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ABSTRACT

The literatures dealing with voting, optimal income taxation, and implementation
are integrated here to address the problem of voting over income taxes. In contrast with
previous articles, general nonlinear income taxes that affect the labor-leisure decisions of
consumers who work and vote are allowed. Uncertainty plays an important role in that
the government does not know the true realizations of the abilities of consumers drawn
from a known distribution. Even though the space of alternatives is infinite dimensional,
conditions on tax requirements such that a majority rule equilibrium exists are found.
Finally, conditions are found to assure existence of a majority rule equilibrium when agents

vote over both a public good and income taxes to finance it.






1. Introduction

The theory of income taxation has been an important area of study in economics. Interest
in a formal theory of income taxation goes back to at least J.S. Mill (1848), who advocated
an equal sacrifice approach to the normative treatment of income taxes. In terms of the
modern development, Musgrave (1959) argued that two basic approaches to taxation can
be distinguished: the benefit approach, which puts taxation in a Pareto efficiency context;
and the ability to pay approach, which puts taxation in an equity context. Some of the
early literature, such as Lindahl (1919) and Samuelson (1954, 1955), made important con-
tributions toward understanding the benefit approach to taxation and tax systems that
lead to Pareto optimal allocations. Although the importance of the problems posed by
incentives and preference revelation were recognized, scant attention was paid to solvi'ng
them, perhaps due to their complexity and difficulty.

Since the important work of Mirrlees (1971), economists have been quite concerned
with incentives in the framework of income taxation. The model proposed there postulates
a government that tries to collect a given amount of revenue from the economy. For
example, the level of public good provision might be fixed. Consumers have identical
utility functions defined over consumption and leisure, but differing abilities or wage rates.
The government chooses an income tax schedule that maximizes some objective, such as
a utilitarian social welfare function, subject to collecting the needed revenue, resource
constraints, and incentive constraints based on the knowledge of only the overall distribution
of wages or abilities. The incentive constraints derive from the notion that individuals’ wage
levels or characteristics (such as pfoductivity) are unknown to the government, so that the
optimal income tax schedule must separate individuals as well as maximize welfare and
therefore is generally second best!. The necessary conditions for optimization generally
include a zero marginal tax rate for the highest wage individual. Intuitive and algebraic
derivations of this result can be found in Seade (1977), where it is also shown that some of
these necessary conditions hold for Pareto optima as well as utilitarian optima. Existence
of an optimal tax schedule (for a modified model) was demonstrated in Kaneko (1981). An
alternative view of optimal income taxation is as follows. Head taxes or lump sum taxes

are first best, since public goods are not explicit in the model and therefore Lindahl taxes

1 If the government knew the type of each agent, it could impose a differential head tax., As is common in
the incentives literature, one must impose a tax that accomplishes a goal without the knowledge of the identity

of each agent ex ante,
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cannot be used. Second best are commodity taxes, such as Ramsey taxes. Third best
are income taxes, which are equivalent to a uniform marginal tax on all commodities (or
expenditure). In our view, it is not unreasonable to examine these third best taxes, since
from a pragmatic viewpoint, the first and second best taxes are infeasible. It also seems
reasonable to fix the revenue requirement, given that in many countries (such as the U.S.),
the institutional national political structure separates decisions about taxes from decisions.

about expenditures. However, this will not be a requirement of our analysis proposed below.

The main objective of this research is actually to derive some testable hypotheses.
How can we explain (or model) the income tax systems we observe in the real political
world? We shall attempt to answer this question with a voting model, a positive political
model, in combination with the standard income tax model described above. As noted in
the introduction of Roberts (1977), one does not need to believe that choices are made
through any particular voting mechanism; one need only be interested in whether choices
mirror the outcomes of some voting process. Thus, what is described in below is an attempt
to comstruct a potentially predictive model with both political and economic content. It
contains elements of both the optimal income tax literature as well as positive political

theory (an excellent survey of which can be found in Calvert (1986)).

Although much of the optimal income tax literature and most of the work cited above
deals with the normative prescriptions of an optimal income tax, there is a relatively small
literature on voting over income taxes. Most of this literature is either restricted to con-
sideration of only linear taxes, or does not consider problems due to information (adverse
selection and moral hazard), or both. Examples that might fit primaxily into the linear tax
category which also involve no labor disincentives on the part of agents are Foley (1967),
Nakayama (1976) and Guesnerie and Oddou (1981). Aumann and Kurz (1977) use per-
sonalized lump sum taxes in a one commodity model. Hettich and Winer (1988) present
an interesting politico-economic model in which candidates seek to maximize their political
support by proposing nonlinear taxes. Work disincentives are not present in the model.
Romer (1975), Roberts (1977), and Peck (1986) use linear taxes in voting models with
work disincentives. Perhaps the model closest in spirit to the one we propose below is in
Snyder and Kramer (1988), which uses a modification of the standard (nonlinear) income
tax model with a linear utility function. The modification accounts for an untaxed sector,
which actually is a focus of their paper. This interesting and stimulating paper considers

fairness and progressivity issues, as well as the existence of a majority equilibrium when



individual preferences are single peaked over the set of individually optimal tax schedules.
(Sufficient conditions for single peakedness are found.) Réell (1984) considers the differences
between individually optimal (or dictatorial) tax schemes and social welfare maximizing tax
schemes when there are finitely many types of consumers. Of particular interest are the
tax schedules that are individually optimal for the median voter type. Unfortunately, this
interesting work does not contain an explicit game-theoretic voting model; the individually.
optimal income tax might not be a majority rule equilibrium or in the voting core.

We propose in this paper to allow general nonlinear income taxes with work disincen-
tives (adverse selection and moral hazard) in a voting model. We are indebted to J. Snyder
for emphasizing to us that the main problem encountered in trying to find a majority
equilibrium, as well as the reason that various sets of restrictive assumptions are used to
obtain such a solution, is as follows. The set of tax schedules that are under consideration
as feasible for the economy (under any natural voting rule) is large in both number and
dimension. Thus, the voting literature such as Plott (1967) or Schofield (1978) tells us that
it is highly unlikely that a majority rule winner will exist. Is there a natural reduction of

the number of feasible alternatives in the context of income taxation?

The answer appears to be yes. The (optimal) income tax model has a natural un-
certainty structure that has yet to be exploited in the voting context. As in the classical
optimal income tax model, all worker/consumers have the same well-behaved utility func-
tion, but there is a nonatomic distribution of wages or abilities. Suppose that a finite
sample is drawn from this distribution. The finite sample will be the true economy, and
the revenue requirement imposed by the government can depend on the draw. In fact this
dependence is just a natural extension of the standard optimal income tax model. In that
model, the amount of revenue to be raised (the revenue requirement in our terminology) is
a fixed parameter, something that makes perfect sense since the population in the economy
and the distribution of the characteristics of that population are both fixed, and thus we
can take public expenditures also as fixed. But consider now the optimal tax problem for
the cases when the population is unknown or, more important, when the characteristics of
the population are variable. That is exactly what happens when we consider that the true
population is a draw from a given distribution. In such circumstances, it is not reason-
able to fix the revenue requirement at some exogenously given target level, butvinstead the

revenue requirement should be a function of the population size and its characteristics.

It seems natural for us to require that any proposed tax system must be feasible (in
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terms of the revenue it raises) for any draw, as no player (including the government) knows
the realization of the draw before a tax is imposed. For example, an abstract government
planner might not know precisely the top ability of individuals in the economy, and therefore
might not be able to follow optimal income tax rules to give the top ability individual a
marginal rate of zero. The general incentive compatibility requirement and its implications
are developed in detail in section III below. The key implication of using finite draws as
the true economies is that requiring ez ante feasibility of any proposable tax system for any
draw narrows down the set of alternatives, which we call the feasible set, to a manageable
number (even a singleton in some cases). We then have that the assumptions on utilities
used in the optimal income tax literature alone are sufficient to obtain an analog of single
peaked preferences over the feasible set.

What is key here is not only the set of assumptions on utility or preferences, but also
assumptions concerning the revenue required from each draw. The revenue requirements
function was proposed and examined to some extent in Berliant (forthcoming), and is
developed further in more generality in section II below.

Once the feasible set is explored, we will examine several games to see if equilibria
exist, are unique, and can be characterized (the latter step having predictive value). Of
primary interest at the start is the existence and characterization of a majority equilibrium
studied in section III. Voting over both a public good and taxes is studied in section IV.
Section V contains conclusions and suggestions for further research.

We do not claim that the particular games examined here are the “correct” ones in
any sense. The point of this work is that there is a natural structure and set of arguments

that can be exploited in voting games over income taxes to obtain existence and sometimes

uniqueness and characterization results.

The focus of this paper is on voting over income taxes without information transmission
or opportunities for strategic behavior. We hope to address these issues in subsequent work.

In relation to the literature that deals with voting over linear taxes, our model of
voting over nonlinear taxes will not yield a linear tax as a solution without very extreme
assumptions. This will be explained in Section V below. Moreover, our second order
assumption for incentive compatibility will generally be much weaker than those used in the
literature on linear taxes; compare our assumption below with the Hierarchical Adherence
assumption of Roberts (1977). As noted by L’Ollivier and Rochet (1983), these second

order conditions are generally not addressed in the optimal income taxation literature,
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though they ought to be addressed there. In what follows, we employ the results contained
in the Berliant and Gouveia (1991) to be sure that the second order conditions for incentive

compatibility hold in our model.

2. The Model and Notation

A classical model of optimal income taxation can be developed formally as follows.
Consumers’ characteristics or wages are described by a single variable w € [w, @], where
[w, ] is an interval contained in the positive real line. References to measure are to
Lebesgue measure on [w,®]. The distribution of consumer characteristics or wage levels
has a measurable density f(w), where f(w) > 0 a.s ®. The two goods in the model are a
composite consumption good, whose quantity is denoted by ¢, and labor, whose quantity
is denoted by £. Consumers have an endowment of 1 unit of labor/leisure and perhaps an
endowment of consumption good. u(c, £) is the utility function of all consumers, where u is
twice continuously differentiable. Subscripts represent partial derivatives of v with respect

to the appropriate arguments.

The following assumptions are maintained throughout this paper:

Al: Standard assumptions on preferences:

uy > 0, ug <0, ugp <0, u37 <0.
A2: The utility function is quasi-concave:
unu% — 2uyouy Uz + ngu% < 0.
A3: Consumption is normal:
Ugy g — Ugguy > 0.
A4: Leisure is normal:
11Uy — iy > 0.
A5: Boundary conditions:
lim, 0 ui(c,£) = 0o, limgq up(e,£) = —o0, limgg uz(c,€) =0.
Assumptions Al, A3 and A4 imply A2 but they are listed separately for convenience.

Assumptions A1, A2, and A5 are standard. Assumption A3 is generally used in the optimal

Note that f(w) plays almost no role in the developments to follow, in contrast with its preeminent role in
the standard optimal income tax model. It may be interpreted as a subjective distribution describing the planner
beliefs about the characteristics of the agents in the economy, but that consideration is immaterial for the model
presented here. In the multistage games of voting in a representative democracy that we expect to study in the

future, the equilibria are likely to be a function of f, as is often the case in signaling games.



tax literature to obtain the single crossing property for indifference curves. Assumption
A5 is also common in the optimal income tax literature and is used to derive comparative
statics there. Although these are strong assumptions, they seem necessary to obtain a
tractable model. As mentioned in the introduction, they are weaker than assumptions used
in the earlier literature in this area.

Define R as the real line. A taz system is a function 7 : R — R that takes y to.
tax liability. A net income function v : R — R corresponds to a given 7 by the formula

v(y) =y — 7(y)-

First we discuss the typical consumer’s problem under the premise that the consumer
does not lie about its type, and later turn to incentive problems. A consumer of type

w € [w, @) is confronted with the following maximization problem in this model:

max, ¢ u(c,£) subject to w - £ — m(w - £) > ¢ with 7(-) given,

and subject to¢>0,£2>0,£< 1.

For fixed 7, we call the arguments that solve the problem c(w) and £(w) (omitting T)
as is common in the literature. Define y(w) = w - £(w).

The production side of the economy is given as follows. Let Ay = {5]8 = (w1, ..., Wk)
where w1, ..., wi € [w, ]}, the collection of all draws of k individuals from the distribution
with density f. Define A = U2 Ag. A is the collection of all draws of all sizes from the
distribution f. A draw is an element, say S, of A. In order to be able to determine what
any particular draw can produce or consume, it is first necessary to determine what taxes
are due from the draw. Hence, we first assume that there is a given net revenue requirement
function R : A — R. For each S € A, R(S) represents the taxes due from a draw less
endowment of consumption good. For example, if the revenues from the income tax are
used to finance a good such as schooling, then R(S) can be seen as: the per capita revenue
requirement for providing schooling to the draw § multiplied by the population in §.

Although we shall begin by taking revenue requirements as a primitive, in the end
we will justify this postulate by deriving revenue requirements from the technology for
producing a public good. Assumptions on R will be imposed and discussed below. One
basic assumption that we will maintain throughout is that R is attainable in the sense that
there is some labor supply that willv generate enough tax revenue to satisfy R. Formally, R
is attainable if for every k and every (wq, ..., ws) € Ag, R((w1, ..., wr)) < Zle w;.

Next the production correspondence is defined formally. Let Ix = [0,1]%. For each



S € Ay, production possibilities are described by a set Yj(S), where Yx(5) C I X R. For a
given S, (£,C) € Yi(S) describes labor input £; = £(w;) of person i for w; € 5, along with
net output C in consumption good of the economy. Notice that labor inputs are measured
as positive numbers, and that labor inputs of those not in the draw S are zero. We assume
throughout that the endowment of consumption good of a draw as well as tax revenue due
from a draw are independent of labor supply £ and composite good consumption C. Asis.

almost universal in the optimal income tax literature, a constant returns to scale technology

is postulated. Formally,

Yi($) = {(4,C) € I x RILi witi 2C+R(S)}

It is important to be clear about the interpretation of R. One easy interpretation is
that the taxing authority provides a schedule giving the taxes owed by any draw. There are
several reasons that revenue requirements might differ among draws, including differences
in taste for a public good that is implicitly provided, a non-constant marginal cost for
production of the public good, differences in the cost of revenue collection, and (perhaps
most importahtly) a government attempt to achieve income redistribution in the realized
draw.

This structure captures some important aspects of the optimal income tax model.
First, labor is modelled as a differentiated product, so workers with different characteristics
can have different wages (or productivities). Second, the production. set can embody initial
endowments of both labor and consumption good on the part of consumers, as well as
revenue collections required by the government from any draw.

The major point about asymmetric information in this model is as follows. The gov-
ernment and the agents in the economy know the prior distribution f of types of agents
in the economy® as well as the mapping R. For a given tax system, the labor income of
each agent is observed by all, but the wage rate and hours worked of each agent are known
only to the agent himself. This is an explicit statement of the information structure of the
model.

Next we impose a topology on Ag. A topology will be induced on A as a consequence,
but will not be useful to us since draws of different sizes will never be “close”. In fact, we
could start by defining a topology on A, but this would obfuscate rather than clarify the

development. For Ay, we use the Euclidean norm || - ||x on the subspace [w, B)*.

3 Actually, all they need to know is the support of that distribution.
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Before moving on to consider the game — theoretic structure of the problem, it is
necessary to obtain some facts about the set of tax systems that are feasible for any draw
in A or in A. These are the only tax systems that can be proposed, for otherwise the
voters and social planner would know more about the draw than that it consists of k people
( or of an unknown size ) drawn from the distribution with density f. Voters can use their
private information (their ability or wage) when voting, but not in constructing the feasible,
set. For otherwise either each voter will vote over a different feasible set, or information
will be transmitted just in the construction of the feasible set.

Definition: Fix k and a revenue requirement function R. The set of feasible tax
systems is defined to be Ty = {r : R — R| 7 is measurable, for all (w1,...,wx) €
Ak,2f=1 m(y(w;)) > R((wy,...,wk))}. Define the set of tax systems that are feasible for
draws of all sizes to be T' = N3 Tk.

Finally, the notion of a majority rule equilibrium can be defined. Fix a revenue require-
ments function R. In general, one cannot expect that the same tax system is unblocked by a
majority (or even Pareto optimal) for every draw. Hence, it is reasonable to associate a set of
majority rule winners with each draw, and allow this set to vary with the draw. To this end,
a majority rule equilibrium for draws of size k is a correspondence My : Ay — T such that
for every (wy, ..., wx) € Ay, for every 7 € My((wi, ..., wx)) (With associated y(w)), there is
no subset D of {wy, ..., wy} of cardinality greater than k/2 along with another 7' € T' (with
associated y'(w)) such that u(y'(w) — 7'(y'(w)), ¥'(w)/w) > u(y(w) - T(y(w)), y(w)/w) for
all w € D. We will show that we can restrict attention to continuous 7. An obvious ex-
tension of the definition to .4 is possible: M : A — T is a correspondence such that for all
k, for all (wy,...,wg) € Ay, for all 7 € M((wy,...,wx)) (with associated y(w)), there is no
subset D of {wy, ..., wy} of cardinality greater than k/2 along with another 7' € T' (with

associated y'(w)) such that u(y'(w) — 7'(y'(w)), y'"(w)/w) > u(y(w) — 7(y(w)), y(w)/w) for
all we D.

3. Voting Over Taxes in an Optimal Income Tax Economy

3.1 Overview

This section starts by studying the derivation of individual revenue requirements consis-

tent with overall revenue requirements that possess certain desirable properties. Next,
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some results from the literature on optimal income taxation are used to construct the best
income tax function that implements a given individual revenue requirement. Then, we
demonstrate the power of our approach in two particularly simple cases where the feasi-
bility conditions are so strict that voting need not occur in order to select an income tax
function. Finally we study two cases where the feasible sets are non-trivial. We prove the

existence of a voting equilibrium for each case and provide a partial characterization of the,

equilibria.

3.2 From Revenue Requirements to Tax Functions

In order to examine the set of feasible tax systems described above, more structure
needs to be introduced. In particular, since revenue requirements described so far are in
the form of a set function, individual revenue requirements remain unspecified.* Clearly,
there will generally be a range of individual revenue requirements consistent with any map
R. Our next job is to describe this set formally. Fix k and R. Let G = {g:[w, W) > R| g
is measurable, V (wi,...,wk) € .Ak,zf=1 g(w;) > R((wy, ..., wx)), g(wi) < w; V i}. Define
G = NZ,Gk. Gy is the set of all individual revenue requirements that collect enough
revenue to satisfy R, and G is the set of all individual revenue requirements that satisfy
R for all k. Gy # 0 if R is attainable. We now search for the minimal elements of these
sets. Define a binary relation > over Gy by g > ¢’ if and only if g(w) > ¢'(w) for
almost all w € [w,w]. Let Gx = {B C Gi|B is a maximal totally ordered subset of Gk}.
By Hausdorff’s Maximality Theorem (see Rudin (1974, p.430)), Gx # 0. Finally, define

*={g:[w,®] — R| 3B € Gy such that Ywe [w,®] ¢(w)=infgepg'(w)as.}. Gfis

nonempty.

We now consider draws of any size. Define a binary relation > over Gbygryg
if and only if g(w) > g'(w) for almost all w € [w,®]. Let § = {B C G|B is a maximal
totally ordered subset of G}. Finally, define G* = {g : [w, @] — R| 3B € G such that
Vwe [w,B] g(w)=infyepg'(w)as.}. It is possible that G* = 0.

Next we need to impose some further conditions on R.

4 An individual revenue requirement gives the amount of tax an individual of a given ability should pay.
Notice that the ability level of each individual is a characteristic of that individual not observable to others. The
individual revenue requirement differs from the tax function: the tax function gives the amount of tax that an
individual with a certain income should pay. Income is observable by the government and an individual of a
certain ability may choose to earn different amounts of income, depending on the incentives provided by different
tax structures. The relation between individual revenue requirements and tax functions will be examined later in

this section of the paper.
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Definition: A revenue requirement function R is said to be symmetric if for each
k and for each (wy,...,wx) € Ay, for any permutation o of {1,2,...,k}, R((w1,...,wi)) =
R((wa(1)3 ) wo(k)))'

This is a natural assumption on R, which implies that position in the draw (first,
second, etc.) does not matter. All that matters in determining the revenue to be extracted

from a coalition is which types are drawn from the distribution.

Definition: A revenue requirement function R is said to be monotonic if for any
(w1, .oy wi),(Wh, .o, wh) € Ap with w; > w! for all ¢ and strict inequality holding for some

7, then R((wy, ..o, wg)) > R((w), ooy wh))-

This assumption requires that higher ability draws owe more taxes. One could suc-
cessfully use weaker assumptions with this framework, such as w; > w} for all ¢ implies
R((w1, ..., wg)) > R((w}, ..., w})), but at a cost of greatly complicating the proofs. We refer
to Berliant ( forthcoming, pp. 23-26) for the appropriate techniques.

There are two conceptual steps in the process of going from revenue requirement func-
tions defined over draws to income tax functions defined over individual incomes. The
first step involves the construction of G%. Results for this step are presented in Theorems
2-4, where we show that the individual revenue requirement functions are increasing and
continuously differentiable except at a finite number of points in several important cases.

The second step is to construct incentive compatible tax systems out of these individual
revenue requirements. This is done in Theorem 1, using standard methods from optimal
income taxation. In the paragraphs following, we give intuition for this implementation
result.

The problem confronting a worker/consumer of type w given net income schedule v is
maxg u(y(w-£),£). The first order condition from this problem is u; - ‘é—; -w+uz = 0, where

subscripts represent partial derivatives of u with respect to the appropriate arguments.

Rearranging
| d _ w00 1
iy~ w00 w

For this new tax schedule, we want the consumer of type w to pay exactly the taxes
due, which are g(w) for some g € G;. If each such g is increasing, g is invertible. If we
assume (for the moment) that g(w) is continuously differentiable then ¢!, which maps tax

liability to ability (or wage), is well-defined and continuously differentiable. Substituting

into the last expression,
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dy Uz(%g——q%::ﬁ) 1

Ay~ w(neimy) 97 —1) =Fry) @

As in Berliant ( forthcoming, page 25 ), a standard result from the theory of differential

equations yields a family of solutions to this differential equation. Of course, as L’Ollivier
and Rochet (1983) point out, the second order conditions must be checked to ensure that
solutions to (1) do not involve bunching which means that consumers do optimize in (1)
at the tax liability given by g. This was done in Berliant and Gouveia (1991), where the
Revelation Principle (see, for example, Laffont (1988, chapter 6)) was used to construct
strictly increasing net income functions 6(w) that implement g(w). Since we then have
that y(w) = g(w)+ 6(w) is invertible, we immediately obtain v(y) = (w1 (y)) and 7(y) =
g(w™1(y)-

It is almost immediate from this development that the set of solutions to (1) for a
given g is Pareto ranked. We focus on the best of these for each given g. Define T = {7| v
is a solution to (1) for some g € G%, 7(y) = y — 7(y), and 7 Pareto dominates all other
solutions to (1) for the given g}.

Theorem 1: If G} is a set of continuous, increasing functions that are twice continu-
ously differentiable except at a finite number of points, then for any k and any 7 € T} there
is a 7* € T} such that the utility level of each agent under 7* is at least as large as the

utility level of each agent under 7 and such that the marginal tax rate for the top ability

W consumer type under T is zero.

Proof: See the Appendix.

Remark: Note that when g(w) is C? so is 7* (see Berliant and Gouveia (1991)). Fur-
thermore, when we have non-differentiability of g at w*, 7™ is C!: simple computations
show that both the right-hand and left-hand derivatives of 7(y) at y = y(w*) are equal to
14+ uz(y — 7, 9/w*)/(wa(y — 7, y/wr)w).

If 7 € Tx\T} is proposed as an alternative to 7™ € Ty, 3 7' € T} that is unanimously
weakly preferred to 7. In multistage games, it will be interesting to allow players to propose
incredible threats, such as those in T \T}, which might then be ruled out in equilibrium by
using refinements. For now, however, we will focus on a one stage game and consequently

on the set 7. This is what the natural information structure implied by the optimal tax
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model buys us. The restriction that the revenue requirement be satisfied for each draw
restricts the feasible set significantly.

Define T* = {r € T| there does not exist 7/ € T such that max, u(y — 7'(y),y/w)
> max, u(y — 7(y),y/w) for almost all w, with strict inequality holding for a set of pos-
itive measure}. There is no guarantee that T* # @ without further assumptions, but T

represents the set of best tax systems feasible for any finite population and any draw.

3.3 Singleton Feasible Sets
Next we illustrate some special cases in which the feasible set is quite small.

Definition : A revenue requirement function R is said to satisfy individual increasing
returns to scale if for each k and each (wy, ..., wi) € Ax, R((w1, ..., wg)) < Zf=1 R((w;)).

This assumption says that larger economies need less revenue per capita than 1-
consumer economies®. A class of examples of satisfying individual increasing returns is
the collection of additively separable functions, R((w1,...,wg)) = Zf___l s(w;), where s is

smooth and increasing.

Theorem 2: Suppose that R is twice continuously differentiable, symmetric and
monotonic on Ay for all k. Suppose further that R satisfies individual increasing returns
to scale. Then T* consists of exactly one tax system, which is the best one obtained as the

solution to (1) where g(w) is replaced by R((w)) and where the marginal tax rate for the

top ability @ consumer type is zero.

Proof: Let g*(w) = R((w)). Then g* is C*. Applying the results in Berliant and Gouveia
(1991), Propositions 1-3, there exists a C? tax system r* implementing ¢g* that Pareto
dominates any other tax system implementing ¢g* and is such that the marginal tax rate for
the top ability consumer type is zero. Now let 7 € T, 7 # 7*. Define §(w) = argmax, u(y—
7(y),y/w) and g(w) = 7(§(w)). By definition of 7*, for k = 1 and any draw (wy) € Aj,
g(wy) > R((w1)). I g(wy) > R((w1)) for some wy, then 7 is dominated by 7*. If 7(§(w1)) =

R((w1)) for each wy, then 7 = 7* or 7 is Pareto dominated by 7. Hence V r € T, either

5 The more restrictive assumption R({(w1,...,wx))<R(w1,...,w;)) +R((wj41,...;wk)) for each j and k is not

needed.
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T = 7* or T is weakly Pareto dominated by 7*. So 7* € T* and 7* is the only element of

T™.

Q.E.D.

Definition : A revenue requirement function is said to satisfy revenue complementar-
ity if for each k and for each (w1, ..., wk) € Ak, R((w1, ..., wk)) < Sk L R((wiy ey w5)) /K.

This assumption says that the presence of different types in a draw reduces the per
capita revenue needs. This could be due to implicit complementarities either in the pro-
duction of public good or in the decision process used to arrive at the level of public good
provision. The class of additively separable functions mentioned earlier also verifies revenue
complementarity. Another example, studied in Appendix IIL is given by functions of the
form R((w;,...wg)) = z(Ele w;), with z convex. However, in general revenue complemen-

tarity need not be related to standard concavity or convexity assumptions.

Theorem 3: Fix k and suppose that R is continuously differentiable, symmetric and
monotonic on Ag. Suppose further that R satisfies revenue complementarity. Then T}
consists of exactly one tax system, which is obtained as the best solution to (1) where g(w)

is replaced by R((w, ..., w))/k and where the marginal tax rate for the top ability consumer

w is zero.

Proof: Let g(w) = R((w, ...,w))/k. Then g is C*. Using revenue complementarity, for any
draw (Wi, .oy wx) € Ay RI(W1, oy 0x)) < S5y R((wi, ooy wi)) /b = iy g(wi), 50 g € G-
Since R((w,...,w)) = k- g(w), g € G%. Hence applying Theorem 1, the tax system 7*
defined in the Theorem is in T}

Now let 7 € T}, T # 7*. Define §(w) = arg max, u(y —7(y), y/w) and h(w) = 7(J(w)),
where h € G%. By definition of T}, h(w) > R((w,...,w))/k. I h(w) > R((w,..,w))/k,
h ¢ G%, a contradiction. If 7(§(w)) = R((w, ..., w))/k for each w, then 7 = ™. SoT* €T}

and 7* is the only element of T}.

Q.E.D.

Of course, in each of these two instances, there is no need to vote over alternatives,

since the set over which voting occurs (credible and feasible tax systems) is a singleton in
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each case. That is, given the assumptions of Theorem 2, M((wy, ..., wx)) = T*. Given the

assumptions of Theorem 3, for any given k, Mi((wq,...,wi)) =Ty

3.4 Voting Over Non-trivial Sets

Having defined the feasible set of tax systems T} when the population of the economy is
known and T* when the population of the economy is unknown, we shall next turn to
voting games over the feasible sets when feasible sets are not quite as trivial. There are

many voting games that might be natural and interesting.

We now present a set of definitions that will play an important role in the results to

follow.
Fix k. Four conditions on individual revenue requirements g at w and W are:
Cl. g(w)> R((w,w,...,w))/k.
C2. 9(®w) > R(w,w, ..., w))/k.
C3. For k even:

R((w, -.-,m/é,wk/m, e W) = g(g('w) + g(w)).

C4. For k odd:

R((wWyy oo Wg—1y /25 D(k41)/25 -+ Dk ) )+

R((wWy5 - Wit 1) /2> B(k+3) /25 - Tk ) = k(g(w) + 9(D)).

Definition: The set of admissible extreme revenue requirementsis EGy = {(g(w), (o))
| (9(w), g(w)) verifies C1-C4. }.

Define the switching function W : [w, @] X [w,®] — {w,@} by W(w,w*) = w if
w > w*, and W(w,w*) =@ if w < w*.

Definition: A revenue requirement function R is said to satisfy limited complemen-
tarity if for each (g(w), g(W)) € EGy there exists a switching point w* € [w, W] such that
for all (wy, ..., w) € A the following holds:

- For k even:

k

R((wi,..; we)) < 3 [R((wi, ., wh))2/k = g(W(wi, w*))],

i=1

where wj- =w; for j=1,...,k/2 and wj- = W(w;,w*) for j = k/2+1,...,k.
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~For k odd:

k
R((wl’ e wk)) < Z[R((wia’ ) w;ca))/k + R((wiba ey w;.cb))/k - g(W(wi? W*))]v

where w_?;-“ =w; for j=1,...,(k—1)/2 and wj-“ = W(w;,w*) for j = (k+1)/2,...,k and
ib

wy =w; for j = 1,...,(k+1)/2 and w}® = W(w;,w*) for j = (k +3)/2,..., k.
This assumption means that revenue requirements are maximal for draws consisting of
at most two types of players. Maximal revenue draws for type w consist of people of type

w and people of the type most unlike w, either w or w.

We will provide an example satisfying this assumption below.

Definition: A revenue requirement function R is said to satisfy Edgeworth substi-

tutability if 8 R/Ow;0w; < 0 for i # j.

This assumption means that the individual marginal contributions for the revenue

requirement out of a draw decline when the type of another individual in the draw increases.

Consider first one-stage voting over the feasible set, say T} for some k. Here, all agents
in a draw simply submit their votes over every possible pair of tax systems, given that they
can vote for only one out of each pair. An arbitrator would pick the majority rule winner
(if there is one). There is no information transmission in voter behavior in this type of
game (until the game is over). Preferences of a voter/worker/consumer are induced over
tax systems by their utility levels after a tax system is imposed. The next result establishes

the individual revenue requirements in G cross exactly once.

Lemma 1: Let k be a positive integer. Suppose that R is twice continuously differ-
entiable, symmetric, and monotonic. Finally, suppose that R satisfies limited complemen-
tarity and Edgeworth substitutability. Then, V g € G}, g is strictly increasing and for any
9,9' € G}, there exists a @ € [w, W] such that, g(w) > ¢'(w) implies g(w) > ¢'(w) for all
w € [w,®] and g(w) < ¢'(w) for all w € [@,w].

Moreover, for any g,g' € G, with switching points w* and w'*, g(w) > ¢'(w) implies
w* > w'*,

Finally, the g € G} that minimizes g(w) has a switching point w* = .

Proof: See the Appendix.
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Remark: Given the assumptions on R and the fact ( proved in the appendix ) that
g(w;) = [R((wi,...,w))2/k—g(W(w',w*))] for k even, we have that each g(w) has at most
one non-differentiable point, which is at the switch point w*. A similar result holds for k&
odd.

Besides generating single crossing individual revenue requirements, the cases where
limited complementarity holds have an interesting characterization: they constitute a per-.
fect illustration of the principle known as Director’s Law of Income Redistribution. This
principle, first formalized in Stigler (1970), says that middle income or ability classes min-
imize their tax burdens by pressuring for heavier burdens on the poor and/or the rich.

To see why that is the case here, consider the incidence of the individual revenue
requirements function chosen by the voter with the median wage rate wM in any given
draw, taking the wage rate of voter ¢ as the measure of his ability to pay. The first thing to
notice is that the g(w) chosen is the one that minimizes g(w™), and raises g(w) and g(@)
relative to feasible alternatives preferred by either the top or the bottom ability levels. In
fact, while Stigler describes circumstances where the middle income or ability class forms
coalitions with either the poor or the rich in order to always win minimum tax burdens,
here we have that the median voter shifts the tax burden simultaneously to both extrema
of the ability distribution. A second and related characteristic is the progressivity of the

marginal rates in the resulting revenue requirements. The proof of Lemma 1 shows that

for low abilities (i.e. w < W ) we have

dg

dg OR((w, ..., w, @, ..., )
dw

ow

_k
T2

and that for high abilities ( w > ¥ ) we obtain

dg _ k OR((w, ..., w,w, ) .
dw 2 Jw
Using the property of Edgeworth substitutability we can prove that in a neighborhood
of wM the marginal revenue requirement rates will be higher for higher abilities. In general
Edgeworth substitutability will push the marginal g's down for low abilities and the converse
for high abilities.
Such a result cannot be obtained formally in models restricted to linear tax functions,
such as Meltzer and Richard (1981,1983). Increasing marginal tax rates imply that taxes

decrease little when going from the middle to the bottom of the ability distribution but
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increase faster when you proceed in the opposite direction. Overall, increasing marginal
revenue requirement rates tend to decrease the fiscal burden imposed on the middle income
classes®. This result agrees entirely with the comments in Foley (1967) about the role of
progressivity and with the results obtained by Snyder and Kramer (1988), despite the fact
that they use a substantially different model.

A pﬁrticularly striking example of a case satisfying limited complementarity is given

by the following collective revenue requirement function 7

k k
R((wy, o)) = a3 |wi — wM] + 8wy,

i=1 i=1
where w™ is the median of the draw, 0 < a < 8 < 1, and a/(1 — §) < w/(@ - w).

This function lends itself to a plausible interpretation: the term S Zﬁ__l w; can be
seen as the direct cost of public expenditure demanded by the types in the sample and the
term o z;c:l |w; — wM| is related to the costs of arriving at a collective decision, since they
increase as the divergence or disagreement among types in a draw increases ( measuring
divergence by the sum of deviations to the median type ).

Appendix III contains a proof that limited complementarity holds for this case. The

individual revenue requirements take the form:

gw)=pw+a(®-w) fw<®d and
gw)=pw+ao(w—-w) ifw>w

In this case the two branches of the individual revenue requirements function are linear
and the marginal requirement is thus always higher for the higher ability taxpayers.

We now look at a different case that implies single crossing of individual revenue

requirements in G7J.

Definition: A revenue requirement function R({(w1,...wy)) is argument-additive if

R((w1, 1)) = Q(Shey wi). Tet Q' denote 42—

i

6 The reader will notice that this statement applies to revenue requirements and not directly to tax functions.
That may not be important because tax functions will inherit the basic characteristics of the underlying revenue
requirements. Also, the fact remains that in an optimal income tax economy the proper measure of ability to
pay is the taxpayer's ability level or wage rate, so characterizing the distributional incidence of a tax structure in

terms of abilities and the revenue requirements on these abilities is perfectly adequate.

7 Although this example is not differentiable, it is simple and it has the basic properties leading to our result.
It is monotonic in w; and verifies a weaker version of Edgeworth substitutability: as other w's in the sample
increase, the incremental requirement of a given w; either stays the same or decreases (when it goes from above to

below the median). Finding smooth closed form examples has proved to be a difficult task, but there are smooth

functions uniformly close to this example satisfying all conditions.
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Lemma 2: Let k > 2 and let the revenue requirement function R((ws, ..., wx)) be sym-
metric, monotonic and twice continuously differentiable. Assume also that R((w1, ..., W)

is argument-additive and concave.

Then, we have that V g € G}, g is as follows:

~For v > (w+w)/2, 9 € G} =>

A) g(w;d) = QUkd)/k+ Q' (kD) (w— @)  fw< B+ (k—1)(d-w)

B) g(w;@) = Q((k— Dw+w) — (k= D/WQKD) + (k = 1)Q'(kD)(® — w)

ifw>d+ (k- 1)(D—w).

- For @ < (w+ W)/2, g € G} =>
C) g(w;®d) = Q(kd)/k+ Q' (ki)(w — ®) ifw> 1w~ (k—1)(T— D)

D) g(w;®) = Q(k — 1)T + w) — (k - 1)/kQ(k®) + (k — 1)Q'(k&)(T — ©)
if w< @ — (k- 1)(@ - @)

for ¥ € [w, @) Furthermore, ¥ w € [w,®@), g(w) is single caved® in @ and attains a

minimum at w = w.
Proof: See the Appendix.

Remark: The intuition for this result is quite simple. Consider (for the moment) a
case where the distribution of abilities is not bounded above or below. Since the revenue
requirement R is concave, so is the per capita revenue requirement R/k. But then, the only
functions that can be individual revenue requirements are the tangents to R/k, since any
linear combination of individual revenue requirements has to be greater than or equal to
the per capita requirement. The statement of the Lemma is slightly more complex because
this intuition may not work near the limits w or .

Note that the marginal revenue requirement rates in branch B are lower than the rate

in branches A and C ( the tangent branches ), which is lower than those in branch D.In a

8 A function f is single-caved if —f is single peaked.
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certain sense the individual revenue requirements resulting from argument-additivity and
concavity are the opposite of those obeying Director’s Law: marginal revenue requirement
rates are constant for middle ability levels and, for some draws with extreme values, we
may see lower marginal requirement rates for high abilities or higher marginal requirement
rates for low abilities. Such a result supports the idea that existence of a political equilib-
rium determining the shape of tax schedules does not necessarily imply a given pattern of
taxation. In that sense, Director’s Law is no more of a logical necessity than its converse.
Notice also that the shape of the distribution of abilities ( and consequently the distribution
of incomes ) does not have in itself sufficient information to predict the shape of the income
tax schedules chosen by majority rule.

Lemmata 1 and 2 established that, in the two cases considered, the minimal individual
revenue requirements consistent with the aggregate revenue requirement for finite economies
possess some important properties. Most likely there are other other classes of examples
that also generate individual requirements with those properties.

Definition: Individual revenue requirements are strongly single crossing if they are :
i) Continuously differentiable except at a finite number of points.
i) Strictly increasing.

i4) Any two individual revenue requirements cross each other only once.®

Lemma 3 proves that when individual revenue requirements are strongly single crossing,

the income tax systems in T cross at most once.

Lemma 3: Let k be a positive integer. Suppose that R implies strongly single crossing
individual revenue requirements.

Then for any 7,7 € T} and incomes y; > y2 > y3, 7(v1) < 7'(y1) and T(y2) > 7'(¥3)
implies 7(ys) > 7'(y3).

Proof: See the Appendix.

Theorem 4: Let k be a positive integer. Suppose that R implies strongly single
crossing individual revenue requirements. Then for any draw in Ap, the one stage voting

game has a majority rule winner.

9 See the precise statement in the first paragraph of Lemma 1.
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Strongly single crossing is used in a strong way to prove this. It has the implication
that induced preferences over tax systems appear to have properties shared by single peaked
preferences over a one dimensional domain. The winners will be the tax systems most

preferred by the median voter (in the draw) out of tax systems in Ty,

Definition: Let C} be the space of continuously differentiable functions (with domain

[w, ®]* and range R) endowed with the uniform topology. We consider Ty and T} as subsets

of this space.

Proof: Fix k and let (wy, ..., wi) € Ag. For any 7 € T, let v(7, w) = max, u(y—7(y), y/w),
the utility induced by the tax system r for type w. It is easy to verify that for each w,
v(7,w) is continuous in its first argument. Using Ascoli’s theorem (see Munkres (1975, p.
290)), T (the closure of T} in C}) is compact. Let 7* be a maximal element of T © using
v(-,wM) as the objective, where w™ is the median ability level in (w1, ...,wg) if k is odd,
and wM € [wy /2, W(k/2)+1] (Where the wage rates are ordered in an increasing fashion) if k
is even. Using Theorem 1, 7* € T}.

Now suppose there exists 7 € T} such that there is a subset D of {wy,...,w;} with
v(r,w) > v(r*,w) for all w € D and where the cardinality of D is greater than k/2. Then
using Theorem 1, we can take 7 to be in T} without loss of generality. Using Lemma 3,
there exist intervals W, W' C [w, @] such that W and W' partition [w, @] and D C W. Let
W be the smallest interval such that W and its complement are both intervals, W and W'
partition [w, )], and D C W. Then by definition of 7*, w™ ¢ W. Hence D cannot contain
a majority of the draw, a contradiction. Hence the hypothesis is false and 7* cannot be

defeated by any other feasible tax system.

Q.E.D.

Notice that the proof of Theorem 4 characterizes the set of majority rule winners for
each draw. It will be interesting to investigate the comparative statics properties of the

equilibria. This will require the imposition of further conditions on the utility function.

4. Voting Over Taxes in an Endowment Economy

One can also interpret the results obtained for the optimal income tax economy as being

necessarily valid for an endowment economy with a single good (income), as in Foley (1967).
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it corresponds to the cost of providing the Pareto optimum level of public good for each
draw. In the next section we examine an application of a similar idea to an optimal income
tax economy.

As above, the theorems below can.be simplified to results concerning lump-sum tax
functions ( individual revenue requirement functions ) when considering an endowment

economy. We shall discuss this further at the end of next section.

5. Simultaneous Voting Over a Public Good and Taxes

The public goods financed by the revenue raised through the income tax are usually ex-
cluded from models of optimal income taxation due to the complexity introduced. In the
model considered here, voting over a public good is already captured to some degree on
the revenue side, since R varies with the draw of types and hence with the production of
public goods for these types. Where it is not captured is in the utility functions of agents,
where public goods should appear explicitly. Suppose that a public good, with some given
cost function, is included in the model and incorporated in utility functions. Let z € R,
be the quantity of the public good. 1 Let the cost function for the public good in terms
of consumption good be H(z), which is assumed to be C2.

- Let Fy : Ay — Tx X R4 be a correspondence defined by Fi((ws,...,ws)) = {(7,z) €
T x Ry | iy m((wi)) 2 H(2)}.

In this case, a straightforward extension of our definition of majority rule equilibrium
is the following: a majority rule équilibrium for draws of size k is a correspondence Mj
mapping (wy, ..., wx) into Fg((wy, ..., wk)) such that for every (w1, ..., wx) € Ag, for every
(r,2) € Mp((wy, ..., wx)) (with associated y(w)), there is no subset D of {w, ..., w)} of car-
dinality greater than k/2 along with another pair (7', 2') € Fi((ws, ..., wx)) (with associated
y'(w)) such that u(y'(w) — 7'(y'(w)), y'(w)/w, ', w) > u(y(w) — 7(y(w)), y(w)/w,z,w) for
all w € D.

As we previously mentioned, we will use ideas inspired by Bergstrom and Cornes
(1983) to obtain a unique Pareto optimal level of public good for each draw, so the revenue

requirement function is well-defined.’! Let utility be given by a C? function u(c,,z,w) =

10
11

We write u{c,l,z,w) for the utility function.

Revenue requirement correspondences are too difficult to handle at this stage of model development.
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In this case, the type of each agent is defined to be the income of that agent, so in
terms of the notation used in this paper w is an income (or wealth) level. A tax is simply
an amount to be paid by each type, since there is no labor supply. Hence, a tax function
is simply an individual revenue requirements function g € Gk, a lump-sum tax schedule.

We need to allow the government to have the ability to monitor and tax individual
income. Thus, in this case, the interpretation of the informational asymmetry assumption.
must differ slightly. In the optimal income tax economy the government is able to observe
income but not the abilities of the agents. In an endowment economy we assume that the
timing of events is such that the lump-sum income tax function g must be defined before the
composition of the draw is known. Then the lump-sum incomes (wy, ..., wg) are revealed
and taxed according to schedule g. Assume that utility is monotone increasing in the
commodity. Given this structure all the results established in Theorems 1-4 concerning
the individual revenue requirement ( which plays the role of a lump-sum tax function
here), are directly applicable to the income tax function in an endowment economy with
one commodity. In particular, properties of the individual revenue requirement function g
do not have to be translated to an income tax 7.

Thus, under individual increasing returns with an unknown population, there is a
unique feasible lump-sum tax function g. Under revenue complementarity and a known
population k , the same result obtains. Under known population k and either limited com-
plementarity and Edgeworth substitutability or argument-additivity and concavity, there
exists a majority rule equilibrium lump-sum tax function.

The endowment economy is also a good starting point to inquire about the nature of the
collective revenue requirement function. Even though there may be several rationales for
R(S), such as income redistribution or public provision of private goods, the case involving
provision of a pure public good stands as a benchmark: it is a clear-cut case and it is often
invoked as the primary reason for existence of a public sector. In this case, R(S) is the
expenditure on the public good provision to the draw S.

A natural option is to model the decision on the provision of the public good also
as a collective choice by majority voting. Having simultaneous voting over tax structures
and public goods provision is a difficult problem that we will not address here in its full
generality. However, for endowment economies, there is an interesting case studied by
Bergstrom and Cornes (1983), where the Pareto optimal levels of the public good are

unique for each draw. In that case, the revenue requirement function is well-defined and
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ac+b(€, w) + r(z,w).)* We assume that 9b/9¢ < 0, 8%b/0¢* < 0, dr/dz > 0, 8%r[0z* < 0.
It is assumed that dH(z)/dz > 0 and d*H(z)/dz* > 0. Let (wi,...,wk) € Ak, and let ¢;

and £; denote the consumption and labor supply of the ith member of the draw respectively.

Then production possibilities are given by:

k

k
.zwi'ﬁi_zciZH(x)' (2)

i=1 i=1
We define interior allocations to be vectors (< ¢; >5,,< I; >%;,2) >> 0. A pair

(7,2 ) is interior if the resulting allocation 13 is interior.

Lemma 4: Under the assumptions listed above, for any given draw (w1, ...wx), for all
interior (7;,2;),(Th,Tr) € M, T; = Th.

Proof: The Pareto optimal allocations are solutions to: Max u(c, ¥, @, wy) subject to
u(c, £, T, w;) > ; for 1 = 2,...k and subject to (2) where the maximum is taken over c;, l;,
(i =1,...,k)and z. Restricting attention to interior optima, we have the Lindahl-Samuelson

condition for this problem:

k
> (1/a)- Or(z,ws)/0z = dH (z)/dz. (3)

i=1

Since this equation is independent of ¢; and ¢; for all ¢, the Pareto optimal level of
public good provision is independent of the distribution of income and consumption for the
given draw. Given our assumptions on r and H, there is a unique level of public good that

solves (3).
Q.E.D.

For the class of utility functions defined above we can thus solve for z as an (implicit)
function of (wy,...,wx), and obtain the revenue requirement function R((wy, .y wi)) =
H(z(wy, ..., wk))-

When the marginal cost of production of the public good is constant, equation (3) can
be solved explicitly for z, and the revenue requirement function can be found. A simple

example is given by the cost function H(z) = ma and preferences over the public good

12 1 this case we are also using w as a taste parameter. That interpretation is quite common in both the
optimal tax literature and the literature on self-selection.
13 The allocation results when the agents in a draw each solve their consumer problem. See Bergstrom and

Cornes (1982) for an explanation of why we need to restrict the analysis to interior allocations.
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9 . . . . .
r(z,w;) = wi(x — «*), which (for interior solutions) generate the revenue requirement

R((wy, .. wx)) = z Ef:l,:ui — m2a.
2 i wi
This case constitutes an example satisfying the conditions of Lemma 2, namely concavity
and argument-additivity, so we know that a majority rule equilibrium exists for any given
sample size. '
In general it is difficult to trace the properties of the revenue requirement function
back to the structure of both the cost function H(z) and the subutility function r(z,w).
However, we now show that the case where both primitive functions are isoelastic has a
simple solution which, given reasonable values for the parameters, verifies the conditions

for existence of a majority rule equilibrium.

Theorem 5: Let u(c,f,z,w) = ac — b({,w) + £ z'~%, and let H(z) = mzP, with
o, > 0,a+ B > 1. Then for any draw in .Aj, the one stage voting game over interior

(7,) has a majority rule winner.

Proof: Using Lemma 4, the unique interior Pareto optimal level of z is given by

which implies
k
T 8
= ml— 1 =F5=1
R((wy,..wg)) = m[a 3 ,Ezl w;] .

There are two basic cases to consider. If a < 1, R((wy,...,wx)) is convex. In Appendix
III we show that convex argument-additive functions R()_ w;) satisfy revenue complemen-
tarity. The result then follows from Theorem 3. If a > 1, R((wy,...,wg)) is concave and

argument-additive. In this case the remainder of the proof follows from Lemma 2 and

Theorem 4.

Q.E.D.

Another reason why the isoelastic case might be interesting comes from the fact that
it is a suitable case for the purpose of carrying out empirical tests of the model, given that
the correct way to aggregate abilities in this particular case is simply to sum them.

Next we focus on two examples of interest.
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Example 1. Let u(c,{,z,w) = ac — £* + win(z), and let H(z) = mz®. Then
(3) becomes [Zle w;]/(az) = 2mz or z = [Zf,__l w;/(2ma)]t/? and R((wy,...,ws)) =
[Zle w;]/2a. In this case, the revenue requirement function satisfies both individual in-
creasing returns and revenue complementarity. By Theorem 2 (if draws of all sizes are
considered) or Theorem 3 (if only draws of size k are considered), g(w) = w/2a is the one
feasible individual revenue requirement function. Using the results in Berliant and Gouveia.
(1991), the unique feasible tax function 7(y) is the solution to the differential equation
dr/dy = 1 — [y/(2a%7?)] that goes through the point (§,7) = (a®/2, ®/2a).

Example 2. Let u(c,f,z,w) = ac — £ — wz~%/2, and let H(z) = ma®. Then,
by Lemma 4, we have R((w1,...,wx)) = m[5i= Zle w;]'/2. Concavity and argument-
additivity hold so, if we rule out bankruptcy problems, there is a majority rule equilibrium.

By Lemma 2, we have that g(w; ®) = (22)/2 [(k®) /24 1/2(k®) Y2 (w — )]

Take w € [1,2). For notational simplicity define i = (m/2a)'/2. Since we can actually

index all admissible g’s by their @’s, to find the choice of the median voter w™ we need

only solve the problem ming g(w™;®). The solution to this problem is obtained when

wM = .

Suppose we have a draw where the median voter is the type w = 1.5. The
majority winner tax function implements the individual revenue requirement function
g(w) = Wl(L5/K)/2 + (1/2)(15k) 2 (w = 15).

Applying Theorem 1, the income tax function is given by the solution to:

dr 2y 2y

ek Rl A
dy w? [27/u — (1.5k)~1/2 — 2/k + (1.5)]?’
with upper boundary at (7,7) = (u[(1.5)/2(k~1/% + (1/4)k*/%, a).

As mentioned in the last section, the results can be simplified to deal with the case

of lump-sum taxation in a “Bergstrom-Cornes” economy, with a private good and a public
good. In this case we do not need to restrict ourselves to utility functions that are quasi-

linear in the public good. Instead Bergstrom and Cornes (1983) show that quasi-concave

utility functions with the general form

ui(e,z) = A(z)e; + B(z,w;) withi=1,...k,

have the desired property that the interior Pareto optimal levels of the public good are

independent of the distribution of income'*

14 They also need to assume that the set of feasible allocations is convex,
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To compute the efficient level for the public good in a “Bergstrom-Cornes” economy,
one need only maximize the sum of utilities over the feasible set given by (2). The revenue
requirement function is the cost of providing this level of the public good. Even though
conditions such as individual increasing returns, revenue complementarity or limited com-
plementarity are not always verified, for the cases where they hold we obtain existence of a
majority rule equilibrium when voting occurs simultaneously over income tax functions and.
levels of public good provision. This result is considerably stronger than existing results

where the tax functional form is taken as given and voting occurs over the value of one

parameter of the tax function.

6. Conclusions

We note here that unlike much of the earlier literature on voting over linear taxes, the
majority equilibria are not likely to be linear taxes without strong assumptions on utility
functions and on the structure of incentives. The reason is simple: in the optimal income
tax model, Pareto optimality requires that the top ability individuals face a marginal tax
rate of zero'®. All majority rule equilibria derived in this paper are Pareto optimal ( for a
given individual revenue requirement ), and hence satisfy this property. Hence, poll taxes
are the only linear taxes that could possibly be equilibria. However, they are generally
infeasible in this model. When they are feasible, they are first-best.

In that sense the results obtained here are a step forward relative to Romer (1976)
and Roberts (1977). In another sense, they also improve on Snyder and Kramer (1988) by
using a standard optimal income tax model as the framework to obtain the results, instead
of a model expressly designed to study the problem of voting over taxes. However, their
most interesting results still hold under our assumptions of limited complementarity and
Edgeworth substitutability; Director’s Law, which says that middle income classes use the
political system to shift some of the tax burden to the tails of the income distribution, holds.
On the other hand, an alternative set of assumptions including concavity and argument-
additivity results in the existence of equilibria with characteristics opposite to Director’s

Law, namely non-increasing marginal tax rates.

15 We know of only one case where an optimal tax is linear: Snyder and Kramer (1988). But as explained in
the text this and other results are due to the use of a peculiar model that departs significantly from the models
used in the study of income taxation. There are no income and substitution effects on effort induced by taxation
up to the point where workers switch to the underground sector, and from that point on the same holds since, by

definition, income realized in the underground sector is not taxed.
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Theorems 2 and 3, where no voting need actually occur, can also have a different
interpretation, pointed out to us by Roy Gardner: the assumptions provide an axiomatic
characterization of a unique tax system. Under this interpretation, the overall information
structure of the model ( the uncertainty about the composition of the economy in particular
) has a role akin to the veil of ignorance often invoked when discussing the creation of rules
at the constitutional stage (see Rawls (1971)).

With these results in hand, it will be interesting to look at multi-stage games in which
players’ actions at the earlier stages might transmit information. Of course, it might be
necessary to look at refinements of the Nash equilibrium concept to narrow down the set of
equilibria to those that are reasonable (at least imposing subgame perfection as a criterion).

A two-stage game of interest is one in which k is fixed and each player in a draw
proposes a tax system in T} (simultaneously). The second stage of the game proceeds as
in the single stage game above, with voting restricted to only those tax systems in T} that
were proposed in the first stage.

A three stage game of interest is one in which k is again fixed and the players in a
draw elect representatives and who then propose tax systems and proceed as in the two
stage game (see Baron and Ferejohn (1989)).

It would be interesting to see what the feasible set would look like if we were to require
less than full feasibility for each draw. One would have to define the consequences of failing
to meet the revenue requirement. Our guess is that this would simply result in a modified
revenue requirement function.

Work remains to be done in obtaining comparative statics results. As seen from the
examples, that can be a complex task. Finally, the predictive power of the models will be

the subject of empirical research. That will certainly be the focus of future work.
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Appendix

1. Proof of Theorem 1.

Fix 7 € Tx. If y(w) is the gross income function associated with 7, then g(w) =
7(y(w)) € B for some B € Gi. Pick g(w) € BN Gy. If g(w) is twice continuously differen--
tiable the remainder of the proof follows from Berliant and Gouveia (1991), Propositions 1
- 3.

Now suppose there exists one w* such that dg/dw |~ or d®g/dw? |,» does not exist or
is not continuous. Define two segments of g, g*(w) and g*(w) on the intervals W = [w, w*]
and W? = [w*, W] respectively. 7* and 6* over W? are again given by results in Berliant
and Gouveia (1991), Propositions 1-3. Using the results in the proof of Proposition 1 in
Berliant and Gouveia (1991), there is an extension of §*(w) ( and consequently of 7*(y)
) through (w*,6*(w*)) implementing g over W?. By construction, incentive compatibility
holds within both segments and since w* is common to both intervals any solution to (1)
that Pareto dominates 7* over W must necessarily violate global incentive compatibility.

The general problem with a finite number of non-differentiable points is solved by using

repeatedly the technique above.

Q.E.D.

2. An example with revenue complementarity.
Let R((wy,...,wk)) = Z(Zf__:l w;). Revenue complementarity holds if and only if

Tk k
2O wi) <Y 2(kwy)/k.
i=1 i=1

But this is the same as

k k
AQ) < S ek with @ = 3 Tar and g = ks,
=1

i=1

which is just the statement that 2z is convex.
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3. Proof of Lemma 1.

We present the proof for k even. Adaptation of the proof for the case when k is odd

is straightforward.

Fix ¢ € G%. By assumption, R((w1,..,ws)) € Yooy [ R((wi,...,wl)) 2/k —
g(W(w',w*)) ]. Since g is feasible, g(w;) > R((wi, ..., w}))2/k — g(W(w', w*)) for each i.
I g(w;) > R((wi, ..., w};))Q/k — g(W(w',w*)) for some i, then g is not minimal in the sense.
that g € G}, which is a contradiction. Hence g(w;) = R((w}, ..., wi))2/k — g(W (w', w*))
and in particular g(w*) = R((w*,...,w))2/k — g(w) = R((w*,...,®))2/k — g(7).!° Hence
g is continuous.

Let g, ¢' € G}, with switching points w* and w'*. Suppose without loss of generality
that g(w) > ¢'(w). Since g and ¢’ belong to EGj, we have that g(@) < ¢'(@). Since g — g’
is a continuous function defined over a connected domain the intermediate value theorem
says that it must have at least one zero. Take W as one such case. Assume that @ > w*,
@ > w*. Then g(®) — ¢'(®) = g'(w) — g(w) < 0, a contradiction. Now assume that
@ < w*, ® < w*. Then g(®) — ¢'(#) = ¢'(W) — g(W) > 0, another contradiction. Hence,

cither w* > @ > w'* or the reverse must hold. Assume the former. Over (w*, w*) we have:

d(¢g'—g) _ _l_c_[aR((wi,...,w,-,_w_,...,_z_u_) _ OR((wiy oo, W, W, ..., D)
dv 2 w; dw;

]>0

by Edgeworth substitutability. Since the difference is increasing we have that there is a
single zero, i.e. the revenue requirements g and g’ cross only once.

Now assume w* > @® > w*. Then, over (w*,w™*), %g—)- is negative (again by
Edgeworth substitutability), contradicting continuity since we started with g(w) > ¢'(w)
and ¢(w) < ¢'(W).

Notice that this proof of single crossing of the individual revenue requirements also
proves that g(w) > ¢'(w) = w* > w'™*.

Finally, suppose we have g and § in G}, with switching points w* and @™ respectively.
By the previously mentioned result, g(w) > §(w) = w* > v* = g(d*) — §(*) = §(D) -
g(@) > 0. Similarly, if g(w) < §(w) = w* < ®* = g(b*) — §(d*) = §(w) ~ g(w) > 0,

proving the last statement in the lemma.

Q.E.D.

16 Otherwise either g is not minimal or g is not feasible.
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4. An example satisfying limited complementarity.

M

Define w™ as the median of (wy,...wx). We have that:

k k
R((wy,..wp)) = @y |wi — wM|+ 8w,
i=1

i=1
and 0 < a < 3 as well as /(1 — B) < w(T — w).
The adding-up restriction is as follows:

%R(g, W,y D) = (T — w) + BT + w) = g(w) + (7).

Using the definition of limited complementarity, the minimal individual revenue re-

quirements are:
g(w;w™) = flw + W(w",w)) + o |w - W(w*,w)| - g(W(w*, w)).
In particular we have that
g(ww™) = fw" + w) + ajw* — w| - g(w) = f(w”" + B) + a|w” - B| — g(W).
Substituting for g(w) we obtain g(w;w*) = fw + o(w* — w). Using the adding-up
restriction we obtain ¢g(w; w*) = U + (T — w*).
We now check feasibility, which says

k k
R((wy,...wg)) = @ Z |w; — wM| + ﬂZwi <
i=1

i=1

k k k
2a/k Z k/2|w; — W(w*,w;)| + Bk/2 z(w, + W(w*,w;)) — Zg(W(w*,wi)).
i=1

i=1 i=1

This can be simplified to
k k k
D lwi = wM <y = W™, Wi)| = Y |w” — W(w*, w;)l.
i=1 i=1 i=1

Now use the definition of W (w*, w) to rewrite the expression above as

. |
Slwi=wM < 3 [wi-w) - @ w4 Y (@) - (@ - v

wi > w* wi <w*

resulting in

k k
E lw; — w| < E lw; — w*|.
i=1 =1



33

Since the median w™ is the parameter relative to which the sum of the absolute

deviations is minimized we have that the inequality above necessarily holds. Furthermore
we have that it holds as an equality when w* = w™. Since that will be a majority rule

outcome we have that, in this particular instance, the sum of the individual tax payments

matches exactly the collective revenue requirement.

5. Proof of Lemma 2.

It is straightforward to prove that V g(w;®) € G%, g(w;®) is continuously differ-
entiable in both w and @ and strictly increasing in w. 17 Since R is argument-additive
R((wi,...,wx)) = Q(Zle w;) = Q(kw?), where w* is the average ability in the draw.

Since R is concave, g(w; @) = Q(k®)/k+Q' (k®)(wA—d) > Q(Zf=1 w;)/k. This shows
that the branches A and C in the statement of the lemma are feasible. We now prove that
they are minimal. Consider branch A. Clearly, if a draw consists of k individuals of type
W, g(@; @) is minimal. To show that g(w; ) is minimal suppose the opposite. Take h(w)
to be minimal, with h(®) = Q(k®)/k and h(w) < g(w;®) with strict inequality for some
wy € [w,® + (k — 1)(® — w)]. It is feasible to have a draw (wi,...wx) with mean @ and
w; € [w,®+ (k—1)(® —w)] for ¢ = 1,...k. Then, R((wy,...w})) = Q(k®) = Ele g(wi; ).
But Ele h(w;) < Ele g(wi; @), so h(w) is not feasible. A similar reasoning holds for
branch C.

Now consider branch B and wy € [# + (k — 1)(® — w), @]. The logic used for branches
A and C does not hold in this case: it is not possible to find & — 1 ability levels in order to
construct a draw with mean @. Consider a draw with w; € [w, @ + (k- 1)(® — w)] for j =
2,..k. Due to argument-additivity, for any fixed draw mean w*, we can take all w;’s
to be equal to ¥ = (kw? — wy)/(k — 1), without loss of generality. Feasibility requires
g(w; @) 4 (k — 1)g(; @) > Q((k — 1) + w). Take this as an equality and replace g(w; )
by Q(kw)(k — 1)/k + (k — 1)Q'(k®)(® — b). By construction this revenue requirement
is minimal. It is maximized over @ € [w,®] for @ = w, so feasibility requires g(w;®) =
Q((k — Dw + w) — (k — 1)/kQ(k®) + (k — 1)Q'(k®)(® — w). It is easy to prove that
allowing for draws with different compositions, namely more than one ability in the interval
[0+ (k—1)(1—w), W], does not violate feasibility. We thus obtain branch B in the statement

of the Lemma. Branch D is obtained following a similar reasoning.

7 Proofs available from the authors on request.
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To prove single cavedness in @, one need only differentiate g(w; @) with respect to the

parameter w. For branches A and C we obtain:

dg(w; @)

5 = Q" (kw)k(w — b).

The derivative above is positive if w < ¥ and negative for w > .

For branch B we have:

dg(w; )

5o = Pk - 1Q"(kd)(® - w) <0,

which applies only for w > .

Finally, for branch D we get:
Og(w;®) _

S = —k(k ~ 1)Q" (kib)(w — ©) > 0,

which applies only for w < .

These results also imply that argmin g g(w; ®) = w.

Q.E.D.

6. Proof of Lemma 3.

Let y(-) and y'(-) be the gross income functions associated with 7 and 7', respec-

tively. Let g and ¢’ be the elements of G} associated with 7 and 7/, respectively.

The proof is by contradiction. Suppose that there exist incomes > Y2 > ys3 with

7(y1) < 7'(y1) and 7(y2) > 7/(y2) and 7(y3) < 7'(ys). Then there exists w® such that
w(y(w?) = m(y(w®), y(w)/w?) = u(y'(w®) - 7'(y'(v*)),y'(w*)/w?), ¢'(w?) > y(w?),
(¥ (w?)) < 7(¥'(w*)) and 7(y(w®)) < 7'(y(w®)). There also exists w® > w* with
wy(w?) = 1(y(w"), y(w")/w®) = u(y'(w?) ~ (¥ (wh), y'(w*)/w?), y(wb) > y'(w?),
T(y'(w?)) > 7'(y'(w?)) and 7'(y(w®)) > r(y(w®)). Hence 7(y'(w®)) > ¢'(w®) and since
y(w®) > y'(w®), g(w®) > g'(wP). Similarly, g(w?) < 7'(y(w*)) and since y'(w?) > y(w?),

9'(w*) > g(w®).

Using strongly single crossing, g(w) > ¢'(®@). If ¢(w) = ¢'(@), then using ¢'(w?) >

g(w*) and the proofs of Lemma 1, g is infeasible. Ience g(w) > ¢'(w).
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By normality of leisure and construction of T}, 7(y(®W)) > 7'(v'(@)) and y(w) > ¥'(T).
Since ‘r’(y(wb))b> 7(y(w?)), there exists y* > y(w®) with 7(y*) = 7/(y*), so there exists w°
with u(y(w®) — 7(y(w5)), Y ) = u(y'(w°) - (5 (W), ' (@) /0), §'(w®) > Y(we),
T'(y'(v)) < 7(y'(v°)) and 7(y(w°)) < 7'(y(w°)). As above, ¢'(w°) < 7'(y(w°)) and
since y'(w®) > y(w®), ¢'(w®) > g(w®). This contradicts strongly single crossing. So the
hypothesis is false, and the lemma is established.

Q.E.D.
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