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Abstract

This paper presents a fully specified model of long run growth in which
knowledge is assumed to be an input in production that has increasing marginal
productivity. It is essentially a competitive equilibrium model with
endodenous technological change. In contrast to models based on diminishing
returns, growth rates can be increasing over time, the effects of small
disturbances can be amplified by the actions of private agents, and large
countries may always grow faster than small countries. Long run evidence 1is
offered in support of the empirical relevance of these possibilities.
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I. INTRODUCTION

Because of its simplicity, the aggregate growth model analyzed by Ramsey,
Koopmans and Cass continues to form the basis for much of the intuition
economists have about long-run growth. The rate of return on investment and
the rate of growth of per capita output are expected to be decreasing
functions of the level of the per capita capital stock. Over time, wage rates
and capital—-labor ratios across different countries are expected to converge.
Consequently, initial conditions or current disturbances have no long run
effect on the level of output and consumption. For example, an exogenous
reduction in the stock of capital in a given country will cause prices for
capital assets to increase and will therefore induce an offsetting increase in
investment. In the absence of technological change, per capita output shouid
converge to a steady state value with no per capita growth. All these
presumptions tollow directly from the assumption of diminishing returns to per
capita capital in the production of per capita output.

The model proposed here offers an alternative view of long run prospects
for growth. 1In a fully specified competitive equilibrium, per capita output
can grow without bound, possibly at a rate that is monotonically increasing
over time. The rate of investment and the rate of return on capital may
increase rather than decrease with increases in the capital stock. The level
of per capita output in different countries need not converge; growth may be
persistently slower in less developed countries and may even tail to take
place at all. These results do not depend on any kind of exogenously
specified technical change or differences between countries. Preferences and

the technology are stationary and identical. Even the size of the population



can be held constant. What is crucial for all of these results is a departure
from the usual assumption of diminishing returns.

While exogenous technological change is ruled out, the model here can be
viewed as an equilibrium model of endogenous technological change in which
long-run growth is driven primarily by the accumulation of knowledge by
tforward—looking, profit-maximizing agents. This focus on knowledge as the
basic form of capital suggests natural changes in the formulation of the
standard aggregate growth model. In contrast to physical capital that can be
produced one for one from forgone output, new knowledge is assumed to be the
product of a research technology that exhibits diminishing returns. That is,
given the stock of knowledge at a point in time, doubling the inputs into
research will not double the amount of new knowledge produced. In addition,
investment in knowledge suggests a natural externality. The creation of new
knowledge by one firm is assumed to have a positive external effect on the
production possibilities of other firms because knowledge cannot be perfectly
patented or kept secret. Most important, production of consumption goods as a
function of the stock of knowledge and other inputs exhibits increasing
returns; more precisely, knowledge may have an increasing marginal product.

In contrast to models in which capital exhibits diminishing marginal
productivity, knowledge will grow without bound. Even if all other inputs are
held constant, it will not be optimal to stop at some steady state where
knowledge is constant and no new research is undertaken.

These three elements- —externalities, increasing returns in the production
of output, and decreasing returns in the production of new knowledge——combine
1o produce a well specified competilive equilibrium model of growth. Despite
the presence of increasing returns, a competitive equilibrium with

externalities will exist. This equilibrium is not Pareto optimal, but it is



the outcome of a well behaved positive model and is capable of explaining
historical growth in the absence of govermment intervention. The presence of
the externalities is essential for the existence of an equilibrium.
Diminishing returns in the production of knowledge is required to ensure that
consumption and utility do not grow too fast. But the key feature in the
reversal of the standard results about growth is the assumption of increasing
rather than decreasing marginal productivity of the intangible capital good
knowledge.

The paper is organized as follows. Section II traces briefly the history
of the idea that increasing returns are important to the explanation of
long-run growth and decribes some of the conceptual difficulties that impeded
progress toward a formal model that relied on increasing returns. Section III
presents empirical evidence in support of the model proposed here. Section IV
presents a stripped—down, two period version of the model that illustrates the
tools that are used to analyze an equilibrium with externalities and
increasing returns. Section V presents the analysis of the infinite horizon.
continuous time version of the model, characterizing the social optimum and
the competitive equilibrium, both with and without optimal taxes.

The primary motivation for the choice of continucus time and the
restriction to a single state variable is the ease with which qualitative
results can be derived using the geometry of the phase plane. In particular,
once functional forms for production and preferences have been specified,
useful qualitative information about the dynamics of the social optimum or the
suboptimal competitive equilibrium can be extracted using simple algebra.
Section VI presents several examples that i1llustrate the extent to which
conventional presumptions about growth rates, asset prices, and cross—country

comparisons may be reversed in this kind of economy.



II. Historical Origins and Relation to Earlier Work

The idea that increasing returns are central to the expianation of long-
run growth is at least as old as Adam Smith’s story of the pin factory. With
the introduction by Marshall of the distlinction between internal and external
economies, it appeared that this explanation could be given a consistent,
competitive equilibrium interpretation. The most prominent such attempt was
made by Allyn Young in his 1928 presidential address to the Economics and
Statistics section of the British Association for the Advancement of Science
(Young 1969). Subsequent economists (e.g., Hicks 1960; Kaldor 1981) have
credited Young with a fundamental insight about growth, but because of the
verbal nature of his argument and the difficulty of formulating explicit
dynamic models, no formal model embodying that insight was developed.

Because of the technical difficulties presented by dynamic models,
Marshall’s concept of increasing returns that are external to a firm but
internal to an industry was most widely used in static models, especially in
the field of internalional trade. In the 1920s the logical consistency and
relevance of these models began to be seriously challenged, in particular by
Frank Knight, who had been a student of Young’s at Cornell.1 Subsequent work
demonstrated that it is possible to construct consistent, general equilibrium
models with perfect competition, increasing returns, and externalities (see
e.g., Chipman, 1970). Yet Knight was at least partially correct in objecting
that the concept of increasing returns that are external to the firm was

vacuous, an "empty economic box" (Knight 1925). Following Smith, Marshall,

For an account of the development of Young’s ideas and of his correspondence
with Knight, see Blitch (1983).



and Young, most authors justified the existence of increasing returns on the
basis of increasing specialization and the division of labor. It is now clear
that these changes in the organization of production cannot be rigorously
treated as technological externalities. Formally, increased specialization
opens new markets and introduces new goods. All producers in the industry mav
benefit from the introduction of these goods, but they are goods, not
technological externalities.2

Despite the objections raised by Knight, static models of increasing
returns with externalities have been widely used in international trade.
Typically, firm output is simply assumed to be increasing, or unit cost
decreasing, in aggregate industry output. See Helpman (1984) for a recent
survey. Renewed interest in dynamic models of growth driven by increasing
returns was sparked in the 1960s following the publication of Arrow’s (1962)
paper on learning by doing. In his model, the productivity of a given firm 1is
assumed to be an increasing function of cumulative aggregate investment for
the industry. Avoiding the issues of specialization and the division of
labor, Arrow argued that increasing returns arise because new knowledge is
discovered as investment and production take place. The increasing returns
were external to individual firms because such knowledge became publicly
known.

To formalize his model, Arrow had to face two problems that arise in any
optimizing model of growth in the presence of increasing returns. The first,
familiar from static models, concerns the existence of a competitive

equilibrium; as is now clear, if the increasing returns are external to the

For a treatment of increasing returns based on specialization see Ethier
(1982). Although the model there is essentially static, it demonstrates how

specialization can be introduced in a differentiated products framework under
imperfect competition.



Tirm, an equilibrium can exist. The second problem, unique to dynamic
optimizing models, concerns the existence of a social optimum and the
finiteness of objective functions. In a standard optimizing growth model that
maximizes a discounted sum or integral over an infinite horizon, the presence
of increasing returns raises the possibility that feasible consumption paths
may grow so fast that the objective function is not finite. An optimum can
fail to exist even in the sense of an overtaking criterion. In the model of
Arrow and its elaborations by Levhari (1966a, 1966b) and Sheshinski (1967),
this difficulty is avoided by assuming that output as a function of capital
and labor exhibits increasing returns to scale but that the marginal proauct
of capital is diminishing given a fixed supply of labor. As a result, the
rate of growth of output is limited by the rate of growth of the labor force.
Interpreted as an aggregate model of growth (rather than as a model of a
specific industry), this model leads to the empirically questionable
implication that the rate of growth of per capita output is a monotonicaily
increasing function of the rate of growth of the population. Like
conventional models with diminishing returns, 1t predicts that the rate of
growth in per capita consumption must go to zero in an economy with zerc
population growth.

The model proposed here departs from both the Ramsey—Koopmans--Cass modei
and the Arrow model by assuming that knowledge is a capital good with an
increasing marginal product. Production of the consumption good is assumed to
be globally convex, not concave, as a function of stock of knowledge wher ali
other inputs are held constant. A finite—valued social optimum is guaranteed
to exist because of diminishing returns in the research technology, which
imply the existence of a maximum, technologically feasible rate of growth for

knowledge. This in turn implies the existence of a maximum feasible rate of
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growth for per capita output. Over time, the rate ot growth of output may be
monotonically increasing, but 1t cannot exceed this upper bound.

Uzawa (1965) describes an optimizing growth model in which both
intangible human capital and physical capital can be produced. In some
respects, the human capital resembles knowledge as described in this paper,
but Uzawa’s model does not possess any form of increasing returns to scale.
Instead, i1t considers a borderline case of constant returns to scale with
linear production of human capital. In this case, unbounded growth is
vossible. Asymptotically, output and both types of capital grow at the same
constant rate. Other optimizing models took the rate of technological change
as exogenously given (e.g., Shell 1967b). Various descriptive models of
growth with elements similar to those used here were also proposed during the
1960s (e.g., Phelps 1966, von Wiezsacker 1966, Shell 1967b.) Xnowledge is
accumulated by devoting resources to research. Production of consumption
goods exhibits constant returns as a function of tangible inputs (e.g.,
phyvsical capital and labor) and therefore exhibits increasing returns as a
function of tangible and intangible inputs. Privately produced knowledge is
in some cases assumed to be partially revealed to other agents in the economy.
Because the descriptive models do not use explicit objective functions,
questions of existence are generally avoided, and a full welfare analysis is
not possible. Moreover, these models tend to be relatively restrictive,
usually constructed so that the analysis could be carried out in terms of
steady states and constant growth rate paths.

Continuous-time optimization problems with some form of increasing
returns are studied in papers by Weitzman (1970), Dixit, Mirrlees, and Stern
(1975), and Skiba (1978). Similar issues are considered for discrete time

models in Majumdar and Mitra (1982, 1983) and Dechert and Nishimura (1983).



These papers differ from the model here primarily because they are not
concerned with the existence of a competitive equilibrium. Moreover, in all
these papers, the technical approach used to prove the existence of an optimum
is different from that used here. They rely on either bounded instantaneous
utility U(c) or bounds on the degree of increasing returns in the problem;
for example, the production function f(k) is asssumed to be such that

f(k)/k 1is bounded from above. The results here do not rely on either of
these kinds of restrictions; in fact, one of the most interesting examples
analyzed in Section VI violates both of these restrictions. Instead, the
approach used here relies on the assumptions made concerning the research
technology; the dimishing returns in research will limit the rate of growth ot
the state variable. A general proof that restrictions on the rate ot growth
of the state variable are sufficient to prove the existence of an optimum ior
a continuous time maximization problem with nonconvexities is given in Romer
(1986).

Because an equilibrium for the model proposed here is a competitive
equilibrium with externalities, the analysis is formally similar to that used
in dynamic models with more conventional kinds of extermalities (e.g. Brock
1977; Hochman and Hochman 1980). It also has a close formal similarity to
perfect-foresight Sidrauski models of money demand and inflation (Brock 1975)
and to symmetric Nash equilibria for dynamic games (e.g., Hansen., Epple, and
Roberds 1985). 1In each case, an equilibrium is calculated not by solving a
social planning problem but rather by considering the maximization problem of
an individual agent who takes as given the path of some endogenocusly
determined aggregate variable. In the conventional analysis of externalities,
the focus is generally on the social optimum and the set of taxes necessary to

support it as a competitive equilibrium. While this question is addressed for



this growth model, the discussion places more stress on the characterization
of the competitive equilibrium without intervention since it is the most
reasonable positive model of observed historical growth. One of the main
contributions of this paper is to demonstrate how the analysis of this kind of
suboptimal equilibrium can proceed using familiar tools like a phase plane
even though the equations describing the equilibrium cannot be derived from

anv stationary maximization problem.

IIT. Motivation and Evidence

Because theories of long run growth assume away any variation in output
attributable to business cycles, it is difficult to judge the empirical
success of these theories. Even if one could resolve the theoretical
ambiguity about how to filter the cycles out of the data and to extract the
component that growth theorv seeks to explain, the longest available time
series do not have enough observations to allow precise estimates of low
frequency components or long-run trends. When data aggregated into decades
rather than years are used, the pattern of growth in the U.S. is quite
variable and is apparently still influenced by cyclicai movements in output
(see fig. 1.). Cross—country comparisons of growth rates are complicated by
the difficulty of controlling for political and social variables that appear
to strongly influence the growth process. With these qualifications in mind,
it is useful to ask whether there is anything in the data that should cause
economists to choose a model with diminishing returns, falling rates of
growth, and convergence across countries rather than an alternative without

these features.

Consider Ytirst the long-run trend in the growth rate of productivity or
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per capita gross domestic product (GDP). One revealing way to consider the
long- run evidence is to distinguish at any point in time between the country
that is the leader, i.e. that has the highest level of productivity, and all
other countries. Growth for a country that is not a leader will reflect at
least in part the process of imitation and transmission of existing knowledge,
whereas the growth rate of the leader gives some indication of growth at the
frontier of knowledge. Using GDP per man-hour as his measure of productivity,
Maddison (1982) identifies three countries that have geen leaders since 1700,
the Netherlands, the United Kingdom, and the United States. Table 1 reports
his estimates of the rate of growth of productivity in each country during the
interval when it was the leader. When the productivity growth rate is
measured over intervals several decades long and compared over almost 3
centuries, the evidence clearly suggests that it has been increasing, not
decreasing. The rate of growth of productivity increases monotonically from
essentially zero growth in eighteenth century Netherlands to 2.3% per year
since 1890 in the United States.

Similar evidence is apparent from data for individual countries over
shorter horizons. Table 2 reports growth rates in per capita GDP for the
United States over five subperiods from 1800 to 1978. (The raw data used here
are from Maddison, [1979].) These rates also suggest a positive rather than a
negative trend, but measuring growth rates over 40 year intervals hides a
substantial amount of year-to—year or even decade—-to-decade variation in the
rate of growth. Figure 1 presents the average growth rate over the interval
1800-1839 (for which no intervening data are available) and for the subsequent
14 decades. Identifying a long-run trend in rates measured over decades is
more problematical in this case, but it is straightforward to apply a simple

nonparametric test for trend.
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TABLE 1

PRODUCTIVITY GROWTH RATES FOR LEADING COUNTRIES

Lead Country Interval Annual Average Compound

Per Man—hour

|
| Growth Rate of GDP
|
|

| Netherlands 1700-1785 -0.07%
| United Kingdom  1785-1820 0.5%
| United Kingdom 1820-1890 1.4%
| United States 1890-1979 2.3%

Source: Maddison (1982).

TABLE 2

PER CAPITA GROWTH IN THE UNITED STATES

Interval Average Annual Compound
Growth Rate of Real
Per Capita GDP

I
I
I
I
| 1800 -- 1840 0.58%
I
I
I
I

1840 - 1880 1.44%
1880 — 1920 1.78%
1920 - 1960 1.68%
1960 - 1978 2.47%

1

Source: Raw data are from Maddison (1979).



Table 3 reports the results of this kind of test for trend in the per
capita rate of growth in GDP for several countries using raw data from
Maddison (1979). The sample includes all countries for which continuous
observations on per capita GDP are available starting no later than 1870. As
for the data for the United States graphed in Figure 1, the growth rates used
in the test for trend are measured over decades where possible. The statistic
n gives the sample estimate of the probability that, for any two randomly
chosen decades, the later decade has a higher growth rate.

Despite the variability evident from figure 1, the test for trend for the
Inited States permits the rejection of the null hypothesis of a nonpositive
trend at conventional significance levels. This 1s true even though growth
over the 4 decades from 1800 to 1839 is treated as a single observation.
However, rejection of the null hypothesis depends critically on the use of a
sufficiently long data series. If we drop the observation on growth between
1800 and 1839, the estimate of @« drops from .68 to .63 and the p-value
increases from .03 to .11.3 If we further restrict attention to the 11
decades from 1870 to 1978, = drops to .56 and the p-value increases to .29,
so it is not surprising that studies that focus on the period since 1870 tend
to emphasize the constancy of growth rates in the United States. Rejection
does not appear to depend on the use of the rate of growth in per capila GDP
rather than the rate of growth of productivity. Reliable measures of the work
force prior to 1840 are not available, but using data from Kuznets (1971) for
the period 1840-1960 and from the 1984 Economic Report of the President for

1360-1980, one can construct a similar test for trend in the rate of growth of

“The p—value gives the probability of observing a value of = at least as
large as the reported value under the null hypothesis that the true
probability i« .5.
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Table 3

A TEST FOR TREND IN PER CAPITA GDP GROWTH RATES

| Date of Number of W p-value |
| First Observations |
| Observation |
| |
| United Kingdom 1700 20 .63 .06 |
| France 1700 18 .69 .01 |
| Denmark 1818 16 .70 .02 |
| United States 1800 15 .68 .03 |
| Germany 1850 13 .87 .06 |
| Sweden 1861 12 .58 .25 |
| Italy 1861 12 .76 .01 |
| Australia 1861 12 .64 .11

| Norway 1865 12 .81 .002 |
| Japan 1870 11 .67 .07 i
| Canada 1870 11 .64 .12 i
1 |

Notes: @ 1is the sample estimate for each country of the probability that,
for any two growth rates, the later one is larger. The p—value is the
probability of observing a value of #w at least as large as the observed
value under the null hypothesis that the true probability is 0.5. Except in
the early years when data are sparse, per capita rates of growth of GDP were
measured over successive decades. (Only two observations on growth rates are
available for France prior to 1820; for the U.K., only two prior to 1800; for
the U.S., only one from 1800 to 1840.) For the calculation of the p-value
see Kendall (1962). Data are from Maddison (1979).



productivity over successive decades. The results of this test, =u equal to
.84 with a p-value of .10, correspond closely to those noted above for growth
in per capita GDP over the similar interval, 1840-1978.

Over the entire sample of 11 countries, the estimated value for =«
ranges from .58 to .81, with a p-value that ranges from .25 to .002. Five out
of 11 of the p-values are less than .05, permitting rejection at the 5% level
1n a one-sided test of the null hypothesis that there is a nonpositive trend
in the growth rate; eight out of 11 permit rejection at the 10% level.

For less developed countries, no comparable long run statistics on per
capita income are available. Reynolds (1983) gives an overview of the pattern
of development in such countries. Given the paucity of precise data for less
developed countries, he focuses on the "turning point" at which a country
first begins to exhibit a persistent upward trend in per capita income. The
timing of this transition and the pace of subsequent growth is strongly
influenced by the variations in the world economy. A general pattern of
historically unprecedented growth for the world economy is evident starting in
the last part of the 1800s and continuing to the present. This general
pattern is interrupted by a significant slowdown during the years between the
two world wars and by a remarkable surge from roughly 1950 to 1973. Worldwide
growth since 1973 has been slow only by comparison with that surge and appears
to have returned to the high rates that prevailed in the period from the late
1800s to 1914.

Although all less developed countries are affected by the world-wide
economy, the effects are not uniform. For our purposes, the key observation
is that those countries with more extensive prior development appear to
benefit more from periods of rapid worldwide growth and suffer less during any

slowdown. That is, growth rates appear to be increasing not only as a
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function of calendar time but also as a function of the level of development.
The observation that more developed countries appear to grow relatively faster
extends to a comparison of industrialized versus less developed countries as
well. In the period from 1950 to 1980, when official estimates for GDP are
generally available, Reynolds reports that the median rate of growth of per
capita income for his sample of 41 less developed countries was 2.3%,
"clearly below the median for the OECD countries for the same period.”

If it is true that growth rates are not negatively correlated with the
level of per capita output or capital, then there should be no tendency for
the dispersion in the (logarithm of the)4 level of per capita 1income to
decrease over time. There should be no tendency toward convergence. This
contradicts a widespread impression that convergence in this sense has been
evident, especially since the Second World War. Streissler (1979) offers
evidence about the source of this impression and its robustness. For each
vear trom 1950 to 1974, he measures the variance across countries of the
logarithm of the level of per capita income. In a sample of ex post
industrialized countries, those countries with a level of per capita income of
at least $2,700 in 1974, clear evidence of a decrease in the dispersion over
time is apparent. 1In a sample of ex ante industrialized countries, countries
with a per capita income of at least $350 in 1950, no evidence of a decrease
in the variance is apparent. The first sample differs from the second because
it includes Japan and excludes Argentina, Chile, Ireland, Puerto Rico, and

Venezuela. As one would expect, truncating the sample at the end biases the

Examining the dispersion in the logarithm of the level of per capita income,
not dispersion in the level itself, is the correct way to test for convergence
in the growth rates. I1f the rate of growth were conslant across countries
that start from different levels, the dispersion in the logarithm of the
levels will stay constant, but dispersion in the levels will increase.
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trend toward decreasing dispersion (and at the beginning toward increasing
dispersion.) When a sample of all possible countries is used, there is no
evidence of a decrease in variance, but the interpretation of this result 1s
complicated by the changing number of countries in the sample in each vear due
to data limitations.

Baumol (1985) reports similar results. When counlries are grouped into
industrialized, intermediate, centrally planned, and less developed economies,
Baumol argues that there is a tendency toward convergence in the level of
productivity within groups, even though there is no tendency toward overall
convergence. The tendency toward convergence is clear only in his group ot
industrialized economies, which corresponds closely to the sample of ex post
industrialized countries considered by Streissler. In any case, he finds no
obvious pattern in his entire sample of countries; if anything, there is a
weak tendency toward divergence.5

The other kind ot evidence that bears directly on the assumption ot
increasing returns in production comes from growth accounting exercises and
the estimation of aggregate production functions. Economists believe that
virtually all technical change is endogenous, the outcome of deliberate
actions taken by economic agents. If so and if production exhibits constant
returns to scale, one would expect to be able to account for the rate of
growth of output in terms of the rates of growth of all inpuls. The

difficulty in implementing a direct test of this assertion lies in correctly

5Baumol (1985) argues that the convergence he observes among the
industrialized countries results from a transmission process for Knowledge
that takes place among the industrialized countries but does not extend tc
centrally planned or less developed countries. He would not agree that the
apparent convergence is an artifact of an ex post choice of the industrialized
countries. Since he does not treat this issue directly, it is difficult to
resolve it from his data. He does admit that his groupings are "somewhat
arbitrary."
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measuring ali the inputs to production, especially for intangible capital
inputs such as knowledge. 1In a comprehensive attempt to account for the rates
of growth in output in terms of rates of growth ot all inputs, including human
and non~human, tangible and intangible stocks of capital, Kendrick (1976)
concluded that rates of growth of inputs are not sufficient to explain the
rate of growth of output in the 40 year interval 1929-1969. For various
sectors and levels of aggregation, the rate of growth of output is 1.06——1.30
times the appropriate aggregate measure of the rate of growth for inputs.

This kind of estimate is subject to substanlial, unquantified uncertainty and
cannot be taken as decisive support for the presence of increasing returns.
But given the repeated failure of this kind of growth accounting exercise,
there is no basis in the data for excluding the possibility that aggregate

production functions are best described as exhibiting increasing returns.

IV. A SIMPLE TWO PERIOD MODEL

Even in the presence of increasing returns and externalities, calculating
a social optimum is conceptually straightforward since it is equivalent to
solving a maximization problem. Standard mathematical results can be used to
show that a maximum exists and to characterize the solution by means of a set
ol necessary conditions. Despite the presence of global increasing returns,
the model here does have a social optimum. The next section illustrates how
it can be supported as a competitive equilibrium using a natural set of taxes
and subsidies. This optimum is of theoretical and normative interest, but it
cannot be a serious candidate for describing the observed long run behavior ot
per capita output. To the extenl that appropriate taxes and subsidies have

been used at all, they are a quite recent phenomenon.
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The model here also has an equilibrium in the absence of any governmental
intervention. Much of the emphasis in what follows focuses on how to
characterize the qualitative features of this suboptimal dynamic equilibrium.
Although it is suboptimal, the competitive equilibrium does satisty a
constrained optimality criterion that can be used to.simplify the analysis
much as the study of the social optimization problem simplifies the analysis
in standard growth models.

The use of a constrained or restricted optimization problem is not a new
épproach to the analysis of a suboptimal dynamic equilibrium. For exampie, 1t
has been widely used in the perfect foresight models of inflation.
Nonetheless, it is useful to describe this methed in some detail because
previous applications do not highlight the generality ot the approach and
because the dynamic setting tends to obscure its basic simplicity. Hence, 1
stari by calculating a competitive equilibrium for a greatly simplified
version of the growth model.

Specifically, consider a discrete-time model of growth with two periods.
Let each of S identical consumers have a twice continuocusly differentiable,
sfrictly concave utility function U(Cl,Cz), defined over consumption of u
single output good in periods 1 and 2. Let each consumer be given an initial
endowment of the output good in period 1. Suppose that production of
consumption goods in period 2 is a function of the state of knowledge, denoted

by k, and a set of additional factors such as physical capital, labor, and so
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forth, denoted by a vector x.6 To restrict attention to a choice probiem
that is essentially one dimensional, assume that only the stock of knowledge
can be augmented; the factors represented by x are available in fixed
supply. To capture the basic idea that there is a trade-oft between
consumption today and knowledge that can be used to produce more consumption
tomorrow, assume that there is a research technology that produces knowledge
from forgone consumption in period 1. Because the economy here has only two
pericds, we need not be concerned with the problem that arises in an infinite
horizon model when consumption grows too fast and discounted utility goes to
infinity. Thus we do not need diminishing returns in research to limit the
rate of growth of knowledge, and we can choose a simple linear technology with
units such that one unit of forgone consumption produces one unit of
knowledge. A more realistic diminishing returns research technology is
described in the infinite horizon model presented in the next section.

Since newly produced private knowledge can only partially be kept secret
and cannot be patented, we can represent the technology of firm i in terms
of a twice continuously differentiable production function F that depends on
the firm specific inputs ki and X, and on the aggregate level of knowledze

in the economy. If N is the number of firms, define this aggregate level of

N
knowiedge as K = E ki'
i=1

bFor most of the subsequent discussion, k will be treated as a stock ot
disembodied knowledge, i.e., knowledge in books. 'This is merely an
expositional convenience and is not essential. For example, if one wants to
assume that all knowledge is embodied in some kind of tangible capital such as
conventional physical capital or human capital, k can be reinterpreted
throughout as a composite good made up of both knowledge and the tangible
capital good.



The first major assumption on the production function F(ki’K’Xi) in
that, for any fixed value of K, F 1is concave as a function of k1 and .
Without this assumption, a competitive equilibrium will not exist in general.
Once concavity is granted, there is little loss of generality in assuming that
F is homogeneous of degree one as a function of ki and Xy when K 1is
held constant; any concave function can be extended to be homogeneous of
degree one by adding an additional factor to the vector x if necessary
(Rockafellar 1970, p. 67). McKenzie (1959) refers to this additional factor
as an entrepreneurial factor. It can be interpreted as an accounting device
that transtorms any profits into factor payments.

By the homogeneity of F in ki and 2, and by the assumption that F
is increasing in the aggregate stock of knowledge, K, 1t follows that F
exhibits increasing returns to scale. For any ¥ > 1,

F(?ki,?K,?xi) > F(?ki,K,?xi) = ?F(ki’K’xi)“
The second major assumption strengthens this considerably. It requires that
F  exhibit global increasing marginal productivity of knowledge from a social
point of view. That is, for any fixed x, assume that F(k,Nk,x), per firm
production available to a dictator who can set economywide values for k, is
convex in Kk, not concave. This strengthening of the assumption of increasing
returns is what distinguishes the production function used here from the one
used in the models of Arrow, Levhari and Sheshinski.

The equilibrium for the two period model is a standard competitive
equilibrium with externalities. Each firm maximizes profits taking K, the
aggregate level of knowledge, as given. Consumers supply part of their
endowment of output goods and all the other factors x +to firms in period |.
With the proceeds, they purchase output goods in period 2. Consumers and

firms maximize taking prices as given. As usual, the assumpticn that agents
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treat prices and the aggregate level K as given could be rationalized in a
model with a continuum of agents. Here, it is treated as the usual
approximation for a large but finite number of agents. Because of the
externality, all firms could benefit from a collusive agreement to invest more
in research. Although this agreement would be Pareto improving in this model,
it cannot be supported for the same reasons that collusive agreements fail in
models without externaiities. Each firm would have an incentive to shirk, not
investing its share of output in research. Even if all existing firms could
be compelled to comply, for example by an economywide merger, new entrants
would still be able to free-ride and undermine the equilibrium.

Because of the assumed homogeneity of F with respect to tactors that
receive compensation, profits for firms will be zero and the scale and number
of firms will be indeterminate. Consequently, we can simplify the notation by
restricting attention to an equilibrium in which the number of firms, N,
equals the number of consumers, S. Then per firm and per capita values
coincide. Assuming that all firms operate at the same level of output, we can
omit firm-specific subcripts.

Let = denote the per capita (and per firm) endowment of the facitors
that camnot be augmented; let e denote the per capita endowment ot the
output good in period 1. To calculate an equilibrium, define a family of

restricted maximization problems indexed by K:

P(K): max_ U(cl.cz)
ke[0,e]
sub ject to Sy < e - k,
c, < F(k.K,x),
X < X

Since U 1is strictly concave and F(k,K,x) 1is concave in k and x for

each value of K, P(K) will have a unique solution k for each value of K.
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(The solution for x is trivially x.) In general, the implied values for
Cl’ CZ’ and k have no economic meaning. If K differs from Sk, then
F(k,K,;) 1s not a feasible level of per capita consumption in period 2.
Equilibrium requires that the aggregate level of knowledge that is achieved 1in
the economy be consistent with the level that is assumed when {irms make
production decisions. If we define a function TI':R -— R that sends K 1into
%  times the value of k that achieves the maximum for the problem P(K),
this suggests fixed points of I as candidates for equilibria.

To see that any fixed point K* of I can indeed be supported as =
competitive equilibrium, observe that P(K*) is a concave maximization

*

problem with solution k* = K*/S, ¢ = e — k*, and C; =

it is concave, standard necessary conditions for concave problems apply. Let

F(k*,Sk*,g). Since

¥ denote a Lagrangian for P(K*) with multipliers Pys Pgs and w:
£ = Ule),cy) + pl(é—k—cl) + Py (F(k, K, x)~cy) + w(x—x)
When an interior solution is assumed, familiar arguments show that
X % . X X% -
pj = DJU(CI’C2) for j-1,2, that Py = pleF(k ,S8k ,x%), and that
w = p2D3F(k*,Sk*,§).7 As always, the shadow prices w and pJ can be

interpreted as equilibrium prices. To see this, consider first the

maximization problem of the firm: max sz(k,Sk*,x) - plk - w'x. Since the
k

firm takes both prices and the aggregate level Sk* as given, a trivial
application of the sufficient conditions for a concave maximization problem
demonstrates that k* and x are optimal choices for the firm. By the
homogeneity of F with respect to its first and third arguments, profits will

e zero at these values. Consider next the problem of the consumer. Income

/ . . . . . .
Here, D denotes a derivative, Di the partial derivative with respect to the

i’ c¢h argument.
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to the consumer will be the value of the endowment,

I = plé + wex = sz(k*,Sk*,Q) + pl(é—k*). (The second equality follows from

the nomogeneity of F in k and x.) When the necessary conditions

pj = DjU(cT,CZ) from the problem P(K*) are used, it follows immediately that

PT and c; are solutions to the problem wmax U(cl,cz) sub ject to the budget

constraint PiCy + P,c, « I. Note that the marginal rate of substitution for

consumers will equal the private marginal rate of transformation perceived by
DlU(CT,c;)

firms, ———— 2 —
? b S ¥
DZU(Cl,Cg)

= DlF(k*,Sk*,i). Because of the externality, this
differs from the true ﬁarginal rate of transformation for the economy,
D P(T,8K, %) + spP(k*, s,

Arguments along these lines can be used quite generally to show tha: a
fixed point of a mapping like I defined by a family of concave problems
P(K) can be supported as a competitive equilibrium with externalities. The
necessary conditions from a vérsion of the Kuhn-Tucker theorem generate shadov
prices associated with any solution to P(XK). The sufficient conditions ter
the problems of the consumer and the firm can then be used to show that the
quantities from the solution will be chosen in an equilibrium in which these .
prices are taken as given. Conversely, an argument similar to the usual procf
of the Pareto optimality of competitive equilibrium can be used te show ihat
any competitive equilibrium with externalities for this kind of economy will
satisfy the restricted optimality condition implicit in the problem r(K)
(Romer, 1383). That i, if K* is an equilibrium vaiue of aggregate
knowledge, then K*/S will solve the probiem P(K*). Thus equilibria are
equivalent to fixed points of the function T.

This allows an important simplification because it is straightforward to

characterize fixed points of I in terms of the underlying functions U and
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F. Substituting the constraints from P(XK) into the objective and using the
fact that x will be chosen to be x, define a new function

V(k,K) = U(e—k,F(k,K,x)). Because of the increasiug marginai productivity of
knowledge, V 1is not a concave function; but for any fixed K, it is concave
in k. Then the oplimal choice of k in any problem P(K) is determined by
the equation DlV(k,K) = 0. TFixed points of I are then given by
substituting Sk tor K and solving D1V(k,Sk) = 0. Given functional forms
for U and F, this equation can immediately be written in expiicit form.
The analysis can therefore exploit a three—-way equivalence between competitive
equilibria with externalities, fixed points of [I. and solutions to an
explicit equation D1V(k,Sk) = Q.

The key observation in this analysis is that equilibrium quantities can
be characterized as the solution to a concave maximization problem. Then
prices can be generated from shadow prices or multipliers for this problem.
The complete statement of the problem must be sought simultaneously with its
solution because the statement involves the equilibrium quantities. But since
P(K) 1is a family of concave problems, solving simultaneously for the
statement of the problem and for its solution amounts to making a simple

substitution in a first order condition.

V. Infinite Horizon Growth

A__Description of the Model

The analysis of the infinite-horizon growth model in continuous timc
proceeds exactly as in the two period example above. Individual firms are
assumed to have technologies that depend on a path K(t), t > 0, for aggregate

knowledge. For an arbitrary path K, we can consider an artificial planning
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problem Pw(K) that maximizes the utility of a representative consumer
subject to the technology implied by the path K. Assume that preferences
over the single consumption good take the usual additively separable,
discounted torm, It U(c(t))emétdt, with 86 > 0. The function U is detined
over the positive real numbers and can have U(0) equal to a finite number or
to -o. for example, when U{c) = In(c). Following the notation from the last
section, let F(k(t),K(t),x(t)) denote the instantaneous rate of output for a
firm as a function of firm specific knowledge at time t. economy-wide
aggregate knowledge at time t, and the level of all other inputs at t. As
before, we will assume that all agents take prices as given and that firms
take the aggregate palh for knowledge as given.

Additional knowledge can be produced by forgoing current consumption, but
the trade off is no longer assumed to be one—for—one. By investing an amount
I of fordone consumption in research, a firm with a current stock of private
knowledge k induces a rate of growth k = G(I,k). The function G is
assumed to be concave and homogeneous of degree one; the accumulation equation
can therefore be rewritten in terms of proportional rates of growth,

R/k = g(I/k), with g(y) = G(y,1). A crucial additional assumption is that g
is bounded from above by a constant «. This imposes a strong form of
diminishing returns in research. Given the private stock of knowledge, the
marginal product of additional investment in research, Dg, falls so rapidly
that g 1is bounded. An inessential but natural assumption is that g 1is
bounded from below by the value g(0) = 0. Knowledge does not depreciate, so
zero research implies zero change in k; moreover, existing konowledge cannot
be converted back into consumption goods. As a normalization to fix the units

of knowledge, we can specify that Dg(0) = 1; one unit of knowledge i¢ the
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amount that would be produced by investing one unit of consumption goods at an
arbitrarily slow rate.

Assume as before that factors other than knowledge are in fixed supply.
This implies that physical capital, labor, and the size of the population are
held constant. If labor were the only other factor in the model, exponentiatl
population growth could be allowed at the cost of additional notation; but as
was emphasized in the discussion of previous models, a key distinguishing
featura of this model is that population growth is not necessary for unbounded
growth in per capita income. For simplicity it is left out. Allowing for
accumulation of physical capital would be of more interest, but the presence
of two state variables would preclude the simple geometric characterization of
the dynamics that is possible in the case of one state variable. If knowledge
and physical capital are assumed to be used in fixed proportions in
oroduction, the variable k(t} can be interpreted as a composite capitai
good. (This is essentially the approach used by Arrow (1962) in the learning
by doing model.) Given increasing marginal productivity of knowledge,
increasing marginal productivily of a composite k would still be possible if
the increasing marginal productivity of knowledge were sufficient to outweigh
lhe decreasing marginal productivity associated with the physical capitai.

Within the restrictions imposed by tractability and simplicity, the
assumptions on the technology attempt to capture important features of actual
technologies. As noted in Section II, estimated aggregate production
functions do appear to exhibit some form of increasing returns to scale.
Assuming that the increasing returns arise because of increasing marginal
productivity of knowledge accords with the plausible conjecture that, even
with fixed population and fixed physical capital, knowledge will never reach a

level where its marginal product is so low that it is no longer worth the
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trouble it takes to do research. If the marginal product of knowledge were
truly diminishing, this would imply that Newton, Darwin and, their
contemporaries mined the richest veins of ideas and that scientists now must
s1ft through the tailings and extract ideas from low-grade ore. Thatl
knowledge has an important public good characteristic is generally
recognized.8 That the production of new knowledge exhibits some form of
diminishing marginal productivity at any point in time should not be
controversial. For example, even though it may be possible to develop the
knowledge needed to produce usable energy from nuclear fusion by devoting iess
than 1% of annual gross national product to the research effort over a period
of 20 years, it is likely that this knowledge could not be produced by next

year regardless of the size of the current research effort.

B. Existence and Characterization of a Social Optimum

Before using necessary conditions to characterize the solutions to either
the social optimization problem, denoted as PS_. or any of the artificiail
optimization problems PW(K), I must verify that these problems have
solutions. First I state the problems precisely. Let kO denote the initial
per firm stock of knowledge for the economy. As in the last section, I will
aiways work with the same number of firms and consumers. Because the choice
of x = x 1is trivial, I suppress this argument, writing f(k,K) = F(k.K,x).
Also, let %(k) = f(k,Sk) = F(k,Sk,x) denote the globally convex (per capita)
production function that would be faced by a social planner. In all probiems
that follow, the constraint R(t) 2 0 for all t 2 0 and the intial

condition k(0) = kO will be understood.

See e.g., Bernstein and Nadiri (1983) for estimates from the chemical
industry suggesting that spillover effects can be quite large.
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PS : max I: U(c(t))edétdt

F(k(t))-c)t)

sub,ject to R(t)/k(t) g( 6 )

i

P_(K): max [ UCc(t))e ®tdt

f(k(t),K(t))—c(t)

subject to k(t)/k(t) = g( ] )

Note that the only difference between these two problems lies in the
specification of the production function. In the first case, 1t is convex and
invariant over time. In the second, it is concave but depends on time through
its dependence on the path K(t). I can now state the theorem which

guarantees the existence of solutions to each of these problems.

THEOREM 1: Assume that each of U, f, and g 1is a continuous real
valued function defined on a subset of the real line. Assume that U and ¢
are concave. Suppose that #(k) = f(k,Sk) satisfies a bound #(k) < u + kD,
and that g(z) satisfies the bounds U < g(x) < a for real numbers u, @, «and
. Then it oo 1is less than the discount factor &6, PS_ has a
finite-valued solution, and Pw(K) has a finite valued solution for any patn

K(t) such that K(t) < K(0)e>'.

The proot, given in the Appendix, amounts to a check that the conditions
of theorem 1 in Romer (1986) are satisfied. Note that if « 1is less than &
the inequality oo < 6 allows for p > 1. Thus the socially feasible
production function ¥ «can be globally convex in k, with a marginal social

product and an average social product of knowledge that increase without

bound.
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The analysis of the social planning problem PS_ in terms of a
current~valued Hamiltonian and a phase plane follows along familiar lines (see
e.g, Arrow 1967; Cass and Shell 1976a,1976b). Define

Flk)e

H(k,A) = max U(c) + Akg( i ).

C

For simplicity, assume that the functions U, f, and g are twice
continuously differentiable. The first-order necessary conditions tftor a path
#{(1) to be a maximum for PS, are that there exists a path A(t) such that
the system of first order differential equations K = DZH(k,A) and
A= 6A - DlH(k,A) are satisfied and that the paths satisfy two boundary

conditions: the initial condition on k, and the transversality condition at
infinity, lim A(t)k(t)e o% = 0.9
{00

Under the assumption that 1im DU(c) = o, maximizing over ¢ 1in the
c-0

deftinition of H(k,A) 1implies that DU(c) = ADg("ggk%“C

) whenever the
constraint k 2 0 is not binding; otherwise, ¢ = ¥(k). This gives ¢ as a
function of k and A. Substituting this expression in the equations for k

and A gives a system of first-order equations that depends only on k and

A.

Because of the restriction that k be nonnegative, the plane can be
divided into two regions defined by k=0 and k20 (see fig. 2). In a
convenient abuse of the terminology, I will refer to the locus of points

dividing ihese two regions as the k- 0 locus. Along this locus, both the

condilions ¢ = ¥#(k) and DU(¢) = ADg(—ZSE%:S—) must hold. Thus the k = 0

Proving the necessity of the transversality condition for a maximization
problem that 1s not concave takes relatively sophisticated mathematical
methods. FEkeland and Scheinkman (1983) prove the necessity of the
transversality condition for nonconcave discrete-time problems. In continuous

time, a proof that requires a local Lipschitz condition is given by Aubiu and
Clarke (1979.)
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O+
0 K

Fig. 2: Geometry of the phase plane for a typical social optimum. Arrows indicate
directions of trajectories in different sections of the plane. The rate of change of the

stock of knowledge, k, is zero everywhere on or below the locus denoted by k = 0. SO

denotes the socially optimal trajectory that stays everywhere between the lines A=0 and

k = 0.



locus is defined by the equation DU(¥(k)) = A. By the concavity of U, it
must be a non—increasing curve in the k-A plane.

As usual, the equation i = 0 defines a simple locus in the plane. Vhen
the derivative DlH(k,A) is evaluated along the k =0 locus, the equation
for A there can be written A/A =& - D¥(k). If D¥ increases without
bound. there exists a value of ﬁ such that D¥(k) > & for all k lardger
than k, and for ali such k, the A = 0 locus lies above the k = 0 locus.
It may be either upward or downward sloping. If ¥ were concave and
satisfied the usual Inada conditions, A =0 would cross k = 0 from above
and the resulting steady state would be stable in the usual saddle point
sense. Here, A= 0 may cross k = 0 either from above or from below. If
D¥(k) is everywhere greater than &, the A=0 Locus lies everywhere above
the k =0 locus, and & can be taken to be zero. (This is the case
illustrated in fig. 2.) Starting from any inital value greater than i, the
optimal trajectory (A{t),k{(t})), t 2 0, must remain above the region where
k = 0. Any trajectory that crosses into this region can be shown to violate
the transversality condition. Consequently, k(t) grows without bound along
the optimal trajectory.

This social optimum cannot be supported as a competitive equilibrium in
the absence of government intervention. Any competitive firm that takes K(t)
as given and is faced with the social marginal products as competitive prices
will choose not to remain at the optimal quantities even if it expects all
other firms to do so. Each firm will face a private marginal product of
knowledge (measured in terms of current output goods) equal to D.f; but the

1

true shadow price of capital will be le + SD2f > le. Given this
difference, each firm would choose to acquire less than the socially optimal

amount of knowliedge.
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C. Existence and Characterization of the Competitive Equilibrium

Under a general set of conditions, this economy can be shown to have a
suboptimal equilibrium in the absence of any intervention. 1t is completely
analogous to the equilibrium for the two period model. As in that model, it
is straightforward to show that there is a three way equivalence hetween
competitive equilibria, fixed points of the mapping that sends a path K(t)
into S times the solution to Pw(K), and solutions to an equation of the
form DIV(k,Sk) = 0.lU In the infinite horizon case, this equation consists
of a system of differential equations, which can be represenied in terms of a
phase plane, and a set of boundary conditions.

To derive these equations, consider the necessary conditions for the

concave problem Pm(K). Define a Hamiltonian, denoted as H to distinguish

it from the Hamiltonian H for the social planning problem PS_:

f(k,K)-c

H(k,A,K) = max U(c) + Aka( > ).

C

Then the necessary conditions for k{t) to be a solution to PW(K) are that
there exists a path A(t) such that k(i) = D H(k(t),A(t),K(t)) eand

A(t) = BA(t) - D, H(k(t),A(t),K(t)); and such that the pathe k(t) and A(t)
and lim A(t)k(t)e OV = 0.
t0e

satisfy the boundary conditions k(0) = k0

Substituting Sk(t) for K(t) yields an autonomous system of differential
equations, k(t) = DH(k(t),A(t),Sk(t)), A(t) = BA(t) - D H(k(t),A(t),5k(t)),
that can be characterized using the phase plane. The two boundary conditions

must still hold. Any paths for k(t) and A(t) that satisfy these equations

10An explicit proof of this result is given in Romer (1983.) The method ot
proof is exactly as outlined in the two period model. A generalized
Kuhn--Tucker theorem is used to derive the necessary conditions that yiel:d

shadow prices for the maximization problems P_(K). Suppose K* is a fixed
point. If the consumer and the firm are faced with the shadow pric:s

associated with Pw(K*), the sufficient conditions for their maximization
o - *
problems are shown to be satisfied at the quantities that solve Pm(K ).
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and the boundary conditions will correspond to a competitive equilibrium, and
all competitive equilibria can be characterized this way.

Before considering phase diagrams, I must show that a competitive
equilibrium exists for some class of models. Standard results concerning the
axistence of solutions of differential equations can be used to prove that the
equatl.ions for A and k determine a unique trajectory through any point
(k,A) 1in the phase plane. The difficulty arises in showing that for any
given value of ko, there exists some value of AO such that the
transversality condition at infinity is satisfied along the trajectory through
(ko,AO). As opposed to the case in which these equations are generated by a
concave maximization problem known to have a solution, there is no assurance
that such a AO exists.

The basic idea in the proof that such a A, exists, and hence thal a

0
competitive equilibrium exists, is illustrated in Example 1 from the next
section. To state the general result, I need additionai conditions that
characterize the asymptotic behavior of the functions f and g. This is
acccmplished by means of an asymptotic exponent as defined by Brock and Gale

(1969). Given a function h(y), define the asymptotic exponent & of n as

o= lim 1ogy|h(y)|. houghly speaking, h(y) behaves asymptotically like the
Y0

power function ye. Also, recall that «a is the maximal rate of growth ior

k 1implied by the research technology.

THEOREM 2: In addition to the assumptions of theorem 1, assume that U,
f, and g are twice continuously differentiable. Assume also that
#(k) = f(k,S8k) has an asymptotic exponent p such that p > 1 and ap < 8.
Fipally, assume that Dg(x) has an asymptotic exponent strictly less than

L. Iet k be such that D f(k,5k) > & for all k> k. Then if k. > k,

0
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there exists a competitive equilibrium with externalities in which «<¢(t) and
k(t) grow without bound.

The proof is given in Romer (1983, theorem 3). The assumption on the
asymptotic growth of ¥ 1is self-explanatory. The assumption on the
asymptotic exponent of Dg 1is sufficient to ensure the boundedness of g.

The condition on le will be satisfied in most cases where %(k) = f(k,.Sk}
is convex. Fxamples of functions satisfying these assumptions are given in
the next section.

Once the conditions for the existence of a competitive equilibrium have
been established, the analysis reduces once again to the study of the phase
plane summarizing the information in the differential equations. In many
respects, this analysis is similar to that for the social optimum for this
economy. The phase plane can once again be divided into regions where k=0
and k * 0. Since by definition ¥(k) = f(k,Sk), the equations for ¢ uas @
function of k and A will be identical to those in the social optimum:
DU(~) = ADg([f(k,Sk)-c]/k) if k> 0, c = f(k,Sk) if k = 0. As a result,
the boundary locus for the region k = 0 will also be identical with that
from the social optimum. The only difference arises in the equation for A.
Although the equality H(k,A) = ﬁ(k,A,Sk) does hold, the derivativeg
DlH(k,A) and Dlﬁ(k,A,Sk) differ. 1In the first case, a term invoiving the
expression D¥(k) = le(k,Sk) + Ssz(k,Sk) will appear. In the second case,
oily the first part of this expression, le(k,Sk), appears. Therefore,
DlH(k,A) is always larger than Dlﬁ(k,A,Sk). Consequently, the A =0 iocus
for the competitive equilibrium must lie below that for the social optimum.

As was true of the social optimum, the A = 0 locus can be either upward
or downward sloping. If le(k,Sk) > 6 for all k greater than some value
i, the A =0 locus will lie sbove k = 0 For values of k to the right of
;. Then the qualitative analysis is the same as that presented for the sociai
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optimum. Starting from an initial value kO > ;, the only candidate paths for
equilibria are ones that stay above the k=0 region; as before, paths that
cross into this region will violate the transversality condition. A
trajectory lying everywhere in the region where k > 0 can fail to have k(t)
grow without bound only if the trajectory asymptotically approaches a critical
point where A and k are both zero, but no such point exists to the right
of i. Hence, all the trajectories that are possible candidates for an
equilibrium have paths for k(t) that grow without bound. The existence

result in Theorem 2 shows that at least one such path satisfies the

transversality condition at infinity.

D Welfare Analysis ot the Competitive Equilibrium

The welfare analysis of the competitive equilibrium is guite simple. The
intuition from simple static models with externalities or from the two pericd
model presented in Section III carries over intact to the dynamic modei here.
In the calculation of the marginal productivity of knowledge, each firm
recognizes the private return to knowledge, le(k,Sk), but neglecls the effect
due to the change in the aggregate level, SDZf(k,Sk); an increase in Lk
induces a positive external effect sz(k,Sk) on each of the S firms in the
economy. Consequently, the amount of consumption at any point in time is too
high in the competitive equilibrium and the amouni of research is too low.

Any intervention that shifts the allocation of current goods away from
consumption and towards research will be welfare improving. As in any model
with externalities, the government can achieve Pareto improvements not
available to private agents because its powers of coercion can be used to

overcome problems of shirking.

32



If the government has access to lump sum taxation, any number ot subsidy
schemes will support the social optimum. Along the paths k*(t) and A*(t)
from the social optimum, taxes and subsidies must be chosen so that the first
partial derivative of the Hamiltonian for the competitive equilibrium with
taxes equals the first partial derivative of the Hamiltonian for the social
planning problem; that is, the taxes and subsidies must be chosen so that the
after—-tax private marginal product of knowledge is equal to the social
marginal product. This can be accomplished by subsidizing hoidings of Kk,
subsidizing accumulation ﬁ, or subsidizing output and taxing factors of
production other than k. The simplest scheme is for the government to pay a
time varying subsidy of ol(t) units of consumption goods for each unit of
knowledge held by the firm. If this subsidy is chosen to be equal to the teim
neglected by private agents, ol(t) = Ssz(k*(t),Sk*(t)), private and social
marginal products will be equal. A subsidy oz(t) paid to a firm for each
unit of goods invested in research would be easier to implement, but is harder
to characterize. 1in general, solving for oz(t) requires lhe solution of =«

system of differential equations that depends on the path for k*(t). In the

special case in which production takes the form f(k,K) = kqu’ the optimai
subsidy can be shown to be constant, o, = ;%;. (This calculation is also

included in the Appendis.)

While i1t is clear that the social marginal product of knowledge is
grealer than the private marginal product in the no—intervention competitive
equilibrium, this does not necessarily imply thal interesl rates in the
socially optimal competitive equilibrium with taxes will be higher than in the
suboptimal equilibrium. In each case, the real interest rate on loans made in

units of output goods can be written as r(t) = - ug—, where

-6
e

p(t) = tDU(c(t)) is the present value price for consumption doods at date



e 01
Cole

reduces to r(t) = &6 4 G(é/c). In the linear utility case in which 8 = U, r

t. When utility takes the constant elasticity form U(c) = this
will equal & regardiess of the path for consumption, and in particular will
be the same in the two equilibria. This can occur even though the marginal
productivity of knowledge differs because the price of knowledge in terms of
consumption goods (equal to the marginal rate of transformation between
knowledge and consumption goods) can vary. Holders of knowledge earn capital
gains and losses as well as a direct return equal to the private marginal
productivity of knowledge. iIn the case of linear utility, these capital gains
and losses adjust so that interest rates stay the same.

This logical point notwithstanding, it is likely that interest rates will
be higher in the social optimum. On average, é/c will be higher in the
social optimum; higher initial rates ot investment with lower initiail
consumpiion must ultimately lead to higher levels of consumptiorn.. It there is
anv curvature in the utaiity function U, so that # is positive, interest
rates in the optimum will be greater than in the no-intervention equilibrium.
Ia contrast to the usual presumption, cost benefit calculations in a sub-
optimal equilibrium should use a social rate of discount that 1s higher than

the mairket rate of interest.

VI Examplec

To illustrate the range c¢f behavior possible in this kind of model, ihis
section examines specific functional forms for the utility function U. the
production function f, and ithe function g describing the research
technology. Because the goal is to reach qualitative conclusions with a

minimum oi algebra. the choice of functional form will be guided primarily by
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analytical convenience. For the production function, assume that f takes

th2 torm noted above, f(k,K) = k“K”. This is convenient because it implies

that the ratio of the private and social marginal products,
Dlt(k,sk) ) y
le(k.Sk)+SD2f(k,Sk) vty

is <onstant. Non increasing private marginal productivity implies that

U < v £ 1; increasing social marginal productivity implies that 1 < + + w.
With these parameter restrictions, this funchtional form is reasonable only for
large values of k. For small values of k, the private and social marginai
productivity of knowledge is implausibly smali; at k = 0, they are both zero.
This causes no problem provided we take a moderately large initial kO as
given. An analysis starting from kO close to zero would have to use a mors
complicated (and more reasonable) functional form for f.

Recall that the rate of increase of the stock of knowledge is written 1in
the homogencous form k = G(I,k) = kg(1/k), where I is output minus
consumption. The requirements on the concave function ¢ are the
normalization Dg(0) = 1 and the bound g(I/k) < a for all I/k. An
Z

analytically simple form satisfying these requirements is g(z) = _Egl 7

Recalling that & is the discount rate, note that the bound required tor the
existence of a social optimum as given in theorem 1 requires the additional
restriction that a(v+v) < 6. Given the stated parameter restrictions, 1t is

<asv to verify that f and g satisfy all the reguirements of theorems 1 and

Example 1
With this specification of the technology for the economy, we can readily

examine the qualitative behavior of the model for logarithmic utility
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U(c) = In(c). The Hamiltonian can then be written as

£, K)c
RS

Along (the boundary of the region in which) k = 0, Dg(0) = 1 implies that

ﬁ(k,A,K,c) = In(c) + Akg(
¢ = A_]F so k = 0 is determined by the equation
A= [EGGsk)] e s )
The exact form for the locus A = 0 1is algebraically complicated, but it is
straightforward to show that, for large k, A =0 lies above the k = 0
locus since Dli(k,Sk) will be greater than &. Also, if we define the curve

1 kul, the A = 0 locus must
5—a

L1 in the phase plane by the equation A =
Cross L»I~ from above as indicated in figure 3. (Details are given in the
Appendix.) Thus, k = 0 behaves as k to the power —{(vt+v) < -1, and A= 0
is eventually trapped between k = 0 and a line described by k to the power
=1. In figure 3, representative trajectories t] and t2 together with the
competitive equilibrium trajectory CE are used to indicate the direction oi

trajectories in the various parts of the plane instead of the usual arrows.

Because the line L is of the form A = 1
1 65 a

k_l, any trajectory that
sventually remains below Ll will satisfy the transversality condition

lim efstk(t)A(t) = 0. Given the geometry of the phase plane, it is ciear thei
t o

there must exist a trajectory that always remains between the ioci A = (0 and
k = . Given the initial value ko, index by the value A all the trajectories
that start at a point (kO,A) between the two loci. The set of A’s
corresponding to trajectories that cross A = 0 can have no smallest value;

the set of A’s that correspond to trajectories that cross k = 0 can have no

largest value; and the two sets must be disjoint. Thus there exists a value
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AO such that the trajectory through (kO,AO) crosses neither loci, ana must

therefore correspond to an equilibrium.11
In fact, the path resembles a conventional equilibrium in which the
trajectory remains between the A=0 and k = 0 loci as it converges to a
saddle point, although here it is as if the saddie point has been moved
infinitely far to the right. Since the optimal trajectory cannot stop,
capital grows without bound. Since the trajectory is downward sloping and
since consumption is increasing in Kk and decreasing in A, it is easy to =zee

that consumption also grows without bound. Because of the difficulty of the

algebra, it is not easy to describe the asymptotic rates of growth.

Example 2
Suppose now that utility is linear, U(c) = ¢. 1In the algebra and in the
phase plane for this case, we can ignore the restriction ¢ 2 0 since it will

not be binding in the region of interest. Maximizing out ¢ from the

f-c
k

Then f-c¢ 1is positive (hence k is positive) if and only if A > L.

Hami!tonian ﬁ(k,A,K,c) = ¢ +Akg( ) implies that ¢ = f - ak(A'5*1),

In this example, it is possible to put tighter bounds on the behavior of
the A = 0 locus and, more important, on the behavior of the equilibrium
trajectory. As demonstrated in the Appendix, A = 0 is upward sloping and
behaves asymptotically like the power function A = Bkwﬂyhl for some constant
B. For this economy, the equilibrium trajectory will lie above the A=0
locus, so it is convenient to define an additional curve that will trap the
equilibrium trajectory from above. For an appropriate choice of the constant

A, the line L, defined by A = Aku+7_1 will lie above A = 0 and will have

“lthis is the essence of the proof of Theorem 2.
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the property that trajectories must cross it from below (see fig. 1). Since
trajectories must cross A =0 from above, the same geometric argument as
used in the last example demonstrates that there exists a trajectory that

remains bLetween these two lines. Consequently 1t must also behave

asymptotically like kU+1~1. Since k(t) can grow no faster than eat, the

product A(t)k(t) will be bounded along such a trajectory by a function of

ea(u+7)t.

the form Since & > (v+v)a, this trajectory satisfies the

transversality condition and corresponds to an equilibrium.

e . . . +y—1
Along the equilibrium trajectory, A behaves asymptotically like KT,

Given the expression noted above for ¢ in terms of A and k, < behaves

asymptotically like kU+7 - ak1+('5)(U+7_1)

k1+(.5)(u+v—1).

and I = f-c¢ behaves like

Then ¢, I, c/k, and I/k go to infinity with k. by the
assumptions on the research technology, I/k going to infinity implies that
R/k approaches its upper bound «a. Consequently, the percentage rate of
growth of output and of consumption will be increasing, both approaching the
asymptotic upper bound a(v+v).

Because the equilibrium trajectory is upward sloping, this economy will
exhibit different stability properties from either the conventional model or
the economy with logarithmic utility described above. Figure 5 illustlrates a
standard exercise in which a perfect foresight equilibrium is perturbed.
Suppose that at time 0 it is known that the stock of knowledge will undersio an
exogenous increase of size 4 at time T and that no other exogenous changes
wiil occur. YUsual arbitrage arguments imply lhat the path for any price like
A(t) must be continuous at time T. The path followed by the equilibrium in
the phase plane starts on a trajectory like tl such that at time T, it
arrives at a point exactly 4 wunits to the left of the trajectory CE from

rigure 4, which would have been the equilibrium 1n the absence of any

38



04—+~

0 Ko
k

Fig. 5: Geometry for the economy in example 2 when an exogenous increase of size 4 in the
stock of knowledge is known to occur at a time T > 0. The equilibrium trajectory moves
along wy until time T, at which point it is 4 units to the left of the trajectory CE.

At time T, the economy jumps horizontally to CE with the owm:mw in the capital stock, but
the path for A(t) 1is continuous. The equilibrium then proceeds along CE. >o denotes the

initial shadow price of knowledge in the case in which the exogenous increase will take

place. >o denotes the lower value that obtains in an economy in which no exogenous increase

will take place.



exogenous change in k. As the economy evolves, it moves along t, then jumps

1
4 units to the right to the trajectory CE at time T. Since edétA(t) catr.
be interpreted as a 0 zero market price for knowledge, a foreseen future
increase in the aggregate stock of knowledge causes & time zero increase in
the price for knowledge and a consequent increase in the rate of investment 1n
knowledge. Because of the increasing returns, the private response to an
aggregate increase in the stock of knowledge will be to reinforce its effects
rather than to dampen them. Since the rate oi growth of the stock of
knowledge is increasing 1n the level, this kind of disturbance causes the
stock of knowledge to be larger at all future dates. Moreover the magnitude
of the difference will grow over time. Thus small current or anticipated
future disturbances can potentially have large, permanent, aggregate effects,
As a comparison with the first example shows, this result requires not
only that increasing returns be present but also that marginal utility not

decrease too rapidly with the level of per capita consumption. If we had

restricted attention to the class of bounded, constant elasticity utility
1—8_1
T with 8 > 1. this phenomenon would not be apparent. The

io

functions, -

specific example here uses linear utility for convenience, but similar results
cl_e—l

will hold for constant elasticity utility function B v

for values of &

close enough to zero.

The analysis of the previous example suggests a simple multi-country
model with no tendency towards convergence in the level of per capita output.
suppose each country is modeled as a separate closed economy of the type in

example 2. Thus no trade in goods takes place among the different countries
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and knowledge in one country has external effects only within that country.
Even if all countries started out with the same inital stock of knowledge,
small disturbances could create permanent differences in the level of per
capita output. Since the rate of growth of the stock of knowledge is
increasing over time towards an asymptotic upper bound, a smaller country s
will always grow less rapidly than a larger country 2. Asymptotically, the

rates of growth (R/k)S and (f(/k)Q will both converge to «, but the

k c
” and MEE_ will be monotonically increasing over time, and the
s s

ratios

differences kQ(t)~ks(t) and CQ(t)—cS(t) will go to infinity.

It is possible to weaken the sharp separation assumed between countries
in this discussion. In particular, neither the absence of trade in
consumption goods and knowledge, nor the sharp restriction on the extent of
the externalities is essential tor the divergence noted above. As 1n the
Arrow (1962) learning by doing model, suppose that all knowledge is embodied
either in physical capital or as human capital. Thus, k denotes a composite
#ood composed c¢f both knowiedge and some kind of tangible capital. in this
embodied form, knowledge can be freely transported between two different
countries. Suppose further that the external effect of knowledge embodied in
capital in place in one country extends across its border, but does so with
diminished intensity. For example, suppose that ocutput of a representative
firm in country 1 can be described as f(k’Kl’KZ) = ku(K? + KS), where Kk
18 the firm’s stock of the composite good, K and K2 are the aggregates in

]

the two countries, and the exponent a on the domestic aggregate Kl is

strictly greater than the exponent b on the foreign aggregate K...

Production in country 2 is defined symetrically. Then for a specific form of

the research technology, Romer (1983) shows that the key restriction on the
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equilibrium paths Sk: and Sk2 in the two countries comes from the equality
of the marginal product of private knowledge imposed by the free mobility of

the composite good k:

le(kl,skl,Skz) = le(kZ,Skz,Skl) (1)

Wilh the functional form given above, it is easy to verify that, in addiiion

to the symmetric solution k1 = k2’ there exists an asymmetric solution. in

that solution, if k, is larger than k., and growing (e.g. country 1l is

2z
industrialized and country 2 1s not) the path for k2 that satisfies this
equation can either grow at a rate slower than that for country 1 or may
12

shrink, exporting the composite good to the more developed country.

This kind of steady, ongoing "capital 1tlight" or "brain drain" does not
require any fundamental difference between the two countries. They have
identical technologies. I we assume that there is perfect mobility in the
compositce k, it can even take place when both countries start from the same
initaial leveir off k. If ail agents are convinced that country 2 is destined
to be the slow growing counltry in an asymmetric equilibrium, a discrete amount
of the composite good will jump immediately to country 1. Thereafter, the two
countries will evolve according to equation (1), with country 2 growing more
slowly than country 1, or possibly even shrinking.

This kind of model should not be taken too literally. A more realistic
model would need to take account of other factors of production with various
degrees of less than perfect mobility. Nonetheless, 1t does suggest that the

rrensence of increasing returns and of multiple equilibria can introduce a

2 ) ;
Details are available in the Appendix.
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degree of instability that is not present in conventional models. This
identifies a second sense in which small disturbances can have large effects.
In addition to the multiplier type effect for a closed economy as described in
the last example, a small disturbance or a small change in a policy variable
such as a tax rate, could conceivably have a decisive effect on which of

several possible equilibira is attained.

VII CONCLUSION

Recent discussions of growth have tended not to emphasize the role of
increasing returns. At least in part, this reflects the absence of an
empirically relevant model with increasing returns that exhibits the rigor and
simplicity of the model developed by Ramsey, Koopmans, and Cass. Eairly
attempts at such a model were seriously undermined by the loose treatment .f
specialization as a torm of increasing return with esternal effects. More
recent attempts by Arrow, Levhari and Sheshinski were limited bv their
dependence on exogenously specified population growth and by the implausible
implication that the rate of growth of per capita income should be a
monotonically increasing function of the rate of population growth.
Tncomplete models that took the rate of technological change as exogenousiy
specified or that made it endogenous in a descripiive fashion could address
neither welfare implications nor positive implications like the slowing ot
growth rates or the convergence of per capita output.

"he model developed here goes part way toward filling the theoretical
gap. For analytical convenience, it is limited to a case that is the polar
opposite of the usual model with endogenous accumulation of physical capital

and no accumulation of knowledge. But once the operation of the basic model
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is clear, it 1is straightforward to include other state variables. The
implications for a model with both increasing marginal productivity of
knowledge and decreasing marginal productivily of physical capital can easily
be derived using the framework outlined here; however, the geometric analysis
using the phase plane is impossible with more than one state variable, and
numerical methods for solving dynamic equation systems must be used.13 Since
the model here can be interpreted as the special case of the two state
variable model in which knowledge and capital are used in fixed proportions,
this kind of extensicn can only increase the range of possible equilibrium

outcomes.

13For an example of this kind of numerical analysis in a model with a stock of

knowledge and a stock of an exhaustible resource, see Romer and Sasaki (1985).
As in the growth model, increasing returns associated with knowledge can
reverse conventional presumptions; in particular, exhaustible resource prices
can be monotonically decreasing for all time.
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APPENDIX

I. Proof of Theorem 1

Using the Reduction Theorem in Rockafellar (1978), each of these problems
can be reduced to a variational problem with an integrand L(k,k,t). (This is
obvious by substitution if the function g is invertible.)} This 1ntegrand
will be concave in k (but not in k). By the bounds on ¥, g, and K(t),
feazible paths for k(t) will be bounded by a function which grows at the
rate eat; output, and hence utility U(c(t)), will then be bounded by a

function that grows as eapt. Since Dg(0) = 1, R(t) will also be bounded by

. .. . -6t
eapt and zero. Since eapt is integrable with respect to e o , the

problems have solutions by Theorem 1 in Romer (1986).

I1. Calculation of the optaimal subsidy for research

Let ﬁ(k,A,K,o,T,c) denote the Hamiltonian for a competitive agent who
takes as given a path K(t) for the aggregate capital stock, a path o(t)
for the subsidy to research, and a path 7(t) of lump sum taxes. Since the
subsidy is paid ir units of consumption good and is calculated per unit of
consumption good devoted to research, its net ef{fect is to lower lhe cost of

investing in research. Thus,

ﬁ(k:A,K,G,C) = U(c) + ,\kg(_<1"0)

Lip(, ) —c1]
k ).

Let Ace denote the path for A in the competitive equilibrium, Aco the

A A
path in the social optimum. To ensure that Age = ASO , we require that
ce S0

DlH(k,A,c) = DlH(k,A,Sk,o,c), where H 1is the Hamiltonian for the social



optimum as given in the text. (By the envelope theorem, we are free to take

the partial derivative of H and H without concern for how the optimized

choice of ¢ 1is affected.) For f(k,K) = kUKy, this will be satisfied if

-1 le * SDZf v+ ¥ : . .
(1-o) = Dif = S OF O e In the social optimum, the
equation for ¢ is DU(c) = ASODg(fﬁki§kl:g); in the competitive equilibrium
with taxes, it is DU(c) = Ace(l-c)_ng(il-9)‘1[£(k’8k>_0_7]). If the initial
condition tor A in the competitve equilibrium is set so that
Ace(O)(l-o)_l = Aso’ and if 7 1s chosen to balance the government budget,

—Tga— [f(k,Sk)-c-7] = 7, the path for consumption at all dates, hence also the

path for the stock of knowledge at all dates, will be the same in the

equiiibrium and the social optimum.

ITI. Algebra for Example 1

Let I be defined as I = f-c and write
(A. 1) H(k,K,A) = max U(f-I) + Ag(I/k).
I

Then assuming an interior solution (i.e. assuming k 2 0 is not binding) and

using the functional form for U, we have

(A.2) (f—I)"l = ADg(I/k).

Along k = 0, 1 must equal zero, so Dg(I/k) = 1. Then the locus of points

on the boundary of the region where k=0 is given by Af(k,Sk) = 1. Using

the assumed form for g, equation A.2 baecomes (f—I)_l = Adz(a+I/k)_2.

Solving the implied quadratic equation and discarding the spurious root, we

have

= 2K (2an)? ¢ a(re-1)
Using the result that a'5 + b'5 > (a+b)"5 if a,b 2 0, and assuming that we

179 - [2+akAl}.



are in the region where k>0 so that Af > 1, we can calculate an upper

bound
(A.3) I < ak(Af-1)2.

To evaluate A, we need the derivative DlH(k,A,Sk):

le

|

(A.4) DlH(k,A,k) = + Ag(I/k) - A(X/k)Dg(I/%)

D f + (L/a) (1/10°
f -1 -
The second equality follows from the form of g and A.2. Using A.4, k>0

implies I > 0, which implies

(A.5) A= 6A DH 2 (6-a)h -
. 1 -1 . B 1 -1 . )
Since — ~ k 7, the curve Ll defined by A = 5 a k has the property

that everywhere along it, A will be non-negative. Since A is decreasing

in I which is increasing in A for fixed k, it follows that A =0 will

indeed lie below L.

To verify that A is negative along k =0 for all sufficiently large

values of k, note that i = 0 together with A.2 and A.3 imply that
le
DLH Sl i Ale. Using the functional form for f,

AA =6 — D f(k,8k) = & - us KT L

Finally, note that along L, with A = —3%3— k’l, A3 implies that
ix ___55_5_ (le)'5, so ¢ = f-1 goes to intinity as k goes to infinily.
(&-a)”

Since ¢ is decreasing in A for fixed Kk, consumption must also go to

infinity along the equilibrium trajectory, which lies below the line L.



IV. Example 2

Using the functional forms for U and ¢, the first order condition for
the maximization of the Hamiltonian H(k,A,K,c) = ¢ + Akg([f-c]/k) is
c = f(k,K) —ak(A'5“l). Note that the constraint « = 0 isg binding only for
values of A greater than ((f/ak) - 1)2. Using the notation from the text,
7 = v+y-1, this puts a restriction on values of A that lie in a region abowve
a curve that grows asymptotically like anl We will be concerned with a
region lying strictly below this region for large k.

Taking the derivative of the Hamiltonian ﬁ(k,A,K,C) with respect to its
first argument and substituting in the expression for ¢, we have the

expression for A as a function of k and A,

. I3
(A.B) A= (6~a)A +2aA°" - (D f+a).
Solving for the A =0 locus yields
(A.7) A (22 (16 4 (6-0) (D Fra) ]2 )

5—a 1 '
This implies bounds

, .5 1.5,

(A.8) le+a > Ak) 2 (D1f+a) - {a(D1f+a) /(6—a) }.

Along A= 0, A(k) will therefore behave asymptotically like k",

Since the A = 0 locus is upward sloping, and since A 1s increasing in
A for fixed k, it follows that any trajectory that crosses the A =0 locus
will reach the k = 0 region in finite time and will therefore violate the
transversality condition as A goes to —» and k remains constant. Thus
any candidate for an equilibrium trajectory must lie above A= 0.

It remains to show that trajectories starting from within the region

bounded by L2 and A - 0 cross L2 from below. Note that along L2,

equation A.6 1implies that

v
AMA=6 - a - ( US y + 2a K 5 +

-
B .

k

= Q



Then for any e > 0, we can choose a value of B large enough that for all
k = kO’ A/A will be greater than &6 -- « - e. From the properties of the
function ¢, we know that k/k is always less than «a. Since the slope of a

traijectory which crosses L, is given by the ratio A/R, it follows that the

2
slope will be greater that (G_ZLE)A = (6_2—6) Bkﬂ—l. The line L2 has a
tangent with slope Bnkn—l. By the assumptions required for existence of a

finite valued social optimum, we can choose e such that
a(v+v) = a(wtl) < 6-e. Then the slope of the trajectory will be steeper than

the slope of L2 and the trajectory will cross L2 from below.

V. Example 3

We need to show that an asymetric equilibrium can exist and that when k2

is less than k]’ k2 can grow more slowly than k1 and may actually decrease
over time. Recall that the production function takes the form

f(kl’Kl’KZ) = kU(K?+Kg), with a>b. For the required increasing returns to be
present, we require that wo+a :-1. As before, we assume that v < 1. Assume
also that 1+b > vta, 1i.e. that b i1s not too much less than a. For
convenience let S be equal to 1 and define the ratio r = k2/k1' Then

equation 6.1 from the text, le(kl,Sk Skz) = D1f<k2’Sk2’Sk1)’ can be written

1’
as:
(A.9) k el 5%5
) 1 [ 1 - I'a+u—1 ] )
Let the initial world-wide aggregate stock kl+k2 be denoted by K*. Then

the asymetivic equilibivium is the intersection of this curve, as a function of

r  ir the interval (0,1) with the curve kl = K*/(1+r) determined by the

adding up constraint. Using 1’Hopital’s rule, it is easy to verify that



these curves do indeed intersect.
If kl is large relative to k2’ so that r 1s close to 0, then A.9

yields the approximation

= p(rD)/(ab)

1
Then taking a time derivative of 1n(k?) = ln(kl) + In(r), we see that l'(z/k2
will indeed be less than ﬁl/kl, and will be negative if 1 - (1-v)/(a-b) is

negative,
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