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Abstract

A theory of testing under non—standard conditions is developed. By viewing the
likelihood as a function of the unknown parameters, empirical process theory enables us
to bound the asymptotic distribution of likelihood ratio statistics, even when
conventional regularity conditions (such as unidentified nuisance parameters and
identically zero scores) are violated. This testing methodology is applied to the
Markov trend model of GNP proposed by Hamilton (1989). The standardized
likelihood ratio test is unable to reject the hypothesis of an AR(4) in favor of the
Markov trend model. Instead, we find strong evidence for an alternative model, which
we call a mizture model of GNP, in which growth rates are an AR(2) in which two
parameters — the intercept and the second AR coefficient — switch between

states, and the states display no persistence.



1. Introduction

Applied econometrics is increasingly dominated by non-linear models and
estimation techniques. The absence of a body of finite sample theory for non—linear
models means that applied research must rely either on asymptotic theory or
bootstrapping for inference. The primary asymptotic distributional theory for
non-linear models runs roughly as follows. In a sufficiently large sample, the
estimator nears the true parameter vector. Via a Taylor’s expansion, the parameter
estimates are equal to their true value, plus the score evaluated at the true value,
divided by the second derivative matrix evaluated at median pointst. The likelihood
surface is assumed to be approximately quadratic in this region, so the second
derivatives are approximately constant (that is, not a function of the parameters).
Since the score is mean zero, if it has positive variance, we can apply a central limit
theorem, and conclude that the estimator has an asymptotic multivariate normal
distribution.

There appears to be two key assumptions to this argument. First, the
likelihood surface must be locally quadratic. By locally, we must interpret this to
mean that the likelihood surface is approximately quadratic over the region in which
both the null hypothesis and the global optimum lie (with high probability).2 In fact,
this condition is routinely violated in many applications. For example, if some
parameters are not identified under the null hypothesis, then the likelihood function is
flat (with respect to the unidentified parameters) at the optimum. In other cases, the

likelihood surface has more than one local optima, and the null hypothesis may not lie

iThe rows of the matrix are not necessarily evaluated at the same points.

2The requirement that the global optimum lie in the locally quadratic region "with high
probability” is somewhat circular, since the argument is designed to provide a
distributional theory. The conventional proof circumvents this problem by appealing to
the consistency of the estimator.



on the same "hill" as the global optimum. In this case, the likelihood surface is far
from quadratic in the region between the global optimum and the null hypothesis.

The second key assumption is that the score must have a positive variance. This
condition is violated when the score is identically zero under the null hypothesis, which
occurs when the null hypothesis yields a local maximum, minimum, or inflection point.

Some of these problems have been outlined in the literature before, and separate
methods proposed for "handling" the distributional theory in these special cases.

Davies (1977, 1987) analyzes the problem of unidentified nuisance parameters.
He suggests viewing the test statistic as a function of the nuisance parameter, in order
to apply empirical process theory. Davies bounds the maximum of the empirical
process using a crossing—point argument. Hansen (1991) extends the empirical process
theory to a wider class of estimation problems and test statistics, but instead of
bounding the maximum, provides a direct method to compute critical values, using the
empirical covariance function of the empirical process.

Lee and Chesher (1986) study the Lagrange multiplier (LM) test in the case of
identically zero scores. They suggest examining higher—order derivatives at the null.
This may be useful if the higher—order derivatives are also not identically zero; but
even if they are not, the power of their test is not clear.

Each of the above papers present methods which are useful in certain special
cases. No general results appear to exist. In an attempt to fill this void, this paper
takes a new approach to testing which does not require either that the likelihood be
locally quadratic or that the scores (or any other derivative) have positive variance.
We work directly with the likelihood surface, viewing the likelihood function as an
empirical process of the unknown parameters. Empirical process theory is used to
derive a bound for the asymptotic distribution of a standardized likelihood ratio
statistic. The distribution depends upon the covariance function of the empirical

process associated with the likelihood surface, but we show that the distribution of this



empirical process can be easily obtained via simulation.

This testing apparatus is set to work on the Markov trend model of output
proposed by Hamilton (1989). Hamilton modeled postwar U.S. GNP growth rates as
the sum of an AR(4) process and a Markov process. This may be interpreted as a
model where one of the parameters (the mean) switches between two values according
to a Markov transition process. Hamilton argued that this model was a better
description of the data than the traditional AR model with a fixed mean. As
recognized in his original paper, however, this model is plagued by not just one, but
all of the problems mentioned above. Two nuisance parameters — the transition
probabilities — are not identified under the null hypothesis. The null hypothesis
also yields a local optimum of the likelihood surface, and higher order derivatives also
appear to be zero. This yields a singular information matrix under the null. Being
highly non-linear, the model produces numerous local optima as well. Recognizing the
inapplicability of standard theory, Hamilton (1989) did not attempt a formal
hypothesis test of the null of an AR(4) versus his Markov trend model.

The standardized LR test, which is a valid statistical test to discriminate
between these models, fails to reject the null of an AR(4) in favor of the Markov
trend model. Apparently, the presence of the two nuisance parameters gives the
likelihood surface sufficient freedom so fhat we cannot reject the possibility that the
apparent "significant" coefficients could simply be due to sampling variation.

Hamilton’s Markov trend model, however, is quite restrictive in only allowing
one parameter to vary with the Markov state. We find strong evidence for an
alternative model, in which growth rates are modeled as an AR(2), with the intercept
and second AR parameter varying between states. Further, there is no persistence in
the states, as the model accepts the restriction that the probability of being in one
state or the other is independent of the current state. That is, we find a mizture

model, rather than a markov trend model for GNP. Applying the standardized LR



test, this mixture model rejects the null hypothesis of an AR(2) at the 1% level.
Section 2 presents the main theoretical results in a simplified environment
without nuisance parameters. Technical details are deemphasized in favor of intuition.
Section 3 outlines the theory more completely, allowing for nuisance parameters (both
identified and non—identified). These sections develop the apparatus.to analyze the
likelihood function as an empirical process. Sections 4 and 5 use these methods to
analyze post—war quarterly U.S. GNP. Section 4 analyzes the Markov trend model,
and section 5 proposes an alternative mixture model. A conclusion follows.
Concerning notation, the symbol "=" is used to denote weak convergence of
probability measures with respect to the uniform metric, and "||-||" 1is used to
denote the Euclidean metric. All limits are taken as the sample size, n, tends to

positive infinity.



9. The Likelihood Surface as an Empirical Process

Let us start with a relatively simple problem. Take a log-likelihood function
(divided by sample size) which is a function of an unknown parameter « , can be

written in the form

B
L(a) = 5 % L(e)

i=1

with the null and alternative hypotheses
Hoza=a0, Hl:a#:ao.
The likelihood ratio (LR) function is
;D
IR ()) = L(a)-L(a) = 2 21[1i(a) _ 1i(a0)] .

1

The LR surface can be decomposed into its mean, and deviation from mean:

(1) LR (a) = LR(a) + Q (0
where
LR(a) = E [LRn( a)] ,

is the mean, and

Q (@) = LR (a) ~IR(a) = 7 %} qa),
is the deviation from the mean, with
a(a) = [li(a) - 1i(a0)] - E[li(a) - 1i(a0)] .
It is useful to reflect upon decomposition (1). Under the null hypothesis, the
mean LR(e) is non—positive, and strictly negative for a ¢ «, The deviation from
the mean, Q () , converges (under mild conditions) pointwise to the 0 function,

often uniformly. Note that the unrestricted maximum likelihood estimate of a is

also the value of « which maximizes the LR surface LRn(a). In finite samples,



the global optimum will not equal @, due to the presence of Qn(a). Indeed,
random fluctuations in the function Q_(a) are the reason why LR (a) is
maximized at some value of « other than aQ, - We can therefore find some insight
into the behavior of the optimization problem by studying the stochastic process

Qn(a). When properly standardized, we find
1
2) Q) = £ g = Q)
where Q(a) is a mean zero Gaussian process with covariance function

(3) . Klapey) = E[gleg(ay)] -

The empirical process result (2) is a natural generalization of the classical
central limit theorem. For each value of a, Q(a) is a normal random variable
with mean zero and variance K(a,@). The function K(-) describes the covariances
between Q(a) at different values of o .

The decomposition (1) can be rewritten as an asymptotic approximation:
(4) ViLR(a) = VELR() + A Qye)

i IR(@) + Q@) + o(1)

where the op(l) term holds uniformly in o . (4) states that the LR surface equals
(in large samples) the mean function plus a Gaussian process. The Gaussian process
Q(a) is completely determined by the covariance function K(-) in (3), which can
be estimated from the data (we will discuss this in section 3.2). The mean function,
LR(a) is unknown. Standard asymptotic theory requires that LR(a) is well-behaved.
We can avoid this requirement by instead appealing to the fact that LR(a) < 0 for

all o when the null hypothesis is true. This gives

(5) Vi LR (a) ¢ & Q(a) = Qa).



From (5), we can find a bound for the asymptotic distribution of the standard

LR test of H_ against H; . Since LR = sup, nLR (@), we have as 1 - o,

(6)  P{ylR, 2 x} ¢ P{sup v Qua) > x} — P{sup Qle) 2 x} .

While an interesting theoretical observation, it is not clear that (6) provides a
distributional bound which is the most useful in practice. The process Q(a) is
Gaussian, but it it not standardized. As a -~ a for example, LRn(a) and Qo)
vanish. It seems more sensible to standardize the likelihood ratio so that all values of
a yield the same variance. Specifically, noting that the variance function associated

with the covariance function (3) is
V(a) = K(gq),

with its sample analog,
V. (a) =13 [L(a) - 1(ay) - LR (a)|?
n n "1 |i 140 n

=1 El[li(a) - 1i(a0)]2 - IR (a)? ,

we then have

VB Qa)/Vy(@'? = D gra) ey

V(a)1/2
The Ganssian process Q*(a) has unit variance for all @ . Thus for any given
a, Q*a) = N(0,1). Now define the standardized likelihood ratio process

LR (o)

and the standardized likelihood ratio statistic

LR¥ = sup Vi LRX(a) -



We now conclude our discussion with the bound

* Q@)
P{LR} > x} ¢ P{SICIYPW > x}

— P{sgp Q*(a) < x} = F¥x).

As we show later, we can obtain good approximations to the distribution
function F*(x). One negative feature of this approach is that the asymptotic
distribution obtained is a bound. Thus tests based on this approach may be
conservative (underrejeétion when the null is true), and hence suffer a loss in effective
power (ability to reject the null when it is false). Given that there appears to be no
other general alternative available, this may be a mild criticism at this point.

In some cases, the inequality will be an equality, eliminating this concern.
Consider the simple location model : y, iid ‘N(e1) with Hy:a=0 vs. Hy:

a > 0. Here

11 2 2 - 2
LR (a) = —7-1-1-2111[(yt—-a) —yt] = ay-ad[/2.
SO
1 2 - 2 2 2 .2
vV (e) = ﬁﬁrll[afyt—aﬁ — (ay——a/2)] = o oy
and thus
LR* (o) = 4& (7 - o/2)/5,
We find that

LR, = sup Vi LRi(e) = A 3/d,

which is the standard t—statistic for the test of H, against H, . In this simple
example, the standardized LR statistic has a conventional interpretation and
distribution. This will not always be the case, but it suggests that the structure of

the standardized LR statistic is not as unconventional as appears at first glance.
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3. General Theory

3.1  Allowing for Nuisance Parameters

The previous section was meant to be motivational, since most problems of

interest contain nuisance parameters. Suppose that the model has log—likelihood

L(B,%0) = 3 3L(670)
with parameter vectors f € B, vy e I' , and 6 € B. The hypothesis takes the form
Hozﬁ=0 H : f#+0.

Note that # and ~ are nuisance parameters. Assume that @ is fully identified,
but 4 is not identified under Hy . (This requires that L n(O,fy,b’) not depend
upon < ). In order to apply a testing method similar to that suggested in section 2,
we are going to have to eliminate the parameter vector 8 We do this by
concentration.

Set a=(f,v) and A=BxTI, and Ln(a,é)) and li(a,ﬂ)

accordingly. Define the sequence of parameter estimates

(7) Ha) = Max Ly(a0)

which are the maximum likelihood estimates of @ for fixed values of a and 7 .

The concentrated likelihood function is then

L (a) = L (&0(a)) .
Ideally, we would like to be working with the large—sample concentrated

 likelihood function given by

L(e) = L (a0(a))

where
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#c) = Argmax lim E L (o,0)
) n-w

is the pseudo—true value of @, for fixed a . In order for the concentration

argument to work, we require that f(c) is consistent for #a) at rate +h,

uniformly in o . Set D(a) = #(a) — 6c) . Formally, we assume
(A1) sup /A || D(a) | = O,(1).
acA

In order to show (Al) from more primitive assumptions, we would have to assume
that the maximization problem given in (7) satisfies the standard assumptions for
non-linear estimators. That is, we are assuming that all of the "trouble" arises in the
parameters a = (f’,7’). We further require that the matrix of second derivatives

with respect to 6 be well behaved. If we define

&

M (a0) = zgzgr Lyl@f)

we require

(A2) sup || M_(a,0) || = O(1) .
acA, el T P

By a Taylor’s expansion, we have
“ a " 1 *
L (68a) - L(aH(a) = D(@)g) Ly(ada) + g De)Myal (@) D),
where 6*(a) lies on a line segment joining () and 6(a) . This gives
. * 1
(8) sup ||L (a) - L (a = sup || D(a)’M (a0 (@)) D(a) || = O_(3) -
sup L, () = L (o)l sup ()M (a8 ( ) | oo

We now proceed as in section 2. The likelihood ratio process, its large—sample

counterpart, expectation, and centered versions are

iRy () = fy(@) - L0,
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LR (o) = Ly(a) — L (0,7),
LR(e) = E[LRn(a)]

Q@ = LR (e) - LR(q)
Qe = LR (a) - LR(a) .

We now assume that an empirical process central limit theorem (CLT) holds:

(A3) v Que) = Qa)
where Q(a) is a Gaussian process with covariance function
K(aj;a9) = lim n E [Qn(al) Qn(a2)] .
n-w

Andrews (1990) recently has provided an empirical process CLT under conditions which
permit temporal dependence and heterogeneity. Essentially, the likelihood components
li(a, 6(a)) need to have bounded 2+§ moments, satisfy a mixing or near epoch
dependence condition, and satisfy a smoothness condition with respect to a .

Using the fact that LR(a) = LR(f,7) < 0 under the null hypothesis, (8), and

(A3), we obtain a limit theory for the concentrated likelihood process:

IR (@) ¢ VA Qya) = VB Qya) + o)1) = Qo)

Note that the op(l) term holds uniformly in a .
As discussed in the previous section, it makes sense to standardize the LR

process. Construct the sample variance

V(al(a) = I ¥aale)’,

1

where

~

g(al@) = L(ala) - 40700,7) — LR (a).

We assume that this estimator is uniformly consistent for V(o) = K(ga) :



(A4) sup I Vp(a&a)) = V(e) || —, 0

Finally, we need to be able to find some region A* ¢ A such that

(A5) inf V(a) > 0.
AeA*

From this, we can calculate the standardized LR function and LR statistic

) LR (a) ) X
LR*(a) = n , LR* = sup +a LR¥*(a) ,
o Vn(a)I;2 1 acA* n

and the centered stochastic processes

. Q,(a) R Q. (@)
Qula) = W ; Qp(e) = W

We have
fox .
LR} < fx]elg* vi Q¥(a)
— *
= (SIIEI‘K* Vi Qf(e) + op(l)

SupQ* ,

= sup_ Q*(a)
acA*

where Q*(a) is a Gaussian process with covariance function

K(ay; ao)
*( . - _ 1' 72
K (al,a2) =

V(e )1/2V(a2)1/2

We have shown the following result.

Theorem 1. Under (Al) — (AS5),

P{IR* > x} < P{zgg*ﬁéz;(a) > x}  —  P{SupQ* > x}.

13
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Theorem 1 provides a bound for the standardized LR statistic in terms of the
distribution of the random variable SupQ* . The assumptions (Al) through (A5) are
high-level, but quite weak, in contrast to conventional distributional theory. Thus
Theorem 1 is applicable in a much wider class of models than the standard theory.
The cost is the presence of the inequality. The fact that the distribution of the test
statistic is only bounded means that the test may be conservative and effective power
may be lowered. Hence, Theorem 1 should only be used (vis—a—vis conventional

theory) when it is apparent that the conventional assumptions are invalid.

3.2  Calculating the Asymptotic Distribution

The distribution of the random variable SupQ* presented in Theorem 1 is
generally non—standard, precluding generic tabulation. Following Hansen (1991), it is
quite easy, however, to use the empirical covariance function to generate the
asymptotic distribution via simulation.

The random variable SupQ* is the supremum of the empirical process Q*(a),
which is completely characterized by its covariance function K*(.). We do not know

K* , but we have the sample analog

L5l q (0, 0y))a; (y, Uap)
Vn(“1)1/2v(0‘2)1/2 '

'CTPIR =
K¥(aji0) =

Suppose that we can draw iid Gaussian processes whose covariance function is
K;(-). The supremum of each of these processes (approximately) has the distribution
SupQ*, where the approximation is only due to the sample discrepancy between f(;
and K*, which vanishes in large samples. Through repeated draws from this urn, we
can (approximately) obtain the distribution SupQ* from the empirical distribution of

the random draws. For example, critical values and p—values can be calculated, and
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histograms plotted, for any given example.
An easy method to obtain draws from the required family of Gaussian processes

is to generate a random sample of N(0,1) variables {ui}ll1 , and then construct

I:R*(a) _ 1 E?Qi(a: 0(‘1))ui .
Vo v (1)

It is straightforward to verify that (conditional on the data) the process LR*(-) is
Gaussian with covariance function K; . It is also (conditionally) independent from
other processes LR*(-) constructed with independent samples {u;} . It is evident

that this construction meets our requirements.

3.3  Practical Issues

The main cost of the procedures advocated here is in the evaluation of the
likelihood across different values of « = (f,7) . The need to concentrate out the
identified nuisance parameters (f) means that for each value of « , the constrained
likelihood needs to be optimized. This can be a major computational burden, even if
the parameter space is small.

As far as I can see, the only practical way to evaluate the maximal statistics
discussed here is to form a grid search over a relatively small number of values of « .
A trade—off arises as a more extensive grid search requires more computation, but
reduces the arbitrariness associated with the choice of grid, and may increase the
power of the test. For every value of a at which the constrained likelihood is
optimized, one needs to calculate only the sequence {qi(a,@(a))} (an nx1 vector).
Storage requirements are therefore equal to the number of grid points multiplied by
sample size. From these numbers, both the modified LR statistic and its asymptotic

distribution can be calculated.
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4. Testing the Markov Trend Model of GNP

What is a good univariate model of GNP? Since the degree of persistence in
linearly detrended GNP is quite high (seemingly non—stationary), but the amount of
persistence in growth rates is relatively low, we will be interested in finding a model
for the first difference of the natural log of real GNP, which we will denote by x, .
A reasonable starting place is the autoregressive (AR) model:

(9) pL)x, = pn + ¢ ,
where e, is iid , perﬁaps from a normal distribution. The argument for the AR
model is that (practically) all covariance stationary processes have an autoregressive
representation, which can be written as (9) where the error e, is white noise. The
reasonableness of adopting the AR model is that most of the estimation and inference
techniques designed for the AR model are valid under the broader conditions of an AR
representation, so an applied researcher need not be worried that they have the
"wrong" model. The results of fitting an AR(4) to post—war quarterly U.S. GNP are
presented in Table 1.3

The representation argument does not imply that an AR model is adequate for
all purposes. A Gaussian AR model is incompatible, for example, with the observed
asymmetry between expansions and contractions. This asymmetry could be "explained"
by an AR model with skewed innovations e but this solution is not completely
satisfactory. If, for instance, the errors in the AR representation are not independent,
but have conditionally forecastable third moments, then the AR model is suboptimal,
since it is not taking into account forecastable asymmetries in the business cycle.

Many alternatives to the AR model are possible. Hamilton (1989) proposed a

3A1l regressions are reported with heteroskedasticity—consistent standard errors (see
White, 1980). Also reported is the Gaussian log-likelihood and the value of the LM
test for parameter instability proposed in Nyblom (1989) and Hansen (1990).
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"Markov Trend" formulation in which a large degree of explanatory power is assigned
to the existence of a few "states" between which the economy shifts according to a

Markov process. For GNP growth rates, Hamilton suggested the model
Xg = B EHgS U WLy, = e,

where s, is a dummy variable equaling either 1 or 0 . The transitions between

these states are governed by the transition probabilities

I

P{s, = 1] s, 1} = p

Ps, =0 |s_; =0} = q.

In his paper, Hamilton set the autoregressive order equal to four. In order to
estimate the model by maximum likelihood, Hamilton added the assumption that e,
is iid N(0,02) and independent of {s;} .

Table 2 reports estimates for this Markov trend model. The estimates look
reasonable and significant. Notice that the heteroskedasticity—consistent standard error
estimates are larger than the conventional standard error estimates reported in
Hamilton (1989).

The Markov trend model reduces to the AR(4) under the constraint

To test this hypothesis, one would be tempted to either compute the likelihood ratio
statistic from Tables 1 and 2, or the t—statistic for pu d from Table 2. These test
statistics, however, do not have a standard distributional theory. Two reasons are
paramount. First, under the null hypothesis, the transition probabilities p and q
are not identified. As mentioned in the introduction, this means that the large sample
likelihood surface is flat (under the null) with respect to these parameters. The
asymptotic likelihood has no unique maximum and is not locally quadratic. Second,

the scores with respect to p g P> and q are identically zero when evaluated at
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the null hypothesis. A bit of experimentation indicated that higher order derivatives
were also zero. The combination of these problems suggests that standard
distributional theory is inapplicable. As an alternative, I will use the generalized
testing procedure presented in section 2.

In the notation of section 2, f§ = By 7= (p,q), and 8= (p, 02, vy
Yoy P, (,04) . The test requires computing the constrained estimates of 0 for each
combination of a = (u a° P q) for some grid of values. For g, , I used the
range [.1, 2] in steps of .1 ; and for p and q , the range [.15, .90] in steps
of .15 . This requires estimation of the concentrated likelihood at 720 points. That
is, the six parameters in 6 must be found numerically for each value of pq » P
and q . In order to achieve some efficiency in this estimation, for each value of p
and q , I started with p; = 01, and used for starting values the null estimates
(which correspond to py = 0). After convergence was obtained, I moved on to pjy
= .2, and used for starting values the final values from the previous optimization,
and so on. This kept the computation time down to a reasonable degree, and seemed
to produce the correct results. For example, if p and q are fixed at the global
optimum (from Table 3), and you do this procedure, you obtain the correct value of
the likelihood when p d achieves i{s global estimate.

The value of the standardized LR statistic was calculated as outlined in section
3.1, and found to be 1.47.4 If a standard normal theory were applicable, this
statistic would not reject the null hypothesis at the 5% level based on the one—sided
critical values, but it would be close. The standard normal theory, however, is not
applicable, since the standardized likelihood surface has been maximized over 720
points!

To calculate the asymptotic distribution, we can use the method of section 3.2.

4The standardized LR function was maximized at By = 1.1, p = .90, and q = .60.
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Computationally, this takes much less time than obtaining the constrained estimates.
1000 random samples were drawn and used to construct the bounding random variable.
The value 1.47 is far from significant, with a p—value of 0.82 . The approximate
5% critical value is 3.1. The result is unambiguous. The AR(4) model is not
rejected, and the statistical technique fails to find any evidence in favor of the Markov
trend model.

The density of the bounding asymptotic distribution was estimated by a normal
kernel and is displayed in Figure 1. Not surprisingly, the density is significantly
different from a standard normal, and is skewed to the right.

There are two different sources of this non—normality. One is the presence of
nuisance parameters, and the other is the maximization over the structural parameter
Ky - In order to get a semse of their relative contributions to the distributional
problem, I tried to separate out their effects by doing the same calculations, while
holding fixed a subset of the parameters. First, I fixed the transition probabilities at
the values which maximize the standardized LR function, and calculated the
asymptotic distribution of the test statistic as if these were known a priori. 'This
should give an approximate feel for the contribution of maximizing over p4 alone.
By this calculation, the 5% critical value drops from 3.10 to 2.2 and the observed
value of 1.47 yields a p—value of 0.21. Second, I fixed Ky at the value which
maximized the standardized LR function, (pretending as if this value were a priori
known) and calculated the asymptotic distribution via maximization over p and q .
This yields a 5% critical value of 2.63, and a p—value for 1.47 of 0.52. These
calculations are not rigorous, but suggest that the thick tail of the density shown in
figure 1 is primarily the result of the two unidentified nuisance parameters, rather
than the maximization over a;. (Note for contrast that if all three parameters are
fixed, then the calculation yields an exact normal distribution, where the 5% critical

value is 1.65.)



20

5. A Mixture AR Model of GNP

In Hamilton’s Markov trend model of GNP, the difference between states of the
world is completely captured by differences in the mean of the process. In the
modified Markov trend model discussed at length in section 4, the difference between
states is contained in differences in the intercept. It seems odd to impose this
restriction @ priori. Delong and Summers (1988), for example, argue that during the
Great Depression, shocks to GNP were more persistent. They suggest that shifting
autoregressive parameters can capture this phenomenon.

Letting the autoregressive parameters shift between states would be
computationally difficult in the model Hamilton estimates. A computationally simple
alternative is to modify Hamilton’s model from an AR(4) with a switching mean to an
AR(4) with a switching intercept. This modified model is

<p(L)xt = p+ pgs + e,
where s, is defined as before. In the results for the Markov trend model (Table 2)
most of the variation is picked up by the Markov process, and relatively little is
accounted for by the autoregression. Thus we would expect these two models to
perform similarly in the present context.5

The estimates from this modified Markov trend model are given in Table 3.
The point estimates are quite similar to those in Table 2, but the standard errors are
generally smaller and the log-likelihood is higher. It appears that the modified model
performs even better than Hamilton’s model, although the difference is probably not

statistically significant. The standardized LR statistic is 1.95 for this model, with a

5As a general tule, the two models have quite different dynamics, as pointed out by
Hamilton (1991).

60ne could use the methods of Vuong (1989) to report a formal comparison of the
models, but it doesn’t appear to be worth the effort.
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p—value of .44, which is still quite far from significant.

We can now relax the assumption that only the intercept varies between states.
The first two columns in Table 4 (under "Unconstrained") report the estimates from
estimation of a fully unrestricted model, in which the intercept, slope parameters, and
error variance are all allowed to shift between the two states. All of the parameters
with the "d" subscript denote the difference in coefficients between states.

These estimates give a very different picture from the Markov model of table 3.
The restrictions implied by the shifting intercept model are rejected by a Wald test at
the 1% level. There appears to be a second shifting parameters, the second AR lag.
While the Markov trend model of table 3 yielded small point estimates for the first
two AR parameters, the unconstrained estimates are much larger, while the third and
fourth AR parameters are quite small.

The transition probabilities (p and q) also tell a different story. The
unconstrained estimates are much smaller, and sum to 1.026. This suggests that the
constraint g = 1-p should be satisfied. This constraint is of importance for two
reasons. First, it eliminates one unidentified nuisance parameter, making the testing
problem better behaved. Second, the model has a different interpretation. p + q =1
implies that there is no persistence in the Markov process, for the probability that 5
takes on one or zero is independent of the previous state. It seems appropriate to call
this model a Mizture Model of GNP, rather than a Markov trend model, since the
parameters are varying according to a mixture distribution, with no persistence.

Testing all of these seven restrictions yields a Wald statistic of only 1.07.
Estimates of the restricted model are reported in the last two columns of Table 4
(under "Mixture Model"). As expected, the parameter estimates are very close to the
unconstrained estimates, but the estimated standard errors are much smaller.

The elimination of one unidentified nuisance parameter and the great increase in

fit suggest that testing this mixture model against an autoregressive model might
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succeed. Since the third and fourth autoregressive parameters have been eliminated
from the mixture model (and are not significant in the AR(4)), it appears to make
sense to test the mixture model against an AR(2), increasing the sample size by two.
We now have two structural parameters, u d and Poq » and one unidentified
nuisance parameter, p . The identified nuisance parameters are By Oy 91, ¥q (two
less than before). To calculate the concentrated likelihood function, I used the
following grid. Ky from .2 to 2, in steps of .2 ; Yod from -1 to 1 in
steps of .2 ; and p from .15 to .90 in steps of .15 .

The standardized LR test statistic is 4.93. The asymptotic distribution,
calculated with 1000 replications of normal random samples, yields an upper 5%
critical value of 3.09, and the test statistic is found to significant at the asymptotic
1% level. Thus we are able to reject the AR(2) in favor of the mixture model of

GNP at a high level of statistical significance.
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6. Conclusion

This paper has set out to develop a method of hypothesis testing for non—linear
models which do not necessarily satisfy the standard list of regularity conditions.

With the growing popularity of non—linear models, more attention should be paid to
regularity conditions and their violation. Statistical tools to conduct inference when
.regula,rity conditions are violated are noticeably absent.” This paper proposes a new
and quite different approach to the subject. Essentially, the suggestion is to view the
likelihood surface as thé sum of the limit function and an empirical process. Random
variation in estimation is entirely due to the interplay between the limit function and
the random empirical process. While all we may know about the limit of the
likelihood surface is that it is maximized at the null value, we can calculate the
asymptotic distribution of the likelihood empirical process from the data itself. This
enables us to bound the distribution of the maximum of the standardized likelihood
ratio process, and use this maximum as test of the null hypothesis.

This paper also investigates the statistical significance of Hamilton’s (1989)
Markov trend model of GNP. The violations of the conventional regularity conditions
are strong, and I am unable to reject the hypothesis that the "good fit" of Hamilton’s
model is simply due to sampling error. Instead, I estimate an alternative which I call
a mixture model of GNP, which is an AR(2) where the intercept and the second AR
parameter randomly shift between two values. This mixture model fits the data better

than an AR(2), rejecting the latter at the asymptotic 1% level.

"The one issue which has been discussed at length is estimation and testing subject to
boundary conditions. See, for example, Chernoff (1954), Moran (1971), Gourieroux, et.
al. (1982), Rogers (1986), and Wolak (1989).
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Table 1

Maximum Likelihood Estimates of Gaussian AR Model
Based on Data for U.S. Real GNP, t = 1952:2 to 1984:4

Parameter Estimate Standard Error
7 0.557 0.140
¥y 0.310 0.085
Yq 0.127 0.095
g —0.121 0.087
0y —0.089 0.090
o ' 0.983 0.064
Log—Likelihood: —183.669

LM Stability Test: 0.958 (Insignificant at 20% level)



Table 2

Maximum Likelihood Estimates of Hamilton Markov Trend Model
Based on Data for U.S. Real GNP, t = 1952:2 to 1984:4

Parameter Estimate Standard Error

7 -0.359 0.465

iy 1.522 0.464

0 0.013 0.164

@ —0.058 0.219

@y —0.247 0.148

0, —0.213 0.136

0.769 0.094

P 0.904 0.033

q 0.755 0.101
Log—Likelihood ~181.263
LM Stability Test 1.364 (Insignificant at 20% level)
Standardized LR Test 1.47

(p—value) 0.82



Maximum Likelihood Estimates of Modified Markov Trend Model

Table 3

Based on Data for U.S. Real GNP, t = 1952:2 to 1984:4

Parameter Estimate Standard Error
u —0.447 0.305
™ 1.560 0.245
¢ 0.112 0.105
Py 0.065 0.081
0g —0.126 0.080
N —0.136 0.091
o 0.789 0.066
P 0.912 0.032
q 0.669 0.143
Log—Likelihood —180.184
Stability Test 0.954 (Insignificant at 20% level)
Standardized LR Test 1.95
(p—value) 0.44
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Table 4

Maximum Likelihood Estimates of Modified Markov Trend Model
Based on Data for U.S. Real GNP, t = 1952:2 to 1984:4

Unconstrained Mixture Model

Parameter Estimate Std. Error Estimate Std. Error
W —0.690 0.400 —0.756 0.169
,ud 1.815 0.362 1.871 0.158
vy 0.321 0.211 0.321 0.079
g 0.510 0.228 0.461 0.115
g -0.078 0.121
9, —0.022 0.148
Y1d -0.005 0.215
Yaq —0.596 0.153 —0.582 0.133
Y34 0.006 0.189
Yaq 0.010 0.356
o 0.657 0.121 0.650 0.078
74 0.013 0.255
P 0.638 0.471 0.619 0.072

0.388 0.299
Likelihood —~174.388 —176.990
Stability 1.463 0.624
Standardized LR Test 4.93

(p—value) 0.00
Table 5 : Wald Tests

Test Statistic D.O.F. p—value
Unconstrained vs.
Modified Markov Trend 15.8 5 0.007
Unconstrained vs.
Mixture Model 1.1 7 0.994
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