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1. Introduction

This paper provides some new answers to two old questions in the theory of optimal
intertemporal allocation. Consider a set of optimal investment plans, all of which start from
the same initial capital stock but which differ in terms of the decision horizon. The
insensitivity question is: are finite horizon optimal investment plans, and the associated level of
maximized utility, close to each other for different specifications of horizon length? On the
other hand, the continuity question is: is each finite horizon optimal plan close to some infinite

horizon optimum?!

The first question is important if one believes that the "true" horizon is finite but, either
the exact horizon length is not known with certainty or that the decision-maker has incomplete
information about technology and preferences beyond some point in time. Insensitivity of
optimal choices and values has great practical significance since it allows a decision-mai(er to
plan for the distant future by making shorter-run decisions which can be updated in the light of
new information. On the other hand, if we believe that the logical horizon is infinite, and
many authors have argued that this must be so especially at the national level, we have to ask
how good an approximation is a long but finite horizon. Again, we might be restricted to
finite horizon decision-making either because of the informational reasons discussed above or
simply because of greater computational ease. (These arguments can be found in more
detailed form in, for instance, Chakravarty (1969, Chapters 2 and 3) and Mckenzie (1976)).
Note that the two questions are conceptually distinct and an affirmative answer to one does not

necessarily imply a similar conclusion for the other.2

Both of these questions have been comprehensively ‘studied in the one-sector or
aggregative capital accumulation model (Chakravarty (1962), Manneschi (1966), Brock (197 1),
Majumdar-Nermuth (1982), Mitra (1983) and Mitra-Ray (1984)). Brock's classic treatment,

and the subsequent generalizations of his results, have established insensitivity and continuity



of finite horizon decision-making in the one-sector model provided preferences are convex.
Unfortunately, the analyses and crucial intermediate results of the aggregative model do not
extend to the multi-sectoral context- indeed the results are not true under identical hypotheses

(see the further discussion in Sections 3 and 4).

The multi-sectoral model has been studied more sparsely. Gale (1967) established
insensitivity and continuity results in a convex, stationary (i.e. with time-independent
technology and preferences) framework and his results were extended to a non-stationary
model (under some strong hypotheses) by Mckenzie (1976). The only treatment that fully
accomodates technological and preference changes and allows for non-convexities is contained
in an important paper by Nermuth (1978). Nermuth confined himself to the continuity
question alone. Using an innovative topological approach to the problem he tried to show that
under some strong conditions on infinite horizon preferences but otherwise mild restrictions,
continuity does indeed obtain. However, Nermuth's main theorem is false (Example 4.3
below). Hence, both the sensitivity and continuity questions remain open in general
multi-sectoral models, which are precisely the models we study in this paper. We now briefly

describe our results.

We start with the investment sensitivity question: if the decision horizon were T' rather
than T, how much of an effect would that have on the optimal investment levels, especially in
early years of either plan. We argue by way of an example, (Example 3.1), that investment
insensitivity is a specialized feature of the aggregeitive model which will not hold in a general
multi-sectoral framework. Given substitution possibilities between sectors, the composition
and time profile of investment may vary significantly between horizons T and T' - to best
exploit technological progress or increasing returns. We then propose that the appropriate
measure for such models is value sensitivity- how do maximized utilities (normalized for
horizon length in some fashion) change with the length of the decision horizon? We take as

our criterion average utility or utility per time period. We show that if the technologies are



productive and over time technologies and preferences tend to some limit, then the maximum
average utility for any two long plan horizons T and T' are indeed close to each other
(Theorem 3.2). We further show that the two assumptions are minimally sufficient in that the
conclusion is false in the presence of exhaustible resources (Example 3.4) or arbitrary

time-dependence in technology and preferences (Example 3.3).

The continuity question is known not to have a positive answer in some well-known
examples (for instance the cake-eating examples of Gale (1967)). Note that a number of
alternative criteria have been employed in the infinite horizon problem- and we investigate a
number of the alternatives. We show that in the original Ramsey (1928) formulation of
infinite horizon preferences, such continuity does indeed obtain (Theorem 4.4). A similar
conclusion holds if infinite horizon preferences are continuous (as would be the case under
discounting) (Theorem 4.1). Unlike the aggregative model however, the existence of a unique
catching-up optimal plan does not imply that any finite horizon optimal plan is close to it

(Example 4.5).

The main insensitivity and continuity results are easily generalizable to other
intertemporal problems (in addition to the multi-sectoral growth model studied here). For
instance, all of these results will be seen to carry over to a non-stationary dynamic

programming problem, with the appropriate modifications in hypotheses.

Section 2 sets up the model. Sections 3 and 4 analyze the sensitivity and continuity

issues while Section 5 concludes.

Let R” be n-dimensional real space with || - || denoting the max norm on this space (IR:I_



will denote the non-negative orthant). For any x, y in R", x > y means X, 2y, , i=1.mx>y
means X >y, x # y. Let N be the set of non-negative integars. Finally, e € R™ will denote the

unit vector; € = (1,1....1).

For any set Y, let P(Y) denote the collection of all subsets of Y. A correspondence I’
from a topological space X to (subsets of) a topological space Y is said to be upper
semicontinuous (usc) at X,, if for each open set G containing F(xO), there is a neighborhood
U(xO) such that x € U(xO) 3 I'(x) ¢ G. T is upper semicontinuous on X if it is usc at each
point of X and if, in addition, I'(x) is a compact set for each x in X. T is lower
semicontinuous (Isc) at X if for each open set G intersecting F(xo), there is a neighborhood
U(xO) such that x € U(xO) 3 I'(x) n G # ¢. The correspondence is Isc on X if it is Isc at all X0
€ X. When I is both usc and Isc it will be said to be a continuous correspondence. Suppose
that Y is a metric space. A sequence of correspondences Fn will be said to converge
uniformly to a correspondence I if for all € > 0, there is n' < = such that p(F(x),I‘n(x)) < g, for

all x, whenever n > n' (where p is the familiar Hausdorff metric on subsets of Y).

2.2  Feasible Plans

Production relations in the multi-sectoral model are specified by a sequence of
production correspondences, (Ft)teN’ Ft : IR:I_ - P([Rﬁ). Ft(x) is the set of possible outputs in
period t from an input x in period t-1. Following standard notation, we will use X:CpY, 1O
refer to the investment, consumption and output in period t. Further, xi (}esp. cit,yi) will

denote the investment (resp. consumption and output) of commodity i in period t.

A finite horizon allocation problem is characterized by a triplet of parameters § =
(x,a,T) where x € |R_?_ is the inital capital stock, a € IR?_ is the target stock and T € N is the
decision horizon. Much of the analysis that follows will involve alternative specifications of

the horizon T for fixed x and a=0. A &-feasible plan or program is (xt, Ct)tzo such that



Xg+Co € Fo(x) 2.1)
X, +CE Ft(xt-l)’ t=1,.T 2.2)
X >a 2.3)
X, 20, C, 20 t=0,.T 2.4)

An infinite horizon feasible plan is x,c = (xt, ct)t:O such that (2.1), (2.2) and (2.4) are

satisfied for all t in N. We will use the notation Q to refer to the set of infinite horizon
feasible plans (respectively QT for T-horizon feasible plans). A pure accumulation program

(X €y i8 defined by ¢, =0, t2 0 and X, € F(x, ), t20,% y =x.

2.3 Preferences and Optimization Problems

The preference structure is defined by a sequence of time-dependent utility functions

(ut)t N’ where u: IRE -+ R. Utility is defined on consumption.

* %
The finite horizon optimization problem is to choose a {-feasible plan (x C t)tzO such

that

T , T
tEO ut(c t) > tEO ut(ct) (2.5)

for all £-feasible (xt,ct)tzo. Clearly, this optimization problem is equivalent to maximizing the
T
average or per period utility, i.e. max __L_ ) u(c,) over &-feasible plans. For € = (x,0,T),

T+1 t=0
denote the maximized utilities or value function VT(x) (and vT(x) for the average value).

There are several different ways in which infinite horizon preferences can be specified.

We outline here the alternatives which we discuss.

Iofinite-Sum Utility Functi



The obvious extension of finite horizon preferences is to define horizon utility as

Ux,c)= X ut(ct), (2.6)
t=0

~ o~

The problem with (2.6) is of course that the infinite sum may not be well-defined, or
finite, for all feasible programs. If it is, then optimality is defined in the usual manner and we
shall denote the associated value function, V(x).‘ The best-known example of well-defined

preferences under this criterion is that of discounted utilities; u = & u.

ﬂ’ R II -1- E 3
Denote bt = sup ut(ct), c, € Ft(xt-l)’ where (xt, Ct)t ¢N 1s some pure accumulation

program. Ramsey (1928) considered the following:3

-]

UG ©) = I ) - b @)

~ o~ =

(2.7) is non-positive, under standard monotonicity conditions. If U is finite for some subset of
infinite horizon plans, optimality can be defined in the obvious way on this subset; let W(x)

denote the value function (and WT(x) its T-horizon analog).
hing- feren

x*, c* catches-up to another feasible plan x, c if:

~ ~ ~ o~

__ T
lim % [ut(ct) - ut(ct*)] <0 (2.8)
T-e t=0

An optimal program is one that catches up to all other programs. Clearly, optimality

under either of the first two criteria, implies optimality under the catching-up.

24  Assumptions

The maintained assumptions will be: For all t

(Al 1) (Closedness) Ft is a non-empty continuous correspondence



ii) (Boundedness) AB>0st|[x[[>B2]yll<fx|.YyeFx.
iii) (Monotonicity) ye Ft(x) 3y'e Ft(x') ifx'2x,y'<y

(A2) i) (Continuity) u, is a continuous function.
ii) (Monotonicity) c'2c3 ut(c') 2 ut(c).

(A1) - (A2) are the standard compactness-continuity and free disposal assumptions.
Note that we do not make any convexity assumptions on production and preferences.
Time-dependence admits the possibility of technological progress, although we do not allow

unbounded progress (note Alii). In the sequel we make some further assumptions.

3. Sensitivity of Finite Horizon Pl i Val

In the aggregative, convex capital accumulation model, the following monotonicity

result has been proved for optimal investment choice: suppose x(T) and x(T') are optimal

plans for horizons T and T' and terminal stock zero. If T > T' then xt(T ) 2 xt(T'), for all t

(Brock (1971), Theorem 2)*. An immediate corollary is that there is a limit program x, whose

period t investment, it, is defined as 1im x£(T ). In particular, this implies insensitivity of the
T

A
initial investment choices; for all € > 0 and m € N, there is T such that ||xt(T ) - xt(T')|| <gt=
0,1..m, whenever min(T,T") > 'II\‘ Unfortunately, this critical monotonicity result, and the
implied insensitivity, of the aggregative model simply does not carry over to the multi-sectoral

context. We present a brief illustrative example.

Example 3.1° F, and u, satisfy (A1)-(A2) and additional convexity properties. But
period O investment is very sensitive to horizon length. In particular, ||jx(T+1) - x((D)| = 1,
forall T 2> 1.

Details: Let n = 2. Recall that investment (resp. consumption) in period t of the two

1 1 2

commodities is denoted x e x% (resp. ¢ € t). Suppose that:



1

Fx_ 1>

2 1.2 02, Ao i ;
x 7D =y y ek, 1y Sx [y, i=12), 121

Fooc o) = (1 yDerl v+ yP el x) 3.1)

Let (mt)t eN be any strictly increasing, bounded sequence. The preferences are defined as:

ut(ci, c%) =m, ci, i= 1if t odd and i=2, if t even (32)

1 2, _
uO(CO, cO) =0

Finally, let the initial stock x = (1/2, 1/2) and the terminal stock a = (0, 0). It is easy to
see from (3.1) and (3.2) that (Al) - (A2) are satisfied and further that technology and

pl'CfCl‘CDCCS are convex.

- . . . . 1_, 2_
Claim: For T odd. the optimal period Q investment is given by X0 1, X 0 whereas for T
1_4 2_
even, xO—O,xo- 1.
Given (3.1)-(3.2) and any (x(l),xg), in an optimal policy the only consumption that takes
place is at the terminal and penultimate dates ; for instance when T is odd, c,}, = x(l), C’%—l = x(z)

and all other consumption is zero. But a unit of consumption yields greater utility in period T

than at T-1. Hence, given the substitution possibilities in period 0, the claim follows.g

Remark It is clear that one could modify the example to one in which utility is
time-invariant. Further, there are more complex examples in which technologies admit

progress (i.e. Ft +1(x) D Ft(x) for all t and x).

Example 3.1 is neither cause for despair nor surprising as far as multi-sectoral
insensitivity is concemed. In the presence of substitution possibilities investment insensitivity
is asking for too much in any case. Besides, from the point of view of a decision-maker who
is unsure about the length of his decision horizon, the relevant question should surely be: is the

level of maximized utfliiy insensitive to the specification of plan horizon? Surprisingly, all of
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the extant analyses are concerned with investment insensitivity alone. Of course, for the
question to be meaningful, we have to normalize the sum of utilities appropriately for different
values of T. The most obvious normalization is to take averages. Recall that vT(x) is the
maximum average utility from initial state x. The insensitivity question we now analyze is:

under what conditions are vT(x) and v..(x) close, for long but distinct plan horizons T and T?

We present a positive result on value insensitivity. For this result we need two
additional assumptions and a further piece of notation. Let B = Pe € IRE, where B is the upper

bound on the production correspondence, given by Al ii).
(A3) (Uniform Productivity) 0 <x <B 23 y(x) € Ft(x), for all t, s.t. x < y(x)

(A3) essentially says that that growth is possible for all low stocks - i.e. for all x s.t. 0

< x < B. Since utility and technology is time-dependent, we also need the following:

(A4) (Limiting Technology- Preferences) i) On the compact set {ce IR::O < ¢ € B}, the

. . - *
functions u, converge uniformly to a function u , as t-e.

ii) On the compact set {x € IR:: 0 < x < B}, the correspondences Ft converge uniformly to a

%*®
correspondence F , as t-».

For any infinite horizon feasible plan (x, c), define the long-run average utility as:

. T-1
ux, )= 1M1y ue) (3.3)
~ e~ Tae T t=0

The long-run average value for initial state x, is defined as v(x) = sup u(x, c), (x,c)

~ ~ o~

feasible from x. We are now ready to prove the following value insensitivity result:

Theorem 3.2 Under (A1)-(A4), there is v* € R such that
i) v¥= lim vT(x), 0<x<B (34
Ta o

ii)  v* is the long-run average value. for all 0 < x < B. In particular, average values are
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sufficiently long; ¥ € >0 and 0 <x < B,0 < x' < B, there is £ <o such that |vp(x) - vp.(0) | <

¢, whenever min (T, T') 2 %
Proof: See Appendix A. B

A brief discussion of the two assumptions (A3) and (A4) is in order. It is clear that if
the average values have to satisfy some limiting behavior, then the environments of
decision-making (the utility function and production correspondence) have to tend to some
limiting behavior as well. Indeed, Example 3.3 shows that if such is not the case, the average
values could behave arbitrarily over time. Uniform convergence is possibly too strong a
requirement for the result- we think that pointwise convergence might suffice but we have
been unsuccessful in proving that. Of course, the stationary model trivially satisfies. (A4). The
growth assumption, (A3), guarantees that the asymptotic behavior of average values are
independent of the initial state and in its absence such independence may not hold (Example

3.4 below). It should be noted that the growth assumption is standard.®

From the proof it can be seen that the result holds more generally for (non-stationary)
dynamic programming problems. There are well-known examples in dynamic programming
(for instance, see Ross (1983)) in which the time average values do not converge to the
long-run average value as the horizon length goes to infinity. Theorem 3.2 establishes then
that in continuous, compact problems satisfying productivity such convergence does obtain. It
should be noted that in a stationary dynamic programming model, Dutta (1990, Theorem 3)
gives conditions under which (infinite horizon) discounted average values converge to the
long-run average value when the discount factor goes to one. That result is used in the

establishing Theorem 3.2. We turn now to the examples:

Example 3.3 WMW
it he horiz
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Details: n=1 and the production function is
_ _[2x  x<12
£ = () = { x  xs2 3.5)

Let ﬁt be any sequence of functions tflat are individually continuous (C” even), strictly

increasing and strictly concave and which satisfy the following property

T-1 T-1

me _Lor oac> Hmo oy e (3.6
Taee T t=0 2 Tow T t=0 2

Now define

u(c) = 3.7

ﬁt(c) c<12
©=1

'ﬁt(l/2) c>12

So the specification satisfies (A1) - (A3). It does not however satisfy (A4). An easy
way to see that is to notice that if ut(1/2) does in fact converge, then so must the averages and
hence one cannot satisfy (3.6). It is clear that with initial state x = 1 (and hence f(x) = 1), the
optimal T-period plan is x;
are sensitive to the horizon. Indeed, one could modify the example in an obvious fashion to

=c = 1/2,t =0, ... T-1. But then (3.6) implies that average values

yield up to a countable set of limit points for the sequence of averages, vT(l). One could also
modify the example straightforwardly to show that with a stationary utility function but a

non-stationary production correspondence, which additionally violates (A4ii), a similar

sensitivity holds.” B
Example 3.4 Technology and preferences satisfy (A1) - (A2) and (A4), but average
1 .. he initial stoc]
. max(x, - 1/2 + 2x), x < 3/4
Details:  f(x)= { 1 x > 3/4

uc) =c

It is casy to check that v1(x) = 0, for x < 1/2, v1 (x) = 1/4 for x > 1/2. Clearly, the
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technology and preferences satisfy (A1)-(A2) and (A4).

4 Continuity of Finite Horizon P! { Val

We turn now to the continuity question - is every finite horizon optimal plan (for some
admissible set of terminal stocks) "close" to some infinite horizon optimal plan, for long but
finite horizons? We know that some conditions, in addition to the maintained assumptions
(A1) - (A2), will need to be placed in order to obtain affirmative answers to these questions.
This can be seen from the Gale "cake-eating" example (Gale (1967), Example 2) in which the
finite horizon optimal policies converge to the pure accumulation program, which is clearly

not infinite horizon optimal.

We present two positive results: Theorems 4.1 and 4.4. Theorem 4.1 generalizes and
corrects the only available continuity result in multi-sectoral, non-convex models - that of
Nermuth (1978). Theorem 4.4 pertains to the original Ramsey formulation and is related to
the Gale (1967) result for the convex, stationary model. The analysis in this section is carried
out in a spirit similar to that in Nermuth (1978). In particular, we treat the set of optimization
problems as a parametric family with the horizon as the relevant parameter. Continuity is
established by showing that the correspondence of optimal choices (as a mapping from T to

the set of feasible plans), is upper semi-continuous at T = .
Theorem 4.1 Suppose that (A1) - (A2) hold and further that on the set of feasible
iofinite hori ] ; initial 1 10 ¥ u() is fini ]
=0 '°
. i 1 1 ] Tl
i) As T = oo, VT(x) 4+ V() =max X ut(ct) ,s.t.x,ceQ
t=0 ~ o~

i)  foralle>0and T <, there is T_ such that whenever the horizon length is T 2
T, for any T'-optimal program to target stock zero, x(T"), ¢(T"), there is an infinite horizon
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optimal plan (x*, c*) satisfying
| x(T) -x* || <€, t=0,..T 4.1
e T -c*ll<e t=0,..T (4.2)

Proof: See Appendix B. =

Remark 1 As the reader can verify from the proof of Theorem 4.1, (Al) - (A2) are
unnecessarily strong requirements. Define an aftainable stock z as z € Ft(x) for all t and x.
Weaken (Al) to (Al)": Ft is a non-empty usc correspondence, for all t. Then, under only (A1)’
and the restrictions on infinite horizon preferences stated above, Theorem 4.1 holds if the

terminal stock for the finite horizon problems is required to be attainable.

Remark 2 Nermuth (1978) sought to prove. the theorem under (A1l)', (A2i); and a

T
considerably stronger condition on infinite horizon preferences ( ¥ ut(ct) converges uniformly
t=0

to a continuous function ¥ ut(ct)). However, he did allow a larger set of terminal stocks. A
t=0

target stock b is called Nermuth-attainable if there is a feasible infinite horizon plan x, ¢ with

~

X, 2 b, for somet e N.8 The theorem is false, however, under these hypotheses. The set of

admissible target stocks is too large, as is shown by the following example.

Example 4.3 Ft(X)={y€|R+:ny},teN
0, t>1
ut(C)={
c, t=0

Let b = 1 and initial stock x = 1. Clearly, the only feasible finite horizon plan is x =
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1, c, = 0, t = 0,..T while the infinite horizon optimal plan is X, = 0,t20, o= 1, ¢, = 0,t>0.g

Remark 3 The restriction to attainable stocks is possibly unnecessarily strict. The set of
terminal stocks for which Theorem 4.1 holds is likely to be larger. Given any sequence (x(T),
lim _,

X

c(T)) of optimal plans, letx',c'bea subsequential limit, as T »». Letx'=___ t

~ o~ {00

and let x =
inf x' over the set of "limit plans”, x', ¢'. We conjecture that the theorem holds for terminal

~

stocks 0 < b < x. This result is already known in the aggregative model and was proved by
Brock (1971).

We now prove a continuity result when the Ramsey utility function, (2.7) is

well-defined.
Theorem 4.4 &Wm@)_mmmniﬂmﬁ-ﬁﬂbm L [ufe)- bl>
t=0
_ w for some feasible program (x, ¢) € Q. Then.
. T . .
i) as T - =, W = Max tEO fu(c) - by (over finite horizon feasible plans). converges to
W = Max 22_0 [u(c) - by (over infinite horizon feasible plans).
t=
ii) Theorem 4.1 ii) holds.
Proof: See Appendix B o
Remark 1 Of course a corollary identical to Corollary 4.2 is valid in this case as well.

Remark 2 The condition that there are feasible plans such that Y [ut(ct) - bt] > - =, is
t=0

precisely the original Ramsey (1928) construction, to circumvent the problem of ill-defined

infinite horizon preferences.

Remark 3 The condition is also related to the criteron for "good" programmes employed
by Gale (1967) in the convex, stationary model. Gale employed a weaker notion in which b =
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b was the utility from golden-rule consumption. In his model he proved the existence of good
programmes and the consequent insensitivity of finite horizon choices. In the non-convex,

time-dependent model there does not seem any way out but to assume this condition.

Remark 4 As Corollary 4.2 shows, in the presence of uniqueness of optimal choices,
continuity implies insensitivity. It is easy to construct examples in which without such
uniqueness, optimal choices are continuous at infinity but sensitive to horizon length. Of

course, the cake-eating example is an instance of the converse: insensitivity and discontinuity.

The hypotheses of Theorems 4.1 and 4.4 include restrictions on infinite horizon
preferences which guarantee the existence of infinite horizon optima. An alternative question
is: suppose that an optimal plan is known to exist, for instance under the catching-up criterion.
Are the conclusions of Theorems 4.1 and 4.4 valid under this weaker hypothesis? The answer
is known to be yes in the aggregative model (Brock (1971)). We now show that the answer is,

in general, no in the multi-sectoral model.

Example 4.5 There is a unique catching-up optimal plan (x*, c*) and unique finite
horizon optimal plans (x(T), c(T)). However. 1o finite horizon optimal plan is close to the
infinite horizonal optimum. In particular, || co(T) - co* || = 1, forall T
Details n=2. Letx = (1/2, 1/2)
FO(x) = {y1 + y2 < xl + x2}
Fe = (6L y) vl <), y? e 1)) (43)
1
. le x <1
where f(x)) = { ) 1o, (4.4)
0 x2 < %1

2
red={10y 221, “5)

and %1 is an increasing sequence such that N>LY = 1.9 Finally,
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2

ut(cl, A=cl+c (4.6)

Essentially the two commodities are perfectly substitutable in production in period zero
and thereafter follow totally independent processes. Moreover, for commodity 2's production
to get off the ground, the aggregate of the commodities has to be used in the second
production process in period zero. So the choices are: a) only produce commodity 1 from
period 1 onwards (and then the best policy is X =C = 1, for t=0,..T-1) or b) switch to

commodity 2 and the discrete alternatives are x = (1, 1% 71"""[‘-1’ 0, 0...) with an associated ¢

= (0, 0, ...0, T 0). Since %>t the finite horizon optimum is b), for T = T". But clearly the

unique catching-up optimum is ct, c% =1,0, forall t.g

5. Conclusions

This paper established insensivity and continuity results in general multi-sectoral
intertemporal allocation problems. We proposed that the appropriate measure of insensitivity
ought to be value insensitivity. We further showed that in growth models, under standard
assumptions, such insensitivity does indeed obtain. The principal difference with aggregative
analyses is that investment insensitivity can fail easily and unsurprisingly. For continuity, it
suffices to have some structure on infinite horizon preferences and we studied these structures
for some often used preferences. All of the results were proved by primal topological
arguments. This allowed us to dispense with convex structures in both technologies and
preferences. Much of the analysis extends straightforwardly to other intertemporal problems in

€Conomics.
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Appendix A
In this appendix, we prove Theorem 3.2. The proof is long and en route we prove two
other results which are of independent interest. ‘Some additional notation needs to be

introduced at this point. Consider any optimization problem with time-independent utility

function and production correspondence (G,f’). For discount factor 6 € [0,1), define
Vs =max I (1-8) &' u(c) st A1)
t=0 ,

A
X=X X +C¢€ F(xt-l)’ t=0,1.. (A2)

t

So 3 S(X) is the discounted average value under the stationary problem defined by G 1/5
For the same specification of utility and production, let C(x) (resp. CT(x)) denote the long-run
average (resp. T-period average) value. So the superscript on the values will refer to the
utility-production specification whereas the subscript will describe the optimization parameter.
In particular, for (u*,F*) - the limiting utility and production for the sequences (ut)t eN and
(Ft)t eN - the notation will be (v;, v;., v*). Finally, abusing convention somewhat, we will use
the notation (0,B] (respectively [0,B]) to denote the set {x € R:0<x< B} (respectively {x €
R™: 0 < x <B}). Theorem 3.2 will be proved by way of the following lemmas:

Lemma A.1 3 v’k € Rs.t. i) v* = v*(x), Y x € (0,B].

i) v =lim v:;(x), ¥ xe (0.B]
511

Recall that vT(x) is our notation for the time-average value, under (ut’Ft)‘
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Lemma A3 lim v;(x) = lim vpx) = v\ ¥xe (OB
: T Tow

Remark Lemmas A.1 and A.2 are results of independent interest which will be seen to
hold for any stationary problem whose data satisfy assumptions (A1)-(A3). For the
aggregative convex model, Lemma A.1 follows from Dutta (1990, Proposition 1). To the best
of my knowledge these n;,sults were however unknown for the general multi-sectoral model.
Note incidentally, that an implicit assertion in Lemmas A.1 - A3 is that all of the relevant

limits are well-defined.

Proof of Lemma A.l: From hereon, we take the state space to be [0,B]. Lemma A.l
will be proved by appealing to the following implication of Dutta (1990, Theorem 3): -

Fact 1: Consider (3,1’5) which satisfy (A1)-(A2). Suppose that there is a real-valued

function M(x) such that
[v 50 - v 5(B)] 2 M(x)(1-9), ¥ xe(0,B]5<[0.1). (A3)

Then, 3 v ¢ R such that ‘15 imv 500 = vx) = v, ¥ x € (0,B]
11

The condition (A.3) we will refer to as the uniform value boundedness condition. We
will show that this condition is satisfied, and hence the conclusion of Fact 1 follows, for
arbitrarily close approximations of (u*,F*). That in turn will prove Lemma A.1. Let

o) = { w'©, ifc2(ln)e, wherene N
0 else
"= F*
Writing B for B - (1/n)e and normalizing u™(0) = 0, it follows from the monotonicity

assumptions that

v‘g@) < u"B) (1-6) + & vg(Bn) (A.4)
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The productivity assumption (A.3) clearly implies that for every x € (0,B], there is a
pure accumulation programme which attains Bn in a finite number of steps, say T(x) (ie. B n €

Fn(iT(x)—l) for some pure accumulation programme (x,C) with i_l = x). It then folows that

Vi) 2 sT(%) viB,) - (A5)
(A.4) and (A.5) imply, after some tedious algebra,
Vi) - Vi®B) 2 &V4B ) [67®)_17 - W*B)(1-6) (A.6)

Noting that v(B ) < u"(B), (A.6) yields
T(x)-1
vg(x) - vg(B) 2 - un(B) [ S_ES(X + 1] (1-6)

Since the tern in the brackets goes to T(x), value boundedness is satisfied by (un,Fn)

and hence 1im vi(x) = v"(x) = v". By construction, lim Vax) 2 lim V(). Further, lim

511 811 511 n-voo
n

% E S %
v =v . Hence, lim v 6(x) >v . On the other hand, it is immediate that for all € > 0, there is

011
n(€) such that vg(x) 2 vZ(x) - &, whenever n > n(¢) and for all x € (0,B], é € [0,1). From this

the reverse inequality follows and therefore Lemma A.1. -

Proof of Lemma A.2: Throughout this proof, the initial state x is going to remain fixed.

Unfortunately, we need a little more notation. Let pt(6) = (1-6)6t and qt(T) = 1/T for
£ 3

t=0,1..T-1 and qt(T) = 0, else. Let (x,c) be any feasible programme and write u for u (ct).

~ o~

Then,
|t§0[pt(8> -qMu,| < u*(B)éOmt(«S) - q,(T)| (A7)
We now prove the following:

Sub-Lemma 4: For any sequence TnToo, there is a sequence of discount factors SnT 1s.t

lim ¥ |p(8)-q(T )| = 0 (A8)

n-e t=0
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It should be clear that (A.7) and (A.8) in combination imply Lemma A.2. We suppress
‘momentarily the subscript n. For every T, we can find & € [0,1) s.t. i) 1-6 > 1/T > (1-6)6T and

ii) there is an integar T' defined by (1-6)8! = 1/T. Hence,
T'-1 T-1

LIp®@-qDl=1 @a)+ L @p) + 2L @a

))
=0

—on+8l . L 4 InT(-9), (A9)
T(1-6) T Ind

(A.9) follows by simple algebraic manipulation on the previous step by way of using the
definition of T'. (A.8) will be proved therefore if we can find a sequence of discount factors,

&(T) such that 8('[')T _ 1 + In T(1-8(T)) goes to -1 and &T)11 as T{e. Write &T) =
T(1-8(T) T 1nd(T)

A A
exp(¢/T), where @ € R_and its exact value is given by,

lq\, A A A
e®+ 1/ + In(-@)fp = -1 (A.10)

This is possible to do since the function in (A.10) is a continuous function on R_ with

value 0 when @ = -= and value -« when ¢ = 0. Since In 8(T)T = T(1-&T)) [In &T) / (1-&T))],
-T(1-&(T)) has the same limit as In 5(T)T. Hence from (A.9) it follows that

00 A
Lim I |p&(D) - q D] = 21+ P+ 1/ + Inc-py) (A1)
—00 t=

The sub-lemma is seen to follow immediately from (A.11). In particular, that also

completes the proof of Lemma A.2. B

Proof of Lemma A.3: The proof is essentially a continuity argument. Let F" and I_:n be
two sequences of production correspondences satisfying (A1) and (A3) and converging
uniformly to F'. Further, F'(x) F' (x) ¢ Fx), for all x e (0,B] (where the subset inclusion
is strict in each case) so that for all t= T(n), lfn(x) c Ft(x) c Fn(x), for all x. Similarly, let T
and 1_1n be upper and lower sequences of utility functions, satisfying (A2) converging uniformly

* -
to u , such that for all t > T(n), 1_1n(c) < ut(c) < un(c), for all c. Let the associated time
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average and long-run average values be defined as \_/.III, and yn (resp. \7% and V").

It was clear from the proofs of Lemmas A.1 and A.2 that they apply to any stationary
production-utility specification which satisfy (A1)-(A3) and hence to the upper and lower

approximating sequences. In particular, therefore 1im \_'.rIl,(x) = yn, for all x e (0,B] (resp. 1im

Te0 T-e0
-n -n . . n * . -n *
vT(x) = v, for all x € (0,B]). Further, it is clear that lim v =v (resp. limv =v ). So
N0 Nn— o0
pick n such that
Vo-gd <V < < v v e, (A.12)

From hereon n (in addition to x) remains fixed. Let '/f' be given by the requirement that
Voed < yRo) < VR®) < ¥+ a4, ToT (A.13)
Clearly, there is T' such that for all T>T,
y.Ill,(x) -g2 < vT(x) < {',Ill,(x) + €2 (A.14)
Combining (A.12)-(A.14), for T 2 max("I\‘,T'), we have

v -e < () < vite (A.15)

Since (A.15) holds for all € > 0, the proof of Lemma A.3 is complete.g
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Appendix B
In this appendix we prove Theorems 4.1 and 4.4. Throughout, the initial state x

remains fixed and we suppress this variable in all functions and correspondences that follow;

e.g. the T-period value function is written VT rather than VT(x) etc.

Proof of Theorem 4.1: Recall that QT (resp. Q) denotes the set of finite horizon

(resp. infinite horizon) feasible plans. For any finite horizon feasible plan (x(T),c(T)) define

the infinite horizon extension, X,C, as the programme which corresponds to it over the first T

~

periods and then maintains zero investment and consumption levels thereafter. Let FT =

{(x,c)eQ x;=c =0,1> T)},T_=Q

T
A A
Lemma B.1 x(T),c(T) solves Max ZO u(c), subject to x(T),c(T) € Qp, if and
-~ ~ t_—_ ~ ~
A A it
onlyif x_,c_ solves Max Y u(c,), subjecttox,c € I'p.
ee =0 t ¢ oo T
Proof: Note that Y ut(O) is finite (since zero consumption forever is a feasible option
t=0

in the infinite horizon and hence preferences are well-defined for it). From this the lemma

trivially follows. &

So the optimization problem for any horizon, finite or infinite can be compactly

expressed as

A

Vv

T= Max X ut(ct) s.t. f’i € FT | (B.1)

t=0

ut(O), whenever T < = and <\/w = V. In turn, the optimal
. _ . A
programmes are given by ‘FT = {(f,i) € FT. tEO ut(ct) 2 VT}.

We shall treat the function QT and the correspondence ‘I’T as maps from the extended

natural numbers, N U {=»} into R and P(Q) respectively. We shall then investigate the
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A
continuity of VT and the upper semi-continuity of ‘I‘T with respect to the horizon length T.

. ‘Note that N U{«} is a Hausdorff space if we take as a base for a topology all sets of the form

{t} t=0,1,2... (B.2)
NT= {te N: t2Tort=«} T=01.2..

(see Kelly (1955, p.47,Theorem 11)). The topology on Q will be the pointwise convergence or
product topology. Recall that a base for the neighborhoods of x,c € Q is given by

Up, = {(f-i') e Q: ||C£-ct|| <e, [Ixpx |l <€, 0<t<T) (B.3)

where € > 0, T =0,1,... For a subset M c Q we can define a neighborhood UT e(M) as the
union of all UT E(x,c), x,c € M. From (B.2)-(B.3) it should be clear that the theorem is

proved if we succeed in showing that ‘¥ is in fact usc at T = o,

Note that Q is compact in the product topology. This follows from an induction
argument for details of which the reader should consult Nermuth (1978, Lemma 2). Clearly,
given Ali), I‘T is a closed subset of Q and hence compact. From that and the upper
semi-continuity of the infinite horizon preferences, it follows that ‘-I‘T is non-empty for all T.
It is also immediate that I'y, is an increasing correspondence in T. That yields as an immediate
corollary the upper semi continuity of the correspondence at T = . As a second implication

A .
we have the fact that V.o is a monotonically increasing sequence. Finally, a standard argument

yields

LemmaB2 AsT- e, Vo1V where V is the infinite horizon value,

We now show
LemmaB.3 wisusconNu {=}

Pf: Define
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Qr=((x0) € Q tEO ue) 2 Vip) (B.4)

We show that Q is a usc correspondence. It is clear from (B.2) that given the topology

on the set of extended naturals, upper semi-continuity really only needs to be checked at T =

. By the assumption of upper semi-continuity on the function ¥ ut(ct) and Lemma B.2, it
T=0

follows that Q is a closed graph correspondence; since Q is compact, it is in fact usc (Berge

(1963)). Finally, ¥ = I " Q'I‘ as an intersection of two usc correspondences, is also usc.

T
(Bergc (1963), p. 112, Theorem 7). o
Proof of Theorem 4.4 The ideas of the proof will be similar to those used in

-proving Theorem 4.1. In particular, we will again show that the correspondence of
maximizers, ‘I‘T is usc at T = «». The constructions of the feasible correspondence and

objective function will, however, be dual to those employed above. Define the feasible

T
Y [ut(ct) - bt]‘ For T e N, let
0

correspondence FT = Q and the objective function UT(x,c,) =
~ o~ t:

W.. = Max UT(x,c,) ,(x,c)e Q (B.5)

T

Yo = {fi €eQ: UT(E’S’) =Wy}

Note that ‘PT is non-empty given (A2i). Clearly, W is a monotonically declining

sequence. Let

W=Sup I [u@)-bl (c)eQ (B.6)
t=0 ~ -

By Brock-Gale (1969, Lemma 2), the supremum is in fact achieved, i.e. there exists a

00

feasible plan (;, ::‘) such that % [ut(gt) - bt] = W. So ¥  is non-empty as well.
T=0

~ A —

We show that W is usc by establishing that it is a closed graph correspondence (and

since the range Q is compact, that sufficies). So let (x o cn) € ‘P(Tn), (xn,c n) converges
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pointwise to ()/:, e). (Note that Tn = w for infinitely many indices is admissible). Suppose in

fact

W=7y [ut(ét)-bt]<w (B.7)
=0

T
Pick T < « such that % [ut(et) - bt] < W'+ €/2, for € > 0 chosen so that W' + € < W.
{=

0
Then, for n large,

T T |
tEO [u(c,,) - b < tEO [u,(c)- b +e2 < W +e

T T
But ¥" [u(c, )-bl< ¥ [ufc,)-b]l<W +e<W. This contradicts the fact that
el G S e S

O
fn’ En € W(Tn)‘
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If insensitivity and continuity is simultaneously satisfied, i.e. finite horizon
optima are close to each other and to all infinite horizon optima, then authors
as Mckenzie (1976) term this property an “initial turnpike."

For instance, finite horizon optima may all be clustered together, but "far" from any
infinite horizon optimum. On the other hand, each finite horizon optimum may

be close to some infinite horizon optimum, but be "far" from each other

(examples will be discussed in the sequel). Of course, if optimal choices are
unique, then continuity implies insensitivity. One important motivation for this
research is to admit increasing returns and other non-convexities, in the presence

of which optimal choices are typically not unique.

To be exact, Ramsey took bt = sup ut(ct), without any restriction to pure

accumulation programmes. Clearly, our definition is more likely to result in
summable -utility.

This result has been appropriately and succesively generalized to non-convex
technologies (maintaining still the convexity of preferences), by
Majumdar-Nermuth (1982) and Mitra-Ray (1984).

A similar but somewhat less transparent example may be found in Nermuth (1978).

For the aggregative model it merely says that the production function lies above the
45° line for an initial set of investment levels. For multi-sectoral convex models,
the usual productivity assumption is that (A3) holds for some x > 0. Exploting
convexity that can be seen to imply precisely (A3).

This example satisfies the assumptions of the aggregative model studied by
Mitra-Ray (1984) (and under appropriate modifications to accomodate differentiability
and strict concavity-monotonicity, the assumptions of Brock (1971) and
Majumdar-Nermuth (1982) models). Consequently, investment insensitivity obtains
in this example. So this example, in combination with Theorem 3.2 proves that
value insensitivity neither implies nor is implied by investment insensitivity.

Nermuth also assumed y € Ft(y) for all y and t, which makes the definition
reasonable.

The production correspondences do not satisfy uniform boundedness and lower
semicontinuity. However, boundedness assumptions are not required for

the corresponding positive result in the aggregative model. The example can be
easily adapted to yield lower semicontinuity.



