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Abstract

This paper introduces an improved method of inference in cointegrated models,
which uses the VAR prewhitening procedure to estimate shortrun dynamics.
The prewhitening procedure provides a very flexible framework to incorporate
the knowledge of shortrun dynamics, to efficiently estimate the longrun pa-
rameters in cointegrated systems. It can be used for the commonly used non-
parametric methods of inference in cointegrated models. When the shortrun
dynamics is given explicitly, as in ECM’s, the nonparametric methods can be
implemented in a parametric form with the proposed VAR prewhitening proce-
dure. Therefore, they become conformable with the ECM-based methods. Un-
like the ECM-based methods, however, they can also be made valid quite easily
for misspecified models through the analysis of the spectrum for the prewhitened
errors. The effect of the VAR prewhitening and other important issues on the
use of shortrun information in estimating cointegrated models are investigated
through an extensive Monte Carlo simulation.
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1. Introduction

The cointegrating models have increasingly been more popular in applied research,
since the publication of an influential paper by Engle and Granger (1987). The issue
of efficient estimation of cointegrated systems now seems to be largely settled down, at
least in the theoretical domain. The usual least squares estimator is super-consistent,
but known to be inefficient and biased asymptotically. The asymptotic sub-optimality
of course well predicts unsatisfactory finite sample performance of the least squares
estimate, as has been documented in the simulation studies by various authors.

There are two strands in the literature on the theory of efficient estimation of
cointegrated systems: one nonparametric, and the other parametric. The exact ML
approaches by Johansen (1988, 1989) and Park (1990b), for instance, are based on
vector-autoregression (VAR) of known order, represented as an error correction model
(ECM). They require a parametric specification of the shortrun transient dynamics,
as well as the longrun static equilibrium relationships. In contrast, the approaches by
Phillips (1988, 1989), Park (1990a) and Phillips and Hansen (1990) do not presume
any specific transient dynamics. In their approaches, only the longrun equilibrium
relationships are modelled in parametric forms. The shortrun dynamics are estimated
nonparametrically to efficiently estimate the longrun parameters. It is shown in Park
(1990b) that the two approaches are asymptotically equivalent.

We consider in this paper the VAR prewhitening method to estimate the short-
run dynamics of a cointegrated model. The method has recently been used by An-
drews and Monahan (1990) to get improved asymptotic variance estimators for het-
eroskedastic and autocorrelated time series. The finite sample performance of the
aforementioned nonparametric methods is, needless to say, heavily dependent upon
the quality of estimates for the shortrun dynamics, which are effectively concentrated
on the spectrum (especially, at the origin) of the stationary process driving a cointe-
grated model. The VAR prewhitening procedure therefore offers an obvious potential
to improve the efficiency of the longrun parameter estimates in finite samples.

The VAR prewhitening method seems very attractive especially in the context of
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estimating cointegrated models. It provides a very flexible framework within which
we may conveniently incorporate the knowledge (or the assumption, more plausibly)
on the shortrun dynamics of a cointegrated model, to more efficiently estimate the
longrun parameters in finite samples. Often, one may wish to consider a shortrun
ECM, jointly with a longrun cointegrated model, as an essential ingredient of his
empirical model or for the purpose of forecasting. This line of research has been
taken by many — too many to enumerate — authors. For the specification of an ECM,
the assumption of a finite order VAR structure for the underlying data generatng
process (DGP) is unavoidable.

When the true DGP for a cointegrating model is given by a finite VAR of known
order, the VAR prewhitening procedure for the stationary components of the model
yields pure white noise residuals, whose spectrum is flat over the entire range. The
complete prewhitening is possible in this case, and no more dynamic structure to
be analyzed is left over in the residuals. As a result, any of the aforementioned
‘nonparametric’ methods of inference for cointegrated models can be implemented
in a parametric form, since the VAR coefficients in the prewhitening procedure fully
represent the shortrun dynamics of the model. The ‘nonparametric’ methods can
therefore be made conformable with the parametric procedures by Johansen (1988,
1989) and Park (1990b) based on the ECM.

This is obviously an extreme case. One may hope at best that a postulated VAR
closely approximate the true model. First, the order of the underlying VAR is typ-
ically unknown, even when it is justifiable that the true DGP has a VAR structure
of finite order. Second, the underlying DGP may deviate from the standard finite
order VAR in various directions. For instance, the errors may have MA and/or het-
eroskedastic, unconditional or conditional (such as ARCH), components. Economic
models generated by optimizing behavior often suggest linear cointegrating relation-
ships, but typically with the shortrun dynamics much more complicated than a simple
finite order VAR structure. For the concrete examples of such models, the reader is
referred to Cooley and Ogaki (1990), Gregory, Pagan and Smith (1990) and Ogaki
and Park (1990).
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The VAR prewhitening for the stationary components of a cointegrated model
is therefore rarely expected in practice to produce pure white noise residuals. The
motivation for the pseudo-VAR prewhitening is to obtain residuals whose spectrum is
flatter at the locality of the origin, and easier to precisely estimate in finite samples.
The more closely a postulated VAR approximates the true model, the less dynamics
would be left over in the prewhitened residuals. Here we simply use a parametric
specification of a VAR model, for presumably more complicated shortrun dynamics,
to get better estimates for the spectrum of the stationary components of the model.
Of course, it is allowed that the prewhitened residuals are serially correlated and/or
heteroskedastic. The ML methods by Johansen (1988, 1989) and Park (1990b) are
not asymptotically efficient, unless the complete prewhitening is possible.

We perform an extensive Monte Carlo experiment to evaluate the effect of VAR
prewhitening, and to study some of the important issues on the use of the shortrun
information to efficiently estimate the longrun parameters in finite samples. In the
simulation, the VAR prewhitening method is applied to the canonical cointegrating
regression (CCR) estimator developed by Park (1990a). The resulting estimator
performs truly well in finite samples. Especially when the complete prewhitening is
allowed, it in many cases yields virtually zero bias and mean squared error (MSE)
really close to the theoretical asymptotic variance even for the samples of size 100.
In terms of MSE, the CCR estimator with the VAR prewhitening outperforms the
exact ML method in small samples, unmbiguously and often very substantially. The
VAR prewhitening method appears to be quite effective in estimating the shortrun
dynamics of cointegrated models.

Several other important issues on the use of shortrun information in estimating
cointegrated models are also examined in our simulation. As we mentioned above,
the specification and estimation of the shortrun dynamics becomes unimportant in
asymptotics. Clearly, it is a finite sample issue. The method of VAR prewhiten-
ing makes any of the ‘nonparametric’ methods mentioned above applicable in both
parametric and nonparametric form. This versatility makes it by far easier and more

straightforward to see how important for the efficiency of the longrun parameter esti-



4

mators it is ‘to use the information on the shortrun dynamics. The question has been
raised by several authors, including Gozalo (1989) and Inder (1990), but answered
only indirectly by comparing different estimators.

We found by comparing the same CCR estimator implemented in parametric and
nonparametric form that the precise information on the structure of shortrun dy-
namics greatly improves the efficiency of the longrun parameter estimates. The CCR
estimator performs substantially better in finite samples, when the information on the
shortrun dynamics is utilized. The information on the shortrun dynamics, however,
provides only a potential to improve the longrun parameter estimators. In particular,
it seems that estimators using the exact specification of the shortrun dynamics do
not necessarily perform better than any other estimators not relying on such specifi-
cation. Our simulation results indeed show that the exact ML method is in no sense
better in small samples than the other ‘nonparametric’ methods which do not use any
information on the shortrun dynamics. It very often yields completely nonsensical,
and unacceptable, estimates in small samples.

The rest of this paper is organized as follows. The models and estimators are
given in Section 2. The parametric and nonparametric specifications of a cointe-
grated model are compared, and their implications on the structure of the shortrun
dynamics are contrasted. The existing ‘nonparametric’ procedures for inference in
cointegrated models are briefly discussed. The VAR prewhitening procedure is intro-
duced in Section 3. The method of the VAR prewhitening procedure to estimate the
critical shortrun parameters is proposed. It is also explained how to implement the
procedure to do inference in a cointegrated model. Section 4 reports the simulation
results for the effect of the VAR prewhitening on the finite sample efficiency of the
CCR procedure. Several other issues on the use and importance of shortrun informa-
tion on estimating cointegrated models are investigated there too. The finite sample
performance of the CCR estimator with the VAR prewhitening is also compared with
that of the exact ML estimator. Section 5 concludes the paper, and the mathematical

proofs are given in Appendix.



2. The Models and Estimators

We consider time series {y;} and {z:}, which are respectively £ and m-dimensional

integrated processes of order one. Let {y;:} and {x:} be cointegrated, and write
M(a) : v = ey + uy

where {u;} is stationary. It is assumed in M(a) that there is no cointegration in
{z;}, and II is uniquely determined. The model M(a) represents only a static longrun
equilibrium relationship. No specific dynamic structure is presumed in the model.
When it is desirable to specify the shortrun transient dynamics, as well as the
longrun static equilibrium relationship, we may look at an ECM. To define it precisely,

let
z = (yp, Ty)’ (1)

be an r-dimensional, r = £ + m, time series, and define an r x £ matrix
B =(L,-I') (2)
The usual ECM for {z;} in (1) is given in the form

p-1
M(b) : Nz = AB'z_p + Z CilDNzi— + €&
k=1

where {¢,} is assumed to be white noise. In M(b), A is r x £ matrix of error correction
coefficients. The error correction model M(b) is derived in Johansen (1988) from a
p-th order VAR model for {z;} under the assumption of the presence of unit roots
and cointegration that is implied by M(a).
In M(a), the process
wy = (ug, Azy)’ 3)

which drives the model is assumed to be a general stationary process, without any
precise specification of its dynamic structure. Only the presence of the unit root in
{z,} and cointegration between {y;} and {z,} to insure, respectively, that {Az;} and

{u;} are stationary.
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The process is, however, specified in M(b) in an exact parametric form. To see

this, define an (£ 4+ m)-dimensional matrix

1 I
1= (s 1)

and let I, be an r X r matrix the £ x £ northwest block of which is an identity and zero
elsewhere. Also, define A, to be an r x r matrix which is obtained by augmenting

r X m zeros to A. Then we have

Lemma 1 Suppose DGP is given by M(b). Then {w;} defined in (3) follows VAR of

order p

P
wy = Z Qrw;_g + e

k=1
with ®, = HCyH™ — HCy_11,, for k =1,...,p — 1, &, = HA, — HCp1 1, and

e; = He;.

The existing nonparametric estimators for II in M(a), such as those developed in
Phillips (1988, 1989), Park (1990a) and Phillips and Hansen (1990), do not rely on any
specific dynamic structure of {w;}. They simply assume that it satisfies an invariance
principle. The invariance principle is known to hold for a very wide class of stationary
and possibly heteroskedastic processes, including of course the process generated by
M(b). The reader is referred to Phillips (1989) and the references cited there for the
explicit conditions. On the other hand, the parametric methods of Johansen (1988,
1989) and Park (1990b) are based on the ECM M(b). Therefore, they use the exact
parametric specification of the dynamic structure of {w;}, as shown in Lemma 1. They
also impose the normality of the error distribution to derive the exact ML estimators.
The ML estimate for Il may be obtained either using the Johansen’s (1988, 1989)
method with the posterior normalization of B, or following the procedure by Park
(1990b) with the a priori identification of B. The posterior normalization or a priori
identification of B is, of course, given by (2).

We define
S = lim =3 E(wa) (4)

n—oo
nia



n t—1
o= Jim =3 B(wwly) 0
N =2 k=1
n n !
Q0 = lm —1-E EW) (Z wt) (6)
n=een t=1 t=1

Notice that Q = £ +T 4+ I". Also, we let A = ¥ 4. Partition  and A conformably
with {w,} in (3) as

Qi Qe Ay Ag
0= d A= 7
(nn Op ) ™ An A (M

Qo= Oy — D57 Qar and Ay = (Apy, Ag,)’ (8)

and define

The aforementioned nonparametric methods of inference in cointegrated systems
require consistent estimators of some of the parameters defined in (4) - (8). In the
paper, we specifically look at the canonical cointegrating regression (CCR) method
by Park (1990a). The procedure requires the transformation of {y:} and {z.}, using
the stationary components {w;} of the model. The transformed series {y;} and {z7}

are given explicitly by

Tz, = mt—(E‘lAz),wt 9)

’ !
y: = Y- (2_1A2H+ (0,91294;21) ) Wt (10)

The regression reformulated with these transformed series is called the CCR.
The efficient estimation of the parameter IT may now simply be based on the OLS
in the CCR
=z} +u] (11)
Note that the cointegrating relationship between {y;} and {z.} in M(a) is preserved

in (11), since the transformations to obtain {y;} and {z;} only involve stationary

terms. Notice that

him — ZE ziu;
n—oo n
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i.e., the usual orthogonality between the regressors and the regression errors holds in

the CCR. Moreover, the CCR errors {u}} become
’U,: = U — 912Q;21A.’17t

which is asymptotically independent of {Az;}. This is the reason that the OLS in
CCR (11) is asymptotically equivalent to the ML estimator. The longrun variance of
{ur} is given by ., which is defined in (8).

In this paper, we are primarily concerned with purely stochastic models, where
the individual series {y;} and {z;} do not have any deterministic trends. The CCR
method for more general models containing deterministic trends, however, is essen-
tially identical. It only requires some obvious modifications in the definition {w:} in
(3) so that {w;} represents purely stochastic stationary components of the underly-
ing model. Any deterministic regressors included in the regression do not need the
transformation in (9). The reader is referred to Park (1990a) for more details.

The method by Phillips and Hansen (1990) is quite similar to the CCR procedure
introduced above. It also requires the nonparametric estimation of the nuisance pa-
rameters § and A,, defined respectively in (6) and (7). More precisely, their estimator

is given for our model by
-\

It =1t —n (Z :vtcc;) AS(T, ——9120521)'

t=1
where IT* is the least squares estimate from the regression of {yf} on {z:}, yi =
y: — Q99055 Az,. Their estimator therefore modifies {y;} in the first step, and then
corrects in the second step the OLS estimate from the regression of the modified {y;"}
on {z;}. In contrast, the CCR method modifies both {y;} and {z;} simultaneously.
The Phillips’ (1988, 1989) procedures are based on an ECM, just as those of
Johansen (1988, 1989) and Park (1990b). He, however, uses an essentailly nonpara-
metric ECM, and its asymptotic likelihood function, to derive the quasi-ML estima-
tors. The procedure, in particular, does not presume the specification of the explicit

shortrun dynamics; instead, it requires the nonparametric estimation of the longrun

variance ) in (6), similarly as Park (1990a) and Phillips and Hansen (1990).



3. VAR Prewhitening Method

We consider a p-th order VAR model

P
wy = Z Srwir + e (12)
k=1

for the process {w;} in (3) which generates the cointegrated model M(a) or M(b).
When the model is generated by M(b), {w;} follows the VAR process exactly as
given by (12) with white noise residual {e:}. The VAR coefficients ®;’s are defined,
in a one-to-one fashion, from the coefficients Ci’s in the ECM. This was shown in
Lemma 1. The VAR model in (12) is, however, not meant to be a true model in
general. 1t is to be understood here primarily as a pseudo-model, with the coefficients

®,’s defined trivially as

1 n
lim — Y E(wixe;) =0 (13)
TN ok

fork=1,...,p.

The pseudo-VAR model has recently been considered by Andrews and Monahan
(1990) to obtain an improved heteroskedasticity and autocorrelation consistent esti-
mator of covariance matrix. Their method is directly applicable for the estimation
of O defined in (6). The basic idea is to estimate the asymptotic variance of {w;},
indirectly through fitting the VAR model (12) by the least squares and analyzing the
spectrum of the prewhitened residual {e;}. As they explain, we may easily obtain
a consistent estimate for the asymptotic variance (or the longrun variance, in our
terminology) of {w,} from that of the residual {e;} and the estimates of the VAR
coefficients @, for k = 1,...,p, i.e., by ‘recoloring’ the spectrum of the prewhitened
residual {e;}.

The VAR model (12) is used here simply as a tool to get residuals which possess
a decreased temporal dependence. In general, the prewhitening procedure leaves a
process whose spectrum is flatter at the locality of the origin, which may be esti-
mated with a smaller error. Clearly, this does not necessarily imply that we may

more precisely estimate the spectrum of the original series, due to the errors involved
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in the estimation of the VAR coefficients used to the recoloring procedure. Never-
theless, Andrews and Monahan (1990) report a convincing evidence that the VAR
prewhitening offers some significant improvement.

To employ the CCR procedure (and the method by Phillips and Hansen (1990))
introduced in the previous section, we need a consistent estimate of T in (5) (more
precisely, A;), as well as that of the asymptotic variance Q of {w;} in (6). As one
may well expect, the VAR prewhitening method can also be used to more efficiently
estimate one-way spectrum I' (and A) in (5). To show the relationship between T of

{w¢} and the corresponding parameter for the prewhitened series {e;} in (12), we let

T be defined for the residual {e;} similarly as T for {w;} in (5). Also, define

S = lim — 3 E(waw)_) (14)

n—00
T k41

which can be consistently estimated by the corresponding product moments of {w}.
Notice that Zg = T defined in (4).
It is rather straightforward to deduce

Proposition 2 Let the notation be defined as above. Then we have

p—1 p
T =&(1)08(1) Y+ (1) Y Y Tid;
1=0 j=1+1

where ®(1) =1 — Ti_; B«

A consistent estimator of the one-way spectrum I' of the original series {w;} can
therefore be obtained essentially from that of the prewhitened residual {e:} through
recoloring, using the estimated VAR coefficients ®; for k=1,...,p.

Once a consistent estimate for I is obtained, it is easy to estimate other parameters

€ and A in (7) consistently. In particular, Q) can be estimated from the relationship
Q=x+I+I' (15)

Tt can also be estimated directly from the estimated longrun variance of the residual

{e;}, which we denote by Q2°, using the relationship

Q=9e1)"'0%(1)™" (16)
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as suggested in Andrews and Monahan (1990).

We may now easily incorporate the VAR prewhitening procedure in the CCR
method (or the method by Phillips and Hansen (1990)). First, obtain by the OLS
on M(a) an estimate of II and the fitted {w;}. Estimate X;’s by the corresponding
~ product moments of the fitted {w;}. Second, fit the VAR model (12) to get the
OLS estimates for ®; for k = 1,...,p and the fitted values of the residual {e;}. Then
estimate T'° (or T'° and Q2°) applying any of the available methods for kernel estimation
to the fitted residuals. Third, recover I' and {1 using the relationships in Proposition
2 and (15) or (16). The corresponding estimates of Az and 04205, required in the
CCR transformations (9) and (10) can easily be obtained.

The typical estimator of 0 is of the form

I° = }-Zc(k) zn: €€ (17)
% t=k+1
where ¢(k) is a weight function, or a kernel. Usual kernels are truncated by the
bandwidth parameter, I, say, so that c(k) = 0 for k > . The bandwidth parameter
! may be selected a priori, or left to be determined by some data-dependent scheme,
as proposed by Andrews (1990). The reader is referred to Andrews (1989) and the
references cited there for a detailed discussion on the estimation of T'°.

When the CCR and the other existing ‘nonparametric’ methods are employed in
the nonparametric context as for M(a), the first order VAR may often be a reasonable
choice for the model used for prewhitening. When the prewhitening is based on the
first order VAR, the result for ' in Proposition 2 is simplified. If we let ® be the
coefficient matrix for the first order VAR (ie., ® = @,), then it follows that

I = (1— )T~ &)~ + (I 8)7'2%

High order VAR’s may well be preferred, of course, if the DGP is given by M(d). In
this case, {w;} is truly generated as a VAR of order p, and the complete prewhitening
is achieved by fitting the VAR (12). As a result, the residual {e;} in (12) becomes
white noise, and we have

=0 (18)
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Moreover, the specification of a cointegrated model as the ECM in M(b) implies the

_( % 0
q)P - ( q)p2 0 ) (19)

on the VAR coefficient ®,. The restrictions (18) and (19) are precisely the additional

restriction

informations provided by the parametric specification of the shortrun dynamics in
M(b). These restrictions can of course be easily imposed, when we estimate the
shortrun dynamics based on VAR (12).

The formula for T in Proposition 2 is simplified correspondingly for model M(b)
to

p—-1

r=e)y ¥ e,

1=0 j=1+1
Also, we have

QO=20

for the relationship (16), where Z° is the usual variance of the residual {e;}.

4. Simulation Results

In this section, Monte Carlo methods are used to examine the finite sample effect
of the VAR prewhitening procedure introduced in the previous section. The finite
sample performance of the CCR method is evaluated under various VAR prewhitening
schemes, and also compared with those of the usual OLS and the ML procedure based
on the ECM by Johansen (1988, 1989). Since we only consider here cointegrating
models without any restriction on the longrun coeflicients, the ML method by Park

(1990Db) is not required. For the simulations, we use the bivariate model
Nzy=af 21+ CAz 1+ e (20)
where z, = (y;,z:)' and B = (1,—7)'. The errors {e;} are generated by
e =€ + Degyq (21)

where {¢;} are standard normals with covariance matrix Y. Here and elsewhere in
this section, we use the lower case letters to denote the parameters defined in previous

sections, whenever they are vectors or scalars.
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More explicitly, the models that we use for simulations are given by

o= ( gz) (22)

for « in (20), where we let &y = —0.2 and a; = 0,0.2,0.4 or 0.6. We denote the
DGP’s corresponding each of these values of ap by (i), (ii), (iii) and (iv). We set

7 = 1. Also, the covariance matrix T of {¢} in (21) is specified as

T:(i’l’) (23)

where v = —0.3,0,0.3. Similarly as before, we denote the models for each of these
values of v by a,b and c. Taken (22) and (23) together, the DGP’s are signified as
(ia) and so on.

We consider three different types of models: VAR(1), VAR(2) and ARMA(1,1).
For the VAR(1) model, we let C = D = 0 with other parameters given as above. The
coefficient matrix C' in the VAR(2) model is set

—04 0

C= ( 0 02 )

with D = 0. The ARMA(1,1) model is specified by C = 0 and
1 02

p=( 0 %)
The parameters C and D in the VAR(2) and ARMA(1,1) models are chosen so that
the theoretical asymptotic variances of the estimators in these models are largely the
same as those in the VAR(1) model.

The asymptotic variances for the CCR and ML estimators for the DGP’s given

by (20) and (21) are easy to obtain from the results in Lemma 1 and (16). To derive

the asymptotic variances more explicitly, let us define

2
w11 w

wi=—-2 (24)
Waz Wi

using the notation defined in (7). Moreover, denote by W; and W, two independent

standard Brownian motions on the unit interval, and define W, to be the demeaned
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Brownian motion given by
— 1
W, = W, —/ W, (1) dt
0

In our simulation, individual integrated series are demeaned, prior to analyses, to
avoid the dependency of the results on the initial values. Clearly, this is equivalent
to including a constant in cointegrating regressions. The asymptotic distributions of
the estimators are consequently represented by W, rather than W.

As shown in Park (1990b), the CCR and ML estimators are asymptotically equiva-
lent, and have the same limiting distribution. If we let # be the CCR or ML estimator

of the cointegrating coefficient 7, then we have

Ja Wy dWy

n(fr—ﬂ)—P—»w,,, )
Jo W2

(25)

where n is the sample size and w? is defined in (24). The asymptotic variance of the

CCR or ML estimator can therefore be easily obtained for given n. We found through

1377 1 -1
var M—l =E (/ WZ)
Jo W 0

to be about 10.78, which we used to compute the reported asymptotic variances.

simulation the value of

We consider the following estimators:

Nonparametric Estimators

CCR CCR estimator with fixed bandwidth

CCR, CCR estimator with automatic bandwidth

CCR; CCR estimator with pseudo-VAR(1) prewhitening and
automatic bandwidth

ECM-based Estimators

ML, ML estimator based on VAR(p) model
CCR; CCR estimator based on VAR(p) model
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We use in the simulation the Parzen window for the CCR, CCR; and CCR; esti-
mators. In the prewhitening procedure for the CCR, estimator, an adjustment for
the estimated VAR coefficient (®) is made as suggested by Andrews and Monahan
(1990), to avoid the near-singularity of the longrun impact matrix (I—®). The actual
threshold point used is 0.95. The reader is referred to their paper for the detailed
explanation of this procedure. No such adjustment is made for the CCR; estimator
based on the VAR(p) model. One step iteration is done for the CCR; estimators, as
suggested in Park (1990a). Our simulation results are reported in Tables 1 — 6.

The Effect of VAR Prewhitening

The effect of the VAR prewhitening on the finite sample performance of the coin-
tegrating coeflicient estimator can be seen by comparing the results for the CCRg
and CCR; estimators. In all three different models, i.e., VAR(1), VAR(2) and
ARMA(1,1}, and across various DGP’s, the VAR prewhitening procedure offers an
unambiguous and substantial improvement. This is so for both n = 100 and n = 300.
It is expected that methods of estimating shortrun dynamics have a decreasing effect
on the efficiency of the longrun estimators, as the sample size increases. In asymp-
totics, the theory suggests that they have no effect at all. Nevertheless, the use of
a more efficient estimation method for the shortrun dynamics seems to be of great
practical importance for the samples as moderately large as n = 300.

It appears in our simulation that the VAR prewhitening method works slightly
better for the models with unknown AR components than those including MA part.
The overall performance of the CCR; estimator is somewhat better in the VAR(2)
model than in the ARMA{1,1) model, relative to the CCR, estimator. The resid-
uals in the prewhitening VAR in these two models have, respectively, AR and MA
components. This is perhaps because the automatic bandwidth selection procedure
by Andrews (1990), used in our simulation, is designed to more effectively deal with
unknown AR components. In the pseudo-VAR model, the coeflicient estimates are
not consistent for the true coefficient values of the AR components, and the actual

prewhitened residuals in these models therefore have an ARMA structure in general.
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The prewhitened residuals are, however, expected to have a smaller MA components
for the VAR(2) models.

The improvement due to the use of the VAR prewhitening procedure is in most
cases somewhat more drastic, if we compare biases. This is consistent with the
finding by Andrews and Monahan (1990) that the VAR prewhitening yields spectrum
estimates which are less biased and more concentrated around the true value. In
contrast to their result, however, we observed that the prewhitening also decreases
MSE’s of the estimates of the longrun parameters substantially in virtually all the
cases that we considered in the paper. They reported deteriorating effect of the

prewhitening on MSE’s of the spectrum estimates.

Shortrun Information: How Important in Finite Samples

Now we look at how important it is to use the shortrun information for the estima-
tion of a cointegrated model. For this, we first compare the results for the estimator
CCR, with those for the CCR} and CCR; estimators, respectively, for the VAR(1)
and VAR(2) models. The CCR} and CCR; estimators use the exact specification of
the shortrun dynamics, and the restrictions (18) and (19) are imposed. On the other
hand the CCR; estimator is nonparametric, and does not rely on any parametric
spemﬁcatwn, of the shortrun dynamics. It only uses the pseudo-VAR(1) model for
prewhitening.

It is clearly seen in our simulation results that the use of the information on
shortrun dynamics, if available, is extremely important. In both the VAR(1) and
VAR(2) models, the CCR procedures in parametric form yield significantly smaller
biases and MSE’s than those based on the pseudo-VAR prewhitening. The reduction
in biases and MSE’s is often bigger than fifty percent when the sample size n = 100.
The importahce of the use of shortrun information is expected to decrease, as the
sample size increases. However, the relative performance of the CCR] and CCRj}
estimators respectively in the VAR(1) and VAR(2) models is significantly better than

the nonparametric CCR; estimator even when n = 300.



17

It may also be interesting to compare the results for the CCR and CCRq estima-
tors. In a sense, the automatic bandwidth selection procedure employed in the CCRq
estimator uses some shortrun information. The procedure, of course, does not rely
on any parametric specification of the shortrun dynamics. It, however, determines
the bandwidth using the shortrun information provided by the data. The CCRy esti-
mator that we considered in the simulation, in this sense, is compared with the CCR
estimator, for which the bandwidth is fixed a priori. The CCR, estimator performs
better than the CCR estimator in most cases. It seems apparant that the use of the
shortrun information in the way of the automatic bandwidth selection generally has
a positive effect on estimating the longrun parameters.

Our strong evidence for the overall positive effect of the use of shortrun informa-
tion, however, should not be used generally to argue favorably for a ‘parametric’ esti-
mator against any other ‘nonparametric’ estimators. The exact ML estimator, which
utilizes not only the structure of the shortrun dynamics but also the Gaussianity of
the error distribution, does not seem to be effective in using shortrun information in
small samples. The exact ML estimator based on the precise parametric specification
of the shortrun dynamics performs in small samples in no sense better than the non-
parametric CCR; estimator, for instance. The ML estimator indeed performs very
poorly in small samples.

In particular, the ML estimator can be extremely unreliable for samples of rel-
atively small sizes. Even the exact ML; and ML, estimators, respectively for the
VAR(1) and VAR(2) models, often show rather irratic behavior. In our simulation
for n = 100, they yield untolerably large MSE’s in several cases. It is suspected
that the ML estimator does not have finite variance in some of these cases. The
ML estimator behaves badly especially when, though not exclusively, the underlying
model implies large asymptotic variance for the estimator. Complexity in the struc-
ture of shortrun dynamics usually worsen the poor performance of the ML estimator
in small samples. The problem becomes worse for samples of a smaller size. Over-
parametrization also has a severe adverse effect, as we will discuss subsequently in

more detail.
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Our results on the ML estimator for n = 100 are consistent with those in Gonzalo
(1989). In his result for n = 100, the ML estimator has significantly larger MSE’s
than the OLS estimator, in all five cases that he considered. Stock and Watson (1991)
also observed large finite sample variance of the ML estimator in their simulation.
The finite sample problem of the ML estimator disappears, as is expected from the
asymptotic theory, as the sample size increases. When n = 300, as Gonzalo (1989)
reported, the ML estimator behaves well. Its performance is largely comparable to

that of the CCR estimator based on the same model.

Misspecification and Qverparametrization

The CCR} and ML, estimators are based on VAR of order p. In practice, however,
the underlying DGP is typically unknown. It would therefore be interesting to see
the effects of misspecification and overparametrization of the underlying VAR model
on the longrun parameter estimates. The effect of misspecification can be looked at
from the results for the CCR? and ML, estimators in the VAR(2) and ARMA(1,1)
models. The finite sample performance of the estimators in these two models show the
potential adverse effects of the misspecifications of the AR and MA parts, respectively.
The effect of overparametrization, on the other hand, can be inferred from the results
for the CCRZ and ML, estimators in the VAR(1) and VAR(2) models.

In our simulation results, it is clearly shown that both the misspecification and
overparametrization of the shortrun dynamics can have significant adverse effects on
the longrun parameter estimates in finite samples. As is well expected, misspecifica-
tion has generally a more significant adverse effect on the bias, than on the MSE. In
sharp contrast, the magnitude of the adverse effect of overparametrization is much
larger for the MSE than for the bias. These are so, for both the samples of size
n = 100 and n = 300. The comparisons between the effects of the misspecification
and overparametrization, however, diverge for the two different sample sizes.

When we consider the samples of size n = 100, the overall adverse effect of mis-

specification on the MSE’s of the CCR and ML estimators does not appear to stand
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out. For the VAR(2) and ARMA(1,1) models, the ML, estimators based on the mis-
specified models yield smaller MSE’s than the estimators on the true model, or on
a model which better approximates the true model. Similarly, the CCR7] estimator
performs mostly better than the CCR} estimator in the ARMA(1,1) model. When
the true model is generated as VAR(2), the former based on the misspecified VAR(1)
mode] yielded in one case smaller MSE than the latter based on the overparametrized
VAR(4) model. In small samples, it seems that the positive effect of parsimonious
specification may well dominate the negative effect of misspecification.

This is especially so for the ML procedure. Using a parametric model that involves
many unknown parameters dramatically increases the small sample variance of the
ML estimator. The ML, estimator yields variances incomparably larger than the ML,
estimator, in the VAR(1) model. For the VAR(2) model, the ML; estimator based
on a model that is misspecified but contains less unknown parameters indeed often
behaves much better than the exact ML, estimator, across various DGP’s that we
investigate. Moreover, in the ARMA(1,1) model, the ML, estimator is in virtually
all cases outperformed by the ML, estimator, which is based on a model futher away
from the true model.

The adverse effect of misspecification on the bias is more conspicuous in our
simulation results. For the VAR(2) model, both the CCR} and ML, estimators yield
substantially larger finite sample biases than the corresponding estimators, CCR}
and ML,, based on the true model. On the contrary, overparametrization does not
generally have a significant adverse effect on the finite sample bias. The CCR} and
ML, estimators in the VAR(1) and VAR(2) models have biases not much greater, on
the average, than the estimators based true models. They also have biases largely
comparable to those of the CCR; and ML; estimators in the ARMA(1,1) model,
respectively.

A quite different picture emerges, when we increase the sample size to n = 300.
For the models and estimators that we consider in the simulation, overparametriza- -
tion clearly seems less problematic than misspecification, even in terms of MSE’s.

The results largely coincide with the asymptotic theory. For the CCR procedure, the
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CCR? estimator based on the overparametrized model behave not much worse than
the CCR? and CCR; estimators respectively in the VAR(1) and VAR(2) models. It
is also seen that the CCR} estimator, in the VAR(2) model, outperforms the CCR]
estimator. Largely the same results are observed for the ML procedure. The non-
parametric CCR; estimator performs better in many cases than the other estimators,
both the CCR and ML estimators, based on incorrectly specified models.

Our results for n = 300 should, however, be interpreted with caution in this
context. What is observed is that overparametrization up to the order of VAR(4) looks
fine, and not that overparametrization is generally not problematic, when the sample
size is as big as 300. It seems obvious that overparametrization using higher order
VAR’s can still have a serious problem, even when the sample size is moderately large.
It is indeed suggested on a theoretical ground that the order of VAR be increased
at some rates of the sample size, to better approximate the unknown underlying
DGP. The strategy is commonly employed in practical applications. Long VAR's are
indeed frequently used. For long VAR’s with the order increased proportionately to

the sample size, our results for n = 100 may well be more relevant.

5. Conclusion

We have considered the VAR prewhitening method to estimate critical shortrun pa-
rameters in cointegrated models, which is required to implement commonly used
nonparametric methods of inference. This paper was motivated by a recent study by
Andrews and Monahan (1990) on an improved estimation of spectrum in stationary
regressions. It has been shown in the paper that the nonparametric methods by Park
(1990a), Phillips (1988, 1989) and Phillips and Hansen (1990) can easily be employed
in a parametric form, through the complete prewhitening of the stationary com-
ponents of cointegrating models given in parametric ECM form. The nonparametric
methods are directly comparable in this case to the ECM-based methods by Johansen
(1988, 1989) and Park (1990b). Yet, the VAR prewhitening procedure allows us to

analyze the spectrum of the prewhitened residuals, and provides very simple and ef-
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fective methods of inference in cointegrated models, which are valid against various
potential misspecifications.

To see the effect of the VAR prewhitening, based on both the true and pseudo-
VAR models, we performed a rather extensive Monte Carlo simulation. It was found
that the VAR prewhitening in general provides substantial finite sample efficiency
gains. The CCR estimator by Park (1990a) based on a pseudo-VAR model performs
better, significantly in most cases, than the original estimator with no prewhitening
procedure. This is so, in terms of both bias and MSE. When the true structure
of the shortrun dynamics is assumed to be known, the CCR estimator with the
complete VAR prewhitening behaves truly well. In particular, the resulting estimator
outperforms the exact ML estimator by Johansen (1988, 1989) in small samples,
clearly and often substantially, in terms of MSE.

The ML method by Johansen (1988, 1989) indeed appears to have a serious small
sample problem. When the underlying model implies large asymptotic variance for
the estimator, the ML method very often produces nonsensical estimates. It seems
extremely sensitive to outliers. The poor performance of the ML estimator in small
samples rapidly gets worse, as the order of the underlying VAR increases. In contrast,
the CCR procedure with VAR prewhitening performs very well also in small samples.
Almost all the cases that we have considered (including those for which we did not
report the details in the paper), the CCR estimator yields MSE’s which are reasonably
close to the theoretical asymptotic variances. Unknown shortrun dynamics seem to
be well taken care of by the mixture of parametric and nonparametric adjustments

that we have proposed in the paper, even for the samples of relatively small sizes.
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Appendix: Mathematical Proofs

Proof of Lemma 1. Let
CLy=I-C/L—----— Cpr LP71
and rewrite the ECM in M(b) as
HC(L)H ' HAz = HAuy_, + He,
Notice that HAz, = (Au}, Az}), and therefore,
HC(L)H*HAz = HCO(L)H ' G(L)w;

where
(L) = ( (1 —OL)I c})

The result in Lemma 1 follows, after some trivial algebra, directly from this.

Proof of Proposition 2. Define

Y= ,}Hglo L : Z E(ewe;_t) (A1)
()

for {e;} in (12), similarly as % in (14) for {w:}. Moreover, let

o1&
¢ = lim — Z E(eqw;_y) (A2)

=+ OO
M oskt+1

In the notation used in the text, we have

=Y % and T°=) X} (A3)
k=1 k=1
We also define
=Yy % (A4)
k=1
Notice that
¥ = = E; =0 (A5)
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by (13).

Post-multiplying the equation (12) by {w}_,} and taking limits to the “average”
expectations as in (13) and above definitions of £ and I in (Al) and (A2), we may
easily deduce that

Sr=0,% 1+ -+ 8, + X (A6)

It follows from the definitions of T in (A3) and I'° in (A4) that

F=Mndgff:m@+®urwc (A7)

1=0 j=1+1
by taking summation both sides of (A6), term by term, with respect to & from 1 to

0o, and rearranging terms.

Moreover, if we premultiply {e;} to the equation
Wy = wy_py P+ F Wi, F €k

and take the limits to the average expectations term by term as above, it can be

easily deduced that
P =250+ + 25,0+ 5 (A8)
Now summing up each term in (A8) with respect to k from 1 to oo, we have from
(A5)
re=T1@(1)~" (A9)

The stated result in part (b) is now immediate from (A7) and (A9).
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Table 1: Finite Sample Bias, MSE and Asymptotic Variance
Size: 100, DGP: VAR(1)

Bias

DGP OLS

CCR

CCRo

CCR,

CCR;}

CCR}

ML,

MLy

(ia) -.2822
(iia) -.4124
(iiia) -.3151
(iva) —.2600
(ib) -.2179
(iib) -.2536
(iiib) -.2034
(ivb) —.1775
(ic) -.1532
(iic) -.1485
(itic) -.1232
(ive) -.1120

~.2031
-.2836
-.1785
-.1180

-.1561
-.1658
-.1084
-.0750

-.1095
-.0937
-.0627
-.0446

-.1874
-.2417
-.1461
-.1009

-.1409
-.1352
-.0858
-.0634

-.0970
-.0738
~.0485
-.0379

—-.1474
-.1427
-.0588
-.0311

-.1041
-.0750
-.0358
-.0212

-.0679
-.0396
-.0211
-.0136

-.0636
-.0295
-.0014
-.0017

-.0404
-.0122
~.0008
-.0011

-.0239
-.0058
-.0008
-.0004

-.0857
-.0838
-.0406
-.0302

-.0604
-.0439
-.0242
-.0183

-.0398
~.0233
-.0140
-.0109

.0114
.0332
.0118
.0052

.0136
.0141
.0062
.0035

.0126 -.0042
.0060
.0029
.0019

.0562
.0435
.0223
.0059

.0035
.0349
.0147
.0045

.0015
.0036
.0033

MSE

DGP OLS

CCR

CCR, CCR; CCR! CCR; ML,

ML,

Avar

(ia) .1307
(iia) .2366
(iia) .1397
(iva) .0956
(ib) .0857 .
(itb)  .1003
(iib) .0634
(ivb) .0474

(ic) .0497
(iic) .0398
(iiic) .0259
(ive) .0204

.0810
1397
.0598
.0282

.0572
.0589
.0268
.0136

0369
0248
.0118
.0063

.0831
1259
.0509
.0247

.0684
.0529
.0229
.0118

.0382
.0229
.0104
.0056

.0634
.0738
.0223
.0085

.0461
.0353
.0130
.0058

.0331
0177
.0073
.0036

.0387
.05635
.0175
0068

0365
.0309
0112
.0049

0323
.0172
.0066
.0031

.0486
.0745
0267
.0127

.0448
.0394
.0158
.0077

.0383
.0214
.0089
.0046

.0551
.1426
.0253
.0071

.2029
.0468
.0124
.0052

6209
.0226
0071
.0033

n.a.
n.a.

1289

.0120

n.a.
n.a.
.0640
.0085

n.a.

6310
0727
.0062

.0246
.0501
.0153
.0058

0270
.0270
.0097
.0043

.0246
.0145
.0058
.0028

Note: The MSE’s of the ML, estimator reported as n.a. are unacceptably large. In these and
some of other cases with large reported values, the MSE’s do not appear to converge. The
simulations were based on the samples generated by the random number generator built in the
GAUSS-386 program. All the computations were done using programs written in GAUSS. The

number of iteration is 5000.



Table 2: Finite Sample Bias, MSE and Asymptotic Variance
Size: 100, DGP: VAR(2)

27

Bias
DGP OLS CCR CCRy CCR; CCR; CCR; CCR; ML; ML, ML,
(ia) -.3019 -.2472 -.2175 -.2017 -.1739 -.1153 -.1260 -.1484 .0271 0421
(ﬁaﬁ): ~ 4086 -.3817 -.3270 -.2881 -.2428 -.1007 -.1400 -.2176 .1977 -.1612
(ilia) -.4210 -.2709 -.2304 -.1706 -—.1482 -.0324 -—.0744 —.1387 0279 .0340
(iva) —.3696 -.1926 -.1770 -.1047 -.0946 -.0141 -.0529 -.0907 .0081 -.0001
(ib) -.2578 -.2126 -.1833 -.1704 -.1579 -.0899 ~-.1010 -.1445 0333 .0188
(iilb) —.3460 -.2570 -.2130 -.1888 -.1740 -.0563 -.0843 -.1628 0657 0115
(iiib) -.3006 -.1856 -.1568 -.1223 -—.1144 -.0215 —.0494 —.1093 0131  .0232
(ivb) -.2743 -.1365 -.1297 -.0839 -.0786 -.0109 -.0374 -.0761 .0065 .0086
(ic) -.2139 -.1786 -.1509 -.1398 -.1455 -.0699 -.0805 -.1425 .0333 .0353
(iic) —.2409 -.1759 -.1422 -.1273 -.1350 -.0343 -.0535 -.1305 .0519 .0448
(itic) —.2117 -.1271 -.1079 -.0871 -.0931 -.0145 -.0331 -.0906 .0135 .0173
(ive) -.1978 -.0950 -.0958 -.0641 -.0676 -.0081 -.0261 —-.0662 .0047 .0064
MSE
DGP OLS CCR CCRy CCR, CCR; CCR; CCR; ML; ML, ML, Avar
(1a) .1388 .098% 0907 0805 0634 .0486 .0545 .0519 .2420 n.a. 0157
(iia) .3113 .2056 .1740 .1480 .1161 .0752 .0990 .1085 n.a. n.a. 0607
(iiia) 2272 1132 .0934 .0626 .0485 .0268 .0417 .0452 .1315 4714 .0220
(iva) 775 .0618  .0547 .0272 .0212 .0113 .0221 .0200 .0131 .4743 .0091
(ib) .1043 .0768 .0692 .0619 .0554 .0389 .0451 .0535 5629 n.a. 0173
(iib) 1606 1033 .0858 .0733 .0662 .0400 .0518 .0638 m.a. n.a. 0327
(iiib)  .1223 .0584 .0485 .0351 .0306 .0168 .0242 .0292 .0382 .8565 .0140
(ivb) 1020 .0340 .0317 .0181 .0152 .0080 .0137 .0145 .0099 .0151 .0067
(ic) .0742 .0569 .0506 .0453 .0484 .0314 .0362 .0522 .6880 mn.a. 0157
(iic) .0826 .0527 .0432 .0372 .0403 .0217 .0274 .0399 n.a. n.a. 0176
(ilicy .0635 0297 .0252 .0191 .0199 .0098 .0136 .0193 .1314 .1449 .0083
(ive) .0552 .0179 .0182 .011G .0I08 .0052 .0082 .0105 .0065 .0190 .0044

Note: The MSE’s of the ML, and ML, estimators reported as n.a. are unacceptably large. In
these and some of other cases with large reported values, the MSE’s do not appear to converge.
The simulations were based on the samples generated by the random number generator built in
the GAUSS-386 program. All the computations were done using programs written in GAUSS.
The number of iteration is 5000.



Table 3: Finite Sample Bias, MSE and Asymptotic Variance

Size: 100, DGP: ARMA(1,1)

Bias

DGP OLS

CCR

CCRo

CCR,

CCR}

CCR}

ML,

ML,

(ia) -.2577
(iia) —.3980
(iiia) —.2846
(iva) —.2023
(ib) -.2100
(iib) —.2411
(iiib) -.1701
(ivb) -.1258
(ic) -.1500
(iic) —.1319
(itic) -.0927
(ive) -.0711

-.1980
-.3050
—-.1960
-1214

-.1606
-.1783
-.1124
-.0726

-.1141
-.0957
-.0604
-.0405

-.1995
—-.2748
-.1606
-.0925

-.1602
~-.1529
-.0867
-.0521

-.1126
-.0776
-.0433
-.0272

-.1403
-.0893
-.0171
-.0023

-.1004
-.0234
.0013
.0051

-.0632
-.0030
.0053
.0059

-.1199
-.0622
.0055
.0101

-.0830
-.0163
.0053
.0069

—.0469
-.0013
.0046
.0048

-.0896
-.0940
—-.0481
~.0309

-.0731
-.0555
-.0314
-.0214

-.0591
-.0349
-.0209
-.0152

-.0081

.0133
.0570
.0242
.0118

.0112
.0262
.0101

.0050
1867
.0139
0171

.0520
.3601
.0096

.0082 -.0016

.0116

.0103

.0385

-.0376

.0428

.0058 -.0035

MSE

DGP OLS

CCR

CCRg

CCRi

CCR: CCR;

ML,

ML,

Avar

(ia) .1126
(iia) .2269
(iia) .1207
(iva) .0630
(ib) .0842
(iib) .0977
(iib) .0497
(ivb) .0274
(ic) .0548
(iic) .0379
(iiic) .0184
(ive) 0105

0744
1573
/713
.0301
0596
.0687
.0298
.0135

.0433
.0292
.0122
0059

.0886
.1558

0644

0253

.0696
.0674
.0266
0113

.0494
.0289

0110
0052

.0656
.0764

6259

.0102

.0566
.0434
.0152
.0065

.0501
.0256
.0086
0040

.0516
.0742
.0265
.0111

.0449
.0435
.0149
.0066

0433
.0252
.0081
.0038

.0460
.0874
.0339
.0144

0507
.0514
.0196
.0088

.0532
.0294
.0109
.0053

.0392
2932
.0444
.0114

1196
1149
1277
.0070

2236

n.a.

0167
0041

n.a.
n.a.
797
.9091

n.a.
n.a.

.0962

.0176
n.a.
n.a.
n.a.

.0100

.0190
.0585
.0201
.0076

.0260
.0328
.0115
.0049

.0302
.0181
.0064
.0030

28

Note: The MSE’s of the ML;, ML, and ML, estimators reported as n.a. are unacceptably large.
In these and some of other cases with large reported values, the MSE’s do not appear to converge.
The simulations were based on the samples generated by the random number generator built in
the GAUSS-386 program. All the computations were done using programs written in GAUSS.
The number of iteration is 5000.
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Table 4: Finite Sample Bias, MSE and Asymptotic Variance
Size: 300, DGP: VAR(1)

Bias

DGP OLS CCR CCRo CCR; CCRj CCR; ML; ML,

(ia) -.3196 -.2157 ~.1409 -.0879 -.0132 -.0231 .0043 .0069
(iia) -.5226 —.3096 ~.1812 -.0760 .0054 -.0088 .0149 .0179
(iiia) -.3771 —.1736 -.0964 -.0245 .0045 -.0027 .0058 0062
(iva) —.3038 —.1047 -.0664 -.0122 .0021 -.0031 .0024 .0023

(ib) -.2461 -.1658 ~.1045 -.0582 -.0065 -.0145 .0039 .0062
(iib) -.2975 -.1689 —0891 -.0311 .0057 -.0012 .0092 .0111
(iiib) -.2293 -.1004 ~.0517 -.0120 .0037 -.0001 .0044 .0050
(ivb) -.1977 -.0642 -.0396 -.0069 .0020 -.0009 .0022 .0022

(ic) -.1721 -.1156 _0702 -.0344 -.0020 -.0077 .0034 .0056
(iic) -.1649 -.0909 -.0441 -.0130 .0044 .0011 .0058 .0071
(iiic) -.1326 —.0558 ~.0270 -.0057 .0028  .0009 .0032 0037
(ive) -.1197 -.0370 —.0225 -.0037 .0017 .0001 .0018 .0020

MSE

DGP OLS CCR CCRo CCR; CCRj CCR; ML; MLy Avar

(ia) .1839 .0989 0698 .0461 .0201 .0326 .0295 .0330 .0246
(ila) 4209 .1864 1132 .0615 .0520 .0556 .0549 .0627 .0501
(iiia) .2199 .0641 0361 .0172 .0159 .0175 .0160 0179 .0153
(iva) .1432 .0257 0157 .0066 .0061 .0069 .0060 .0067 .0058

(ib) .1208 .0709 0541 .0383 .0315 .0345 .0326 .0374 .0270
(iib) .1506 .0681 0436 .0206 .0282 .0301 .0292 .0333 .0270
(iiib) .0869 .0260 0159 .0104 .0100 .0108 .0101 .0113 .0097
(ivb) .0633 .0117 0078 .0046 .0044 .0049 .0044 .0049 .0043

(ic) .0697 .0458 0389 .0305 .0288 .0314 .0300 .0346 .0246
(iic) .0529 .0263 0191 .0154 .0152 .0163 .0156 .0178 .0145
(iiic) .0318 .0107 0074 .0060 .0059 .0063 .0059 .0067 .0058
(ive) .0247 .0053 0039 .0030 .0029 .0031 .0029 .0032 .0028

Note: The biases and MSE’s reported here are three and nine multiples, respectively, of the
actual numbers. The theoretical asymptotic variances are also multiplied by nine, and are the
same as those given for n = 100. The simulations were based on the samples generated by the
random number generator built in the GAUSS-386 program. All the computations were done

using programs written in GAUSS. The number of iteration is 5000.



Table 5: Finite Sample Bias, MSE and Asymptotic Variance
Size: 300, DGP: VAR(2)
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Bias
DGP OLS CCR CCRy CCR; CCR} CCR; CCR; ML, ML, ML,
(ia) -.3666 -.2906 -.1931 ~1743 -.1603 -.0431 -.0497 -.1497 .0072 .0094
(iia) -.7255 -.4974 —.3245 -.92749 -.2723 -.0290 -.0460 —.2637 .0160 .0181
(iiia) —-.5685 —.3030 -.1958 -.1335 -.1585 —.0038 -.0150 -.1568 .0058 .0060
(iva) _4781 -.1893 -.1487 -.0750 -.0989 -.0003 -.0084 -.0987 .0027 .0025
(ib) -.3146 -.2513 -.1624 ~.1530 -.1529 -.0311 -.0373 -.1478 .0073 .0095
(iib) —.467% -.3121 -.1890 -.1713 -.1909 -.0114 -.0219 -.1881 .0090 .0101
(iiib) -.3842 -.1975 -.1232 -.0959 -.1215 -.0018 -.0090 -.1209 .0040 .0041
(ivb) -.3402 -.1290 ~.1055 -.0625 -.0823 -.0003 -.0058 -.0824 .0019 .0018
(ic) -.2628 -2124 ~.1340 -.1301 -.1484 -0231 -0286 —1470 .0064 .0084
(ic) —.3007 —.2041 —.1174 -.1140 —.1467 -.0054 -0121 -1460 .0052 .0058
(iiic) -.2600 -.1307 ~.0802 -.0693 -.0985 -.0008 -—.0056 -.0984 .0026 .0026
(ive) -.2374 -.0872 -0776 -.0495 -.0707 -.0002 -.0040 -.0709 .0013 .0012
MSE
DGP OLS CCR CCRy CCR; CCR} CCR; CCR; ML, ML, MLs Avar
(i&) 9235 1468 .0906 .0752 .0603 .0281 .0303 .0526 .0208 .0229 .0157
(ila) .7355 .3913 .2290 1791 .1618 .0619 .0685 .1542 .0713 .0815 .0607
(iiia) 4596 .1588 .0897 .0537 .0587 .0233 .0256 .0578 .0249 .0277 .0220
(iva) .3281 .0679 0470 .0200 .0241 .0098 .0108 .0239 .0099 .0108 .0091
(ib) .1686 .1143 0704 0614 .0567 .0259 .0278 .0533 .0227 .0250 .0173
(iib) .3247 .1678 .0939 0799 .0846 .0338 .0366 .0829 .0374 .0425 .0327
(iiib) 2194 .0733 .0417 .0302 .0358 .0147 .0158 .0356 .0157 .0175 .0140
(ivb) 1715 .0343 .0258 .0140 .0171 .007r .0077 .0171 .0073 .0080 .0067
(ic) .1208 .0850 0523 .0474 .0527 .0220 .0237 .0518 .0208 .0235 .0157
(iic) .1495 .0769 .0424 0388 .0495 .0184 .0199 .0492 .0199 .0225 .0176
(mc) 1042 .0344 .0201 .0166 .0228 .0087 .0093 .0228 .0092 .0102 .0083
(ive) .0862 .0172 0148 .0089 .0122 .0046 .0050 .0122 .0048 .0053 .0044

Note: The biases and MSE’s reported here are three and nine multiples, respectively, of the
actua) numbers. The theoretical asymptotic variances are also multiplied by nine, and are the
same as those given for n = 100. The simulations were based on the samples generated by the
random number generator built in the GAUSS-386 program. All the computations were done
using programs written in GAUSS. The number of iteration is 5000.



Table 6: Finite Sample Bias, MSE and Asymptotic Variance

Size: 300, DGP: ARMA(1,1)

Bias

DGP OLS

CCR

CCRo

CCRy

CCR; CCR;

ML,

ML,

(ia) —.2948
(iia) -.5118
(iiia) -.3397
(iva) -.2307
(ib) -.2412
(iib) —.2876

(ivb) -.1369
(ic) -.1726
(iic) -.1491
(iiic) -.0997
(ive) —.0746

-.2161
-.3573
-.2076
-.1209

-.1763
-.1965

-.0708

-.1255"

-.1016
-.0603
-.0392

-.1592
-.2252
-.1086
-.0570

-.1280
—-.1125
(iiib) -.1907 -.1144 -.0544
-.0308
-.0900
-.0537
-.0265
-.0158

-.0625
-.0045
0217
0167

-.0256
.0347
0271
.0185

-.0010
.0333
.0220
.0157

-.0554
-.0093
.0068
.0054

-.0333
.0025
.0045
.0036

-.0124
.0043
.0034
.0028

~.0299
-.0320
-.0156
-.0100

-.0260
-.0210
-.0120
-.0083

-.0250
~-.0168
-.0104
-.0075

.0047 -.0038
.0142 -.0017
.0078 -.0051
.0039 -.0048

.0051 -.0062
.0081 -.0060
.0049 -.0060
.0029 -.0050

.0057 -.0107
.0058 -.0092
.0037 -.0070

.0025 -.0055

MSE

DGP OLS

CCR

CCRyq

CCR:

CCR}

CCR}

ML,

ML,

Avar

(ia) .1555
(ia) 4194
(iiia) .1889
(iva) .0881
(ib) .1162
(iib) .1516
(iiib) .0669
(ivb) .0342

(ic) .0746
(iic) .0508
(iiic) .0222
{ive) .0120

.0922
.2413
0876
.0318

0738
.0902
.0328
.0135

.05632
.0338
.0126
0057

0764
.1667
.0501
.0165

0652

.0646
.0204
.0079

0521
0271
.0091
.0039

.0374
.0589
0217
.0085

0379

0373
.0136
.0059

.0404
.0226
.0078
.0036

.0327
.0672
.0229
.0091

0342
.0374
.0128
.0057

.0365
.0203
.0070
.0033

.0271
0673
.0235
.0090

.0345
.0388
.0136
.0059

0398
.0218
0077
.0036

0234
.0745
.0234
.0089

.0324
.0401
.0131
0057

0387
0215
.0072
.0034

.0269
.0742
.0239
.0091

0370
.0410
.0137
.0060

.0450
0227
0077
0036

.0190
.0585
.0201
.0076

.0260
.0328
.0115
.0049

.0302
.0181
.0064
.0030
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Note: The biases and MSE’s reported here are three and nine multiples, respectively, of the
actual numbers. The theoretical asymptotic variances are also multiplied by nine, and are the
same as those given for n = 100. The simulations were based on the samples generated by the
random number generator built in the GAUSS-386 program. All the computations were done
using programs written in GAUSS. The number of iteration is 5000.



