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1. Introduction and Summary

This paper studies the class of denumerable— (i.e., finite— or countably infinite—)
armed Bandit problems with the characteristic that each arm available to the
decision—maker generates rewards according to one of a finite number of distributions,
called the types of the arm.! The arms are assumed independent: trying one arm is
uninformative about the types of the other arms. It is also assumed that discounting by
the decision—maker is geometric over an infinite horizon. No other restrictions are
employed for obtaining the general results of the paper. In particular, the forms of the
reward distributions and the number of types are allowed to be arbitrary and to vary across
the arms, and the discount factor of the decision—maker is allowed to take on any value in
[0,1).

It is well known that when the number of arms is finite, optimal strategies may be
obtained through solving a family of stopping problems that associates with each arm an
index, known as the Dynamic Allocation Indez (DAI), or the Gittins Index, where this
index depends only on the current belief on that arm’s type.? In section 3 (Lemma 3.1), we
characterize the stopping problem defining the DAI. The resulting properties of this
problem enable us to show (Lemma 3.2) that for each arm, the DAI is a continuous,
quasi—convex function of the prior on the arm, which possesses in addition, a certain
monotonicity property. These results, while of independent interest, prove valuable in the
sequel.

Section 4 addresses the existence issue in the context of infinite—armed Bandits. In
Theorem 4.1, we derive sufficient conditions for the existence of optimal strategies, indeed,
optimal DAI strategies, in such a context. Two examples show that these conditions are

not necessary (Example 4.1), but that they are minimally sufficient (Example 4.2).

1A number of our results do not depend on this finiteness restriction, as we explain at the
end of this section.

2See, e.g, Berry and Fristedt (1985), Gittins (1989), or Whittle (1982).



Sections 5 and 6 are concerned with the characteristics of optimal strategies in
denumerable—armed Bandit problems. In section 5, we analyze the stochastic process
governing the the continuous play of an arm under the optimal strategy. Our main result
in this section is that at each point in time, the arm selected by the optimal strategy will
remain an optimal selection forever with strictly positive probability. More specifically, we
show in Theorem 5.1 that for each arm that becomes optimal at some point, there must
exist a type in the support of that arm with the following property: if that type were in
fact the true type of the arm (i.e. the type generating the observed rewards), then the arm
would survive forever with non—zero probability under the optimal strategy. Surprisingly,
the fact that some type in the support of an arm may lead to survival forever with positive
probability has no implications, in general, for the survival prospects of the arm under the
"better" types in its support, that is, under types which generate a higher expected payoff.
Example 5.1 illustrates this point. Each arm here may be one of the same three types.
Under the optimal strategy, the best type fails in finite time with probability one, while
the second—best type survives forever with probability one.

Section 6 turns to an examination of the trade—off between current reward
maximization and the acquisition of information to better future decision making ability, a
trade—off the literature on Bayesian learning has frequently emphasized as a hallmark of
dynamic decision making under uncertainty.? In particular, our focus here is on how well
optimal strategies measure up against myopic strategies, i.e., strategies that select the arm
to be played in each period solely on the basis of the current (one—period) expected reward
from the arms, thereby "ignoring" the possible information content of current actions. We
show (Theorem 6.1) that in a restricted, but still surprisingly large, class of Bandit

problems —specifically, all those in which each arm is one of the same two types— myopic

3See, e.g., Berry and Fristedt (1985, Ch.1), or Easley and Kiefer g1988). Indeed, Whittle,
-.commenting on this trade—off, states that the Bandit framework "..embodies, in essential
form, a conflict evident in all human action." (Whittle, 1982, p.210)



strategies are fully optimal, regardless of the reward distributions, the prior beliefs, or the
discount factor. That this result cannot, however, be extended is demonstrated by
Example 6.1, which considers a situation in which each arm is one of the same three
possible types and proves that myopic strategies are no longer optimal.

We also derive some implications of these results for the behavior of optimal plans.
A simple consequence of Theorem 5.1 is that the probability that an arm will survive at
least (t+1)—periods, conditional on its surviving at least t periods and being one of the
aforementioned types which "survive forever", must converge to unity as t goes to infinity
(Corollary 5.1). But even here, behavior need not be regular: the optimality of myopic
strategies in the two—type case enables showing that this convergence could very well be
non—monotone in t (Example 6.2). Example 6.2 also illustrates another interesting point:
for a family of Bernoulli reward distributions — a frequently studied case in the Bandit
literature — the stochastic process of the continued use of an arm follows a random walk on
the non—negative integers, with an absorbing barrier at zero that signifies replacement of
the arm.

A class of Bandit problems that has enjoyed some success in economics (notably in
the theory of job—search and matching; see below) is a special case of our framework that
we label Stationary Bandits. A stationary Bandit is an infinite—armed Bandit in which all
arms are g preoriidentical, namely, the set of possible types is the same across all arms, as
is the prior belief concerning an arm’s type. All our general results apply in toto to
stationary Bandits of course; but the additional structure here also enables a sharper
characterization. In particular, optimal strategies always exist in stationary Bandits, and
never involve the recall of a previously selected and discarded arm (Corollary 4.1);4 and the

expected number of arms employed in an optimal strategy in a stationary Bandit is

4Many papers in labor economics impose the restriction that recall is not permissible, and
while Jovanovic (1979), in his pioneering paper on job—matching, mentions that the
"no—recall" result holds in his framework, his paper does not contain a proof.



finite, so that with probability 1 only a finite number of arms are ever used (Corollary 5.2).

The framework of stationary Bandits, as mentioned above, has been a popular
framework for the analysis of decision making in labor markets. The parametrized
"matching" models of Jovanovic (1979), Wilde (1979), and Viscusi (1979) all have as their
scenario a worker who periodically receives information concerning her current job’s true
but unobservable characteristics.5 In Jovanovic (1979), for instance, the productivity of the
worker is job—specific, the worker’s compensation in each period is her expected
productivity, and the worker uses output observations to infer her true productivity with
the current firm and thereby predict future wages from remaining with the current job.
Moreover, all untried firms are ez—ante identical. The resulting optimization problem can
evidently be viewed as a stationary Bandit, in which the jobs are the arms of the Bandit,
and the worker’s true productivity on a particular job is the arm’s true type.

The motivation for the current project was itself an alternative interpretation of the
stationary Bandit framework: as a median—voter model of repeated elections. Consider a
single voter faced with a set of candidates from whom she elects one to be her political
representative for the current period. The chosen representative (stochastically) generates
per—period rewards for the voter as a function of some unobservable, candidate—specific
parameters. The voter, through her ability to elect and observe candidates while in office,
attempts to identify "good" candidates. Treating the candidates as the arms, and the
candidate—specific parameters as the arms’ true types, this forms a special case of the
framework we study in this paper. It is worth noting that most models of repeated
elections (for instance, Barro (1973), Ferejohn (1986), or Austen—Smith and Banks (1989)),
study the voter’s decision problem from a "moral hazard" perspective: the voter is

attempting to control the actions of their current representative through their choice of

5cf. Mortensen (1985) for an in—depth survey of these and other search models in labor
€conomics.



re—election rule.8 In contrast, with the interpretation above, the Bandit framework
becomes a model of adverse selection.

Several other economic (and non—economic) problems are also amenable to being
modeled in the Bandit framework. For instance, an alternative labor market version of the
stationary Bandit model is obtained by treating the arms of the Bandit as workers who
differ in their productivity; and the decision—maker as a firm searching over these workers.
As other examples, we mention general search problems involving non—durable experience
goods, and models of dating and marriage.

Two important remarks are in order at this point. First, at the risk of repetition,
we wish to emphasize that none of our general results require any special structure on the
reward distributions or restrictions on the value of the discount factor. Second, the
assumption of a finite number of types in the support of each arm is exploited in order to
establish the quasi—convexity of the DAI in the prior. We are unclear on the extent to
which this may be generalized. However, a number of our results — for instance, the
existence of optimal plans in infinite—armed bandits under suitable conditions, or the
continuity of the DAI — do not in any way depend on this finiteness restriction, and may
easily, if at considerable notational cost, be generalized to arbitrary sets of types.

Finally, we briefly indicate the related theoretical literature. Three excellent
summaries of results for finite—armed Bandit problems are the monographs by Berry and
Fristedt (1985), who provide an exhaustive analysis of Bandits under general discount

sequences; Gittins (1989), who discusses index theorems for Bandits;” and Pressman and

8Rogoff (1990) considers a repeated elections incomplete information game, where
candidate "types" denote competency and where candidates while in office take actions
which both effect the voter’s utility and potentially signal their competence. However, a
candidate’s type is uncorrelated across electoral cycles, so there is no issue of the voter
"learning" a candidate’s type over time.

In our companion paper (Banks and Sundaram, 1991) we supplement Gittins’ results by
demonstrating the optimality of (suitably defined) index strategies in Bandit problems
when there are costs for switching between arms, and when arms may "die off" with
positive probability when in use.



Sonin (1990), who focus on Bandits with dependent arms. There is also an extensive
literature on optimal Bayesian learning in economic environments, e.g., Rothschild (1974),
Easley and Kiefer (1988), McLennan (1988), and Feldman (1989). A question of primary
interest in the latter has been whether optimally—acting individuals will, in the limit, learn
the "truth", i.e., the parameter values actually driving the the model. Two interpretations
of the learning question could be provided in the framework we have adopted; but learning
cannot occur with certainty in either case. First, one could view the unknown parameter
as the vector describing the true type of each of the arms. The main result of Section 5
shows that with positive probability the very first arm employed will be used forever; hence
with positive probability the decision—maker only learns the true type of a single arm, so
that it cannot be the case that learning occurs in this sense with probability one. A second
interpretation would be to consider only whether the decision—maker would be able to
‘identify an arm of the "best" type in the limit. But Example 5.1 which shows that, even in
a stationary Bandit, the best type may last only finitely long with probability one,

demonstrates that "learning" in this weaker sense need not occur either.

2. The Framework

The family of Bandit problems we study has the following structure. There are N
independent arms, where N > 2 is either a positive integer or . The set of all arms is
denoted by 91, with generic element i. Arm i may be one of a finite number K(i) of types. .
If the true type of arm iis k € {1,...,K(i)}, then it generates rewards according to the
density fli{(.).8 Let Rli( denote the corresponding expected reward, i.e., Rli{ = jrfli((r)dr. We

assume, without loss of generality, that these rewards are ordered for each i in the sense

8The use of continuous reward distributions is unnecessary for our results. With
transparent modifications, all proofs continue to be valid if the reward distributions are
instead discrete, i.e., have finite or countable support.



that Ri > Ré 2.2 RII((i)’ with at least one inequality strict. We also assume that
R* .= SUD; |R11(| < . (2.1)

We make no assumptions regarding common support of, or stochastic dominance in the
reward distributions arising from, the densities (fli().

In each period of an infinite horizon, a decision—maker (hereafter referred to as the
principal) must decide on the choice of arm to be employed that period. However, the true
type of some or all of the arms (and, hence, the true reward distribution associated with
those arms) may be a priori unknown to the principal. The principal begins with a vector
of prior beliefs P = (p(i))i N where? p(i) € AK(i)—l represents the the principal’s belief
regarding the type distribution of arm i, viz., the k—th coordinate of p(i) is the principal’s
prior probability that the true type of arm i is k.

The beliefs are updated using observed rewards as follows. Let Pl = (pt(i))i en
represent the principal’s beliefs at the beginning of any period t, and suppose arm i is
chosen that period and the reward r is witnessed. Then, by independence, the reward r
reveals no information about the true types of arm j ¢ i, so that we have pt+1( j) = pt( j)

for all j#i. For arm i the updated belief pt+1(1) is given by the Bayes map f; (p (i);r) =

(ﬂik(Pt(i);r)k=1,mK(i) ,where,
ﬂik(pt(i),r) = plt((l) (r)/{ZK( i) t( )fm(r)]' (2.2)

A t—history for the Bandit is a description of the arm used in each period up to t
and the corresponding rewards witnessed. Let Ht be the set of all possible t—histories. A
strategy o for the principal is a specification of the arm to be played in any period as a

function of the initial belief and the history up to that period. Formally, o is a sequence of

9For any finite integer n, A™ L will denote the positive unit simplex in R™
AN - {x e R"| x; 2 0, and Bx; = 1}.



measurable maps {at}‘,;’zo where g €M, and for t 2 1, o, :H, -+ 9. Let ¥ denote the set of
all strategies.

The principal discounts future rewards geometrically, using the discount factor 6 €
[0,1). Given the initial prior P, each strategy o defines in the obvious (if notationally
complex) way an expected t—th period reward rt(a;P) for the principal. Hence, each

strategy o also defines a total expected reward W(o;P) as
W(oiP) = 57_, &1, (oP). (2.3)

The principal’s objective is to find a strategy o* such that W(o*;P) > W(o;P) ¥V o € &
When such a strategy exists, it will be called an optimal strategy.

Of special interest is a class of Bandit problems that we label Stationary Bandits. A
stationary Bandit is an infinite—armed Bandit in which all arms are a priori identical, that
is, for all i € 9, we have (i) K(i) = K, (il) f = f,, k = 1., K,and (i) p(i) = 7 ¢ AK7L
As we noted in the Introduction, stationary Bandits have been widely utilized in
economics, notably in the labor—market literature. Evidently, stationary Bandits form a
special case of the family of Bandit problems described above; consequently, all of our
results retain their validity in this setting as well. But the additional structure provided
by the assumption of a prioriidentical arms often enables a considerable strengthening of

the results that we prove to hold in general. These are described at the end of each section.

3. The Dynamic Allocation Index
Gittins and Jones (1974) proved that for finite-armed Bandit problems of the type
detailed above, an optimal strategy can be obtained through solving a family of stopping

problems, thereby associating with each arm an index which depends solely on the current



prior belief on that arm. This index, the Dynamic Allocation Indez or DAI (frequently also
referred to as the Gittins Indez), plays a prominent role in our analysis of the framework
outlined in Section 2. We describe in this section the construction of the DAI for a generic
arm i, and derive some basic resulting properties. The proofs of all results in this section
may be found in Appendix I.

For simplicity, we suppress the dependence of the various parameters on i. Suppose
arm i is one of K types. Let the corresponding reward densities be denoted (fl,...,fK), with

A denote the prior belief on arm i;

associated expected rewards Rl""’RK' Letpe
R(p) = %, p, R, the expected one period reward from playing arm i; and f(p)() = %
‘pkfk(') the expected density of rewards.

Consider the optimal stopping problem in which the principal’s options in each
period are either to play the sole available arm i for another period, or to "stop" the
process and receive a terminal reward of m. Standard arguments (e.g., Whittle (1982),
Ross (1983)) establish for each m, the existence of a continuous function V(.;m):AK"1 - R,
such »that‘ V(p;m) is the value to the principal of this stopping problem when the prior on
arm i is p and the terminal reward is m. Indeed, V(.;m) may be obtained as the unique
fixed—point of the contraction mapping10 T:C(AK_I) - C(AK-l), where C(AK"I) is the

1

space of all real—valued continuous functions on N endowed with the sup—norm

AK—l

topology, and, for v € C( ), Tv is defined by

Tv(p) = max {m, R(p) + & [v[A(p;r)]f(p)(r)dr}. (3.1)

Hence, V(.;m) satisfies at each p:

V(pim) = max.{m, R(p) + § [V[B(p;r);mlf(p)(r)dr}. (3.2)

10The equivalence of the original stopping problem which involves unknown paramenters,
and the dynamic programming problem for which the contraction is defined, is an intuitive
result, but, as a referee pointed out to us, a highly non—trivial one. For a proof of this
equivalence, see Rhenius (1974), Rieder (1975), or Schael (1979).
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The following lemma collects some additional properties of this optimization problem that

are important in characterizing the DAI:

Lemma 8.1 i) V(.;m) is convez in p for each m € R.
i) V(p;.) is convez and non—decreasing in m for each p.

iii) V(.;.) is jointly continuous in p and m.

The Dynamic Allocation Indez of arm i when the prior on arm i is p, denoted M(p),

is then defined as:
M(p) = inf{meR| V(p;m) = m}. (3.3)

Observe that if m > R, /[1—4], then we must also have V(p;m) = m, while evidently
for m < Ry /[1—¢], V(p;m) > m. It follows that M(.) takes values in the compact set
[Ry/(1—6),R/(1-6)] and is, consequently, well—defined.

For k = 1,... K, define ¢, to be that element of pK-1

with 1 in the k—th place and
zeros elsewhere. Recall that a real valued function h defined on a convex domain is said to
be quasi—convezif for all c € R, the set {x] h(x) < ¢} is convex. The following lemma

gathers three properties of the DAI — continuity, quasi—convexity, and strict monotonicity

along any ray through the "worst" prior — that play an important role in the sequel.

Lemma 8.2 i) M(.) is a continuous, quasi—convez function of p.

it) Letp € AK—l, D # eg. Then, M(Ap + (1-M)ey) is a strictly increasing

function of A for X € [0,1].
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4. Existence of an Optimal Strategy

We begin with a statement of the celebrated Theorem of Gittins and Jones (1974)
that establishes the existence of an optimal strategy when 0 has a finite number of
elements. Then, we show (Theorem 4.1) that this result extends in a straightforward
manner to yield a general existence theorem for denumerable armed Bandits. Two simple
examples show that the conditions under which Theorem 4.1 is established are not
necessary, but are minimally sufficient.

So, let M,(.) represent the DAI function for arm i. We now have:!!

Theorem 4.0 (Gittins and Jones, 1974): Suppose N consists of a finite number of elements
{1,...N}. Then, the uniquely optimal class of strategies are those which at each time t pick
any of the arms ¢ for which

Mi(p0) = max{M(p'())] j €9, (4.0)

where P = (pt(l),...,pt(N)) is the vector of priors at time t.

Two obvious problems arise if this result is to be extended to an infinite number of
arms. Namely, (a) the supremum of the DAIs at the initial prior may not be attained, and
(b) even if there is a well defined maximum at the initial beliefs, there may exist histories
after which an "optimal" continuation does not exist. It turns out, however, that these are
also the only problems that arise, and if they are ruled out an identical result to Theorem
4.0 may be shown to hold for infinite—armed bandits as well.

Some new definitions would help in stating the precise result. For each j € 91, let
%(j) denote the subset of strategies of & that begin with arm j. Let V*(P) be defined by
V¥(P) = SUp v W(o;P). Note that V* is well defined for any P, since rewards are
uniformly bounded (equation 2.1) and there is strict discounting. Call an arm i an optimal

initial selection at P if it is true that V¥(P) = sup (M) W(o;P). The proof of the

oeX(i

11t is worth noting that, within broad limits, the assumption of geometric discounting is
also necessary for Theorem 4.0; see Berry and Fristedt (1985, Ch. 6).
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following result may be found in Appendix II

Theorem 4.1 i) Armi is an optimal initial selection at P if:
M;(p(1)) = sup {M;(p(i))] j € 0} (4.1)

i) An optimal strategy ezists from P whenever (4.1) holds for infinitely
many i.

While part (ii) of Theorem 4.1 presents only sufficient conditions for the existence of an
optimal strategy, it is easy to see that these conditions are not necessary, but are (almost)

minimally sufficient.12 Consider the following examples:

Ezample 4.1: Suppose arm 1 pays a reward of 1 with certainty, while arm n for n > 2 pays
(1 —1/n) with certainty. Then, there is only a single arm that attains the maximum (arm

1), but it is evident that the uniquely optimal strategy is to pick arm 1 forever.

Ezample 4.2: Arms n for n > 2 are as in the previous example, while arm 1 either generates
a reward of 2 with certainty or 0 with certainty. Let the prior probability of the first
situation be p. It is evident that for p sufficiently close to 1, arm 1 is an optimal initial
selection, but it is also clear that after the history in which the first period reward is 0,

there is no optimal continuation strategy.

An easy consequence of Theorem 4.1 is the existence of an optimal "no recall"

strategy in stationary Bandits:

12The precise condition which is minimally sufficient is the inelegant one that there should

exist an m such that M. (p(i)) = m for infinitely many i, and m < Mj(p(j)) for only finitely

many j.
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Corollary 4.1: Optimal strategies always ezist in stationary Bandit problems. Moreover, the
.optimal strategy may be chosen to be one in which any arm that has been tried and discarded
is never recalled.

Proof: Since all arms are a priori identical, so they have the same DAI, denoted M(7)
(recall 7 is the prior on all arms), and existence follows from Theorem 4.1. The no—recall
property is also immediate, since there are, after any history, an infinite number of arms
with DAI M(7), while an arm is discarded under the optimal strategy when, and only
when, its DAT falls below M(7). o

5. The Stochastic Process of Survival

We now turn to an examination of the stochastic process governing the repeated use
of an arm. Specifically, we are interested in the distribution of the number of periods a
generic arm will continue to remain optimal, once it has been chosen. The analysis below
does not distinguish between finite— and infinite—armed bandits, since nothing depends on
this distinction.

So let i be an arm that is an optimal choice at some vector of beliefs P =
(p(1),p(2),.--), i.e., which is such that M, (p(i)) = SUPjcan Mj(p(j)).13 Let m* =
sup; #iMj(p( j)). Under the optimal strategy, the arm i will be retained as long as the prior
pt(i) on it satisfies Mi(pt(i)) > m*. Our aim in this section is to characterize the
distribution of time for which this inequality will continue to hold.

For notational ease, we suppress the index i in what follows, and denote the initial
prior p(i) on arm i by 7. Let arm i be one of K possible types with reward densities

f,....,f-. We assume, without loss of generality, that at the initial prior we have T > 0 for

otk
k = 1,...,K, so that no type is redundant.

AK——l

“Recall that ey denotes that element of that has zeros in all but the k—th

13Such an arm will always exist, of course, if 01 has only a finite number of elements.
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place. There are two cases possible: M(ey) > m*, and M(eg) < m*. In the first case, we

AK_l, so that the arm will never be replaced

clearly also have M(p) > m* forall p €
regardless of the rewards it generates. The survival process is, therefore, trivial. In the
sequel, we assume, consequently, that the second case holds, namely that M(eK) < m*.
Note that we must have M(e;) > m*, for otherwise M() > m* is not possible.

Let Ap ={pe AK—II M(p) < m*},and A, ={p € AK_ll M(p) > m*}. The

following lemma gathers some properties of these sets, where these are immediate

consequences of the continuity and quasi—convexity of M(.) [see lemma 3.2(i)].
Lemma 5.1: AR is a convez, open subset,while A A is a closed subset, of AK_I.

We introduce some additional notation now, as well as a relatively informal
description of the probability measures required to examine the survival process. A formal
description may be found in Appendix III to this paper, where the main result of this
section (Theorem 5.1) is proved.

Let supp f, = {r| fk(r) > 0} denote the support of f, k = 1,... K, and let R =
UIlle supp.fk. Define $3° to be the t—fold Cartesian product of R, with generic element !

= (Il""’rt)' For each t, and for each k € {1,...,K}, define the density Flt( on R by

t t
Fy(ry,eon) = fi(r) (5.1)

Say that arm i survives at least t periods under the observed rewards (rl,...,rt) emt
if the resulting sequence of posteriors {pT}j=1 , calculated from the initial belief p(i) using
these rewards, satisfies M(pT) > m* foreach r=1,...,t. Let &b ¢ %t denote the set of all
possible t—sequences of rewards under which an arm will survive at least ¢ periods. This

set is, of course, independent of the arm’s true type.
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Now, for k =1,...,K, and each positive integer t, let
t, ty 4,8
Qk(t) = IGt Fk(r )dr”. (5.2)

Qk(t) is simply the probability that arm i will survive at least t periods, given that its true
type is k. Let Uy =lim, Q(t) be the probability that arm i will survive forever given that
its true type is k. Note that Uk is well defined since Qk(t) is non—increasing in t. Finally,
say that arm i survives forever with non—zero probability if U >0 for some k = 1,...,K.
Our main result in this section is precisely that arm i must survive forever with
non—zero probability.14 Since both our choice of the initial prior P on the arms of the
Bandit, and the choice of i from the set of initially optimal arms at P, were arbitrary, this
result establishes that any arm which becomes optimal at some point will, with positive
probability remain optimal forever. We emphasize the independence of this result from the

choice of discount factor 6 € [0,1), and the form of the distributions (f; ).

Theorem 5.1: There is k* € {1,...,K} such that Upx > 0.

We sketch the arguments involved in proving Theorem 5.1 here. Consider the
sequence of posterior beliefs {pt} on arm i that arise as observations on i are accumulated.
[Under the optimal strategy, no observations on i are, of course, witnessed from i beyond
the first t such that M(pt) < m*, i.e., that pt € AR.] Routine arguments establish that
this sequence of posteriors must follow a Martingale process with respect to the probability .
measure P7r generated on the space of sample paths by the prior belief 7. Intuitively, the
Martingale property of beliefs results from the observation that the principal cannot expect

his beliefs about the arm to change from one period to another in any predictable manner,

140ur original result was for the case K = 2, and employed a direct proof that, in fact, U1

was non—zero. The outline of the proof for the case of general K, which we present in
Appendix III, was provided by an anonymous referee.
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so that today’s expectation of tomorrow’s belief must be today’s belief itself.
Now, note that AR is a convex set, and 7 € int.AK"1 is a point not in this set, so

there exists a linear functional I separating the two. Moreover, [ divides AK-1

into two
convex sets Al and A2 such that Al CA A and AR C Az; and there exists a constant ¢
such that I(p) > cfor all p € A, and {p) < cfor all p € Ay. Consider a stronger rejection
rule than that specified under M, namely, the one under which an arm is rejected in favor
of an untried arm at the first t for which l(pt) < ¢, i.e., for which l(pt) €050 Ap.

Since ! is linear, l(pt) is itself a Martingale. A fundamental result in the theory of
Martingales (see Proposition A.1, Appendix III) states that with non—zero P
—probability, l(pt) will stay above ¢ forever, so that, in particular, l(pt) will stay in A ,
forever with non—zero P7r —probability. Letting Pk denote the probability measure induced
on the space of sample paths by the type—parameter k (i.e., by the belief ek), it now

follows as a simple consequence that with non—zero Pk—probability for some k, M(pt) will

remain in A A forever. The last statement is precisely that Uy >0 for some k.

. Now, let Z be the subset of {1,...,K} defined by Z = {k| M(ey ) > M(m)}. It appears
a reasonable conjecture that all arms of type k € Z will survive forever with non—zero
probability. Surprisingly, even a weaker version of this conjecture turns out to be false.
Namely, the fact that an arm of type k* will survive forever with non—zero probability has
no implications, in general, for the "better" types k € {1,....k*—1}.15 In the example below,
the sketch of which was provided us by a referee, a type 2 arm survives forever with

probability 1, but a type 1 arm is rejected in finite time with probability 1.

t5Note, however, that arms of type k ¢ Z must fail in finite time with probability 1. This
follows since the consistency of Bayes updating implies their true type will be revealed with

probability 1 if they are played forever, so that M(pt) falls below M(7) in finite time with
probability 1.
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" Ezample 5.1: Consider a stationary Bandit in which each arm is one of the same three
possible types. The initial belief is P = {,7,...}, where 7 € A2 will be specified shortly.
The reward space is discrete and equals {0,1,2}. The reward probabilities associated with

the types are described in the matrix below (e is any number satisfying 0 < € < ;1—):

Pr{r=0} Pr{r=1} Pr{r=2}

Type 1 € % %— €
Type 2 0 1 0
Type 3 %— € % €

3 1 2
Notethat R1=-2——2€ > 1=—"R2 > §+25=R3 For anyp:(pl)p2ap3)EA 7p3>07

the Bayes updating rule for this problem has the important feature that

B,(p.1)/B4(p,1) = p1/p3, (5.3)

where ﬂk(p,r) refers to the k—th coordinate of 4(p,r). Fix any € [0,1), and let M(.)
represent the DAI function for this problem, where M(.) is, of course, the same for all arms.
Recall that, by Corollary 4.1, any arm whose history has resulted in a prior p satisfying
M(p) < M(m) will never be recalled again.

We now specify the distribution 7. Let the prior probability of a type 2 arm be any
7y € (0,1). For m(ry) = (7r1,7r2,1——7r1—-7r2), it is immediate from the Bayes updating
formula that, as m; - 0, we have ﬂ1(7r*(7r1),2) -0 and ﬂ3(7r*(7r1),2) - 1. By the continuity"

of M(.) [lemma 3.2], we have:

hm7r1—»0 M(,7mg,1—T —Tg) = M(0,7q,1-y)
> TgRo/(1=6) + (1-m5)Rq/(1-6)

> Raf (1-6)
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= Mleg) = lim, o M[G(r*(r)),2)]  (5.4)

It easily follows that for 7 > 0, but sufficiently small, we have M(7*(m)) >
M[@(r*(m,),2)]. Pick any such 7, and let 7 be given by (7, Tg,1—m —Ty). We show that,
under 7, the optimal strategy implies that a type two arm lasts forever with probability 1,
while a type 1 arm is rejected in finite time with probability 1.

First, note that if an arm produces a reward of 2 in the very first period of its use
(which only arms of types 1 and 3 will), then the arm will be replaced immediately by an
untried arm, since, by construction, M(r) > M[4(,2)].

Second, if the arm produces a reward of 0 in the very first period of its use, it will
again be replaced immediately since:

i) M(.) is strictly increasing on the ray joining e; and e; by lemma 3.2, and

ii) B, (m,0) < B;(m,2), while Bo(m,0) = fBo(m2) = 0.

Combining these, we have that M[3(7,0)] < M[G(7,2)].

A type 1 arm will therefore survive the first period if, and only if, it produces a
reward of 1. If this happens, however, the relative likelihoods of types 1 and 3 [i.e., the
ratio A;(m1)/ ﬂ3(7r,1)] remains unchanged. Direct calculation now reveals that, as a
consequence, a reward of 2 in the second period again leads to period 3 beliefs of 4(,2),
while a reward of 0 leads to period 3 beliefs of §(7,0). But this means that an arm will
survive into the third period if, and only if, the reward in each of the first two periods is 1.

The argument evidently iterates. Survival occurs up to period t if, and only if, the
reward in each of the first (t—1) periods is 1. Since the probability of a type 1 arm
producing rewards of 1 forever is 0, such an arm must fail in finite time with probability 1.16

On the other hand, a type two arm produces rewards of 1 forever with probability 1,

t6Indeed, in this example the expected length of continuous use for a type 1 arm (as also for
a type 3 arm) is just 4 periods.
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and, hence, survives forever with probability 1.17 n

Now, define C\ (t+1;t) by Cy (t+1;t) = Qy (t+1)/Qy(t), if Q) (t) > 0, and C, (t+15t)
= 0, otherwise. Then, Ck(t—l-l;t) is the conditional probability that an arm of type k which
has survived t periods will survive (t+1) periods. We have the following Corollary to

Theorem 5.1:

Corollary 5.1: IfU, > 0, then Ck(t+1;t) +1ast-w.

Proof: Let Py (t) = Q(t) — Q) (t+1) be the probability of lasting exactly t periods. We

have,
Ck(t+15t) = Qk(t‘*'l)/Qk(t)

= (U + Xy POy + 37 P(7)]

= 1 — [PL(0)/(U) +5°_, Py (7). (5.5)

Since P(t) is summable, so lim, P(t) = lim, Z‘;zt P, (t) = 0. Since Uy > 0, by hypothesis,

the warranted result is proved. o

Somewhat curiously though, this convergence of Ck(t+1;t) to unity need not be
monotone in t. We provide an example of this in the next section (see Example 6.2 below).
Finally, to close this section, we note the following strong implication of Theorem

5.1 for stationary Bandit problems:

17A referee conjectured that survival of some type should imply survival of all better types
if the reward distributions have common support. We have unable to prove this
conjecture, or to come up with a counterexample.
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Corollary 5.2: In a stationary Bandit problem, the ezpected number of arms used in an
optimal strategy is finite. In particular, with probability 1 the optimal strategy requires the
use of only a finite number of arms.

Proof: Since all arms are g prioriidentical, the probability that any arm will last forever
from the time it is initially chosen is independent of the arm’s identity. Let o denote this
probability; by Theorem 5.1, & > 0. Since an arm is never recalled under the DAI strategy
if it has been tried and discarded, the probability that exactly n arms are used is clearly
a(l—a)n_l. Therefore, the expected number of arms that will be used is

E‘I';zl[na(l—a)n_l] =1/a<o.O

6. Myopia and Optimality

In this section, we examine the trade—off in the optimal strategies of Bandit
problems between current reward maximization and the acquisition of information that
could enhance future decision—making. Specifically, we focus on the relationship between
optimality and myopia.

A myopic strategy o™ in a Bandit problem, is the strategy that at each time t,

given the beliefs P at t, picks any of the arms i for which

R(p'(i)) = max {R(p"(9)] j € N}. (6.1)

It is well-known that when § > 0, so that the future is not irrelevant, myopic
strategies are in general suboptimal, precisely on account of their ignoring the information
content of current actions.18 In contrast, our main result in this section is that for a
surprisingly large class of Bandit problems, myopic strategies are, indeed, optimal,
regardless of the value of 6. As with our earlier results, this one also does not depend on the

choice of any particular structure on the reward distributions.

18Berry and Fristedt (1985) contains several examples.
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Consider the class of Bandit problems in which all arms have support on the same
class of distributions.. Namely, assume that for all i € 0N, we have K(i) = K, and fli{ = f; for
all k = 1,...,K. We now have the following generalization of the result in Banks and

Sundaram (1990):19

Theorem 6.1: o™ is an optimal strategy when K = 2.

Proof: For notational ease, we denote the prior on a generic arm by p € [0,1], rather than
(pl’p2) € Al, with the interpretation that p is the probability that the arm is a type 1

arm. Let M(.) denote the DAI function.2® We show that the recommendations of o™ always
coincide with that of the DAI strategy, establishing the former’s optimality. Specifically,

we claim that
R(p(i)) = StuE‘ﬁ R(p(j)) <=> M((p(i)) = Stuésﬁ M(p(j)). (6.2)

Indeed, note that R(.) is a strictly increasing function of p, since R; > Ro; and M(.)is a

strictly increasing function of p by lemma 3.2(ii). Equation (6.2) follows. o

Remark: While o™ is always well—defined for finite—armed Bandits, it, evidently, need not
be well—defined in infinite—armed Bandits. Consequently, Theorem 6.1 may be read as
stating that an optimal strategy exists in the latter case if, and only if, the myopic strategy

is well—defined, 2! in which case the two coincide.

19Tn Banks and Sundaram (1990) we prove this myopia result for finite-armed Bandits,
using similar characteristics of the the DAI; by Theorem 4.1 above, therefore, Theorem 6.1
follows. We include the (short) proof here merely for completeness.

20M(.) is, of course, independent of i since all arms have the same distributions in their
support.

21That is, there is at least one arm that attains the myopic maximum after any history.
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When K 2 3, myopic strategies need no longer be optimal. Consider the following

example:

Ezample 6.1: We consider discrete reward distributions with outcome space {0,1}. There
are three possible types indexed by k. Let (l—qk) and Oy be the probabilities of rewards of
0 and 1 respectively, from a type k arm. Note that Rk = Qs k =1,2,3. To complete the
specification of the model, let = = (1/3,1/3,1/3), and let (ql,qz,q?)) = (3/4,1/2,1/4).

We will show the existence of a history that occurs with positive probability, after
which a myopic continuation is strictly suboptimal. Let ! denote the period t observed
n+1 _ = r211—1

reward. Consider the (2n—1)—history in which e == 1,and r
= 0. A simple application of the Bayes updating rule shows that the myopic strategy
strictly favors retaining the arm that generates these rewards, at each point of this history,
regardless of the value of n. For sufficiently large n, the resulting belief about the arm is of
the form p = (3¢,1—4¢,¢) for some "small" € > 0; and €~ 0 as n - . Since R(p) = (1+¢)/2
> R(m), the myopic strategy strictly favors retaining the arm for period—2n also.

It is intuitively clear — and a formal proof is not very difficult — that M(7) >
R(m)/(1-6). It follows that M(0,1,0) < M(m), since, evidently, M(0,1,0) =
R(0,1,0)/(1~6), while R(0,1,0) = R(7). By the continuity of M(.) [see lemma 3.2(i)],
therefore, it is also the case that M(3¢,1—4¢,e) < M(m), for sufficiently small e. But this
implies the strict suboptimality of continuing with the arm with prior (3¢,1—4¢,¢) although,

- as noted above, the myopic strategy strictly favorsit. o

One implication of this example is worth noting. Authors?? have sometimes
commented that stationary Bandits bear a strong resemblance to two—armed Bandits with

one "known" arm,2? using the argument that (by the no—recall property; see Corollary 4.1)

22For example, Mortensen (1985, p.878).
23That is, with one arm generating rewards according to a known, fixed distribution.
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the optimal strategy in a stationary Bandit involves, at any time, only a choice between

- the prior p on the arm in use in the previous period, and the known, fixed distribution 7,
which represents the common prior on all untried arms. In point of fact, this resemblance
is purely superficial, and has no deeper significance. For, it is well-known that in
two—armed Bandit problems with a known arm, it is optimal to use the unknown arm
whenever the expected reward from the unknown arm is at least as large as that from the
known arm.2¢ Translating, this should imply that it is optimal to retain the arm with prior

p whenever R(p) > R(7), which, as we have just seen above, is not always valid.

The optimality of myopic strategies when each arm is one of the same two possible
distributions, enables a simple demonstration of our earlier claim (section 5) that while
Ck(t+1;t) may converge to unity, it need not do so monotonically in t. Consider the

following example:

Ezample 6.2: The reward distributions are Bernoulli with q; [resp. (1—q; )] being the
probability of a reward of 1 [resp. of 0] from a type k arm, k =1,2. Let 4 =1-gqy.
Applying Bayes’ rule, an arm survives for at least t periods if, and only if, the reward

sequence b = (r‘i,...,r:) satisfies

sirhir) > ), =14, (6.3)

where S(It;T) [resp. f(rt ;7)] denotes the number of 1’s [resp. 0’s] in the first 7 observations
of i'. Tt is now immediate that if t is odd, then Ck(t+1;t) must be unity for both k, since
to survive an odd number of periods, the number 1’s generated must be at least one more
than the number of 0’s generated. On the other hand, for t even, Ck(t+1;t) must be

strictly less than unity for either k, since the history in which an equal number of 1’s and

24Intuitively, this is obvious, for going with the unknown arm involves no current expected
loss, and a possible information (hence, future rewards) gain.
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0’s have been generated through period t occurs with positive probability under either k.
The survival rule for this example has a second interesting implication, namely, that
the stochastic process of the continued use of an arm of type k can be viewed as a Random
Walk on the integers beginning at 1, with the probability of a "right" move (+1) equal to
Q. the probability of a "left" move (—1) equal to (1—qk), and with an absorbing barrier at
zero. Standard results in the theory of Random Walks (see, e.g., Feller, 1968) tell us the
following about these processes. Since qg < 1/2, so with probability 1 the random walk
under d will get absorbed at zero in finite time. The expected time to absorption (i.e., the
expected length of time a type 2 arm will remain in continuous play) is [1/(1-2q,)] + 1.
On the other hand, since q > 1/2, so the random walk with parameter qq will, with
probability [2q1—1] / qq > 0, never get absorbed. For instance, if q =3 /4, and qp =1 /4,
then a type 1 arm will last forever with probability 2/3, while a type 2 arm enjoys an
expected length of continuous play of only 3 periods. Finally, if T =Ty = 1/2, then the

expected number of arms used is 3. o
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Appendix I
L1. Proof of Lemma 3.1:
To prove part (i), we adopt the techniques of McLennan (1988). Let m be given.

AKgl) as in section 3. For notational ease, define,

Define the mapping T on the space C(
for w e C(AKTD), (i) Gw(p) = Jw(B(pir))i(p)(r)dr, and (ii) Hw(p) = R(p) + 6Gw(p). We
proceed in two steps.

Step 1: We show that if w is convex, then Tw is also convex. Let p, p’ € AK_l,
and let p* = (1—A)p + Ap’ for some A € (0,1). Define, for each r in the support of the
densities (f, ), e(r) € (0,1) by e(r).f(p*)(r) = M(p’)(r) [or, equivalently, (1—e(r)).f(p*)(r)
= (1-A){(p)(r)]. Note that (1—(r))8(p,r) + e(r)&(p'r) = A(p*1).

Suppose, now, that w is convex. Then,

Gw(p*) = [w(B(p*)i(p*)(r)dr
= Jw[(1—e(r))A(p,r) + e(r)B(p’,0)}f(p*)(r)dr
¢ J[(1—e(x))w(B(p;r)) + e(r)w(A(p’r))lf(p*)(r)dr
= J(A=-A)w(A(p,0))i(p)(r)dr + fAw(B(p’,r))i(p’)(r)dr
= (1-A)Gw(p) + AGw(p’), (I.1)

where the inequality obtains by Jensen’s Inequality for convex functions.

Now observe that since R(.) is linear, so Hw is also convex, whenever w is. As the
maximum of convex functions in this case, Tw evidently inherits the convexity of w. This
completes step 1.

Step 2. Let 20 be the set of all convex w such that w < Tw. Evidently, 20 is

bounded above and non—empty. Let w* be defined by
w* = sup{w| w € 20}. (1.2)

As the supremum of convex functions, w is convex.
Now, observe that T is a monotone operator: v < w implies Tv < Tw. Therefore,

for all w € 20, we have Tw € 2U as well, by definition of 20. But Tw* € 20U implies w* <
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Tw*, while, by definition of w*, w* > Tw*. Therefore, Tw* = w*, or w* is a fixed—point of
the mapping T. But T is a contraction and has a unique fixed—point. Therefore, it must

be that w*(.) = V(.;m), proving lemma 3.1(ii).

Part (ii) of lemma 3.1, (the convexity and monotonicity of V in m for each fixed p)
is established in Berry and Fristedt (1985, lemma 6.1.2), who also prove that V is
continuous in m for each fixed p.

Finally, we turn to lemma 3.1(iii). Recall that V is continuous in m for each p,
while the construction of V(.;m) as a fixed point of the contraction T, establishes
continuity in p for each m." We show that this separate continuity of V, combined with its
monotonicity in m, implies joint continuity in p and m.

Solet (p,,m )~ (p,m). Defineh (.)=V(p,,), and h(.) = V(p,.). We need to
show that hn(mn) - h(m) as n - o.

First, note that for each n, h 1 is a continuous, non—decreasing function, as is h.
Therefore, by Helley’s Selection Theorem (Billingsley, 1978, p.290) there is a
right—continuous, non—decreasing function h* such that h (m) - h*(m) at each continuity
point m of h*. Note also that for each m, h (m) - h(m) by the separate continuity of
V(.;m).

First, we claim that h* = h. To see this, note that since h* is a monotone function,
its values everywhere are completely determined by the dense set of its continuity points.
But at any such m, h* and h must agree, by definition of thesé functions, establishing the
claim.

Next, we claim that if h* is continuous from the right [resp. left] at any m, then for
all m_ - m, we have limsup_ h_(m ) <h*(m) [resp. liminfh (m ) 2> h*(m)]. This will
establish that for all sequences m - m, h_(m_ ) - h*(m), since by the earlier claim, h* =

h, and h is, of course, continuous everywhere.

To see the claim, suppose first that h* is right—continuous at m. Pick a sequence



27

my such that my > m for each k and my - m, and such that for each k, m, is a continuity
~point of h*. Since the continuity points of h* are dense this is possible. Fix any k. Since
m_ - m, som < m, for all k sufficiently large. Since each h_ is non—decreasing, so

h (m ) <h (my). Since my is a continuity point of h*, so h_(my ) » h*(m; ) as n - .
Combining the last two statements, limsup_ h_(m_) < h*(m, ). Since this holds for each
my, and h* is continuous from the right by hypothesis, taking limits as k - o establishes
one part of the claim. The other part is established by an analogous argument exploiting

the left—continuity of h*. This completes the proof of joint—continuity. o

L2. Proof of Lemma 3.2:

We begin with two claims:
Claim 1: M(p) > R(p)/(1~6) for all p € AXL,
Proof: This is straightforward, and follows easily from the observation that W(p;m) >
R(p)/(1—6) for all p. Note that if p = e, for any k, then M(p) = R(p)/(1—6).0

A K—1

Next, for p € ,m € R, let

HV(p;m) = R(p) + 8/ V[§(p;r);mlf(p)(r)dr. (L3)

Claim 2: HV(p;m) é m as m % M(p).

Proof: Ifp = e for some k, this is obvious, so suppose p # e for any k. Let my = M(ek)
= R, /(1—6). ‘Since V(p;m) > m for any m <.my, we must have HV(p;m) > m for any m <
my.. Similarly, since V(p;m) = m for any m > m,, we must also have HV(p;m) < m for
any such m, and, indeed, it is not too difficult to see that we must have strict inequality
here. HV(p;.) evidently inherits the properties of continuity and convexity in m from
V(p;.). By continuity, it follows that there exists a value of m, say m* € (mK,ml), such

that HV(p;m*) = m*. Pick any such m*, and consider any m’ such that m’ = Am* +

(1—)\)m1, for A € (0,1). Note that m’ > m*. The convexity of HV(p;.) now implies
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HV(pm’) < AHV(pm*) + (1-A)HV(p;m,)
< Am* + (1-A)m; = m’. (1.4)

But this inequality shows that m* must be unique; that is, there exists only one value of
m* satisfying HV(p;m*) = m*. Therefore, for m < m*, we must have HV(p;m) > m,
while for m > m*, we must have HV(p;m) < m. [Otherwise, the Intermediate Value
Theorem furnishes a contradiction.] Finally, since V(p;m*) = HV(p;m*) = m*, and for m
< m*, we have V(p;m) = HV(p;m) > m, so it is the case that m* = M(p), proving claim

2.0

Returning to the proof of the lemma, let p_ - p, and m_ = M(p_). Since M(.) takes
values in a compact set, we may, without loss of generality, assume that m - m. By
lemma 3.1(i), V(p,;m ) ~ V(p;m). The joint continuity of V in its arguments evidently
implies that HV is also continuous jointly in p and m. Therefore, HV(pn;mn) - HV(p;m).
Sincem = V(pn;mn) = HV(pn;mn) for all n (the last equality obtaining by claim 2), so m
= V(p;m) = HV(p;m). By claim 2, this implies m = M(p), establishing continuity of M(.).

To see quasi—convexity of M in p, let p,p’ € AK_l, and let P, = HP + (1—u)p’.
Assume, without loss of generality, that M(p) > M(p’). Then, we are required to show that
M(pﬂ) < M(p). Since M(p) > M(p’), we have V(p’;M(p)) = M(p) by claim 2, while, of

course, V(p;M(p)) = M(p). Since V is convex in p for each m by lemma 3.1(ii), we have
V(p, M(p)) € uV(pM(p)) + (1-u)V(p’;M(p)) = M(p). (1.5)

Since it is true that V(pﬂ;m) > m for any m, the foregoing implies V(pu;M(p)) = M(p), so
by definition of M(.), M(pﬂ) < M(p), proving quasi—convexity.

Finally, let p # ey, and let p(A) = Ap + (1-A)ey for A € (0,1). We show that M(p)
> M(p(A)) > M(ey). Observe that the quasi—convexity of M(.) on the "ray" {p(A)| p(})

= Ap + (1-A)ey for A € (0,1)}, already implies that M(.) is non—decreasing on the ray,
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since ey is a minimum for M(.) on this ray (indeed, on AK-1

). Combining these
statements, (iii) easily follows.
Evidently, M(ey) = Ry /(1-6) < M(p). In proving lemma 1, we showed that the

convexity of V(.;m) in p also implies the convexity of HV(.;m) in p. Therefore, we have
HV(p(A);M(p)) < AHV(p;M(p)) + (1-A)HV(ex;M(p))
< AM(p) + (1-A)M(p)
= M(p), (16)

since HV(p;M(p)) = M(p) by definition, and HV(ey;M(p)) < M(p) by claim 2. But this
implies, in turn, that M(p(})) < M(p). Evidently, M(p(})) > R(p(}))/(1-6) > Ry /(1)
= M(eg), so M(p) > M(p(})) > M(eg). o
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Appendix II: Proof of Theorem 4.1

For ease of exposition, we suppress dependence on the vector of priors P throughout.
For each integer n, let En denote the subset of ¥ that consists of strategies that use only
one of the first n arms after any possible history. Let V_ = sup {W(o)| o€ % }. We show
as a first step that V* = IimnVn.

Since En can obviously be associated with the n—armed bandit problem in which
only arms {1,...,n} are available (and the initial prior is the appropriate restriction of P to
this set), Theorem 4.0 ensures the existence of o} € X such that V. = W(o}) 2 W(o)V o
€ En. Moreover, a;"l must be a DAI strategy as described in Theorem 4.0. It is evident
that we must have vV, < v, +1 < V* for all n, since any strategy feasible in En is also
feasible in % 41 and Y. Therefore, lim V_ is well—defined.

Let € > 0 be given. Pick o € X such that W(o) > V* — ¢/2. By definition of V¥,

such a ¢ may be seen to exist. Also pick t(¢) to be any positive integer that satisfies

FOR*[1-0] < ¢/a. (IL.1)

By (2.1) and the fact that § < 1, such a t(¢) also exists. Let N(e) be the (finite) set of all
possible arms ¢ may ever use in the first t(¢) periods, and pick n sufficiently large so that
N(e) ¢ {1,...,n}.

Pick any m > n. Consider the strategy o € % that imitates ¢ for the first t(e)

periods and then proceeds arbitrarily. By definition of V m e have

Vo, 2 Wio) (I1.2)
But by definition of R*, and choice of t(¢), it is also true that

(W(o)—W(o )| ¢ 26(R*/[1-4 < ¢/2. (IL.3)
So, certainly

|V, — W(0)| <ef2 (IL4)

Therefore, we now have
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|V -V

IA

- V¥ =W(0)| + [W(o) = V|

IA

€/2+ €/2 = e. (IL.5)

Since € > 0 was arbitrary, we have shown that V* = lim V_.
Recall that i attains the sup in (4.1). By Theorem 4.0, for any n > i, there exists a
strategy o} € X that begins with arm i and satisfies W(o}) =V ,i.e., o} € (i) also.

Therefore,

SUD (i) W(o) 2 lim V= V¥ (11.6)

proving part (i) of the Theorem.

To see part (ii) of the Theorem, note that the presence of an infinite number of arms
that attain the supremum in (4.1) at the initial belief implies that after any possible
history, there is at least one arm that now attains the supremum. Let m* = sup{M,(p(i))|
i € 9}. Let I* be the infinite set of i for which M. (p(i)) = m*, and let {i;, i,, ...} be any
enumeration of the elements of I*. Consider the strategy o(w) which begins with i, and

switches fromi_ toi_ . . at the first time (if ever) that the DAL of i falls below m*. We

+1
show that W(o(w)) = V*, completing the proof of the Theorem.

For any N, let 4(N) denote the number of elements in the intersection of {il,iz,...}
with {1,...,N}. For all N sufficiently large, u(N) > 0; and, since I* has an infinite number
of elements, y(N) - w as N - w. Let oyo(w) be that strategy in Xy that follows o(w) as long

as feasible (i.e., as long as the recommendations of o(w) are within {1,...,N}), and proceeds

arbitrarily within {1,...,N} otherwise. Evidently
|W(o(w)) — W(og )] < 284NR*/(1-5). (IL7)

 Since there is a DAI strategy that is optimal in Yy and coincides with op(w) for at least

p(N) periods it is also the case that

[V - Wop(@))] < 284MR*/(1-9). | (IL8)
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Combining these inequalities,

[W(o(w)) - Vg ¢ 4684R*/(1-6) + 0 as Nva. (IL9)

Equation (II.9) establishes the result since V¢ » V* as N - w. 0
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Appendix III: Proof of Theorem 5.1.
This Appendix develops formally the ideas sketched in the text. The proof is in

several steps.

Step 0: A Preliminary Result
The following Proposition is an immediate consequence of Proposition IV—-3—12 of

Neveu (1975).

Proposition A.1: Let (Xt) be a uniformly bounded martingale on a probability space (,5,P)
relative to the sub—sigma fields (St), and let X* denote the almost sure limit?s of the
martingale (Xt)' Let T be a stopping time for the martingale. Define the random variable
X[T by X (w) = XT(w)(w), if T(w) is finite, and X (w) = X*(w) otherwise. Then, E[XT] =
E(X

gl
Step 1:

Recall that p(i) is denoted by 7. By lemma 5.1, the set Ap ={p| M(p) <m*}isa
- convex and relatively open subset of pK-1 [henceforth, just A]. Moreover, m, which is an
interior point of A, is a point not in this set. Hence, the application of a standard
separation argument implies the existence of a linear functional [ on IRK and a constant ¢ €
R, such that the hyperplane{x| {(x) = c} divides A into two convex subsets A, and A,
with AR C Al, A2 C AA, and [(p) <cforallpe Al, [p) > cforallpe A,. By these

containment relations we have, of course, that M(p) < M(7) => [p) < ).

Step 2:

Recall that R is the union of supp.f, over k. Define (i) s L X:=19%, (ii) /b=
X?;: g1 P and (iif) R = X:=1 R. Let g(mt) represent the Borel sigma field of nt
Define the family {St} of increasing sigma fields on R* by g = {AC®R*¥| A =Cx fR‘t;

25This limit, of course, exists by the Martingale Convergence Theorem.
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Ce3@h}). Letg* = VI_ 5"

Next, let Z = {1,...,K}, and let §(Z) denote the power set of Z. Finally, define Q
= Z x R*, and endow  with the sigma—field §(Q2) = o(F(Z) x F*).

For k € {1,....K} and A € §', let P| (A) be the probability under k of observing
(rl,...,rt) € C, where A =Cx i P, is clearly calculable from knowledge of the density
().

The measurable space of sample paths {2, F(Q)} may now be endowed with with
the probability measure P, which is the extension of P(D x A) = % D m Pr(A), for D€
3(Z), A € F*. All almost—sure statements on sample paths w = {k,rl,r2,...} are with

respect to PW.

Step 3:
Letting ¢ denote the empty set, let st = 0(31G x {¢,2}) for each t, and let &* =
1y
Vi=1
can be written as plt{ = EJ[I (I} xR | Qﬁt], where I denotes the indicator random variable.

&', Then, the probability pf{ the principal places on the parameter k € Z at time t

Since I < 1 a.s., it follows by Billingsley (1978, example 35.5, p.410) that plt( is a martingale
with respect to the sigxﬁa—ﬁltration &b An appeal to the Martingale Convergence
Theorem (Billingsley, 1978, p.416) now reveals the existence of a random variable pi such
that plt{ converges to pi a.s.

Since Z is a finite set, and the preceding statements hold for each k, it now follows
that there is a set F of sample paths with PW(F) =1, such that for each k, pf{ converges to
pi on F.

Finally, since linear functions of martingales are themselves martingales, we have
that l(p{,...,pIt() = l(pt) is also a (uniformly bounded) martingale, which converges a.s. to

a limit random variable. Simple arguments show that this limit must be l(p‘f,...,pi'é) 1=

(")



35

Step 4:
Recall the definition of ¢ in step 1. Define the (possibly extended—) integer—valued
random variable 7 by

7 = min {t| {p}) < ¢}

if this is well—-defined, and set 7 = w, otherwise. It is easy to see that 7 is a stopping time,

ie,{r=t}e ét for all t. Let the random variable {p,_) be defined by
W) = Upyy,(w)), if 7(w) is finite
= I(p°(w)), otherwise.

Since l(pt) is uniformly bounded a.s., the conditions of Proposition A.1 (step 0) are
met. Therefore, E[{p, )] = E[{p")], and, of course, E[(p")] = ¢, since () = ¢

But this implies the existence of a set G with P,_(G) > 0 such that 7= w on G.
For, the contrary would imply that 7 is finite almost surely, which in turn implies E[l(pT)]

< ¢, a contradiction.

Step 5:

Finally, observe that by the definition of P (see step 2), there must exist a k* € Z,
and A C 98* such that Pk*(A) > 0, for, otherwise, PW(G) > 0 is not possible. But this just
says that, conditional on its "true" type being k*, an arm will last forever with positive
probability, if the rejection rule followed is that specified in step 1, namely, if the arm is
replaced by an untried arm at the first t at which its prior pt satisfies l(pt) < {m) =c. By
construction, however, M(p) < M(7) => p) < ¢, and it now easily follows that under
the rejection criterion specified by M(.) also, an arm of type k* will last forever with

positive probability; or in the notation of Section 5.2 that Uk* > 0.0
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