Seemingly Unrelated Canonical Cointegrating Regressions
Joon Y. Park and Masao Ogaki

Rochester Center for Economic Research
Working Paper No. 280

June 1991



Seemingly Unrelated Canonical Cointegrating Regressions

Joon Y. Park
Cornell University

and

Masao Ogaki
University of Rochester

and

The Rochester Center for Economic Research
Working Paper No. 280

Abstract

The paper develops an efficient statistical procedure for the system of
seemingly unrelated cointegrafing regressions. The method of canon-
ical cointegrating regression for the single cointegrating regression is
extended to deal with such a system. The standard procedure for the
seemingly unrelated regressions does not necessarily improve upon the
single equation least squares, though the system estimation offers an
obvious potential for efficiency gain. The potential comes from two
different sources: the system-wise information on the presence of unit
roots in individual series, and the system error covariance structure.
The procedure proposed in the paper fully utilizes both aspects of the
system estimation in the seemingly unrelated cointegrating regressions.
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1. Introduction

Various statistical procedures for cointegrated models have rapidly been developed
for the past few years. The optimal procedures that are now available to applied
researchers include Phillips (1988, 1991), Johansen (1988, 1989), Phillips and Hansen
(1990), Park (1991) and Stock and Watson (1991). Though the models that they con-
sider vary, all these different methods yield asymptotically efficient estimates for the
cointegrating vectors in general cointegrated models. Also, the problem of nuisance
parameter dependency of the tests on the cointegrating vectors, which was addressed
in Phillips and Durlauf (1986) and Park and Phillips (1988, 1989), has now been
completely solved. The aforementioned procedures all yield asymptotic chi-square
tests.

This paper contributes to the above literature by developing an optimal statistical
procedure for the system of seemingly unrelated cointegrating regressions (SUCR). The
SUCR system is just the system of seemingly unrelated regressions (SUR) considered
in Zellner (1962), with each regression representing a cointegrating relationship. Such
a model naturally arises in some important economic applications. For the concrete
examples of such models, the reader is referred to Ogaki and Park (1990), Ogaki (1990)
and Park and Sung (1989). It appears that there are numerous other econometric
applications, for which such modeling deems appropriate and necessary.

Noue of the existing methods is applicable for inference in the SUCR system. The
methods developed by Phillips {1988, 1991), Phillips and Hansen (1990) and Stock
and Watson (1991) are for the cointegrated model formulated as a multivariate regres-
sion. The typical SUR system is highly overidentified, unlike the standard multivari-
ate regression model which is just identified. As we explain in the paper, the presence
of overidentifying restrictions makes the statistical theory of the SUCR system rather
different from that of the just identified cointegrated models. The Johansen’s (1988,
1989) procedure based on VAR does not allow for a priori identification of individual
cointegrating relationships, and can be used only for the estimation of just identified

models. It is, in particular, not applicable for the SUCR system.
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The method that we propose in the paper is based on the canonical cointegrating
regression (CCR), which was recently developed by Park (1991). The CCR procedure
was originally proposed for the estimation of and testing in a single equation. We
extend the procedure here to a system of cointegrating regressions that are seemingly
unrelated. Naturally, we call the CCR procedure applied to the SUCR system the
seemingly unrelated canonical cointegrating regression (SUCCR) procedure. As in
the CCR procedure, the construction of a SUCCR requires the transformation of a
system using stationary components of the model, so that the usual least squares
method yields an efficient parameter estimate and asymptotic chi-square tests on the
coefficients, if based on the transformed model.

Although the methods of inference in cointegrated models by Phillips (1988, 1991),
Johansen (1988, 1989), Phillips and Hansen (1990) and Stock and Watson (1991)
were developed explicitly in multivariate framework so as to deal with more than
one longrun relationships, they can be used only for models with no overidentifying
restrictions in cointegrating coefficients. As noted in Park (1991), the system estima-
tion has no comparative advantage in such models, over the separate single equation
estimation of each cointegrating relationship. In particular, the single equation CCR
procedure is asymptotically equivalent to all the other aforementioned methods that
are based on models including multiple cointegrating relationships.

The SUCCR procedure improves in two ways upon the single equation CCR or
any of the existing efficient methods applied to a given SUCR system equation by
equation. First, the SUCCR transformation utilizes the presence of the unit roots
in the entire system, contrary to the single equation efficient methods which rely
only on the unit roots in an equation. The additional information on the unit roots
exploitable through the system estimation is roughly proportional to the degree of

- overidentification of a given equation. Clearly, the number of independent unit roots
in each equation is identical to that of the entire system for just identified models
(The unit root in the regressand is implied by the unit roots in the regressors and
the presence of cointegration between the regressand and the regressors). For such a

model, no efficiency gain is expected from the system information on the unit roots. In



3

sharp contrast, the system estimation has the greatest potential to improve efficiency
in the standard SUCR system with nonoverlapping regressors in each equation.

Second, the SUCCR estimator further improves efficiency through the application
of the system GLS. Just as in the standard regression model, the GLS procedure uti-
lizing information on the covariance structure of the system errors results in improved
efficiency in the SUCR system. This may well seem to contradict Phillips and Park
(1988), which shows the equivalence of OLS and GLS in cointegrating regression. It
is made clear in this paper, however, that their equivalence result for single cointe-
grating regressions does not extend to a system of cointegrating equations. In the
SUCR system, the system GLS has an obvious potential to improve upon OLS. The
SUCCR method utilizes the potential, and is unambiguously more efficient than the
OLS procedure applied to the same transformed system.

The Monte Carlo simulation is performed to compare the finite sample perfor-
mance of the system estimation with the single equation methods. The efficiency
gain by the SUCCR procedure is well evidenced in the simulation. Even for the
samples of moderate size, it seems apparant that we may benefit much from the use
of the system SUCCR procedure. The SUCCR method substantially improves upon
the single equation methods, in virtually all the cases that we investigate, in terms of
both bias and mean square error. Both the OLS and GLS estimators in the SUCCR
system are considered in the simulation. The former only utilizes the system-wise
information on the unit roots, while the latter also uses the covariance structure of
the system errors. As one might well expect, the GLS estimator using full system
information performs largely better in finite samples than the OLS estimator relying
orly on a partial mformation.

The rest of the paper is organized as follows: Section 2 explains the models and
assumptions. The statistical theory of the standard SUCR system is presented in
Section 3. The limiting distributions of the least squares estimators in the SUCR.
system are analyzed, with focus on the presence of bias and non-normality, and on
the efficiency of GLS relative to OLS. The simple prototype model is considered in

detail to separate various issues. Section 4 introduces the SUCCR transformation
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and explains its motivation. The statistical theory of the SUCCR estimator is also
developed there. The feasible SUCCR procedure, which requires pre-estimation of the
various nuisance parameters, is given in Section 5. Section 6 includes the simulation
results on the finite sample performance of the SUCCR estimator and others. Section

7 concludes the paper. Mathematical proofs are in Appendix.

2. The Models and Assumptions

We consider a system of regressions given by

vie = 23,0 + uy
Yo = Zo b2+ un (1)

!
Ymt — xmtﬂm+umt

To write the system with n-observations in matrix form, let y; = (yi1, ..., %), Xi =
(%iry. -y Zin) and u; = (wir,...,uin) for ¢ = 1,...,m. Moreover, we subsequently
define y = (y1,...,95), 8= (B,.... b)), u = (u},...,u. ), and finally, X to be a
block diagonal matrix with X; in the i-th diagonal for i = 1,...,m. The system (1)
now becomes '

y=XB+u :

in matrix form.

We primarily assume in the paper that {z;:},7 = 1,...,m, are integrated processes
(of order one), which may include, explicitly or implicitly, deterministic trends such
as time polynomials and dummy variables. Morfe precisely, we specify {z;} in the

following three different ways:

M(a): z; = 2%
M(b) DTy = wipg+ ‘T?t
M(c) PoTie = (P:'t,951)" it = Tipit + -’C?t
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where {p;} is a general deterministic trend and {z{,} is a purely stochastic integrated
process. The residuals {u;;} are assumed to be stationary.

Under these specifications, our model (1) roughly describes a system of cointe-
grating regressions. The precise meaning of the :-th relationship in (1) is, however,
different for each of the specifications of {z;} in M(a) - M(¢). With M(a), the i-th
regression in (1) represents cointegration in the sense of Engle and Granger (1987).
The regressor {z;;} does not have any deterministic component. Clearly, {y;;} should
also be purely stochastic with this specification of {z;} for the i-th relationship in
(1) to hold.

Under the specification in M(b), both {y:} and {z;:} contain the deterministic
trend {pi:}. The i-th relationship in (1) in this case is stronger than is implied by
M(a). To see this more clearly, we let {y;:} be generated as y;; = 7/p; + y%. It follows
then directly from (1) that

v = ToBi + i (2)
and

T — W;,B,' =0 (3)

The i-th equation thus describes co-trending of the deterministic components, as well
as the usual cointegration in the stochastic components. Such relationship is called
deterministic cointegration in the paper.

When {z;;} 1s given as in M(¢), {yi:} may or may not have a deterministic trend.
The inclusion of the deterministic trend {p;:} in the regression effectively detrends
both series in any case. The i-th relationship in (1) therefore describes cointegra-
tion between only the stochastic components of {y;;} and {z;}, which we may call
stochastic cointegration. In the separate formulation of the stochastic and the de-
terministic relationships in (2) and (3), only the former is required to hold. The
relationship (3) may also hold, but in this case the regression formulated as in M(b)
is more appropriate, and yields more efficient estimate of §;.

We consider in this paper a system of cointegrating regressions specified by any

of M(a) - M(c). Any mixture of these three types of cointegrating relationships
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is allowed. The class of models is broad enough to cover a system with equations
individually representing any cointegrating relationship that has ever been looked at
in the literature. The method proposed in the paper is in fact flexible enough to deal
with a mixture of cointegrating regressions and the usual stationary regressions. We

may indeed allow for a system involving equations with
M{d): zi = pi

in addition to those with M(a) - M(c). Under the specification of {z;} as M(d),
{y:+} becomes trend stationary and the i-th regression becomes a standard stationary
regression.

The longrun relationships in (1) with any of the specifications M(a) - M(¢) are
testable, through testing for cointegration. Here and in many other contexts where
the presence, not the absence, of cointegration is postulated, it seems preferable to
test for the null hypothesis of cointegration. The test of cointegration based on
variable addition is available in Park (1990a) and Park, Ouliaris and Choi (1938).
All the other existing tests take non-cointegration as the null hypothesis. If such
tests are used, the null hypothesis must be rejected to validate our specification (1).
This would make it difficult to interprete the size of the tests, intended here to check
the adequacy of model specification. The residual based tests of non-cointegration
proposed in Engle and Granger (1987) and analyzed later in Phillips and Ouliaris
(1990), and the tests by Stock and Watson (1987) and Johansen (1988, 1989) on the
number of cointegration can be more useful in some other contexts, as we will explain
later.

We now define

we = (uy, Ay’ G

where v, = (u14,...,um)" and Azl = (Az,...,Az%,). The vector of stationary
processes driving the system is thus denoted by {w;}. We assume throughout the

paper that {w,;} satisfies an invariance priciple. That is,

Bir) = <=3 w2 B() (5)
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where B is a vector Brownian motion. In (5) and elsewhere in the paper, [z] denotes
the largest integer which does not exceed z.

The invariance principle (5) holds under very general conditions, and is valid for
{w;} driven by a large class of models including virtually all that are practically
important. Likewise, the deterministic trend {p;;} in M(a) - M(d) is only required to
satisfy some fairly mild regularity conditions. It will be sufficient to assume for each
component {p;;:} of {p;;} that p;;;/n’ for some 6;; has a properly defined limit in

L?[0,1] of square integrable functions. More precisely, we let

finlr) = A7pi) = Filr) (6)

where A;, is a diagonal matrix with the j-th diagonal element n®;. Popular sta-
tionary ARMA models with deterministic trends consisting of polynomials in time:
and dummy variables, of course, meet all the required conditions. For the explicit
conditions for {w,} and {p;:}, the reader is referred to Park (1991) and the references
cited there.
The covariance matrix © of the limit Brownian motion B in (5) is given by
1 n n ! Q 0
1= lim -F w wy | = i 7

it (S (E) = (30 52 g

where the partition is made conformably with that of {w,} in (4). We call  in (7)

the longrun variance of {w,} in this paper. The usual variance of {w,} is denoted by
¥, ie,

1& ¥n X
Y =1 - E Yy — 11 12 8
m 3 Blwal) = (g0 3 ®)

n—oo p &
with the partition made similarly as that of the longrun variance 2. The usual and
the longrun variances X3 and Q4 of the system errors will also be denoted by ¥y and
o, respectively. When {w;} is a martingale difference sequence, § becomes identical
to X.

For the equation specified by M(b), it is assumed with no loss in generality that
each component of the deterministic trend {p;:} is of order greater than \/n. For

instance, p;; = t is such a deterministic trend since it is of order n, while p;; = 1 with
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order 1 is not. All the deterministic trends in {z;} of order smaller than \/n are
absorbed in {z{,} and become unimportant in asymptotics. Moreover, we assume, by
ignoring lower order terms in {p;;} if necessary, that =; is of full column rank. Under
these innocuous assumptions, we define an orthogonal matrix H; = (Hy,, Hy;) such
that

Him =1 and Hym =0 (9)

with the convention H = H;; when 7; is of full rank. In our subsequent results, all
terms involving H,; and the expressions corresponding to them vanish in this case.

We assume throughout the paper that
ng >0 (10)

which implies that there are neither redundant nor cointegrated variables in {z;}.
Violation of (10) in the system (1) may arise in two different contexts. First, the
condition {(10) is violated, when the individual components of the regressor {z;}
are cointegrated for any : = 1,...,m. This causes a serious problem for equations
specified as M(a) and M(¢), since we then have more than one cointegrating vectors
in {23}, where 2{, = (v, z%)’, and the coefficients for the stochastic regressors are not
uniquely determined. We exclude this possibility. The residual based tests by Engle
and Granger (1987) and Phillips and QOuliaris (1990) can be used directly to test for
non-cointegration of the stochastic components in {z:}. For equations specified by
M(5), this problem of the lack of identifiability does not arise, as long as the leading
deterministic terms (of order higher than 1/n) are distinct.

Second, we may also encounter a model in which {z;:} and {z;} for ¢ # j have
some common and/or crossly cointegrated variables. Such a system is allowed in
our subsequent analysis. Clearly, the condition (10) can always be made fulfilled
by considering a proper subset of {z:}, which does not include any redundant or
cointegrated variables. Any redundant variables can simply be thrown away. Also,
with the help of the tests for the number of cointegrations by Stock and Watson
(1988) and Johansen (1988, 1989) and subsequently using tests for the presence and

absence of cointegration, we may exclude as many variables as the number of coin-
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tegrations to select the appropriate subset. Qur proposed method is valid with the
corresponding redefinition of {Az%} in (4), and Q in (7). The system with crossly
cointegrated regressors is incomplete, however, since the cointegrations between re-
gressors provide additional independent longrun relationships. Therefore, estimating
such models generally yields sub-optimal coefficient estimates.

Finally, it will be convenient to define B, and B, to be the limit Brownian motions
corresponding to {w,} and {Az?}, respectively, and B,; to be the Brownian motion

representing {Az%}. Then we let

and V be a block diagonal matrix with the i-th entry

— fi fi _
V; - B2i, (Hé,‘Bg,‘), (B2i), f1 (12)

for the i-th equation given by M(a) - M(d), respectively.
3. Statistical Theory of SUR
The SUR estimator of 8 in (1) is given by
Bsur = (X'(55" © NX) ' X'(£5" @ I)y (13)

where £ = ¥, Uy /n, i.e., the usual variance estimate of {u:} based on the fitted
residual {#,}. The system GLS estimator 3SUR is compared with the QLS estimator
BOLS defined as

Bous = (X'X) 71Xy (14)

As is well known, the system OLS is identical to the single equation OLS in (1).
To represent the limiting distributions of BSUR and §OL5, defined in (13) and
(14), it will be convenient to introduce some additional notation. Let D, be a block

diagonal matrix with the i-th diagonal entry

Din = +/al, (AO"‘ \/?71) (‘&0"" \/gﬂ> Air (15)



