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Abstract

Recently, Moulin gave various axiomatic characterizations of solutions to quasi-linear
social choice problems. He used a consistency axiom, which relates solutions for
societies of different sizes, in addition to some basic axioms. In this paper, we introduce
another axiom relating solutions for societies of different sizes, called the “Solidarity
Axiom”. This axiom demands that when additional agents enter the scene, all of the
original agents be affected in the same direction, i.e., all of them gain or all of them lose.
Our main result is a complete characterization of solutions satisfying the solidarity axiom,
in addition to Pareto optimality, anonymity and two normalization axioms. All solutions
satisfying these five axioms are in the egalitarian spirit; each solution assigns to every
agent an equal share of the surplus over some reference level, but uses a different
method to compute the reference level. Then, using additional milder axioms, we give
further characterization results concerning various subfamilies.



1. Introduction.

We consider the following class of quasi~linear social choice problems. A society must

choose one among a finite number of public decisions; money is available to perform side
payments. Each agent has quasi-linear preferences (separably additive with respect to
the public decisions and money and linear with respect to money). We are interested in
determining what decision should be chosen and what side payments among agents
should be performed.

In [3], Moulin proposes various axiomatic characterizations of solutions to quasi-
linear social choice problems. In addition to four basic axioms, Pareto optimality,
anonymity and two normalization conditions, he uses a consistency axiom,! which relates
solutions for societies of different sizes, to characterize various subfamilies of solutions in
the egalitarian spirit; each solution assigns to every agent an equal share of the surplus
over a reference leve!l, but uses a different method of computing the reference level.

In this paper, we introduce another axiom relating solutions for soci'eties of
different sizes, called the “Solidarity Axiom”. It is a natural variant of an axiom first
introduced by Thomson [5] in the framework of bargaining theory under the name of
“monotonicity with respect to changes in the number of agents” and used by him [5,6] to
characterize the Kalai-Smorodinsky solution and the egalitarian solution. More
specifically, the solidarity axiom demands that when additional agents enter the scene, all
of the original agents be affected in the same direction. i.e, all of them gain or all of
them fose. The purpose of this paper is to explore the implications of the solidarity
axiom far solving quasi-linear social choice problems.

Our main result is a complete characterization of solutions satisfying the sofidarity

axiom, in addition to the four basic axioms of Moulin's. All solutions satisfying these five

Moulin cailed this the "Separability axiom”.



axioms are also in the egalitarian spirit, but they constitute a family that is different from
the family identified by Moulin. Then, using additional axioms introduced by Moulin [3],
we give further characterization results concerning various subfamilies, most of which
have been identified and alternatively characterized by Moulin

The paper is organized as follows. Section 2 contains some preliminaries, and
introduces the concept of a solution and the basic axioms. Section 3 presents the
solidarity axiom and section 4 contains the main charactérization result and its proof. In

section 5, we introduce additional axioms and give further characterization results.

2. Preliminaries.

The framework of analysis is taken from Moulin [3] (it is also related to Green [1] and
Moulin [2]).

Let | = {1,2...} be the (infinite) universe of “potential” agents. Agent i in | is
indexed by the subscript i. Y is the class of subsets of . Let N € 7 be a society with

members 1,..n, and A be the set of public decisions. Each decision a has a cost c(a) that

must be covered by a vector t = (ty,...tp) of monetary transfers across agents. An
outcome, which is chosen by the society, is a pair (at) where Zjcn tj + c(a) = 0. Every
agent i in N has “quasi-linear preferences” over the set A x R, i.e. agent i's preferences
can be described by a utility vector uj = (ui(a)lagepn IN R™ 2 so that his utility for outcome
(a.t) is uj(a)+t;. Let ¢ = (c(a)lzep i R® be the cost vector and u = (uUq,..up) in [FRA]n be
the utility profile.

Also, let T € R™ be defined by 1I(a) = 1 for all 3 € A

Definition. Given a soctety N = {1,..n} and a finite set A of public decisions, a solution

2 For convenience, we use IRA instead of R'A'



for the society N is a function sN - [RA]("”) + RN, which associates to any (n+1)-tuple
made up of a utility profile u and a cost vector ¢, a vector SN(u,c) = (S'*(u,c),...,srr\f(u,c)) of

utility levels. A solution is a list {SN :NenNn}
We impose the following axioms on solutions;

Pareto optimality (PO). For all societies N, for all profiles u and for all cost vectors c,

ZieN Sri\l(u,c) = maxgea { ZienN ui(a) - c(a)}

Anonymity (AN). For all societies N, for all permutations p of N, for all i € N, for all

profiles u and for all cost vectors c,

sMuc) = sPpyusc)  where U = (upgiien.

Independence of the individual utilities’ zero (IND1). For ail societies N, for aii i € N, for

all profiles u, v, for all cost vectors ¢ and for all a € R, if v; = uj + all and vj = u; for all |

# i, then SI}J(v,c) = S'}I(u,c) + a and S'}.(v,c) = S'}I(u,c) for all j # i.

Independence of the cost vector zero (IND2). For all societies N, for all profites u, for all

cost vectors ¢, ¢’ and for all @ € R if ¢' = ¢ + all, then Sl}J(u,c') = S[}J(u,c) - %— for ali i €

N.

PO requires that a society picks a decision which maximizes the difference between the
sum of individual utilities and the cost. AN says that the solution should be a
symmetrical function of individua! utility vectors. INDT requires that the zero of individual
utifity vectors does not play any role. Finally, IND2 requires that the zero of cost vectors
does not play any role.

in what follows, solutions are assumed to satisfy these four axioms. Since SN
sausfies the anonymity axiom. from now on we use the notation s™ instead of SN. So a
solution S is denoted {S' ., s" .} Given x ¢ R”, we define xMa% = maxyea X(a) and for

any coalition TEN, we define ST = Zjc1 Sj, ur = ZLjcT uj. and so on.



Below, we define several families of solutions. All these solutions are in the
egalitarian spirit; each solution assigns to every agent an equal share of the surplus over

a "reference level”, but uses a different method of computing the reference level.

Definitions.
{a) A solution belongs to the O-family if there exists a function g : [ERA]2 » R such that
{i) g(x+all.z) = g(x,2) + o forall x, z ¢ FRA and all a € R,
(i) g(0.2) =0 for all z € R®,
(iii) g(x.z+all) = g(x.z2) forallx. z ¢ R® and all @ € R,
and such that for all n, S" is defined by
sSMu.c) = Hun - M + & {(n-N)g(ujc) - Zj# glujc)}
for all i, for all profiles u and for all cost vectors c.
(b) A solution belongs to the I-family if the function g defined above does not depend

on its second argument, that is, for some function § : RA -+ R satisfying

Jix+all) = g(x) +a forallx ¢ R* and a ¢ R

g(o) = 0,
the solution can be written as

sMu.c) = %—(UN - gymax . %—{(n—1)§(ui) - Li#i '§;’(u]-)} for all n, i, u and c.
(c) A solution belongs to the M-family if it belongs to the t-family with Ej satisfying one

additional property, namely,

for all x, v ¢ R™ x < vy implies g(x) < G(y).’
(d) A solution belongs to the Q-family if, for some vec‘tor C = (0g)aea such that Zycp

Oa = 1and o4 > 0 forallacA

g(uj.2) = v+ 0 for all i and u;.

3 Given two vectors x and y in IRA, x >y means x; > y; for alli, x >y means x > vy
and x # y, x > y means x; > y; for all i.
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Then the solution can be written as

SNu.c) = -,]f(uN - g)max . -r],-{(n—l)ui-o - Ijgj ujpro} forallm, i, uandc.

The relationships between the families are as follows; O-family 2 I-family 2 M-family 2 Q-

family."

3. The Solidarity Axiom.

Now we are ready to introduce our main axiom. Let u’" = (uup41) in [IRA]n”.

Solidarity (SOL). For ali n, for all profiles u’ and for all cost vectors c, if S?(u,c) >

S?”(u’,c) for some i = 1,..,n, then ST(u,c) > S?”(u’,c) for all j = 1,...n.

One can imagine a decision problem faced by the original group N = {1,...,n}. The solution
S is first applied to this problem. Then one additional agent enters the scene and it is
recognized that he has the same rights as the members of N, so the solution is again
applied to the decision problem faced by the eniarged group of agents. The solidarity
axiom requires that the members of N all be better off (in the weak sense) or that they all
be worse off (also in the weak sense) at the new decision than they were before. Note
that, although this axiom is stated assuming the arrival of only one more agent, it could
be stated assuming that an arbitrary number of agents come in. Such a strengthening of
SOL would not affect the analysis of this paper

In [5,6], Thomson introduced the axiom of "monotonicity with respect 10 changes
in the number of agents (MON)” in the framework of bargaining theory, as formalized by

Nash [4], but generalized to allow for variations in the number of agents. Thomson used

4 Moulin gives axiomatic characterizations of the M~family and the Q-family. He calied
M~-family Equal sharing from an individual reference level,
Q-family Equal sharing above a convex status quo.
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the axiom to characterize the Kalai-Smorodinsky solution and the egalitarian solution.
MON requires that if the number of agents were to increase but not the resources at their
disposal, then ali of the agents originally present should contribute (perhaps not strictly)
to the support of the newcomers. SOL is stronger in that it demands solidarity regardless

of whether resources change, but it is weaker in that the original ‘agents can gain or lose.

4. The Main Characterization Result.

Now we identify all solutions satisfying the four basic axioms, as well as the solidarity

axiom.

Theorem 1. A solution S = {S1 ..... S" .} satisfies PO, AN, IND1, IND2 and SOL if and only if
it belongs to the O-family, that is, there exists a real valued function g{(x,z) on the domain
[RA12 satistying (i) - (iii),

(i) gix+all.z) = g(x2) + & forallx, z ¢ " and all & € R,

(i) g{(0,z) =0 forall z ¢ RA,

(iii} g(x,z+all) = g(x,z) for all x, z € IRA and all a ¢ R,

and such that for all n, S" is defined by, for all i, for all profiles u and for all cost vectors

C,

(1) sTue) = Fiuy - M+ Ldn-T)gup0) - Zjx glujel}

Proof. Given g satisfying the properties (i) - {(iii), consider first the function S" defined by

(1). Routine checking shows that S satisfies PO, AN, IND1 and IND2 So we onty show

that it satisfies SOL.

For given i € N, let ¢; : (R 72) 5 g be defined by

ifuc) = ST N ue) - sTu.c)

where u = (u7....up) and U = {uupsq).



Let N’ = N U {n+1}. Then
di(u.c) =TT (un: - ©)™3* + - {ng(uic) - Zjgijen: 9(uj0)}
- & (uy - oM - Ldin-1)g(ujc) - Zi#ijeN 9(ujc)}
= meriuny - O™ - Sl glupare) - muy - oME
+ (- O50) o(uie) + (- FET + ) jgijen 9uj0)

= TN - O™ - - glups.0)
- _r]\_(UN - C)max + F(T]‘TIT szN g(Uj,C).

Since ¢; is identical for all i = 1,..,n, the O-family satisfies the sotidarity axiom.

The proof of the converse statement is divided into 4 steps. Let S be a solution

satisfying the 5 axioms. Also let N, N’, u, u” and ¢;, for i = 1,..,n, be defined as before.
Step 1. ¢j(u'c) = ¢j(u',c) for all i,j € N, for all u” and for all c.

Proof. We argue by contradiction. assuming, without loss of generality, that for some
(w.c) € RA1M2 q(u'c) > do(u'c). By SOL either
(@) 0 > ¢q(u'c) > dp(u'c),
or

(b) ¢q(uc) > dp(u'c) >0

Assume that (a) holds. For a € R, we have

dq(uc+all)

= s9" Yucral) - sTiucral) (By def of &)
-0 Vo) - S0ue) - =hra s La (By !ND2)
= ¢i(uc) - T fa (Bv def of ;)

1]
o
=
(@]

+
>
)
+

Q



Similarily, we have
$o(u.c+all) = ¢o(u'c) + ﬁ(,l,ma.

By choosing a such that -n(n+1)¢1(u’.c}) < a < -n{n+1)¢(u’.c), we obtain
$1(u’.c+all) > 0,

and
$o(u'.c+all) < 0.

in violation of SOL. A similar argument can be developed for (b). This proves Step 1.

Remark 1. By AN, step 1 implies that for given N, the arrival of agent j, j € N, yields equal

gains or equal losses to all members of N.

For n=1, (1) is just a restatement of PO, so we consider the first non-trivial case,

that of n=2.
Step 2. There exists a function g - [RA12 > R such that

g(0c} =0 forallce RA,

and that for all i,j = 1,2, 1 #],

S|2(u1,u2,c} =ﬂ’(u1+u2-c)max + +{g(ujc) - g(uj.c)}.

Proof. Let u’ = (uj.up,u3). By step 1 applied 3 times and AN, we obtain

S;f(u’,c) - S%(u1,u2,c)
S3(u'c) - SF(up.ug.c)

s3(uc) - S%ua.ug o)

S%(u',c) - S%(u1,u2,c),

S%(u',c) - S%(ug,ug,c),

S}(u',c) - S%(U?),U],C),

Summing up these three equations yields,

S%(m,uz,c) + S%(uz,u:;,c) + S%(U3,U1,C)

-8~



= S%(u1,u2,c) + S%(uz,u:;,c) + S%(U3,U1,C).

On the other hand, by PO,
S9(u1,u.c) + SH(uq.U.C) = (ur+up-c)™MaX,

S%(uz,u&c) + S%(uz,u?,,c) = (u2+U3—c)max,

S%(U3,U1,C) + S%(U3,U‘|,C) = (uz+uq-c)Max,

Therefore,

S%(u1,u2,c) + S%(ug,u:z,,c) + S%(U3,U1,C)

ymax ymaxy

= F {(u1+up-c)M3* + (up+uz-c uz+uq-c

Fix ¢, and let f : [IRA]2 -+ R be defined by

f(x.y) = S%(x,y,c) - .i_(xw_c)max_

Then

(2)  fluj.up) + flup,ug) + f(uz,uq) = 0.

(2) holds for an arbitrary u'=(uy,up,u3) if and only if there exists a function h : FRA +> R such

that

fluq.up) = %’[h(uﬂ - h(up)l.®

Therefore, for some function k : [ﬂtA]2 > R,

S%(u1,u2,c) =‘§‘(u1 + Uy - c)Mmax 4 ’}'[k(u1,c) - k(up.0)]

Set u3 = 0, so that for some functions h. h : RA > R

flug.up) = (1,2) [h(ug) - Rlup)l
Substituting this into {2} gives

(h(uq) = Atug)l + [hup) = Riua)]l + [h(ug) - Rlup)] = 0

for all uy, up and ugy

Since this holds for all u" = {uq,up.ug). by setting ug = up = uz = 0, we get h(0) = H(O).
Now let up = u3z = 0, and obtain

h(uy) = Rluq)  for all uy.
I borrowed this argument from the proof of Lemma 1 in Moulin [3]

-g-



Define g : [RA12 » R by g(ujc) = k(ujc) - k(0,c). We note that
g{(0c)=0 forallce RA
and

ST(uq.u.c) = Huq+us-c)™3X + +(g(uq.c) - glup.c)l.

This proves Step 2.
Step 3. g satisfies properties (i) and (iii).

Proof. Let u* = (uq,0).
(@ Sf(u*all0c) = # (uy+all —¢)™3% + Fg(uq+allc)
= F(u1-¢)M + &+ Fgui+alle)

= S%(u*,c) + '5‘ + '}'g(uﬁaﬂ,c) - -ﬁ-g(u1,c).

This gives

g{ur*allc) - glurc) = a for all uq and c.
This proves that g satisfies property (i).
(b)  Sf(u*c+all) = F{uj-c-al)™2X + L g(uy,crall)
+(ug-c)Ma = § + L g(uqcrall)

S%(u*,c) o %g(u1,c+aH) - a-g(uLc),

This gives

gluq.crall) - glugc) =0  for all uy and c.

This proves that g satisfies property (iii).

We have obtained the desired conclusion for the case of n < 2.

we will consider an arbitrary n

Step 4. The conclusion in steps 2 and 3 are true for all n.

satisfying (i) - (iii} and S™ satisfying (1) for all n.

_"O_

(By step 2)

(By step 2)

(By IND1)

(By step 2)

(By step 2)

(By IND2)

In the next step.

there exists g



Proof.® As usual, tet N = {1...n} and u = (ujy,..up). By repeated application of step 1, we

obtain
ST(u.c) - SY(u.c) = S Huq...up-1.6) - S (uq,up-1.0)
= 8972(uq,up-2.0) - S§7%(ug up-2.0)

S%(u1,u2,c) - S%(u1,u2,c).

Thus, by step 2, we have

STu.c) - SY(u.c) = gluy.c) - gluy.c).

Similarly, we have

ST(u.c) - ST(u.c) = g(ug.c) - glujc)  for all i.

Summing up these n equations, we obtain

n SQ(uc) - SR(u.c) = n glur.c) - Zi#1 9lujc)

By PO, we have
SHuc) = F(un-0)™@ + d-{(n-Dglur.c) - Zjz1 glujo)}.

This completes the proof. QED.

Remark 2. Since the function g is arbitrary except for the properties (i) - (iii), the O-
family is fairly large. However. the O-family excludes some otherwise interesting
solutions. For example, the utilitarian and the equal allocation of non-separable cost

solutions, characterized in Moulin [3] do not belong to the O-family.

6 | am grateful to Prof. Hervé Moulin for suggesting this proof that simplifies my original

proof considerably.
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S. Further Results.

Now we introduce some additional axioms of Moulin’s to get further characterization

results.

Cost monotonicity (CM). For all n, for all i, for all profiles u and for all cost vectors c. ¢/,

if ¢ < ¢, then ST(u,c) < ST(u.c).

CM requires that no agent be hurt by an improvement in technology that would reduce

the cost of some or all public decisions.

By imposing CM in addition to PO, AN, IND1, IND2 and SOL, we can characterize

the [-family.

Theorem 2. A solution S = {S‘,...,Sn,...} satisfies PO, AN, IND1, IND2, SOL and CON if and
only if it belongs to the I-family, that is, there exists a real valued function g(x) on the
domain IRA satisfying

(i Yx+al) = G(x) + o for all x ¢ R and all a € R,

(i g(0) = 0,

and such that for all n, S" is defined by, for all i, for all profiles u and for all cost vectors

C,
shuc) = & (un - O™+ TL-13(u) - Zjx lup)

Proof. It is immediate that the I-family satisfies all 6 axioms. So we prove only the “only

if" part of the Theorem. From step 1 in the proof of Theorem 1 in [3]7 if a solution

For some fixed profile u and cost vector ¢,

up ~ (U ~cymax < c.
From CM and IND2,

sTu.c) < ST(wun-(uny-c)M8D) = ST(u,c) + (1/n)(upy - ¢)Mex
On the other hand, by PO,

Sfituc) = (uy - )M = s{(uun-(un-c)T3xm).

_12_



satisfies PO, IND2 and CM, then we have

sT(u.c) = SYuun) + & (un-c)™3%  for all i, u and c.

Let u; = 0 for all i # 1. By (1), we get

g(uq.c) - gluq.uq) =0 for all uy and c.

This means that g is independent of its second argument and we can replace g by §'

where

G(uq) = g{uy.c) for all uy and c. QED.

Another characterization of the |-family can be achieved by using Moulin’s main

axiom of consistency, which relates solutions for societies of different sizes.

Consistency (CON). For all n, for ali i = 1,...,n, for all profiles u’, and for all cost vectors c,

T Yuc) = sMuc)

where c'(a) = c(a) - up+1q(a) + Sﬂﬂ(u’,c) for all a € A

The consistency axiom demands that the restriction of a solution to some subgroup of

agents is itself the solution of the restricted decision problem.

Theorem 3. A solution satisfies PO, AN, IND1, IND2, SOL and CON if and only if it belongs

to the I-family.

Proof Since the proof for the "if” part of the Theorem is straightforward. we prove only

the “onty if” part of the theorem. By Theorem 1, the solution can be written as

(M sfuc) = ffuy - ™+ F{n-Ngluic) = Zjx gluje))

where g satisfies (i) - (iii) of Theorem 1.

Therefore,
SMu.c) = SMuup) + (1/n)uy - )M8*  forall i, u and c.

_‘13_



Lteti = 1 and u* = (uy,0...0,uy). Then from property (ii) of g, we have
3)  SYu*e) = F (ug+up-c)™ + D71 g(ug.c) - Fglun.c),
4)  SPu*c) = & (ug+up-c)™@* + D=1 gy c) - Fglug.c).
On the other hand, also by (1), we get
5) ST N u1.0...0,c-up+SR(u*.c)) = 77 (uq-crup-Sh(u*.c)m)max
+ —Ré%g(m,c—un*rsﬂ(u*,c)ﬂ).
By CON, we obtain

6)  SPu*c) = ST (uq,0..0.c-up+SP(u*.c)T).

Substitute (3)-(5) into (6) and get from property (iii),
g(uq.c) = g{uq.c-up) for all uq, uy and c.
This implies that g is independent of its second argument, and we can define

Gg(uq) = g{uy.c) forall ug and c. QED.

Next axiom prevents a strategic behavior by agents.

No disposal of utility (NDU). For all n, for all profiles u, v and for all cost vectors c, if uy

< vq and u; = v for all i # 1, then sT(u.c) < sT(v.c).

If a solution does not satisfy NDU, then an agent may sometimes benefit from disposing
of his utility. This possibility is discussed in other contexts under the name of the

"destruction paradox”. NDU requires that the solution should be free from the destruction

paradox.

Theorem 4. A solution satisfies PO, AN, IND1, IND2, SOL and NDU if and only if it belongs
to the O-family with g satisfying one additional property, namely,

(ivy g is monotonic in x: for all x, y, z Iin FRA x <y implies g(x,z) < g(y.z).

Proof. For any profite u and non-negative vector ¢ ¢ R’f‘, we get from NDU

sTu.c) < ST(uy+8.up...up.c)



By Theorem 1,

L uy-o)Ma* + D=L gy 0) < +(un+8-0)M3% & Dlgiy48.c)
(n=1) {g(uq+8.c) - g(ug.0)} > ~(un+8-c)M + (un-c)&.

Let up = .. = up, divide both sides by (n-1), and let n go to infinity. We obtain
g(uj+d.c) - gluy.c) > 0 for all uy, ¢ and §.

This means that g is monotonic in x. QED.

As a direct consequence of Theorems 2-4, we obtain the following two

characterization results for the M-family.

Corollary 1. A solution satisfies PO, AN, IND1, IND2, SOL. CM and NDU if and only if it

belongs to the M—-family.

Corollary 2. A solution satisfies PO, AN, IND1, IND2, SOL, CON and NDU if and only if it

belongs to the M-family.

Let hn(ui,c) = inf S?(ui,u_i,c), where the infimum is taken over all (n-1)-tuples u_;

e IR 1. h" denotes the agent’s guaranteed utility level, as a function of u; and c.

Individual rationality relative to ¢ (IRg). For all n, for all i, for all profiles u, for all cost

vectors ¢ and for some vector 0Z(0g)aea such that Lzea 03 = 1 and o4 > 0 for alf a,
hn(ui,c) > (uj - TC\-)'O

Suppose that the public decisions are drawn at random with probabilities 6=(ag)z. 4. Then
the status quo outcome amounts to picking a decision according to ¢ and sharing its
cost equally. IR0 requires that the solution should guarantee each agent at least the

status quo utility fevel.

By imposing IR0 in addition to PO. AN, IND1, IND2 and SOL, we characterize the



Q-family.

Theorem 5. A solution satisfies PO, AN, IND1, IND2, SOL and IRo if and only if it belongs

to the Q-family.

Proof.® Since it is easy to show the "if” part of the Theorem, we prove only the “only if”
part of the Theorem. Let S be a solution satisfying PO, AN, IND1, IND2 and SOL. By

Theorem 1, S is given by (1) for some function g(x.z) satisfying {i)-(iii} From IRag, we

have

S?(u,c) > {uq- %)-0 forall uandc.

Equivalently,

n ST(u.c) > (nuq - c)-o for all u and c.

From (1), we obtain

max

(uny-c¢) + (n-T)g(uq.,c) - g g{u;,c}) > Nuq-0 - C-0 ~ UN+0 + UN-O
N 1 i=2 e 2 1

(7) (n-Tg(uq.c) - er‘=2 g(uj,c) > [(n-Nuq - Z?:z Uj]'O = C0 *+ UN+O ~ (uN—c)max.

Let h: [ERA]2 + R be defined by h(x,.z) = g(x,z}) - x-0. Then (7) is equivalent to

(n-1h(uy.c) = £T=p h(ujc) > (uy-c)-o - (uy-c)Me,

which holds for all n, ¢ and u. Choose now up = .. = up, divide both sides by {n-1) and

let n go to infinity. We obtain

h(uq.c) - h{up.c) > 0  for all uq, up. and c.

This implies that h{x,z) does not depend on x, so that g(x.z) = x.c + h{0.z). Adding to g a

function of the variable z only leaves invariant (1) so we can take g(x.2) = x-o. QED.

8 Even though we use SOL while Moulin [3] uses CON, the proof of Theorem 5 is very
stmilar to that of Moulin's Theorem 2.
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The Q-family can be characterized in a different way by using the following axiom.

Guaranteed utility fevel size-independence (GU). For all n, for all i, for all profiles u,, and

for all cost vectors c,

h™uj.nc) = h(u;,2c).

GU requires that the guaranteed utility level to each agent depends only on his utility
vector and per-capita cost vector, but does not depend on the size of the society to

which he belongs.

For completeness, we reproduce Moulin's Lemma 3 as our Lemma 4 before stating

our final results.

Lemma 4. A solution in the M-family satisfies GU if and onliy if it belongs to the Q-

family.

As a direct consequence of Corollaries 1, 2 and Lemma 4, we obtain the following

two characterization results for Q-family.

Corollary 3. A solution satisfies PO, AN, IND1, IND2, SOL, CM, NDU and GU if and only if

it belongs to the Q-family.

Corollary 4. A solution satisfies PO, AN, IND1, IND2, SOL, CON, NDU and GU if and only if

it belongs to the Q-family.
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