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Abstract

The paper develops an efficient statistical procedure for the system of
seemingly unrelated cointegrafing regressions. The method of canon-
ical cointegrating regression for the single cointegrating regression is
extended to deal with such a system. The standard procedure for the
seemingly unrelated regressions does not necessarily improve upon the
single equation least squares, though the system estimation offers an
obvious potential for efficiency gain. The potential comes from two
different sources: the system-wise information on the presence of unit
roots in individual series, and the system error covariance structure.
The procedure proposed in the paper fully utilizes both aspects of the
system estimation in the seemingly unrelated cointegrating regressions.
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1. Introduction

Various statistical procedures for cointegrated models have rapidly been developed
for the past few years. The optimal procedures that are now available to applied
researchers include Phillips (1988, 1991), Johansen (1988, 1989), Phillips and Hansen
(1990), Park (1991) and Stock and Watson (1991). Though the models that they con-
sider vary, all these different methods yield asymptotically efficient estimates for the
cointegrating vectors in general cointegrated models. Also, the problem of nuisance
parameter dependency of the tests on the cointegrating vectors, which was addressed
in Phillips and Durlauf (1986) and Park and Phillips (1988, 1989), has now been
completely solved. The aforementioned procedures all yield asymptotic chi-square
tests.

This paper contributes to the above literature by developing an optimal statistical
procedure for the system of seemingly unrelated cointegrating regressions (SUCR). The
SUCR system is just the system of seemingly unrelated regressions (SUR) considered
in Zellner (1962), with each regression representing a cointegrating relationship. Such
a model naturally arises in some important economic applications. For the concrete
examples of such models, the reader is referred to Ogaki and Park (1990), Ogaki (1990)
and Park and Sung (1989). It appears that there are numerous other econometric
applications, for which such modeling deems appropriate and necessary.

Noue of the existing methods is applicable for inference in the SUCR system. The
methods developed by Phillips {1988, 1991), Phillips and Hansen (1990) and Stock
and Watson (1991) are for the cointegrated model formulated as a multivariate regres-
sion. The typical SUR system is highly overidentified, unlike the standard multivari-
ate regression model which is just identified. As we explain in the paper, the presence
of overidentifying restrictions makes the statistical theory of the SUCR system rather
different from that of the just identified cointegrated models. The Johansen’s (1988,
1989) procedure based on VAR does not allow for a priori identification of individual
cointegrating relationships, and can be used only for the estimation of just identified

models. It is, in particular, not applicable for the SUCR system.
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The method that we propose in the paper is based on the canonical cointegrating
regression (CCR), which was recently developed by Park (1991). The CCR procedure
was originally proposed for the estimation of and testing in a single equation. We
extend the procedure here to a system of cointegrating regressions that are seemingly
unrelated. Naturally, we call the CCR procedure applied to the SUCR system the
seemingly unrelated canonical cointegrating regression (SUCCR) procedure. As in
the CCR procedure, the construction of a SUCCR requires the transformation of a
system using stationary components of the model, so that the usual least squares
method yields an efficient parameter estimate and asymptotic chi-square tests on the
coefficients, if based on the transformed model.

Although the methods of inference in cointegrated models by Phillips (1988, 1991),
Johansen (1988, 1989), Phillips and Hansen (1990) and Stock and Watson (1991)
were developed explicitly in multivariate framework so as to deal with more than
one longrun relationships, they can be used only for models with no overidentifying
restrictions in cointegrating coefficients. As noted in Park (1991), the system estima-
tion has no comparative advantage in such models, over the separate single equation
estimation of each cointegrating relationship. In particular, the single equation CCR
procedure is asymptotically equivalent to all the other aforementioned methods that
are based on models including multiple cointegrating relationships.

The SUCCR procedure improves in two ways upon the single equation CCR or
any of the existing efficient methods applied to a given SUCR system equation by
equation. First, the SUCCR transformation utilizes the presence of the unit roots
in the entire system, contrary to the single equation efficient methods which rely
only on the unit roots in an equation. The additional information on the unit roots
exploitable through the system estimation is roughly proportional to the degree of

- overidentification of a given equation. Clearly, the number of independent unit roots
in each equation is identical to that of the entire system for just identified models
(The unit root in the regressand is implied by the unit roots in the regressors and
the presence of cointegration between the regressand and the regressors). For such a

model, no efficiency gain is expected from the system information on the unit roots. In
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sharp contrast, the system estimation has the greatest potential to improve efficiency
in the standard SUCR system with nonoverlapping regressors in each equation.

Second, the SUCCR estimator further improves efficiency through the application
of the system GLS. Just as in the standard regression model, the GLS procedure uti-
lizing information on the covariance structure of the system errors results in improved
efficiency in the SUCR system. This may well seem to contradict Phillips and Park
(1988), which shows the equivalence of OLS and GLS in cointegrating regression. It
is made clear in this paper, however, that their equivalence result for single cointe-
grating regressions does not extend to a system of cointegrating equations. In the
SUCR system, the system GLS has an obvious potential to improve upon OLS. The
SUCCR method utilizes the potential, and is unambiguously more efficient than the
OLS procedure applied to the same transformed system.

The Monte Carlo simulation is performed to compare the finite sample perfor-
mance of the system estimation with the single equation methods. The efficiency
gain by the SUCCR procedure is well evidenced in the simulation. Even for the
samples of moderate size, it seems apparant that we may benefit much from the use
of the system SUCCR procedure. The SUCCR method substantially improves upon
the single equation methods, in virtually all the cases that we investigate, in terms of
both bias and mean square error. Both the OLS and GLS estimators in the SUCCR
system are considered in the simulation. The former only utilizes the system-wise
information on the unit roots, while the latter also uses the covariance structure of
the system errors. As one might well expect, the GLS estimator using full system
information performs largely better in finite samples than the OLS estimator relying
orly on a partial mformation.

The rest of the paper is organized as follows: Section 2 explains the models and
assumptions. The statistical theory of the standard SUCR system is presented in
Section 3. The limiting distributions of the least squares estimators in the SUCR.
system are analyzed, with focus on the presence of bias and non-normality, and on
the efficiency of GLS relative to OLS. The simple prototype model is considered in

detail to separate various issues. Section 4 introduces the SUCCR transformation
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and explains its motivation. The statistical theory of the SUCCR estimator is also
developed there. The feasible SUCCR procedure, which requires pre-estimation of the
various nuisance parameters, is given in Section 5. Section 6 includes the simulation
results on the finite sample performance of the SUCCR estimator and others. Section

7 concludes the paper. Mathematical proofs are in Appendix.

2. The Models and Assumptions

We consider a system of regressions given by

vie = 23,0 + uy
Yo = Zo b2+ un (1)

!
Ymt — xmtﬂm+umt

To write the system with n-observations in matrix form, let y; = (yi1, ..., %), Xi =
(%iry. -y Zin) and u; = (wir,...,uin) for ¢ = 1,...,m. Moreover, we subsequently
define y = (y1,...,95), 8= (B,.... b)), u = (u},...,u. ), and finally, X to be a
block diagonal matrix with X; in the i-th diagonal for i = 1,...,m. The system (1)
now becomes '

y=XB+u :

in matrix form.

We primarily assume in the paper that {z;:},7 = 1,...,m, are integrated processes
(of order one), which may include, explicitly or implicitly, deterministic trends such
as time polynomials and dummy variables. Morfe precisely, we specify {z;} in the

following three different ways:

M(a): z; = 2%
M(b) DTy = wipg+ ‘T?t
M(c) PoTie = (P:'t,951)" it = Tipit + -’C?t
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where {p;} is a general deterministic trend and {z{,} is a purely stochastic integrated
process. The residuals {u;;} are assumed to be stationary.

Under these specifications, our model (1) roughly describes a system of cointe-
grating regressions. The precise meaning of the :-th relationship in (1) is, however,
different for each of the specifications of {z;} in M(a) - M(¢). With M(a), the i-th
regression in (1) represents cointegration in the sense of Engle and Granger (1987).
The regressor {z;;} does not have any deterministic component. Clearly, {y;;} should
also be purely stochastic with this specification of {z;} for the i-th relationship in
(1) to hold.

Under the specification in M(b), both {y:} and {z;:} contain the deterministic
trend {pi:}. The i-th relationship in (1) in this case is stronger than is implied by
M(a). To see this more clearly, we let {y;:} be generated as y;; = 7/p; + y%. It follows
then directly from (1) that

v = ToBi + i (2)
and

T — W;,B,' =0 (3)

The i-th equation thus describes co-trending of the deterministic components, as well
as the usual cointegration in the stochastic components. Such relationship is called
deterministic cointegration in the paper.

When {z;;} 1s given as in M(¢), {yi:} may or may not have a deterministic trend.
The inclusion of the deterministic trend {p;:} in the regression effectively detrends
both series in any case. The i-th relationship in (1) therefore describes cointegra-
tion between only the stochastic components of {y;;} and {z;}, which we may call
stochastic cointegration. In the separate formulation of the stochastic and the de-
terministic relationships in (2) and (3), only the former is required to hold. The
relationship (3) may also hold, but in this case the regression formulated as in M(b)
is more appropriate, and yields more efficient estimate of §;.

We consider in this paper a system of cointegrating regressions specified by any

of M(a) - M(c). Any mixture of these three types of cointegrating relationships
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is allowed. The class of models is broad enough to cover a system with equations
individually representing any cointegrating relationship that has ever been looked at
in the literature. The method proposed in the paper is in fact flexible enough to deal
with a mixture of cointegrating regressions and the usual stationary regressions. We

may indeed allow for a system involving equations with
M{d): zi = pi

in addition to those with M(a) - M(c). Under the specification of {z;} as M(d),
{y:+} becomes trend stationary and the i-th regression becomes a standard stationary
regression.

The longrun relationships in (1) with any of the specifications M(a) - M(¢) are
testable, through testing for cointegration. Here and in many other contexts where
the presence, not the absence, of cointegration is postulated, it seems preferable to
test for the null hypothesis of cointegration. The test of cointegration based on
variable addition is available in Park (1990a) and Park, Ouliaris and Choi (1938).
All the other existing tests take non-cointegration as the null hypothesis. If such
tests are used, the null hypothesis must be rejected to validate our specification (1).
This would make it difficult to interprete the size of the tests, intended here to check
the adequacy of model specification. The residual based tests of non-cointegration
proposed in Engle and Granger (1987) and analyzed later in Phillips and Ouliaris
(1990), and the tests by Stock and Watson (1987) and Johansen (1988, 1989) on the
number of cointegration can be more useful in some other contexts, as we will explain
later.

We now define

we = (uy, Ay’ G

where v, = (u14,...,um)" and Azl = (Az,...,Az%,). The vector of stationary
processes driving the system is thus denoted by {w;}. We assume throughout the

paper that {w,;} satisfies an invariance priciple. That is,

Bir) = <=3 w2 B() (5)
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where B is a vector Brownian motion. In (5) and elsewhere in the paper, [z] denotes
the largest integer which does not exceed z.

The invariance principle (5) holds under very general conditions, and is valid for
{w;} driven by a large class of models including virtually all that are practically
important. Likewise, the deterministic trend {p;;} in M(a) - M(d) is only required to
satisfy some fairly mild regularity conditions. It will be sufficient to assume for each
component {p;;:} of {p;;} that p;;;/n’ for some 6;; has a properly defined limit in

L?[0,1] of square integrable functions. More precisely, we let

finlr) = A7pi) = Filr) (6)

where A;, is a diagonal matrix with the j-th diagonal element n®;. Popular sta-
tionary ARMA models with deterministic trends consisting of polynomials in time:
and dummy variables, of course, meet all the required conditions. For the explicit
conditions for {w,} and {p;:}, the reader is referred to Park (1991) and the references
cited there.
The covariance matrix © of the limit Brownian motion B in (5) is given by
1 n n ! Q 0
1= lim -F w wy | = i 7

it (S (E) = (30 52 g

where the partition is made conformably with that of {w,} in (4). We call  in (7)

the longrun variance of {w,} in this paper. The usual variance of {w,} is denoted by
¥, ie,

1& ¥n X
Y =1 - E Yy — 11 12 8
m 3 Blwal) = (g0 3 ®)

n—oo p &
with the partition made similarly as that of the longrun variance 2. The usual and
the longrun variances X3 and Q4 of the system errors will also be denoted by ¥y and
o, respectively. When {w;} is a martingale difference sequence, § becomes identical
to X.

For the equation specified by M(b), it is assumed with no loss in generality that
each component of the deterministic trend {p;:} is of order greater than \/n. For

instance, p;; = t is such a deterministic trend since it is of order n, while p;; = 1 with
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order 1 is not. All the deterministic trends in {z;} of order smaller than \/n are
absorbed in {z{,} and become unimportant in asymptotics. Moreover, we assume, by
ignoring lower order terms in {p;;} if necessary, that =; is of full column rank. Under
these innocuous assumptions, we define an orthogonal matrix H; = (Hy,, Hy;) such
that

Him =1 and Hym =0 (9)

with the convention H = H;; when 7; is of full rank. In our subsequent results, all
terms involving H,; and the expressions corresponding to them vanish in this case.

We assume throughout the paper that
ng >0 (10)

which implies that there are neither redundant nor cointegrated variables in {z;}.
Violation of (10) in the system (1) may arise in two different contexts. First, the
condition {(10) is violated, when the individual components of the regressor {z;}
are cointegrated for any : = 1,...,m. This causes a serious problem for equations
specified as M(a) and M(¢), since we then have more than one cointegrating vectors
in {23}, where 2{, = (v, z%)’, and the coefficients for the stochastic regressors are not
uniquely determined. We exclude this possibility. The residual based tests by Engle
and Granger (1987) and Phillips and QOuliaris (1990) can be used directly to test for
non-cointegration of the stochastic components in {z:}. For equations specified by
M(5), this problem of the lack of identifiability does not arise, as long as the leading
deterministic terms (of order higher than 1/n) are distinct.

Second, we may also encounter a model in which {z;:} and {z;} for ¢ # j have
some common and/or crossly cointegrated variables. Such a system is allowed in
our subsequent analysis. Clearly, the condition (10) can always be made fulfilled
by considering a proper subset of {z:}, which does not include any redundant or
cointegrated variables. Any redundant variables can simply be thrown away. Also,
with the help of the tests for the number of cointegrations by Stock and Watson
(1988) and Johansen (1988, 1989) and subsequently using tests for the presence and

absence of cointegration, we may exclude as many variables as the number of coin-
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tegrations to select the appropriate subset. Qur proposed method is valid with the
corresponding redefinition of {Az%} in (4), and Q in (7). The system with crossly
cointegrated regressors is incomplete, however, since the cointegrations between re-
gressors provide additional independent longrun relationships. Therefore, estimating
such models generally yields sub-optimal coefficient estimates.

Finally, it will be convenient to define B, and B, to be the limit Brownian motions
corresponding to {w,} and {Az?}, respectively, and B,; to be the Brownian motion

representing {Az%}. Then we let

and V be a block diagonal matrix with the i-th entry

— fi fi _
V; - B2i, (Hé,‘Bg,‘), (B2i), f1 (12)

for the i-th equation given by M(a) - M(d), respectively.
3. Statistical Theory of SUR
The SUR estimator of 8 in (1) is given by
Bsur = (X'(55" © NX) ' X'(£5" @ I)y (13)

where £ = ¥, Uy /n, i.e., the usual variance estimate of {u:} based on the fitted
residual {#,}. The system GLS estimator 3SUR is compared with the QLS estimator
BOLS defined as

Bous = (X'X) 71Xy (14)

As is well known, the system OLS is identical to the single equation OLS in (1).
To represent the limiting distributions of BSUR and §OL5, defined in (13) and
(14), it will be convenient to introduce some additional notation. Let D, be a block

diagonal matrix with the i-th diagonal entry

Din = +/al, (AO"‘ \/?71) (‘&0"" \/gﬂ> Air (15)
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for the i-th equation given respectively by M(a) - M(d), where A,, is defined in (6).
Similarly, T is a block diagonal matrix with

o , I —n=!
-Tt - I’ Hiv (0 I ’ I (16)

for each of the equations specified as M(a) - M(d), where H; is given in (9). The
dimensions of the matrices and submatrices in (15) and (16) are conformable to those
in (12) for each case.
Moreover, we let

0 0
/\{j ’\?Ja (H/ 20. >, (AO )’ 0 ) (17)

21Ny 17

for equations given by M(a) - M(d), where

= lim — Z E(z tu.,t

n—0oo 1

Theorem 1 Let U and V be defined as in (11) and (12), and let D,, and T be given
as above in (15) and (16). Then

VDT (oo =8) 2o (['vesv)” ([vpar+)
VD Tbors = 8) 2o ([vv) 7 (['vav+ )

The v = (1y,..., V) and p = (K1, - <> Hm)' are given by v; = Z_;ri—.l aiinj and p; =
Xii, where £51 = (0¥) and \;; is defined in (17).

Theorem 1 indicates that the limiting distributions of BSUR and BOLS are, in gen-
eral, non-Gaussian. Both estimators are not only inefficient, but also asymptotically
biased, in a general SUCR system. The asymptotic bias is generated from two sources:
the correlation between the limit processes U and V, and the bias terms v and U Te-
spectively for the GLS and OLS estimators. Inefficiency results in from not utilizing
the presence of the unit roots in individual series and the covariance structure of the
system errors, as we will see later in this paper. Similarly as the results in Phillips

and Durlauf (1986) and Park and Phillips (1988) for the multivariate cointegrating
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regression, the limiting distribution of the usual chi-square tests in a general SUCR
system involves nuisance parameters. This invalidates the use of the standard tests.
Moreover, the nonstandard nature of the limiting distributions in Theorem 1
makes it impossible to directly compare the OLS and the GLS procedures in a general
SUCR system. Most of all, the usual superiority of GLS is not warranted. There is
no reason to believe that the standard system GLS method would improve efficiency,
given the non-normality of the limiting distributions of the least squares estimators
and the presence of bias terms. Evidently, the GLS estimator in a general SUCR
system is not necessarily better than the OLS estimator. There are, in fact, several
reasons to believe that GLS can even be worse than OLS, as we will explain later.
To properly understand various issues involved in the estimation of the SUCR

system, it seems very useful to consider the prototype model in which

PT(a): {u,} is uncorrelated with {Az?}, serially as well as
contemporaneously, and ‘

PT(b): {u,} is a martingale difference sequence.

We assume in PT(a) that that the regression errors in the prototype model are un-
correlated, contemporaneously and serially, with the innovations of the stochastic
componenets of the regressors. This is stronger than the usual exogeneity condition.
We require here strict exogeneity so that all the future, as well as the present and
past, innovations of the regressors are uncorrelated with the regression errors. The
condition PT(4) ensures that the longrun variance of the errors is Yo, and the use of
Yo as the weighting matrix for the system GLS is appropriate. This assumption is

commonly made in the standard SUR.
Lemma 2 Consider the prototype model satisfying PT(a) and PT(b). We have

VaD.T(Bson = 8) 25 [ N(0,P(V,50) av
VaDT(fors—8) 2> [ N(0,Q(V, %)) v
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where P and Q are random matrices given by

PV,Z) = ([ VEa‘V’)—l

QV,To) = (/OIVV’)_I/OIVEOV’(/OIVV’)—I

and other notations are defined in Theorem 1.

The standard SUR estimator for the prototype SUCR is asymptotically efficient
and unbiased. When the conditions PT(a) and PT(b) are strengthened so that the
errors {u,} are iid with normal distribution and completely independent of {Az?},
the standard SUR estimator is indeed the exact ML estimator. The generalizations in
PT(a) and PT() do not affect the asymptotic results. With the strict exogeneity in
PT(a), any information on {z,}, including the presence of the unit roots, is irrelevant
to the efficient estimation of 8. This is why the standard SUR is fully efficient even
without utilizing the information on the unit roots.

The statistical theory for the prototype SUCR model is largely identical to that
of the standard SUR system, mostly due to the mixed normality. It is in fact easy to
show that the standard tests, such as Wald, LR and LM, are valid, and have the usual
asymptotic chi-square distribution. The tests on the prototype SUCR coefficients
can therefore be done, exactly as in the standard SUR. The reader is referred to Park
(1991) for a more detailed discussion on this sub ject.

Moreover, the mixed normality allows us to directly compare the asymptotic vari-
ances of the GLS and OLS procedures. For the protype SUCR model, the system
GLS method is, in particular, unambiguously more efficient than the OLS method.

Corollary 3 Consider the prototype model satisfying PT(a) and PT(b). We have
avar (,BSUR) < avar (BOLS)
in positive definite sense.

The relative efficiency of BSUR over ,BOLS is therefore well established for the prototype
SUCR model. In Corollary 3 and elsewhere in the paper, ‘avar’ denotes the asymptotic

variance.
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It is now evident, at least for the prototype SUCR, that the system GLS does
improve upon the OLS procedure. This is in sharp contrast with Phillips and Park
(1988), which shows the equivalence of the GLS and OLS procedures for the single
cointegrating regression. Considering a cointegrating regression for which the errors
are autoregressive processes generated independently from the regressors, they made
it clear that the GLS method has no potenetial to improve eficiency in the single
equation context. We show here that their finding is not extended to the system
estimation.

The relative efficiency of the standard SUR estimator, however, does not apply
to a more general SUCR system. For a general system for which the errors are
autocorrelated and/or correlated with the innovations of the stochastic regressors,
there are reasons to believe that the system GLS method can even have adverse
effects. First, the GLS transform can make the errors have a more complicated
covariance structure, by improperly weighting the errors using the usual covariance
matrix estimate. The correct weighting matrix for a general SUCR is the longrun
variance {Jo, not the usual variance Xg, of the errors. Second, the GLS procedure
can magnify the asymptotic bias. The bias term (u for the OLS estimator) may well
be inflated (to v for the GLS estimator) through the GLS transform. Corollary 3
only shows the potential of efficiency gain in the SUR, and should not be interpreted
generally as the superiority of the standard SUR proceduré for SUCR models.

One may easily see from the proofs of Lemma 2 and Corollary 3 that the mixed
normality and its consequence on the relative efficiency of the system GLS procedure

in the SUCR system (1) rely on the following three condition:

Cla): v=p=0,
C(b): U is independent of V, and

C(¢): U has covariance matrix X

in the notation used in Theorem 1. The conditions C(a) and C(b) together reduce the
limiting distributions of the least squares estimators in Theorem 1 to mixed normal,

and C(c) ensures that the SUR estimator more efficient than the OLS estimator. For
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the prototype model, C(a) and C(b) follow from PT(a), and C(c) from PT(b).

Of the three conditions, C(c) is much less critical than the other two. Violation
of C(c) can easily be dealt with a slight modification of the standard SUR estimator.
It is, in fact, not difficult to see that the system GLS estimator defined as

Busur = (X'(051 @ NX) X'(057 ® Iy (18)

ie., the SUR estimator with 3, replaced by a consistent estimator of €, is more
efficient than the OLS estimator under only C(a) and C( b). All our previous results
for the prototype model hold without the assumption PT(b) for the modified SUR
estimator in (18).

The modified SUR estimator is asymptotically normal and relatively more efficient
than the OLS estimator, when the model is given by M(d) for all the equations. The
regressions in the system would then be the stationary regressions on deterministic
trends. Such a system, of course, trivially satisfies the conditions C(a) and C(d), as
one may easily see in Theorem 1. Since the limiting matrix V becomes deterministic

in this case, the mixed normality is reduced to normality. Rather obviously,
VDT (fusur ~ B) — N (0,P(V, ) (19)

for the system of regressions on deterministic trends.

The system of deterministic cointegrations with specification M(5) may essentially
turn into such regressions, at least asymptotically. This happens when 7; in M($),
t = 1,...,m, is of full row rank for each equation. In this case, {z;} is driven
eflectively by its deterministic component 7;pit, which dominates the stochastic com-
ponent {z,}. As a result, {z;;} generated by M(b) asymptotically behaves exactly
as the deterministic regressor given by M(d). The i-th regression may therefore be
treated as a stationary regression. The asymptotic result (19) follows easily from The-
orem 1 with our convention on the matrix H in (9). The asymptotic normality and
the relative efficiency of the modified SUR estimator, therefore, applies without any
assumption on the stochastic component {z?} such as PT(a). This generalizes earlier
results by Park and Phillips (1988) and West (1988) for multivariate and bivariate

regression models, respectively.
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For the system with equations specified by M(d), the modified SUR estimator
is asymptotically efficient. It is, however, generally not fully efficient in the system
with equations specified as M(b) with the full row rank condition for 7;, i =1,...,m.
Unless the stochastic components of the regressors given by M(b) are asymptotically
independent of the system errors as in PT(a), their unit roots may always be used to
strictly increase the estimator efficiency in a SUCR. This will be shown in the next
section. Here we simply point out that the presence of the unit roots is not exploited
in the standard or modified SUR procedure.

" The normality in (19) does not apply for a system consisting of equations given
by M(b), when 7; has deficiency in row rank for some of the regressions. For such
regressions, {z;} is not entriely dominated by its deterministic trend, and there exist
some linear combinations of {z;} that are purely stochastic. The row rank of m; 18
unknown, but we must have at least as many distinct determinstic trend terms as the
number of regressors, to avoid deficiency in its row rank. For the result (19) to hold,
it is required that m; must be of full row rank for all the equations, even if we are
concerned with only a single or a subsystem of equations. Otherwise, the modified
SUR has nonnormal limiting distribution, and is not necessarily more efficient than
the OLS estimator. The full rank condition is necessary only for the equations of
interest, for the OLS estimator to have asymptotic normal distribution.

The equation specified by M(c) does not behave like M(b) or M(d) in any case,
though the deterministic trends are included in individual series. This is because
we effectively detrend the deterministic components by maintaining the trend in the
regression. The statistical theory for a system with equations given by M(c) is similar
to that for the purely stochastic model driven by M(a). The exogeneity assumption
like PT{a} is therefore crucial for our results on the mixed normality and the relative
efficiency of the SUR estimator. .

As we have clearly seen, the system estimation in the SUCR system offers a po-
tential to improve upon the single equation estimation. The potential is, however,
fully utilized by the standard or the modified SUR procedure only for the models

with strictly exogenous regressors or models behaving as such asymptotically. Un-
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fortunately, the strict exogeneity condition is unrealistic, and rarely expected to hold
in practical applications. The statistical theory for the usual SUR procedure under
the assumption of strict ‘exogeneity may therefore seem to have little relevancy in
practice. It is, however, very important, from theoretical point of view. It will in fact
be shown in the next section that we may always transform a given SUCR system so
that it behaves asymptotically as the system with strictly exogenous regressors and
the theory for the prototype model applies. The method that we will develop in the
next section most efliciently uses the system information for a general SUCR model,

Just as the standard SUR procedure does for the prototype model.

4. SUCCR

In this section, we will extend to the SUCR system the CCR methodology by Park
(1991), which was developed originally for single cointegrating regressions. The CCR
is a transformed regression formulated in such a way that the usual least squares
procedure yields both efficient estimates and chi-square tests on the coefficients. The
method utilizes the fact that cointegrating regressions are not unique, and any models
which differ only by stationary deviations represent the same cointegrating relation-
ship. For a given cointegrating regression, the CCR method requires the transforma-
tion of the data using the stationary components of the model. The presence of the
unit roots in individual series is utilized in the transformation.

Consider the transformations of {y;;} and {z;} given for each i by

y:t = Yit — w;.gQ;glA.T? - ﬂfA;E‘lwt
(20)

T = a:;t~A;Z‘lwt

where wi, is the i-th row of ;,,

and other notations are defined earlier in (4), (7) and (8).



17

Notice that the cointegrating relationships (1) continue to hold for the transformed
variables {y;} and {z},}, i =1,...,m, since the transformation in (20) involves only

stationary terms. We now have the transformed model, which we call the SUCCR,

yr = b+ ul,
Y = TyP2+us, (22)
Ymi = TmiBm + Uy
where u}, = u;; — wi, 057 Azd.
Define z} = (23}, ...,z5,) and u} = (u},,...,us,), similarly as {z,} and {u.}. It
follows that
: 1 & * x
lim — > E(zju}’) =0 (23)

i.e., the orthogonality of the regressors and the system errors holds in the SUCCR

system. Moreover, we have
up = uy — 03,05 Az? (24)

and the SUCCR errors are asymptotically independent of the regressors.
Let y., X. and u, be defined respectively from {y%}, {z},} and {u}}, for i =
1,...,mand t = 1,...,n, in the same way as y, X and u for the system (1). We

then write the SUCCR (22) in matrix form as
Yo = Xof +u.

The SUCCR estimator that we propose to use is just the modified system GLS esti-

mator in (22), using the longrun variance
Q* - Qll _ ngﬂ;;fbl (25)
of the SUCCR errors {u;}. The SUCCR estimator is given explicitly as

Bsucer = (X' @ DX)'X(Q' e )y, (26)
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We also consider the OLS procedure applied to the SUCCR system, which we call
the system CCR (SCCR) in the paper. The SCCR estimator fsocg is

Bscor = (X X)Xy,

The SCCR estimator is, of course, identical to the single equation OLS estimator in
the SUCCR system, which is obtained by applying OLS to (22) equation by equation,
The SCCR procedure, however, should not be confused with the single equation CCR
method in Park (1991). The transformation for the single equation CCR is based on
the presence of unit roots only in the series included in each equation. On the contrary,
the SUCCR transformation in (20) utilizes the unit roots in the entire system.

The limiting distributions of BSUCCR and BSCCR can easily be derived from Theo-

rem 1 and the subsequent results on the prototype model.

Theorem 4 We have

VaDaT(Bsuccn = B) 2 [ N (0,P(V,0.)) v
VRD.T(Bsocn ~ ) 2 [ N (0,Q(V,0.)) av

where P and Q are the random matrices defined in Lemma 2 and other notations are

gwen in Theorem 1.

The limiting distributions of the least squares estimators in the .SUCCR system
(22} are mixed normal for a general, as well as for the prototype, SUCR model.
This is well expected from the properties (23) and (24) of the SUCCR system. It is
indeed not difficult to see that the orthogonality condition (23) ensures the bias term-

similarly defined as » or x in Theorem 1 to vanish. Moreover, the limit process of the

SUCCR errors {u;} is given from {24) by
Ut = Bl - Q]QQZ—;Bg

which is independent of V for models with equations given by any mixture of M( a)
- M(d). The conditions corresponding to C(a) and C(b) in Section 3 hold in the
SUCCR system (22) for a general SUCR model.
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The SUCCR estimator is asymptotically equivalent to the exact ML estimation in
a Gaussian parametric ECM model with the cointegrating relationships in (1). The
exact ML estimator for the longrun parameters in such an ECM is derived in Park
(1990b), to which the interested reader is referred for a detailed discussion on the
ML interpretation of the CCR procedure. As we mentioned in the introduction, the
Johansen’s (1988, 1989) method is not applicable for an ECM including overidentified
longrun relationships as those in our SUCR (1).

The regressions in the prototype models are already formulated in canonical form,
and the construction of the SUCCR (22) is unnecessary. The transformations (20)
are, however, innocuous. The least squares procedures in the SUCCR system are
asymptotically equivalent to those in the original model. This is because 2, = ¥q
(= X11) for the prototype model. For the system of deterministic cointegrating regres-
sions given by M(5) with the full row rank condition for 7; i = 1,...,m, in contrast,
the SUCCR transformation changes the system errors. In such systems, the SUCCR

estimator has the limiting distribution
VaD.T(Bsucer = B) = N (0, P(V, Q)

since V becomes deterministic. The SUCCR estimator now can easily be seen to be
more efficient than the modified SUR estimator in the original model, the limiting
distribution of which is given in (19). Notice that 2, < Q, (= Q).

As one may well expect from our result in Section 3 on the comparison of GLS
and OLS for the prototype model, the SUCCR estimator improves upon the SCCR
estimator. The latter does not use the information on the covariance structure of
the system errors, and therefore not as efficient as the former. The SCCR estimator,
in turn, dominates the single equation CCR estimator. As we pointed out above,
the SCCR estimation utilizes the system information on the presence of unit roots.
It therefore uses some, if not all, system information. This makes even the SCCR
estimator unambiguously more efficient than the single equation CCR, which is based

solely on the information in each equation.
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Corollary 5 We have

avar (BSUCCR) < avar (Bscca) < avar (BCCR)

in positive definite sense.

To see the inequalities in Corollary 5 more closely, let us consider a system con-
sisting of two equations with the specification of {z;} for i = 1,2 given by M(a)
- M(d). Define V; and V, to be the block diagonal elements of V, and Q, = (w,"J)
for 7,5 = 1,2. On the comparison between the SUCCR and SCCR estimators, the
standard theory on the system GLS versus OLS applies. The SUCCR and SCCR

estimators have the same asymptotic distribution when
R(VQ) =R(V) a.s.

where and subsequently R(M) signifies the subspace of L?{0, 1] spanned by the func-
tions in the rows of M. This is completely analogous to the well known Kruskal’s
theorem on the equivalence of GLS and OLS.

The SUCCR estimator is expected to be strictly more efficient than the SCCR

estimator, in general, when
R(V) # R(V2) and wi, #0

i.e., when the SUCCR errors are correlated across the equations in the longrun (or
equivalently, when the errors in the original system have nonzero longrun correlation
conditional on the differenced stochastic regressors), and the regressors in the two
equations have non-overlapping trends, stochastic or deterministic, asymptotically.
When the two regressors {z1;} and {2} of the same dimension are cointegrated in a
one-to-one fashion (i.e., there are as many cointegrations as the number of regressors),
we have in particular that R(V}) = R(V:) a.s. No improvement by the SUCCR
estimator is expected in this case, over the SCCR estimator.

When the regressors in the two equations are given by different specifications in
M(a) - M(d), or of different dimensions, it is obvious that they would have some dis-

tinct trends in the limit. In such cases, nonzero correlation in the SUCCR errors alone
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ensures the superiority of the SUCCR estimator. Especially, the SUCCR procedure is
in general expected to strictly improve the estimator efficiency when a cointegrating
regression is considered jointly with a usual stationary regression on purely determin-
istic regressors specified by M(d). Other more standard stationary regressions with
stochastic regressors mayA also be allowed here, as long as the regressors are strictly
exogenous and the condition PT(a) in Section 3 is satisfied.

For the comparison of the SCCR procedure with that of the single equation CCR,
we concentrate on the first equation with the parameter 8. Denote by Bé(;cn and

BéCR, respectively, the SCCR and the CCR estimators of ;. We have
VDT (Beon ~B) 2 [ N(0,01,R0A)) av;
VDL Ti(Bbon = 81) 2 [ N(0,0nR(V)) dV;

where Di, and T are the first block diagonal elements of D, and T , respectively,
R(Vi) = (s W)™, and vy is the conditional longrun variance of {u;;} given

{Az},}. Other notations V; and w}, are as defined earlier. Obviously,
wip £ vy

since wy; is the longrun variance of {uy;} conditional on {Az?}.

To see exactly when the SCCR estimator is strictly better than the single equation
CCR estimator, we let v;; be the longrun covariance between {u1} and {Az%}
conditional on {Az%,} and vy = v},. Similarly, T, is defined to be the conditional

longrun variance of {Az3,} given {Az9,}. It follows then that
wip = V11 — v Ty vy

Now it is clear that the unit roots in the second equations have a potential to increase
the efficiency of an estimate for ;, when and only when {Az,} is correlated in the
longrun with {u;;}, conditional on {Az%,}. As can be easily checked, the conditional
covariance is zero when {z,} and {z%,} are cointegrated. No improvement of the
SCCR estimator upon the single equation CCR is expected in such a case. Unlike

in the comparison of SUCCR and SCCR, stationary regressions cannot improve the
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SCCR estimator over the single equation CCR estimator, because they include no
unit roots.

In sum, the efficiency gain is made by the SUCCR procedure in two steps. In
the first step, it improves upon the single equation methods by using the system
information on the presence of unit roots in individual series. This is done through
the construction of the SUCCR transformation. In the second step, the SUCCR esti-
mation subsequently gains efficiency by using the system GLS method, based on the
longrun covariance matrix of the system errors (which are rightfully rebuilt by mak-
ing necessary transformations). Therefore, the SUCCR procedure fully utilizes the
system information, including both the unit roots and the error covariance structure
of the system.

Due to the mixed normality of the limiting distributions of the least squares
estimators, the usual chi-square tests on the coefficient p in the SUCCR system
(22) are possible. To show this more precisely, we consider a general hypothesis of

the form
Hy : W(ﬁ) =0 (27)

where the function ¢ is assumed to be continuously differentiable with the first deriva-
tive ® evaluated at the true value of 3. Assume that there are g restrictions under
H,.

For the usual chi-square test relying on the SUCCR estimator, it is straightforward

to show using the result and the proof of Corollary 3 that

Corollary 6 Under the null hypothesis (27), we have

¢(Bsuccr)’ (Q(Xi(fl:l ® I)X‘)Aq") - ¢(Bsuccr) X

Moreover,

w(Bscer)’ (B(XIX) XU © NX.(XIX) ) plBsoon) 2 1

q9

The tests on B can therefore be done in the SUCCR system precisely as in the
standard SUR, except that the longrun variance Q, of the errors must be used. This
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modification of the weighting matrix is necessary in our general context that allows

for serial correlations in the errors.

5. Feasible SUCCR

For the practical application of the SUCCR method, the transformation in (20), as
well as the longrun variance 2, of the SUCCR error {u!}, must be consistently es-
timated. The consistent estimation of the transformations for each equation can
essentially be done, following Park (1991) and Park and Ogaki (1991). The con-
struction of the SUCCR system, however, can be quite elusive for the SUCR system
consisting of the equations generated by a mixture of M(a) - M(d). In this section,
we will explain in detail how to construct the SUCCR transformation in applications.

The transformation in (20) may be rewritten in matrix form as

yo = y—vec(Wy05,0) - (IQ@WEHAB
X,

X -(I®@WE)A

where A = diag(Ay,...,An), W = (wy,...,w;)’ and W, is defined as the sec-
ond column block of W, ie.,, W = (W;,W;) with the partition made aécording
to wy = (u, Az{’)’. The operator ‘vec(:)’ vectorizes a matrix by stacking columns,
and ‘diag(-)’ denotes a block diagonal matrix as before. Other notations are defined
earlier.

First, there are ‘natural’ consistent estimates of 8 and {w,}, which can be obtained
by the single equation CCR for each equation in the SUCR system (1), and the OLS
regressions based upon M(a) - M(c). From the CCR estimate Bicg for §;, we may

consistently estimate {u;} by
it = yit — ThBocr

Any consistent estimate for §;, such as the OLS estimate, can also be used. More
efficient CCR procedure seems, however, desirable to improve the finite sample per-

formance of the SUCCR estimator. A consistent estimate for {Az%} can be obtained
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from Ec?t = Az, for the equations given by M(a), or from the OLS residual in the
regression
) —0
Az, Agie = #8pis + Dz,
for the equations specified by M(b) and M(c). Now we may estimate {w} by -
by = (i, Az, )

Second, the rest of the parameters are estimated from {u,}. Before we explain

how this can be done, it is necessary to introduce some additional notation. Define

ln-l n

F=lim =) Y E(wuw,_;)=(Ty,T,)

nmeen k=1t=k+1

where I'; is a submatrix of I consisting of columns corresponding to {Az?} in w, =
(uj, Az)'). Define I, from ¥ in (8) similarly. Let

A0=$2+P2

Notice that = ¥ + T +I.

A consistent estimate of A can easily be obtained from that of A° by transforming
it into a diagonal matrix, and augmenting zeros for the purely deterministic regressors
{pi} and {zi} in the equations given respectively as M(c) and M(d). Let A? be the
matrix consisting of the columns of A° corresponding to {AzJ,}. Then the i-th block
diagonal of A is A} for the equation with M(a) or M(b), and the matrix of zeros
juxtaposed by A for the equation with M(c), and finally the matrix of zeros for the
equation with M(d). The, zero matrices for the equations given by M(c) and M(d)
have the number of columns equal to the number of deterministic regressors.

For the consistent estimation of the parameters Q and A°, it suffices to estimate

% and I consistently. We may consistently estimate ¥ simply by
- 12
n t=1
There are various methods to estimate T'. It can be estimated nonparametrically as

.1 n
P==Sck) Y ),

n > t=k+1
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with a chosen weight function ¢(k). The reader is referred to Andrews (1988) for a
detailed discussion on the choice of the weight function.

Parametric estimation is also possible. If {w,} follows a p-th order VAR

P
wy = E Qrwix + &

k=1

where {e;} is white noise, then we may deduce that

p -1p-1 p
r= (1_zq>,.) S 3w,
=1 1=0 j=i41

where
Yy = lim liE(wtw;_k)
TS
as shown in Park and Ogaki (1991). The parameter T can therefore be consistently
estimated from the estimated VAR coefficients &4, and £, = Dotk Wy /.

The case that {w;} has a VAR structure naturally arises when the cointegrating
relationships in (1) are generated by an ECM of fnite order. Let z0 = (y%,z%),
where {y?'} is the stochastic component of {y.} similarly as {z0}. If {2°} is driven by
a VAR of order p, {w,} is indeed given precisely as the above p-th order VAR with
the restriction that the coefficients in the submatrix of ®, corresponding to {Az) )
are zero. This follows immediately from the ECM representation of such a system,
as shown in Park and Ogaki (1991).

Finally, a consistent estimate for the longrun variance ), of the SUCCR €rrors,
which we need to compute the SUCCR estimator and to test on the coefficient B, can

be obtained either directly from the fitted SUCCR errors {ii}} or from a consistent
estimate of (1 using the relationship in (25).

6. Monte Carlo Simulation

Monte Carlo results for the finite sample performance of the SUCCR estimator are
summarized in this section. In the simulation, we paid a particular attention to the

relative performance of the SUCCR estimator compared with the SCCR estimator
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and the single equation CCR estimator. The comparison of the SUCCR estimator
with the SCCR estimator would reveal how much gain in efficiency we may expect
in finite samples through the application of the GLS method. This is the gain in
efficiency coming from the utilization of the covariance structure of the system er-
rors. In contrast, the comparison of the SCCR estimator and the single equation
CCR estimator would tell us how important in finite samples it is to use the system
information on the presence of the unit roots.

The simulations reported in this paper are based on a SUCR system consisting
of two equations with §; = 8, = 1. The DGP for each equation is given by the first
order ECM specified as

Dy \ [ o ‘ . €
( Az ) = ( oo (Yit-1 ‘$1,1—1)+v f?t

for : = 1,2. The covariance matrix of ¢ = (€}, €, €3;, €3;) is denoted by T which is

given by .
1 p1 po O
10 po
T=| "
po 0 1 pg
0 Po P2 1
The error correction coeflicients a;; and @, are set —0.2, and ay = ay =

0.1,0.2,0.3 and 0.4. The correlation coefficient between the errors of the equations for
Ay;: and Az, signified by pg, is set 0.1,0.3 and 0.5. The cross-equation correlations
in the errors of Ay;; and Ayz, and those of Az, and Az, are denoted by p; and p,,
respectively. The values of (p1, p2) used in the simulation were (0.5,0.2), (0.2, —0.5)
and (—0.2,0.6). The values of p; and p, are irrelevant for the single equation es-
timators. They are, however, very important for the system estimation, since they
critically affect the longrun covariances across the equations of the regressors and the
regression errors.

To concentrate on the comparisons of the single equation CCR and the system
SCCR and SUCCR estimators, we assume that the underlying data generating pro-
cess is known to be VAR of first order. The CCR and SUCCR transformations are

therefore estimated parametrically, as explained in the previous section. For the fi-
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nite sample comparisons of the CCR and other efficient procedures such as the exact
ML method, the reader is referred to Park and Ogaki (1991) and the references cited
there. The effect of the parametric and nonparametric estimations of the CCR trans-
formation on the finite sample efficiency is also investigated extensively there. To
avoid the dependency of the simulation results on initialization, the constant term
was included in all the estimation procedures.

The simulation results are tabulated in Tables 1 and 2, respectively for the samples
of size 100 and 300. The biases, MSE’s and the theoretical variances are given in
the tables. The theoretical variances of the estimators in each model are computed
from the asymptotic theory presented in the previous section. To make the results
in Table 1 and Table 2 more directly comparable, we adjusted the MSE’s and the
theoretical variances for the samples of size 300 by multiplying by 9. The theoretical
variances in Table 1 and Table 2 are therefore identical. For the same reason, the
biases for the sample size 300 were multiplied by 3.

The relative performance of the estimators in finite samples largely coincides with
what is expected from the asymptotic theory. The system SUCCR and SCCR es-
timators improve upon the single equation CCR estimator in finite samples, often
significantly. As the theory suggests, the SUCCR estimator has the smallest MSE’s
in most cases. Likewise, the SCCR estimator has smaller MSE’s than the single equa-
tion CCR estimator in a majority of cases. The advantage of the system estimation
seems to be evident and practically important. It appears that the system estimation
is clearly preferred even for the samples of moderate size. The system SCCR and
SUCCR methods also significantly reduce the finite sample bias, in many cases, over
the single equation CCR procedure.

For the samples of size 100, however, the reduction in variance through the system
estimation does not seem to be as big as the theory suggests. The actual finite sample
variances of the both system SUCCR and SCCR estimators were farther away from
the theoretical variances, than those of the single equation CCR estimator. When
the differences in the theoretical variances of system and single equation estimators

are only marginal, the single equation CCR indeed performed slightly better. Of the
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two system estimators, the divergence of the actual variance from the asymptotic
theoretical variance appears to be larger for the SUCCR estimator. Consequently, in
some of the models for which the cross correlations of the SUCCR errors are small
and the system GLS is expected to have no substantial improvement over the OLS,
the SCCR estimators had MSE’s smaller than those of the SUCCR estimators.

Virtually all the discrepancies between the asymptotic theory and the actual per-
formance in the comparison of the estimators disappear, when the sample size was
increased to 300. In the models that we looked at for the simulation, the actual
variances of the single equation CCR were still somewhat closer to the theoretical
variances than those of the system estimators. The finite sample MSE’s continue
to better approximate the asymptotic variances for the SCCR estimators, than for
the SUCCR estimators. Yet, the differences were not significant enough to reverse
the comparison among the estimators. They were, in particular, much smaller in
magnitude than those for the samples of size 100. As a result, the SCCR estimator
outperformed the single equation CCR estimator, and the SUCCR estimator had
MSE’s smaller than those of the SCCR estimator, with only few exceptions. All the
exceptional cases were when the asymptotic theories do not predict any meaningful
improvements.

Finally, we observed that the GLS procedure in the SUCCR system sometimes,
though not very often, yields the estimates that are far away from the true parameter
value, when the sample size is 100. The SUCCR estimator, in relatively small samples,
seems unstable and can be bad. The OLS estimator in the SUCCR system, the SCCR
estimator, does not seem to have this problem. Though having yielded larger MSE’s
than the SUCCR estimator in most cases, the SCCR estimator was quite stable across
various data generating processes. In small samples, the SCCR estimator appears to
be a reasonable alternative to the SUCCR estimator. The instability of the SUCCR
estimator quickly vanished as we increased the sample size in the simulation. When

the sample size was 300, the problem was non-existent.
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7. Concluding Remarks

The SUR system has been, and no doubt will continuously be, looked at to study var-
ious economic models. Naturally, we may postulate each equation in a SUR system
as representing a longrun cointegrating relationship, if the variables in the systern
are individually modelled as possessing unit roots. We have in this paper developed
a method of inference in cointegrated models formulated as the SUR system, which
we called the SUCR in the paper. Our framework is broad, and incorporates de-
terministic as well as stochastic cointegration. It also allows for a system consisting
of a mixture of cointegrating regressions and the usual stationary regressions. The
proposed procedure yields an efficient parameter estimate, and the usual chi-square
tests on coefficient restrictions. In the context of SUCR, all the existing methods are
only applicable equation by equation. Such an application would not only make it
impossible to perform tests on cross equation restrictions, but also yield sub-optimal
estimates for the parameters in the model. |
The purpose of this Paper is to provide a method of inference in a model specified
as a SUCR. The specification tests to check the adequacy of such a model are, there-
fore, only briefly mentioned. The existing tests of cointegration and non-cointegration
can be applied to check the adequacy of the specification of each cointegrating rela-
tionship. The system-wise test is also possible, directly using the variable addition
approach by Park, Ouliaris and Choi (1988) and Park (1990a). This will be reported
elsewhere. One final remark on the use of testing for cointegration as a specification
test for a SUCR: an éppropriately formulated SUCR implicitly defines the number
of cointegrations for a given set of variables. The tests for the number of cointegra-
tion in the set of variables alone, however, is not sufficient to justify any particular
specification of a SUCR. The formulation of a SUCR system requires not only that a
certain number of cointegrations be present in the model, but also that they be given

_in a specific, identified form.
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Appendix: Mathematical Proofs

Proof of Theorem 1. Let

— 0 Dit Dit
Zit = Ty, (Hl z0 )a ( z0 )s Pit
24t it

for models M(a) - M(d), respectively. Define a matrix Z from {z;}, similarly as X
from {z;}. It follows directly from Lemma (A1) of Park (1991) that

ipsrz'z B pvv
ip;2zisiz 2 Rvsglv
and
=D Z' 2 VU +
=D712'%" 2 QVES U +v
To get the stated results, write
zip = T}z
where T is defined in (16), and
Yie = TpBit+ui
= z,6;

where

& =T7'6

Proof of Lemma 2. Under the condition PT(a), we have
A =0
for all ¢,5 =1,...,m, and therefore,

P:V:O
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Furthermore, since Q; = 0, the limit Brownian motions B; and B, are independent,
~ which implies in turn that V is independent of U
We have under the condition PT(b),

E(dU dU") = 2,
Therefore,
(Rvesvy) T Rvsstau ‘ v~ N(0,P(V,5))
(Rvv)" Rvau ‘ v o~ N(0,Q(V,%0))

where - |y denotes the conditional distribution given V. This was to be shown.

Proof of Corollary 3. The stated result follows immediately, since
P(V, ZQ) S Q(V, Eo) a.s.
and

var [, N(0,P(V,5¢))dV = EP(V,%,)
var fy N{(0,Q(V,0))dV = EQ(V,Z0)

Proof of Theorem 4. Define {z}} to be the stochastic components of the regressors

m the 7-th equation of the SUCCR {22}, and
* M 1 = % »
AL = ,}5{& - ; E(-”Cnoujt)

similarly as Jj; in (17) for the original model (1). From the orthogonality of the

regressors and the regression errors in the SUCCR system noted in (23), we have

forall¢,5 =1,...,m. Moreover, the SUCCR errors {u}} are asymptotically indepen-

dent of the stochastic regressors {z;°}, z;° = (z1%,...,z:%), or {z?}, as is easily secen

Yy mt

from (24). The stated results, therefore, follow exactly as in the proof of Lemma 2.
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Proof of Corollary 5. Exactly as in the proof of Corollary 3,
P(V,Q) < Q(V,l) a.s.

and the first inequality follows directly.
The single equation CCR error {u};}, say, is given from Park (1991) by

+_ ., i i1 A D
Uy = ui — wip {5 JAY

where Q% is the longrun variance of { Az%}, and w? is the longrun covariance between
22 it 12

{u;t} and {Az%}. Consequently,
VaD.T(fecr — B) - /V N (0, P(V,Q,)) dV

where Q1 is the longrun variance of the single equation CCR error {uf}, uf =

(ufi,...,ut,)". Clearly,
and

as was to be shown.

Proof of Corollary 6. The stated results follow easily from Theorem 4 and Corol-
lary 4.2 of Park (1991).
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Table 1
Finite Sample Bias, MSE and Asymptotic Variance: n = 100

Single Fquation Estimators

OLS CCR

az  Po Bias MSE - Bias MSE Avar

0.1 0.1 -0.2249 0.0857 -0.0752 0.0387 0.0330
0.3 -0.1593 0.0482  -0.0482 0.0255 0.0230
0.5 -0.1046 0.0246  -0.0290 0.0160 0.0149

0.2 01 -0.2112 0.0727  -0.0507 0.0251 0.0221
0.3 -0.1463 0.0387  -0.0321 0.0162 0.0145
0.5 -0.0943 0.0187  -0.0194 0.0099 0.0090

03 01 -0.1897 0.0579  -0.0334 0.0155 0.0133
0.3 -0.1324 0.0308 —0.0219 0.0102 0.0089
0.5 -0.0858 0.0148  -0.0137 0.0063 0.0056

04 01 -0.1724 0.0472 -0.0228 0.0097 0.0082
0.3 -0.1220 0.0255 —0.0157 0.0066 0.0058
0.5 -0.0800 0.0123 -0.0102 0.0042 0.0037

System Estimators

(a): p1 =0.5, p, = 0.2

SCCR SUCCR

as  po Bias MSE  Avar Bias MSE  Avar

01 01 -0.0206 0.0389 0.0326 -0.0236 0.0348 0.0265
03 -0.0115 0.0278 0.0228  -0.0148 0.0219 0.0167
05 -0.0059 0.0179 0.0148 -0.0116 0.0105 0.0073

02 01 -0.0089 0.0254 0.0215 -0.0097 0.0242 0.0187
03 -0.0050 0.0168 0.0141 -0.0072 0.0135 0.0110
05 -0.0026 0.0104 0.0087  -0.0066 0.0061 0.0046

03 01 -0.0041 0.0155 0.0129 -0.0055 0.0140 0.0116
0.3 -0.0026 0.0102 0.0086 -0.0041 0.0084 0.0070
0.5 -0.0014 0.0063 0.0053 -0.0041 0.0038 0.0030

04 01 -0.0024 0.0099 0.0080 -0.0034 0.0089 0.0074
0.3  -0.0013 0.0065 0.0055  -0.0025 0.0054 0.0046
0.5 -0.0008 0.0041 0.0035  -0.0027 0.0025 0.0021




Teble 1: Continued

(b): py =0.2, p, = -0.5

SCCR SUCCR

as  po Bias  MSE Avar Bias MSE Avar

01 0.1 -0.0193 0.354 0.0296 -0.0186 0.0374 0.0296
0.3 -0.0110 0.7241 0.0200 -0.0100 0.0246 0.0198
0.5 -0.0060 0.7146 0.0122 -0.0044 0.0145 0.0116

02 01 -0.0082 0.7219 0.0193 -0.0061 0.0223 0.0186
0.3 -0.0049 0.2144 0.0126  —0.0033 0.0141 0.0118
0.5 -0.0030 0.2086 0.0075 -0.0013 0.0080 0.0066

03 01 -0.0037 0.7135 0.0119  -0.0023 0.0130 0.0108
0.3 -0.0024 0.24390 0.0079  -0.0011 0.0084 0.0070
0.5 -0.0017 0.7055 0.0048  —0.0003 0.0048 0.0040

0.4’ 0.1 -0.0017 0.2085 0.0076  —0.0006 0.0080 0.0066
0.3 -0.0012 0.2059 0.0052  —0.0003 0.0054 0.0045
0.5 -0.0010 0.2037 0.0033 0.0000 0.0031 0.0026

(c): pp=—0.2, p; =0.6

SCCR SUCCR

as  po Bias MSE Avar Bias MSE Avar

01 01 -0.0184 0.3325 0.0283  -0.0176 0.0330 0.0282
0.3 -0.0104 03213 0.0187  -0.0013 0.3078 0.0183
0.5 —-0.0060 0.3127 0.0111 -0.0030 0.0124 0.0097

02 01 -0.0084 0.7204 0.0184  -0.0060 0.0200 0.0170
0.3 -0.0052 03133 0.0119  -0.0031 0.0124 0.0105
0.5 -0.0034 0.2078 0.0070  -0.0011 0.0064 0.0052

03 01 -0.0040 09129 0.0114 —0.0022 0.0116 0.0097
0.3 -0.0028 0.2085 0.0076  —0.0013 0.0073 0.0061
0.5 -0.0021 02031 0.0046  -0.0006 0.0038 0.0031

04 01 -0.0019 02083 0.0074  -0.0005 0.0071 0.0059
0.3  -0.0015 0.X057 0.0051 -0.0004 0.0046 0.0039
0.5 -0.0014 0.X036 0.0032  -0.0003 0.0024 0.0020

Note: The simulations were based on the samples generated by the random
number generator built in GAUSS-386. All the computations were done using
programs written in GAUSS. The number of iteration is 5000.



Table 2
Finite Sample Bias, MSE and Asymptotic Variance: n = 300

Single Equation Estimators

OLS CCR

az  po Bias MSE Bias MSE Avar

0.1 01 -0.2676 0.1315 -0.0400 0.0359 0.0330
03 -0.1856 0.0704 ~0.0242 0.0243 0.0230
05  -0.1198 0.0343 -0.0141 0.0155 0.0149

02 01 -0.2501 0.1110 -0.0251 0.0236 0.0221
03 -0.1685 0.0551 -0.0152 0.0153 0.0145
0.5 -0.1063 0.0251 —0.0090 0.0094 0.0090

03 01 -0.2205 0.0837 —0.0150 0.0138 0.0133
0.3 -0.1498 0.0417 —0.0096 0.0093 0.0089
0.5 -0.0950 0.0188 —0.0060 0.0058 0.0056

04 01 -0.1973 0.0652 —0.0095 0.0085 0.0082
03 -0.1361 0.0332 —0.0065 0.0059 0.0058
0.5 -0.0875 0.0151 -0.0043 0.0038 0.0037

System Estimators

(a): pp =0.5, p; = 0.2

SCCR SUCCR

az;  po Bias MSE  Avar Bias MSE  Avar

01 01 -0.0025 0.0347 0.0326 —0.0026 0.0290 0.0265
0.3 -0.0016 0.0244 0.0228 -0.0026 0.0183 0.0167
0.5 -0.0012 0.0159 0.0148 —0.0040 0.0082 0.0073

02 01 -0.0013 0.0230 0.0215 —0.0023 0.0202 0.0187
03 -0.0010 0.0151 0.0141 -0.0022 0.0119 0.0110
0.5 -0.0008 0.0093 0.0087 -0.0028 0.0051 0.0046

03 01 -0.0006 0.0136 0.0129 -0.0015 0.0124 0.0116
0.3  -0.0006 0.0090 0.0086 -0.0017 0.0075 0.0070
0.5 -0.0006 0.0056 0.0053 -0.0019 0.0032 0.0030

04 0.1 -0.0003 0.0084 0.0080 -0.0011 0.0078 0.0074
0.3  -0.0004 0.0057 0.0055 ~ -0.0013 0.0049 0.0046
0.5 -0.0004 00036 0.0035 -0.0014 0.0022 0.0021




Table 2: Continvued

(b): p1 =02, p; = —0.5

SCCR SUCCR

a2  po Bias MSE  Avar Bias MSE  Avar

0.1 01 -0.0018 0.0311 0.0296 -0011 0.0312  0.0296
03 -0.0010 0.0210 0.0200 -0004 0.0209 0.0198
0.5 —0.0009 0.0128 0.0122  -0000 0.0123 0.0116

0.2 0.1 -0.0010 0.0201 0.0193 0000 0.0195 0.0186
0.3 -0.0009 0.0131 0.0126 0001 0.0124 0.0118
0.5 -0.0009 0.0078 0.0075 0001 0.0069 0.0066

03 0.1 —0.0005 0.0123 0.0119 0006 0.0113 0.0108
0.3 —0.0006 0.0082 0.0079 0004 0.0073 0.0070
0.5 —0.0007 0.0050 0.0048 0003 0.0041 0.0040

04 01 -0.0002 0.0078 0.0076 0007 0.0069 0.0066
0.3 -0.0004 0.0054 0.0052 0005 0.0046 0.0045
0.5 -0.0006 0.0034 0.0033 0003 0.0027 0.0026

(c): pr=-0.2, p; =0.6

SCCR SUCCR

as  po Bias MSE Avar Bias MSE Avar

~01 01 -0.0026 0.0298 0.0283  —0.0015 0.0301 0.0282
0.3 -0.0020 0.0198 0.0187 -0.0009 0.0196 0.0183
0.5 -0.0017 0.0117 0.0111  -0.0002 0.0106 0.0097

02 01 -0.0016 0.0191 0.0184 -0.0008 0.0181 0.0170
0.3 -0.0013 0.0124 0.0119 ~ —0.0007 0.0112 0.0105
05 -0.0011 0.0073 0.0070 -0.0003 0.0057 0.0052

03 01 -0.0004 0.0118 0.0114 -0.0003 0.0102 0.0097
0.3 -0.0006 0.0078 0.0076 ~0.0004 0.0065 0.0061
0.5 -0.0006 0.0047 0.0046 -0.0003 0.0033 0.0031

04 01 -0.0000 0.0076 0.0074 -0.0003 0.0062 0.0059
03 -0.0002 0.0052 0.0051 -0.0004 0.0040 0.0039
0.5 -0.0004 0.0032 0.0032 -0.0004 0.0021 0.0020

Note: The actual biases and MSE’s were multiplied, respectively, by three and

nine to obtain the numbers reported here. This makes the results in this table -
directly comparable to those reported in Table 1 for the samples of size 100.

The asymptotic variances in two tables are identical. The simulations were

done exactly as in Table 1.



