. Hence, w is a continuous

function and w . w uniformly on any compact subset of R " Similarly,

y
wi(y) — wi(z) = [ wp’(x) dx
Z
and hence w/ is also an equicontinuous (and uniformly bounded) family. By the

Arzela-Ascoli theorem, there is a subsequence (retain notation) such that w_ is

convergent on it, to ¢ say. Taking limits, along this subsequence,
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i y
w(y) - w(z) = | ¢(x) dx (4.15)

We further used the dominated convergence theorem in arriving at (4.15).
Moreover, (4.15) establishes that w’(Y) = ¢(y). Hence, along the full sequence, w; -

w’, and of course w is cl. We have hence proved

-~

Lemma 4.6 w, oW, where ;v is a C1 function. Further, W, ;v'.

It remains to show that in fact w is C> and further that F[\;r] = 0. This last
step of the proof of Lemma 4.1 is identical to the proof of the analogous step in _
Krylov (1981) Theorem 1.4.5 and hence is not reproduced here. Clearly, w(0) = w(k)
= 0.

A standard application of Ito’s lemma now shows that \;r 2 V. Further, let §

be argmax F[w] (and hence it is a continuous function). Then, a second application of
Ito’s lemma to the diffusion process generated by the stationary policy f, establishes
that I 8 > w . The first half of Lemma 4.1 is completely proved. We now turn to the

proof of Lemma 4.1 ii).

Lemma 4.7 Let ﬂk denote the stationary Markovian optimal policy for the kth

truncated problem. Define

Tl(z(y) = min {t > 0: Y(t) = 0 [Y(0) =y, 4}
Ti(y) = min {t 2 0: Y(t) = k |Y(0) =y, f}
Ty (y) = min (T3, TE))

Vi) = By [e“sTl(z(Y) - (1l = T Vi(0) + TR P(TE = T )Vi(K)]  (4.16)

Proof: The proof of Lemma 4.7 is very similar to the proof of Theorem 3.2 ii), and
hence we omit it. -
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It is immediate from (4.16) that V{(y) < max (V{(0), V{(k)). To establish an
upper bound on |[V{[ it clearly suffices to establish such a bound on Vi(0) and V{(k).
We now show that a bound exists which is in fact independent of k.

Consider a problem in which the stochastic process starts at y > 0, is

terminated only if it ever hits zero and each control yields constant flow payoffs of TU.
The pure survival optimization problem is

T
(P) Max T [EE 5{) 6_68]

It is straightforward to check that an optimal solution to (P’) involves the choice
of a constant control. Denote the value function for this problem W and the optimal
control (m,v). Further it is clear that W(y) > V,(y) for all y and k and W(0) = 0.

Finally, elementary calculations show that

W(y) =1- ¢V

- —+ym? 426V
where A = 77

So we have
Vi(y) = Vi (0) < W(y) - W(0),
Form this it follows that

V{(0) ¢ W(0) = X

Of course, by definition V{(0) > 0. It is easy to see that a symmetric set of

arguments could be repeated for Vi (k).

Of course ||V, | < U. Finally note that

2m

k §
Vi) = - Ve Vily) +

26 2
i Vk(Y) - “‘,i(— U(my, Vk) (4.17)
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Clearly, the uniform upper bounds on |[V{[l, [V, and |u]l, imply a uniform
upper bound on [[V{’||, an upper bound independent of k. Hence, Lemma 4.1 is now
fully proved. O

We now turn to the second step in our proof of Theorem 3.1. The objective here

is to use the properties of the k-th truncation value function to establish analogous
properties for the value function V. First of all, clearly Vk is a monotone sequence of

functions, and hence there is {7 such that Vk 1V, as K + 0. By an argument

identical to that in Lemma 4.6, we get

Lemma 4.8 \~/ is a C1 function. Moreover, Vl'{ - \~I', as k - a.

Note that F[V](y)=0 is equivalent to F,(Vy,Vy) + V. ’=0. Hence,

y
Vily) = Vi(0) + | Fy(Vy ), Vi(x)) dx = 0 (4.18)

But Vi ’(y) converges to {”(y) for all y and by the maximum theorem

Fl(Vk’,Vk) converges to Fl(\-”,{f). From (4.18) it then follows that

- - yooo. .
V(y) = V(0) + | Fy(VE, Vi) dx = 0 (4.19)

From the fundamental theorem of calculas, the maximum theorem and (4.19) it
follows that V has a continuous second derivative V> = F,(V,V’). Further F[V] = 0.

Standard applications of Ito’s lemma then establishes that V = V. Further given the
strict concavity of the utility function, there is a unique element to argmax F[V] and
this selection, by the maximum theorem, is a continuous function. A further use of
Tto’s lemma establishes that this selection in fact achieves the returns V, i.e. is
optimal. The proof of Lemma 4.2 and Theorem 3.1 is complete. o

From the strict concavity and monotonicity of V, V' + Fl(V’,V) = 0 implies

that V’’ increases with y. The proof of Theorem 3.2 is complete. =

Proof of Proposition 3.3: Suppose y° > y. From the fact that (m,v) = argmax F[V|(y)
and (m’,v’) = argmax F[V](y’) it follows that
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(v = ¢)(V2(y) - V2(y) + (m - m)(V(y) - V’(y7)) 2 0 (4.20)
Further F[V] = 0 is equivalent to V" + F,(V’,V) = 0 and there is a common

argmax for F and F;. It then follows that

(m/v - m/v)(V(y) - V() = &(1/v = 1/v)(V(y) = V(y°)) 2 O (4.21)

From (4.20) and (4.21) the proposition follows. -
Proof of Proposition 3.4: First—order conditions yield
Lviy) = - wUy(my) (4.21)
Vi(y) = -6Uy(myv) (4.22)

Substituting (4.21) — (4.22) back into F[V] = 0, yields
H(m,v) = V(y)

From the monotonicity and strict concavity of V and the further property that V*’ is
increasing in y, the proposition follows. o

Proof of Proposition 3.5: Follows from (4.21),(4.22)and the fact the utility
function is assumed to decrease in m and increase in v. -

Proof of Proposition 3.6: Since A = [m, m] x [v,v] and U is separable, F[V](y)
can be re-written as

@™ 3wV ) + mV () + S0my) = mgx {mv(y) + 660m)} +

max {%—vV"(y) - 5¢(V)} = 6V(y)

Let W,(y) = mgx {V'(y) + 6¢(m)}. From the strict concavity of V it

immediately follows that m’ < m. For similar reasons v’ > v and hence U(m,v) <
U(m’,v*). =

5. Some Examples
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In this section we present two computable examples of survival problems. The
intention is to show that one may not be able to do much better than the
characterization results presented in Section 3 and that quite a variety of policies are
consistent with optimality. As is well known computable examples are hard to come
by when controls have direct payoffs. - Hence the examples will: have an artificial flavor
in that strong resrictions will be placed on the payoff function U and feasible set A to
facilitate computation. In particular the convexity assumptions which were used to
prove Theorem 3.1 may not be satisfied by these examples. Note however that the
verification result, that a solution Of (3.1) and an associated stationary Markov policy
are in fact optimal, is true even without convexity restrictions.

Example 5.1:  U(m,v) = m” vg, 20 + vy € (0,1). A = {(m,v): v=m2, m>0}.

The solution we will check for is V(y) = ky® and A(y) = (y/c, (y/c)z), where k
> 0and ¢ > 0 and a € (0,1). There are two conditions to verify: i) LﬂV + 5Uﬂ =0

and ii) L ﬂV + 6U g= F[V]. It is straightforward to check that i) implies that a =

20 + v and further that k = 6(a—2)c1_a [a - 26c]—1. ii) implies that k =
26c2_a[a(1—a) + 62 —ac]. Tt is a somewhat tedious exercise in algebra to then show
that these last two equations have positive solutions for all large 6.

So this example exhibits increasing mean (and consequently increasing variance)
but a decreasing mean—variance ratio as y increases.

Example 5.2  U(m,v) = |m|” v0, 20 + v € (0,1). A = {(m,v): v=m2, m<0}

By a procedure identical to that of the previous example it is possible to show
that V(y) = ky® and A(y) = (-cy, (cy)2) for k > 0, ¢> 0 and a € (0,1). So in this
example, the mean decreases, the variance increases and the mean—variance increases in
y.

Remark: For both of the above examples a solution of the Bellman equation is in fact
a stationary Markov optimal strategy. It follows from a theorem in Karatzas and
Shreve (1987,pp. 352-355) that there are diffusions consistent with each of the exhibited
strategies. A standard argument then establishes V to be an upward bound for the
returns to arbitrary strategies and a bound realizable by §. The argument needs to be
in two steps: going from a truncated problem on state space [0,k] to the full problem.

6. The Race
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We turn finally to the minimization problem (the race to zero). Recall that the
state space is (—w,0] and U < 0. The proofs of the results in this section mirror the
proofs in Section 4 and hence will be omitted. The existence and value function
characterization are:

Theorem 6.1: i) The value function V is twice continuously differentiable, satisfies

the limit properties V(0) = 0 and 1lim V(y) = U and solves the Bellman optimality
y+o

equation (3.1). Further it is the unique solution of (3.1) in the space of ¢? functions
with the given limit properties.

ii) The value function is a strictly increasing, strictly concave function and V?
increases in y.

On the other hand the optimal policy "works less" the closer the state gets to
zero, i.e. we have

Proposition 6.2: i) There is a continuous function § which constitutes the unique
stationary optimal policy.

ii) Let y’ > y and denote (y) = m,v, f(y’) = m’,v’. Then, either a) v>v or b)
m’/v’ < m/v and m’ < m or c) both a) and b) hold.

jii) Under the hypotheses of Propositions 3.5 or 3.6, v>v, m’/v’ < m/v and m’¢m.

7.  Applications and Extensions

There are several applications in economics, finance and game theory of the
general survival problem studied in this paper. Consider the following:

i) Incentive Schemes:  Suppose the actions of an economic agent (e.g. the
manager of a firm) are not observable by some other agent (e.g. the owner/s) whose
payoffs are determined (with some noise) by these actions. A widely observable class
of incentive schemes are those in which the manager is paid a salary (w) and retained
on the job provided aggregate returns (Y(t)) are above a critical threshhold (Y(t) > 0).
A variant requires a minimum positive rate of return k (i.e. the standard is Y(t) — kt
> 0). These schemes were introduced in Radner (1986) and further studied in
Dutta—Radner (1990). The analysis here suggests the optimal response of such a
manager when faced with such "up or out" schemes. (For further details see Radner
(1986) and Dutta-Radner (1990)). Note that different actions may be interpreted as
different choices of projects or effort levels and hence imply different direct payoffs to
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the manager.

ii) Minimal Consumption: A voluminous literature in economics addresses
the issues of poverty and malnutrition in which a critical minimal consumption level
plays a central role. The idea here would be to choose actions so as to keep aggregate
wealth (Y(t)) above aggregate consumption requirements (kt).  Again-it- is- critical to .
allow control dependent utility. (For a further discussion see Gersovitz (1983)).

iii) Portfolio Management: The choice of an optimal portfolio subject to
bankruptcy constraints is another possible application. Aggregate wealth (Y(t)) has to
be non-negative to participate in the market (in the absence of perfect capital
markets). A portfolio determines the distribution of current returns. In this
application the log of the wealth process follows the diffussion (1.1) (see Heath et. al.
for details).

iv) Strategic Election Models: A number of models in political science consider
the following situation: a candidate is elected and maintained in office provided his
performance is satisfactory. While on the job he is paid a constant wage. The issue
is to find an appropriate definition of satisfactory performance given that candidates
respond differently to alternative reelection procedures. The survival problem outlined
here provides one reelection procedure in which the aggregate of outcomes in previous
periods is the determining factor. (For an example of such a model see Rogoff (1990).

A very useful generalization of our results would be to the case where U is a
function of Y as well as (m, v). This problem seems a dimension up in difficulty
although the techniques and results developed here will hopefully help in the analysis.



Footnotes

t Additionally, almost all of these papers have analyzed exclusively the undiscounted
case: the objectives in Heath et.al are, respectively, maximize ET and minimize ET.
Dupuis—Kushner also take as an objective maximize ET while Majumdar—Radner use
maximize P(T = o). One usage of a discounted cntenon may be found in Orey et.al.
who analyze the folowing two cases :i) Maximize Eﬂ where A € (0,1) and ii) Minimize
Eﬂ with § > 1. Pestien-Sudderth (1985, 1988) and Sudderth-Weerasinghe (1989)
have also looked at closely related objectives, but again in the pure survival or race
case.

2Another example of a general survival analysis is Sheng (1980). However she restricts
herself to a problem in which there are only two drift—diffusion pairs to choose from.
Her computation—based approach does not seem to generalize beyond the binary control
problem.

3A stochastic process [f(t) : t 2 0] on (9, ¥) is §; adapted if i) f(w, t) is jointly

measurable in w and t, and ii) f(-, t) is &”st—measurable, for each t > 0.

4Zero is of course just a normalization and any constant severance reward would do as
well.

sDefine m(v) = max {m: (m,v) € A} (respectively, m(v) = min {m: (m,v) € A};

similarly v(m) and v(m). The Inada conditions are: 1im U(my) = = and
m—m(v)

lim  Uy(m, v) = 0, for all v. Further, 1im  Uy(m,v) = o0, lim Uy(m,v) = 0

m-m(v) v— v (m) v=v(m

for all m.
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