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1. Introduction

In recent years, dynamic strategic interaction has been extensively studied,
particularly within the context of repeated games. See, for instance, Aumann and Shapleyk ees
 (1976), Rubinstein (1979), Abreu (1988) and Fudenberg and Maskin (1986) for analyses
of the basic repeated game model with cOmpléte information and perfect monitoring. A 4
drawback of the repeated game paradigm is that it is premissed upon a comple‘tely
unchanging environment. In many applications, such an assumption is not even

approximately correct. For instance, in economic models with stock variables, current and
future action possibilities and payoffs are directly a function of the available stocks. Cases
in point are growth models, in which capital or human and natural resources are the
relevant productive assets!, financial models and models with price competition, in which
accumulated wealth or historical prices are determinants of current and future action
possibilities and payoffs.2 Intertemporal links may also be present through other payoff
relevant factors as demand and cost conditions or level of innovations, representing
"shocks" to the system which typically persist across periods. The appfopriate model in
these cases is a stochastic game in which a state variable represents the environment of the
game and its evolution is determined by the initial conditions, players' actions and the
transition law. The abstract model of a stochastic game is, of course, very general. In

_ particular, the transition rule from the current state to the subsequent st:ite(s) may be either

probabilistic or deterministic. The purely deterministic case is sometimes referred to as a
dynamic game and a special case of it is the repeated game.

Earlier work on stochastic games has focussed on the issue of existence of (perfect)
equilibria in Markovian strategies (see, for example, Parthasarathy (1973), Himmelberg et
al (1976), Nowak (1985) and Parthasarathy and Sinha (1990)).3 This paper provides
instead a characterization of equilibrium payoffs when players are very patient, dropping
the assumption of Markovian behavior. The latter restriction appears to be arbitrary; indeed
in the strictly repeated context, it is seldom suggested that Markovian behavior is
strategically salient (see however Maskin and Tirole (1988)). Recently the folk theorem
question in non-repeated settings has been also investigated by Friedman (1987) and
Lockwood (1990). Their results are discussed in Section 7. |

1Strategic formulations include Benhabib and Radner (1988), Stokey (1990), Bernheim and Ray (1986) and
Sundaram (1989).

2For instance, see Maskin and Tirole (1988) and Dutta and Madhavan (1991).

3Mertens and Parthasarathy (1988) have shown the existence of perfect equilibria in a more general class of
strategies.



A major difficulty in analysing stochastic games is that deviations not only alter
current payoffs but also change the distribution over future states. A central observation of .-
this paper is that for a variety of cases this difficulty has, at least asymptotically, an easy. -

- resolution. -Indeed, it is shown: that for games ranging from completely communicating

« stochastic gamés to deterministic capital accumulation games, both immediate- gain.«andistate‘ﬂ,
manipulation incentives may be deterred as the discount factor gocsr-‘to one. The folk -
theorems for repeated games with perfect monitoring may be extended to this setting.
These include the theorems of Aumann and Shapley (1976), Rubinstein (1979) and
Fudenberg and Maskin (1986). We provide an analog of the last result, which is suitable

for the applications we discuss. The argument also yields a modest generalization of the
Fudenberg and Maskin discounted folk theorem for strictly repeated games.

Section 2 describes the model. Preliminary results on feasible payoffs and min-
max levels are contained in Sections 3 and 4. Section 5 presents and discusses the
assumptions. Section 6 contains the main theorem and related results while Section 7
contains a discussion of some applications and the relationship of the theorem to other
available results.

2. The Model

This paper considers infinite horizon stochastic games with perfect monitoring.
" These games are defined by a quintuple < S, Aj, 13,9, 0; i=1,.n> where i is the player

index, S is the set of states and Ajis the i-th player's set of actions. The sets S, Aj,

i=1,..n are finite. Assume, without loss of generality and only to save on notation, that
n
each player has available to him the same set of actions in every state.* Denote A = I1 Aj.
i=1

The i-th player's one-period reward is 1 SxA—R. It associates with every vector of

players' actions a and the current state s, an immediate reward rj(s,a). q is the law of
motion of the system - it associates with each (s,2) in period t a distribution over the t + 1)

period's state, q(- | ,a). If the game is in state s and the players choose the action vector a,
then the game moves to state s' next period with probability q(s'l s,a). Further, 8 ¢ 11is the S

4 1f this requirement is violated, one can define "dummy" action variables and add these to the available set
of actions appropriately in order to arrive at a problem in which this condition is met. For a more detailed
discussion of this issue, see Partharasarathy (1973).



common discount factor which the players employ in evaluating payoff streams. Finally,
all past states, the current state and all players' past actions are assumed to be observable.

A behavior strategy for player i is denoted IT;. It is a sequence 0, iy, Hige..

“where TTj; selects a distribution, at period t, over the set of actions Aj as a function of the - -

~ previous history h¢= (so",‘ao;..’;.‘.‘st-‘l‘,,at;i‘,l s).: If the distribution depends-only on the; h*,’é‘*""f"'
current state and further if this choice is independent of t, then the strategy is said to be
Markov. If the distributions are degenerate we have a pure Markov strategy.> Player i's
randomization device is assumed to be unobservable to other players, i.e. we analyze a

game with unobservable (private) mixed strategies. However players can coordinate on a

public randomization device, i.e. players are allowed to randomize publicly.

Note that although the games are called stochastic, there is no requirement that the
transition probabilities q(: ! s,a) be non-degenerate. The class of games in which the
transitions are deterministic are sometimes called dynamic games. In particular, complete
information repeated games are trivially examples of stochastic games (under the
restrictions that q(s | s,a) =1, for all s,a and rj is independent of s).

The folowing notation will be used. s will refer to a generic state and s¢ will be the
state in period t while (the generic) player i's action in that period will be denoted aj¢. at
will describe the action vector ajg,....ant. In all statements pertaining”to i, j will index
"another" player while -i will refer to the group of players other than i. At various points in
the discussion we will talk of a "punishment regime" for player i during which regime
player j's action will be denoted a} . Finally, Il . Il will denote any one of the equivalent

norms in RA,

A strategy for each player, and the initial state, determines a distribution over finite

period histories and by extension a distribution over infinite histories. Let r; (t; IT,s) denote
the expected returns of player i at period t under the strategy II = I1;....IT, and initial state

so = s. The discounted average (expected) returns to player i if the initial state is s, the
players employ strategy I1 and the discount factor is 6 < 1 is:

Wi (s ; TL8) = (1-9) Z°(;’ Stry (t; ILs) 1)

5 In the literature such strategies have sometimes been called stationary (for example, see Bewley and
Kohlberg (1976), Himmelberg et. al. (1976), Partharasarathy (1973)) whereas more recent usage has called
them Markov (for example, Maskin and Tirole (1988)). We adopt the latter convention.



The long-run average expected returns for the same setting is:

Wi (s 3 ID) = liminfr—eo 1 2o 1 (£ TLS) @)

* _For a giveninitial state s, a strategy choice is a Nash-equilibrium if,no'player‘profits,ffr,om;

unilateral deviation, i.e. Wj (s ; ITj, I, 3) =2 Wi (s; ITi', L, d) for all TI;' and all i (and
similarly for the long-run average). A (subgame) perfect equilibrium is a strategy choice
such that after every history, the strategy continuations constitute a Nash equilibrium.

The min-max level6 of player i, for initial state s and discount factor & (respectively,
long-run average) will be denoted yll.(s,ﬁ) (respectively v_ll.(s)) and is given by

yii(s,S) = inf sup Wi (s; I13,IL;,8) 3)
ILiIL

yii(s) is defined similarly. In general, min-max levels will vary with the initial state

and the discount factor. . Max-min levels can be defined analogously.

3. Feasible Payoffs in the Game

Since there is no stage game, the relevant set of feasible payoffs to analyze is the set
of average (discounted or long-run) expected returns in the infinite horizon game. Unlike a
repeated game there is no unique set of (average) payoffs which can be achieved at every
discount factor and from every initial state. Nor can all feasible payoffs be achieved by
convexifying over strategies which involve the infinite repetition of a constant action (with

associated constant immediate rewards). In this section we investigate two issues: the

relation between the feasible payoff sets for different discount factors and the existence of a -

set of simple strategies which would realize all feasible payoffs.

3.1 Pure. Markov Strategies Suffice

Let F(s,8) (respectively F(s)) denote the set of feasible discounted (respectively

long-run) average expected returns, ie.

6Since there is no stage game, min-max levels are naturally defined according to the returns over the entire
game.



F(s,8) = {w e R: I IIs.t. wj = Wi(s; I1,3), i=1,..n} (4

‘ (and similarly F(s)). (Note that TI may be a correlated strategy). Let 6(s,0) (respegtively

‘q)(s)) denote the discounted (respectively 1ong-run) average expected returns-when only =

© pure Markov strategies are used.. The extreme points of the (convex) set of feasible pay_‘ofrfvs_ [x;g{

" F(s,8) are clearly the solutions to Max Xj Ajw; where w € F(s,8) and A € R. From
Blackwell (1965) it then follows that, in the discounted stochastic game, the extreme points
of F(s,d) are generated by pure Markov strategies. Since public randomization is
admissible, it readily follows from the above observation that public randomization over
pure Markov strategies recovers all feasible payoffs in the discounted game. For the
undiscounted stochastic game, a limiting argument yields the same spanning result.

Lemma 1 i) F(s,8) = co ¢(s,9), VseS, o<1
i)F(s) = co ¢(s)
Proof: In the appendix. ®

The lemma simplifies the analysis in the sequel considerably.” The restriction,
without loss of generality, to pure (publicly randomized) strate gies will make the detection
of deviation from such strategies immediate. Further, this result allows a simple resolution

of the related question (which is important for asymptotic analysis): is the set of feasible
payoffs continuous in the discount factor at & =17

3.2 Continuity of Feasible Payoffs

For any two closed sets B and C inR?, define the Hausdorff distance as

d(B,C) = max (sup p(x,C), sup p(y,B))
xeB yeC

where p(x,C) = inf v(x,z), zeC and Y is any metric onR™.

- Since the set of feasible payoffs is spanned by public randomization over pure,
- Markov strategies and since the payoff to such strategies can be shown to be continuous at
&=1 (under the finiteness of state and action spaces assumed here), we have

71t will be used to show that time randomized pure Markov strategies in fact are sufficient in an even
stronger sense (see Lemma 8).



Lemma 2 F(s,8)—F(s), as 8—1, for every s € S; the convergence is to be understood to be
in the Hausdorff metric.

‘Proof: In the appendix. e

4. Individual Rationality

Unlike repeated games, the min-max level in a stochastic game varies with the
discount factor and the initial state. What then is the relevant security level which should be
the benchmark for folk theorem analysis? A natural benchmark is the limit of the (state-
dependent) discounted average min-max payoffs, as the discount factor goes to one. It
follows from results of Bewley and Kohlberg (1976) and Mertens and Neyman (1981) that
this limit exists and furthermore equals the long-run average min-max.

4.1 Continuity of Min-Max

F(_)r twO Derson zero sum games, Bewley and Kohlberg (1976, Theorem 3.1) show
that lim y‘i(s,S) (as 8T1) exists for all i and s in S. For this same class of games Mertens

and Neyman (1981) then showed that this limit is in fact the long-run average min-max. If
we think of player i and the group of players -i as constituting a "two person" game, the
Mertens-Neyman theorem yields8:

Proposition 3 For all i > 0, there is a strategy of players other than i, say ILi",
and N > 0, s.t. for all eo > T = N and every strategy IT;,

Wi (s; T TLi*T) < lim vi(s,8) + 1
8T1

where Wj (s; ILT) is the T-period time-average of expected returns from strategy I1 and
initial state s (T=eo refers to the limsup of such finite period averages). 4

1(s 5) is both the min-max and max- -min level of player i, by a result of

Parthasarathy (1973). From Proposition 3 itis clear that lim Vl(s d) is the long-run average

‘ 8 The game with i and the group -i as "two players" is different from a standard two-person game in that the
“ players -i may not have the "ability to act as one". In partlcular they may not have access to (n-1) player
randomization. However, the Mertens-Neyman result is valid in this context as well.



min-max and max-min level for player i (henceforth yi(s)). This will be the relevant

security level of player i in the analysis that follows.

4.2 Individually Rational Payoffs

" -Tn this subsection we define two alternative notions of individual rationality. Fix a
discount factor 8 < 1 and consider any initial state s. We will say that a discounted average
payoff w(s,0) (respectively a long-run average payoff w(s)) is individually rational in the

~ ex-ante sense if w(s,0) 2 gii(s,?)) for all i (respectively w(s) 2 y_;(s) for all i). Let F*(s,0)

(respectively F*(s)) denote the discounted (respectively long-run) average strictly
individually rational (ex-ante sense) payoff sets, i.e.

F*(s,8) = { w e F(s,8): wi> yii(s,B), i=1,..n}

(and similarly F*(s)). It should be remembered however that feasible payoffs are not in
general generated by (convexification over) constant action strategies. Hence, we will say
" that a payoff vector w(s,0) is individually rational in the ex-post sense if itis generated by a -
strategy I such that all of its continuation payoffs are individually rational in the ex-ante

sense after all histories. We return to the connection between these concepts in Section 5.

From the continuity of the min-max levels (Proposition 3) and the convergence of
feasible payoff sets (Lemma 2) it clearly follows that the set of strictly individually rational
payoffs (in the ex-ante sense) converge.

Lemma4 For all € > 0, there is 3 < 1, s.t. for d:29,
d(F*(s,8), F¥(s)) <€,V s€S

where d is the Hausdorff distance.

An implication of such continuity is of course that if a payoff vector is strictly .. -

individually rational in the long-run average Sense, then it can be arbitrarily closely
approximated by strictly individually rational discounted average payoffs. Since

‘equilibrium payoffs are individually rational we also have for the set of equilibrium

payoffs, V(s,0), the following corollary:

Corollary 5 For all € > 0, there is 8 < 1 and g-neighborhoods of F*(s), say
B(g,F*(s)), s.t. for 0 2 d,



B (e,F*(s)) > V(5.9) V s.
Corollary 5 implies that the folk theorem proved in the sequel provides a complete

- characterization.

5. Assumptions and Implications

In the next two sections the following (folk theorem) question is investigated: under
what conditions on the stochastic game will any strictly individually rational payoff (in the
ex-post sense) arise as a subgame perfect equilibrium payoff for sufficiently high discount
factors? Two types of assumptions will be made: Firstly, asymptotic state independence:

(A1) The setof feasible long-run average payoffs F(s) is independent of s, say F(s)=F

(A2) Thelong-run average min-max y_ii(s) is independent of s, for all i, say y_ii(s) = yi

~Secondly, we will make one of the following assumptions. Denote ‘by Fjj the
projection of F on the i-j axes.

(PA) Payoff Asymmetry There is Ve F,i=1,.n s.t w'/i < \7]; ,Vi, g, i%]

(PF) Pairwise Full-dimensionality For all i,j, i* j, dim (Fjj) = 2.

(FD) Full Dimensionality dim (F) =n.

The three conditions are obviously related intimately. Full dimensionality (FD)
clearly implies the other two. Pairwise full dimensionality (PF) can, in turn, be shown to
imply payoff asymmetry (PA).9 The main theorem below will be proved under (FD) but
for some interesting special cases, the weaker condition (PF) or even the weakest, (PA),
will be seen to suffice.

The assumptions above are not expressed in terms of primitives. A statement based .-

on primitives would be unwieldy because the variety of conditions under which the
assumptions are satisfied could not be succinctly encompassed in a single theorem. We
briefly discuss these assumptions and their implications now and return in Section 7to a
fuller discussion of primitive models in which the conditions are satisfied.

~ 9The condition (PF) has been used in independent work by Smith (1990). His focus was on generalizations
of folk theorems in the purely repeated game. He has also proved that (PF) implies (PA). See Section 7
for a contextual discussion.



51 Asymptotic State Independence

~ Future feasible and equlhbnum payoffsin a stochastic game ‘depend’ on the current P

state. Hence, for a folk theorem to hold, there must be some similarity in the poss1b111t1es

“from different states. 10 The issue then is how restrictive must these conditions be?". (A1) is e

a mild requirement as Section 7 will make clear. (A2) is stronger and we defer to Section 7
a discussion of primitive conditions on the game which guarantee this. If one or the other
of these assumptions is not satisfied, our method of proof will illustrate the appropriate
subset of the feasible payoff space on which state manipulation incentives can be deterred
(see Corollaries 9.1 and 9.2 below).

From Lemma 1 we know that an initial one shot public randomization over pure
‘Markov strategies realizes all feasible long-run average payoffs. Such a scheme does not
guarantee that the expected long-run average after all histories is, approximately, the same.
However, in the presence of (A1), a one-shot randomization can be replicated by a scheme
_of time-averaging or cycling which moves repeatedly between different pure Markov
strategies in a manner consistent with the one-shot convexification and in such a way that

the continuation payoffs are approximately the same after all histories.

Lemma6 Under (A1), for any w € Fand e >0, there is a pure strategy whose long-
run average payoff is within & of w, after all histories. ‘

Proof: In the appendix.
Given Lemma 6, the asymptotic state independence min-max assumption (A2) then says:

Lemma 7 Under (A1)-(A2), a long-run average payoff w e F is strictly individually

rational in the ex-post sense if and only if it is strictly ex-ante individually rational.

Given the continuity of the min-max (Proposition 3) and feasible payoffs (Lemma
2) from the construction of the proof of Lemma 6 it also follows that '

Lemma 8 Under (A1) and (A2), for any w € F* and € > 0, there is a pure strategy - -
and § < 1, s.t. for all 8 = 3 and all initial states s, its discounted average payoff is within €

of w after all histories. Consequently such a payoff is strictly individually rational in the
ex-post sense, for all 3= 9dand all s.

101f no conditions are placed it is easy to construct counter-examples to the full folk theorem. See
Lockwood (1990) for some illuminating examples.

10



5.2 Pavoff Asymmetry. Pairwise Full Dimensionality and Full Dimensionality

~ These conditions are necessitated of course by a counter-example in‘iFudenbefg and -
Maskin (1986) which shows that if there is perfect chgmenCe"of'rin'tercst‘s'j‘among the =
players, punishments to deter deviations from individually rational paths ‘may not be -

credible. Payoff asymmetry is an easy condition to check; it is guarante‘ed by the existence,
in all states, of an action tuple al(s) which is strictly worse for player i than any other action
tuple. The condition may be interesting not so much because it is weaker than full
dimensionality!! but because it can be shown that within the class of strategies analyzed in
this paper and Fudenberg and Maskin (1986), it is additionally almost a necessary
condition for the folk theorem.12 If mixed strategies are unobservable, we will need to
strengthen (PA) to the (pairwise) full dimensionality assumptions (PF) or (FD). As will
_become clearer in the sequel, these are possibly not the weakest assumptions that will work
although we have not been able to find an alternative one nor show that payoff asymmetry
by itself suffices.

6. Results

Theorem 9 Under (Al), (A2) and (FD), any w € F* can be arbitrarily
approximated as an equilibrium payoff, for sufficiently high discounting;
for all € > 0, there is 8 < 1 s.t. for any 5> 8 , there is a perfect
equilibrium whose payoff v(s,0) satisfies llv(s, &) - w|| < € for all s.

If either asymptotic state independence condition, (A1) or (A2), does not hold, the
following results still hold (and are immediate corollaries of the proof of the theorem ):

Corollary 9.1 Suppose that (A1) and (FD) hold. Then, the conclusions “of

Theorem 9 hold for any long-run average payoff that is strictly individually
rational from all states, i.e. for any w € F such that wj > y_‘i(s) V i, s.

In the absence of (A1), define F = [ s F(s).

111 might be worth noting that for n>3 it can be shown that it is even weaker than n-1 dimensionality of
the feasible payoff set. Examples can be constructed for higher dimensions where the payoff set is simply a
two-dimensional plane. ,

12The necessary condition allows weak inequalities in (PA), with an additional restriction in case of an
equality.

11



Corollary 9.2 Suppose that (FD) is satisfied by F. Then, the conclusions of

Theorem 9 hold for any average payoff w € F, such that w; > y_ii(s) V i,s.

- The full dimensionality condition 1can'.be‘wcakened‘in some interesting special - -
cases. We report the analog of Theorem 9 in each case and note at this point that the - ‘

analogs of Corollaries 9.1 and 9.2 also hold.

Observable Mixed Strategies

Many authors have analyzed the simpler model in which mixed strategies are
observable (see Section 7 for a discussion). In that context we show:

Proposition 9.3 Suppose that (Al), (A2) and (PA) hold. Then, the
conclusions of Theorem 9 are valid for any w € F*.

Dynamic and Repeated Games

Suppose that mixed strategies are unobservable but we confine attention to games .

with deterministic transitions. We then show13:

Proposition 9.4 Suppose that (Al), (A2) and (PF) hold in a dynamic game.
Then, the conclusions of Theorem 9 are valid for any w € F*.

Since a repeated game is a simple example of a dynamic game, an immediate
corollary is!4

Corollary 9.5 In a repeated game, (PF) implies that for any w € F*, there is

3 <1,s.t. for all 3 =3 there is a perfect equilibrium whose discounted

average payoff is w.

The principal reason that folk theorem analysis is more difficult for stochastic
games is that deviation yields one-shot gains and in addition allows a player to manipulate

the distribution of the state next period. This incentive can be asymptotically deterred

globally, if (A1)-(A2) hold (Theorem 9, Propositions 9.3-9.4), or locally if one or the"

other assumption does not hold (Corollaries 9.1 and 9.2). The assumptions (A1), (A2)

13 Actually (PF) is sufficient for a class of stochastic games larger than just the dynamic ones (see the
remark following the proof of Proposition 9.4).

14gince there is no distinction between ex-ante and ex-post payoffs in a repeated game, the payoff w can be
realized exactly.

12



and (FD) (or their local versions) will allow a logic of proof that is similar to the purely
repeated case except for two additional sets of arguments necessitated by the state
manipulation possibility.15 ‘The arguments will refer, respectively, to observable and ',
- unobservable deviations and will be discussed in thie course of an inforrriai'prcsen'tr?itidn:bf
-the proof (steps 2 and 4-5 below). ' B

6.1 An Informal Discussion of the Proofs

Step 1: There exist (n+1) pure cyclic strategies 1, 11, i=1,..n (e.g. ITi involves playing
pure Markov strategies gil, g2i,....g1i,, for T%, T_,;,....Tli, periods respectively and then
restarting the same sequence again and again), such that for sufficiently high discount
factors the associated payoffs [w(s,d), Vi(s,8), i=1,..n] are i) asymmetric uniformly across
states ( Vi(s,S) < V{(s‘,S) for all s,s',i,j ), ii) strictly individually rational and iii) I1-
dominated (v(s,8) < Vi(s.8) < w(s".8), V5, 8, 8" ). Further, liw(s,9) - wll < eV s.

Remark IIiis going to be part of player i's "punishment regime". For a punishment
strategy to be credible, an obvious necessary condition is that punishing a deviant must not
take the game into a state which is unfavorable for the players doing the punishing (hence
" 1)). Furthermore, a deviant player must be unable to take the game into states fromk which

his worst individually rational payoff is better than continuation payoffs to non-deviation -
(hence ii)). Step 1-addresses these simple state-manipulation issues. B ‘

 Since the game is non-repeated, ex-post continuation payoffs are history-dependent
and will typically differ from the ex-ante payoffs from an initial state. Consider the play of
i's worst strategy ITL. Suppose history hy is such that player i's continuation payoffs

vii(ht,S) are less than vii(s,ﬁ). Deviation, which involves a finite min-max period followed

by E[vii(s,S)] may then be profitable.16 Step 2 deals with this ex-post incentives problem.

Step 2: Let gl be the pure Markov strategy that maximizes player i's long-run average
payoffs. Also, denote Ti= ZPT;. The strategy IT is modified as follows: at the beginning
of each Tt cycle, play proceeds to (gli), p=1,..P) with probability ui(s) and to gl with the

150f course, even under (A1)-(A2) it will still be the case that the discountéd feasible payoff set F(s,5) and
the discounted min-max vl-(s,S), will be state dependent. From the proof it will be clear that in order to
deter deviations to effect state manipulation, one needs not just the fact that these sets and security levels
converge but additional arguments that they can be made to converge at the appropriate rates.

161n the repeated game even in the absence of public randomization one can construct a strategy such that

continuation payoffs are always monotonically increasing in time. In the presence of a state variable it is
not possible to ensure that continuation payoffs are (almost surely) greater at t+1 than at t.




remaining probability. The probabilities are conditioned on the state at the beginning of the
cycle and are chosen in a way such that player i's payoffs over the cycle are independent of
this initial state. We retain notation and call this strategy ITi as well.

Step 3: Consider the following strategy: play fan such time as playéri deviates.17. Then:.

~ gwitch to "i's punishment regime": players i play the strategy’ that min-maxes i, in the

long-run average sense, for an appropriate number (Tm) of periods followed by‘ a move to
I1i. Player i plays a best response Over the min-max period and his component of IIi

thereafter. Upon observable deviation by any player j, in the course of i's punishment
regime, start j's punishment regime. Call this strategy IT".

Steps 1-3 suffice to prove the folk theorem if mixed strategies are observable (i.e.
Proposition 9.4 will have been proved at this point). However, if mixed strategies are
unobservable, players -i may deviate unobserved while min-maxing i. To prevent this, we
construct differential continuation payoffs and probabilistic punishments for each player j=i
(after the min-max phase) in such a way that he is indifferent, in expected terms, between
all of his actions during the min-max phase.

Step 4: There exist pure cyclic strategies T1ii V i=j (with associated payoffs Uli(s;,8)) -

which have the following properties for sufficiently high discount factors: Uiij(s,ﬁ) =
Vli(s',fi), at the beginning of each Ticycle (indifference for i across states and strategies
T4, Hl) IlUijj(s,§) - V;(s',S) Il > 0 (differential payoffs for j but not necessarily for k#]j),
and UljJ(s,S) > V}(s’,ﬁ) (asymmetry); in each case V s,s.

Consider now the following modification of the strategy IT" (retain notation). After
min-maxing i for Ty periods, play proceeds to T with probability P (h7) and to ITi with
probability 1 - % pl (hy). In order to selectively affect player j's incentives, Pij is
conditioned directly only on his (observed) actions and the states during the min-maxing
phase. A problem remains however that player k#j can manipulate Pij and his own

. continuation payoffs by the influence his actions have on the distribution of the state after

the min-maxing phase. To deter this we need

Step 5:  The strategies I1i and ITi can be chosen in such-a way that in the component

cycles (of length Tt and T¥) the payoffs of each player is independent of the initial state of

17 Since the strategy [T invoves only pure actions such a deviation is observable.
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the cycle. Then, probabilities Pii exist under which every player j, at each node of the min-
maxing phase, has the same expected reward from all actions.18

. Remark For repeated- games, Fudenberg and Maskin (1986) are able to construct
" continuation payoffs such that players doing the punishing are indifferent betv&"e‘é;r‘rthéir‘;‘
actions since every sample path during the min-maxing phase has the same lifetime reward.. .

Even with a full dimensionality assumption such constructions do not seem possible for
stochastic games.

_ Steps 1-5 are then used to show that appropriate values can be chosen for Ty and
T;) such that the strategy IT" is in fact a subgame perfect equilibrium.

6.2 The Details of the Proof

A L S s

Let wi (respectively Mj) denote the worst (respectively best) long-run average
payoff to player i in the game, i.e. yzi =min {vi: (v, Vi € F} (respectively Ml1 = max {vi

(v, vi) € F}). Recall that w is the given strictly individually rational long-run average

payoff and the asyrnmetric payoffs (whose existence is asserted by (PA)) are den_o‘ted {Ii, ‘

" i=1,..n. Further, let \_/i =(. Pick convexification weights B'1>0, B2>0, and define: "
Vi=pBiwl + P2 v' + (1-P1-B2) w (5)
Clearly one can pick the convexification weights to prove

Lemma 10 There are feasible long-run average payoffs Vi, i=1,..n, satisfying Vi,

a) strict individual rationality Vi>>0,
b) asymmetry Vii < Vji i#]
¢) target payoff domination Vii < Wi

From Lemma 1 and the proof of Lemma 6 it follows that that there is a pure cyclic s

strategy TT1 which approximates Vi, Let it be defined by pure Markov strategies gi,

giz,....gli), played succesively for Til, T;,....Tli, periods and then repeated infinitely many - -

times. Of course, the ratio Tli)/EpTIi) reflects the convexification weights induced by (5) and
the bigger is TII), the closer the approximation. From the continuity of payoffs to pure

cyclic strategies at & = 1, it follows from Lemma 10 that Step 1 holds.

18For the dynamic game, a variation of Step 5 will be employed.
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For any Markov strategy g, let W(s;T) denote the T-period discounted average for
initial state s, i.e. W(s;T) = [(1-8)/(1-8T)] ZTal Stri(t; g,s). Let T' beacycle length such
that for all pure ‘Markov-strategies g, IW(s;T) -~ W(s;g)lh'< € for all T=T, 828;( ?nd"s} L

--where W(s;g) is of course the long-run average from initial state S, ;_under the strategy g

Denote similarly the payoffs over the Ti cycle as 'Vi(s;Ti). S
Lemma 11 There are probabilities pi(s), i=1,.n and s € S, such that for all 9=>01,8,8'
() V(s T) + [1-pi(e)IMI(s, T = pi(s Vi T) + [1-piEI MG TH - (6)
Further, writing vi(s;Th) = VI TH + - IMGT),
vii(s;Ti) < v];(s';TJ'), i=j,s,s'e S 0

Proof: Pick any € > 0 with the property that Vi +€&< V]; - €. Tak.e Tli) > T Henf:e, we
have IVi(s;Ti) - Vill < g, for all s, 1, $=8; or equivalently, mastli(s;Ti) < minsMi(s;Ti).

So we can find probal_)ilities pi(s) as defined in (6), with in fact the added property that:
mast’i(s';Ti) = ui(s)V;(s;Ti) + [l—ui(s)]Mii(s;Ti), forall s. As € goes to zero, hi(s) clearly. -
- goes to one. For sufficiently small €, (7) holds. The lemma folows.e ‘ ‘

For future reference, let vi(s;8) denote the infinite horizon discounted average
payoffs to the strategy ITi (with public randomization according to pi at the end of every T
periods), if the state at the beginning of ITiis s. In particular, player i's payoffs within
each Ti cycle are independent of the state at the beginning of that cycle, i.. vii(s;Ti) =
vii(s';Ti) = vii(S). Define the strategy I1* as detailed in Step 3 in Section 6.1. It is clear

that we have completed Steps 1-3 in the proof.

We now show that if mixed strategies are observable, then Proposition 9.3 follows
by the constructions above. Let the best (respectively the worst) one-shot payoff of player
i be denoted bj (respectively my). Pick i< Vli-s.f From Proposition 3 it follows that there =
is 82 < 1 and T' s.t. upon min-maxing for at least T' periods, i's T'-period discounted
average payoffs can be held below M. Let Tp=T"satisfy for §>83=>max(81,92),

(1-8Tm; + 3T vi(®) > (1-8)by + (1-3Tmym + &7 vi®) ®)

(8) can clearly be satisfied by choosing Ty to be large relative to Ti, (8) implies
that player i has no profitable deviation once the play of I is initiated. By definition, he
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has no incentives to deviate during the min-max phase. From (7) it follows that, for
sufficiently high 3, players j=i have no profitable deviation after any history, either during
'the min-max phase or during the play of I1i. Hence, i's punishment regime is a perfect

. equilibrium in the subgame. after any,,deviation‘of_ player i. Deviation from Mis ..

“unprofitable for any player given Step 1iii).

Unobservable Mixed Strategies:

From (PF) and Lemma 6, it follows that there are pure strategies T, i,j =1,..n, i=j
(which are in fact time randomizations over finite sets of pure Markov strategies) such that

their associated long-run average payoffs Ul satisfy: for all i, j, k, i=k, i=j,

a) strict individual rationality Ui >y

b) asymmetry vE<U] ©)
¢) differential incentives for j Uijj > V§ (10)
d) indifference for i vi=ul (11)

- The following lemma will be used repeatedly in what follows. Let Bg(W) denote

the 0-neighborhood of We R,

Lemma 12 Suppose that Wie R0, i=0,1,..n and further that dim co(W9O,.. Wn) = n,
For all € > 0, there is © > 0 such that for any finite collection of (n+1) vectors,
[WO(Q),W1(Q),.. W(q)], g=1,..Q satisfying Wi(q)e Bg(Wi), V i, q, it follows that

Be(Wi) (co[WO(1),..Wi(D)] ... (\co[WO(Q), . WH(Q)] = & (12)

Proof: A contradiction to the claim implies the existence of g > 0 and sequences
[WO(g:p),..Wi(q;p)], =1,..Q, p=0 (with limp—= Wi(g;p) = Wi, for all i, q), such that
Be(W1) [ co[WO(1;p),.. Wi(L;p)] () -...co[ WO(Q;p),..W™(Q;p)] = D, for all p. This is
impossible given the full dimensionality of co(W",. 0,.Wn)e . - o

Consider then the vectors, Mi, V1,...V® and suppose without loss of generality that
dim co(Mi, V1,...V0) = n. Let € be defined again by the requirement that Vl +e< VJ
By the arguments preceding Lemma 11, there is 81 < 1 and cycle length T' such that
IVi(s;T) - Vill <8, IMi(s;T) - Mill < 6, whenever T>T' and 828;. Fix an index i. Then,
for every s, [Mi(s;T), Vis;D),....Vi(s;T)] is a (n+1) set of vectors each drawn from the
6-neighborhood of Mi, V1,... V1 respectively. There is one such set for each s. By
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Lemma 12 it then follows that there are probabilities p}(s), se S, j=0,..n, such that for all

s,s' and k=1,.n
| Lp’(i)(s)Mli((s;T) + Zj=0i p}(s)Vf;(_s;T) + [1-2jp§(sj] Vli((s;T) -

iH] vissT) o (13)

pL(sHMASET) + Zim0ii piIVA(ST) + [1-Zip]

In other words, there is a public randomization at the beginning of every Ti cycle
over the strategies yielding Mi, V1,..Vn (as long-run average payoffs), such that gach
player's Ti period discounted average payof,f; are independent of the initial state of the
cycle. Let these constant payoffs be denoted Vi), i,j =1,.n.

Clearly identical arguments can be applied to the long-run average vectors Mi,
V1 Ul Vi Letthe implied (state-independent) payoffs be denoted IAJE(S), i,j,k=1,.n,
i=j. Finally, let mi(3) be state-independent payoffs with the property that mii(B) >
max[{\/}(ﬁ), ﬁilj(S)] (such a payoff can be constructed by starting with an asymmetric payoff
V'i such that V'i > Vi ). Exactly as in (6) let i and pll be convexifications such that

i iG8) + [1-4] mi(®) = i UIE) + [1-40i] my(®) (14)

. . . A.
Denote the strategy that succesively plays gi,....gf) over T! periods, I

VAT :
(respectively that which generates UY, [19). Collecting all of the above arguments we have

Lemma 13 Define the strategy ITi as public randomization between 1/'\11 ,..ﬁi,..ﬁn and

gl every Ti periods, using the probabilities defined by (13)-(14) (respectively ITi as public
. A JANE A : 1

randomization between ITH,..IIY,..II™" and g') and denote the associated payoffs v1(6) and

uii(8). Then, there is a cycle length Ti and 81 < 1 s.t. for 3281, i,j.k, ik, i#]

a) asymmetry V(@) < u®) (15)
b) differential incentives for j v}(&) < ugj(a) R ¢ 1)
¢) indifference for i vi®) =l (17)

Some additional notation is required before we discuss the probabilistic
construction of Steps 4 and 5. Let Bl(a_j;ht) (respectively 0'(a;hy)) denote the probability
with which, after history h, -j play the vector a.j (respectively all players play a) while

(long-run average) min-maxing player i. Denote the one-period conditional expected
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reward of player j in playing aj, while players -j min-max i and i plays a best-response, by
rj(ajshp); i.e. ri(ajhp = Zaj 1j(30,2§,2-j) 0'(a-j;hy) (respectively 1j(hy) is the one-period reward

if all players correctly min-max i). Let q(ht+<l aj) denote the distribution over histories '
by, for >0, if the action at t by player j is ajand all other players (and j hims€lf after ~
period t) use the correct min-maxing probabilities; e. g:q(hert | faj‘) = Taj S .I“s"t“?aj,af.j)fvﬂ_j,;,fj;,.;;

. Gi(a.j;ho. We shall use Rj(aj;hp to denote the expected'fetdms of player j from périod ttill :

the end of the min-maxing phase, under the supposition that he plays aj in period t and
according to min-maxing probabilities thereafter; i.e. Rj(ajhp = fj (ajhp + 32nh,1 q(he1 !
aj) Tj(he+1) + ..0T-tZny q(hr | aj) 1j(hT). To conserve notation, normalize the period of

deviation to zero.

The probabilities pi (hTs1) Will have two important properties: i) aggregation- there
will be component probabilities pij(ajt;ht) such that Pij(hT+1) = Di<T+1 pij(ajt;ht) and ii)
targetting- pij will depend only on the action of player j at period t (although it will depend
on the actions of other players at previous dates). The existence of probabilities satisfying
requisite properties will be established by way of a backward induction argument. Let
Bii(ayshy) be probabilities; i.c. Dii(ayehp) 2 0, for all ajphy and ZjuZ, pi(ahy) < 1, for all
- bry1. We shall construct associated "weights"” pij(aj;ht) which satisfy: after every hy, each
player j is indifferent between all of his actions if the "probability” with which play
proceeds to ITii at period T is given by Vit f)ij (ajpho + 2t pij (ajshp = pii (aje:ho).
pij(ajt;ht) are referred to as "probability weights” (with quotation marks) since Zj¢~12t
pij(ajt;ht) may not be less than one, for arbitrary §. Butas 8 T 1, they will be and hence the
construction will indeed have yielded probabilities. Let I'(aj;hy) denote the lifetime expected

returns for player j from using action a; at period t; i.e.

T'(ajh) = (1-8) Rj(azhy + STt Xy [ZhT+1 pik (a;;hpqchr +1lajhp)] uijk(S)

5T {Sipy [1 - D¥apholabralapho }Vi®) - (8)

Suppose we solve recursively the system of equations given by I'(ajhp = [(ajshy),

for all aj,éj. For t=T, this involves finding pij (ajT;hT) such that -
(1-8) [RyCahy) - R@h)] + 8 [pY (abm) - oY @hpI[(®) - Vi@ =0 (19)

Since the first term in (19) goes to zero as 5T1, while the second term is strictly
bigger than zero (by (16)), it follows that for all 5=81, (19) defines probabilities.
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Moreover, these probabilities go to zero as 5T1. Suppose then that we have solved for
pij(ajT;hT), for all T > t; these are probabilities for all 0=>04+1, and as 5T1 they tend to zero.
For any history hry1, let (bik(hTH) denote the incremental probability of play proceeding,

~at.period T+1, to T4 if ~thc<observablerhistory?thus far is hgi.e. q)ik_(hnl)f: Z,T%FT o

; pik(akt;hm),‘ if hyis:the sub-history of ht.1 and zero otherwise. " Then, ]

T'(ajihy) - T(@jihy) = (1-) [Rj(aj;hp - R(ajhp] +

8T Sya{ [rras ¢*mirrentaghd] - [Dhra ¢*(rre)ahrihol } [W®) - v(®)

+ 8T [pi(ajhy - piCapho) [w(®) - v(®)] (20)

Since ¢ik(hT+1) goes to zero, as 8T1, (20) defines probabilities for pij(aj;ht) and
pij(a{j;ht) provided 8>3 say. Further, these probabilities themselves go to zero as 5T1.
For any finite T then, there is 8T < 1 and associated probabilities for every 8287 such that
player j is indifferent between all of his actions, provided other players continue to min-
max i and play proceeds after the min-maxing phase to Tk or ITi with these probabilities.

In particular, min-maxing i is a best response for j during this phase.

The arguments that remain to show that the grand strategy IT* is a subgame perfect

equilibrium are identical to the observable mixed strategy case. The proof of Theorem 9 is
complete.®

Dynamic Games

If the transitions are deterministic a folk theorem obtains under the weaker
hypothesis of pairwise full dimensionality (PF) rather than full dimensionality (FD). The
latter assumption was used twice in the proof above: firstly, to assert the existence of Ul

satisfying (9)-(11) and secondly in the derivation of state-independent payoffs for all

players, ull and vi. The first argument involves only the payoffs of players i and jand . .
" hence can be equivalently derived from pairwise full dimensionality. Replacing the second

argument is more problematical. The continuation payoffs uli and vi cannot be significantly

state dependent or else every player j has-an incentive (which does not disappear

asymptotically) to deviate during the min-max phase in order to manipulate the state
distribution (and the other players' punishment probabilities). However, it is not necessary
to eliminate state-dependence altogether. The cycle lengths T and Tii (to generate vi and
- uii), can be made sufficiently long in order to make payoffs insufficiently sensitive to the
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initial state of each cycle. This generally creates a different problem: player i may wish to
deviate after some histories within this long cycle if his continuation payoffs v; (ht,S) are

less than v; (s 8). He suffers min-maxing for a short period and then receives E[V (s,9)]

‘thereafter. 19 For. dynarmc games it can be shown that i 1 s.incentives are: not’ delemously i
‘affected by rnakmg Ti and TW long, Tn particular one can-ignore the state- 1ndependence

construction of Lemmas 12 and 13; after min-maxing i, play proceeds dlrectly to H‘J or H

The appropriate probablities are constructed exactly as in (19)-(20). The details of the
proof are in the appendix.

7. Applications and Discussion

The principal structural restriction that was imposed was the finiteness of state and
action sets. We believe that this restriction can be dispensed with, at the expense of a more
technical analysis. Finiteness was critically used in establishing continuity of payoff sets
and min-max levels at 8 = 1. Dutta (1990) (and Mertens and Neyman (1981)) give

conditions under which such continuity of feasible payoff sets (and min-max levels) would -
hold under general specifications of state and action spaces. Finiteness was also used in

the asymmetry and state independence arguments of Lemmas 10 and 12; the modifications

here would be in the nature of uniformity conditions. In discussing whether the other

hypotheses of our game are satisfied by various economic models, we will momentarily

ignore the fact that the state-action spaces there are typically non-finite.

7.1 Asymptotic State Independence of Payoffs

There are two general conditions, special cases of which are satisfied by many
economic models, which imply that feasible long-run average payoff sets are state
independent. It is useful to remember, incidentally, that the Jong-run average criterion

ignores all finite period returns and-so condition (A1) is equivalent to a requirement that * ¢

payoff possibilities from any two states are eventually the same.

By analogy with the theory of Markov chains let us define:

19Making the min-max phase Tr, longer requires making the cycles Ti yet longer which needs making Tm
longer still....etc. The problem stems of course from the fact that we have not made any assumptions
about the rate at which discounted state-dependent payoffs converge to long-run average state independent
payoffs.
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Definition A stochastic game is said to be communicating if for each pair of states

(s,s8"), there is some strategy T1 and an integar N such that the probability of going from's .

to s"in N steps, qg (s,s") > 0.

‘Lemmal4 - Ina communicating stochastic game,the set of feasible long-run average

payoffs is independent of the initial state.
Proof: In the appendix.e

Cyclic or fully communicating games (Gillette (1957)), i.e. games in which q(s'l
s,a) > 0 for all s,s',a are immediate examples of communicating games. So are dynamic
games in which any one state can eventually (deterministically) transit to any other state,
thrdugh some appropriate strategy. In economic structures like growth or oligopoly capital
accumulation models, investment models in macroeconomics or financial models, pure

accumulation strategies (which involve zero consumption) typically allow the appropriate

state to increase, and eventually to any desired level. Conversely, free disposal ensures
that the state can also decrease. Communication is a consequence in such models. In

-models with sticky prices or other historical variables, typically the full communication ‘-
-~ condition is'met.20 ‘Models in which there are exhaustible resources are examples of non-"

communicating systems.

A second general class of models in which asymptotic state independence holds
are strictly stochastic games, 1.¢. those with "noisy" transition laws. The noise ensures that
eventually the effect of the initial state disappears. There are many ways in which to
formalize this idea. We report here a class of structures called scrambling models which
have been recently studied by Lockwood (1990). |

Definition A stochastic game is called scrambling if the transition probabﬂities defined
by any pure Markov strategy g have the following property: for all pairs of states s,s' there
~is a state s" such that qg(s,s") > 0 and qg(s',s") > 0.

Lemma 15 Scrambling games satisfy (Al).
Proof: See Lockwood (1990).e

20The references in footnotes 1 and 2 are covered by these remarks.
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7.2 Min-max State Invariance

- Long-run average min-max levels will be independent of the initial state from-which -

- the game starts if the system communicates indep endently of the actions of any: oné,player.

~Gillette (1957) e.g. shows that in a cyclic game min'—maxrifalﬁe‘sfin the flong-’run' average... -

sense are state independent. Clearly, a weaker requirement is that there be some strategy -

choice of (n-1) players, which generates a communicating system, regardless of the i-th

players' strategy. Such (n-1) state controllability is exhibited by many common state

resource games, in which players extract simultaneously from some common property
resource and there is an upper bound on feasible extraction levels. (n-1) players can make
the resource grow or shrink by appropriately altering their extraction rates. A somewhat
different reason for long-run average min-max values to be state invariant is (n-1) eventual
pgvoff controllability; that gimilar returns be enforceable, eventually, from a number of

alternative states and that one of these states be reachable by (n-1) players. Asan example,
consider separate-state games, where the state $=S1,...Sn» is n-dimensional and each player

controls his own dimension. Although the i-th player controls his own state, his worst

payoffs may be realized by the (n-1) players (eventually) achieving some s.j and playing -

- some catastrophic action (for i) thereafter. Capital accumulation games offer an example,
where above critical capital levels (n-1) players can continuously drive the i-th player's
profits to zero by overproduction.

Payoff asymmetry of long-run average payoffs (or even full dimensionality) are
satisfied in many of the economic models mentioned above. A simple sufficient condition
is that there is some steady state of the system in which players have asymmetric (or full
dimensional) one-shot rewards.

7.3 Other Results

.+ The two papers closest to ours;areﬁFriedman‘(1,9874) and Lockwood (1990).2% -

Friedman studies a class of non-repeated games in which there are no explicit state

variables and period-t returns depend on current and immediately preceding action; in his

.

notation Pj(as.1,a). This setup is formally a dynamic game as can be seen by writing st =

a1 and 1i(sp,ap) = Pj(at.1,a¢). Define V() ={v:3a'stvi= Pi(a,a)} and V = ﬂV(a).
It is immediate that (\g F(s) 2 V. Friedman then defines a notion of (state independent)

21 am also aware of a result of Neyman, but so far have been unable to get a copy of his paper.
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min-max, call it vi?, which has the property that \_/ii(s) < v’?.m With a full-dimensionality

assumption on V, he then proves the asymptotic equilibrium sustainability of allve V

such that v >> v, ‘This result follows then from Corollary 9.2 (indeed with payoff .

asymmetry, since mixed strategies are inadmissible in the Friedman analysis). = *

Lockwood (1990) analyzes a stochastic:gamein which the transition matrix has the

scrambling property defined above. Consequently (A1) and (A2) follow (see Lemmas 2.1
and 2.2 in his paper).2> He imposes full-dimensionality on the (state-independent) long-
run average payoff set?4 and establishes a folk theorem. All mixed strategies are
observable in his framework. So his result is implied by Theorem 9 (and indeed can be
strengthened to admit unobservable mixed strategies). Alternatively, maintaining
observability of mixed strategies, his result is true under payoff asymmetry (Proposition
9.3).

Finally, Corollary 9.5 represents a modest generalization of the Fudenberg and
Maskin folk theorem for purely repeated games in that full dimensionality is replaced with
pairwise full dimensionality. This condition has also been used by Smith (1990). Unlike

him, we allow unobservable mixed strategies and our contribution here s the:.?édnstruction g

of probabilistic punishments which deter min-maxing players from unobserved
deviations.?

There is also an extensive literature in non-repeated models, especially for specific
applications, which investigates the sustainability of first-best or collusive outcomes alone
(for example, Benhabib and Radner (1988)). Dutta (1991) shows that on this question, the
predictions of repeated and non-repeated games may be dramatically different (in contrast to
the above folk theorem conclusions).

22The inequality is driven by the facts that a) Friedman restricts himself to pure strategics and b) that the

state-independent min-max level'is defined by taking the supremum over-the state-dependent levels. :Note:
also that the model considers action sets that are convex, compact subsets of R™ and so our results'do not -

immediately apply. The comments that follow should be interpreted as applying to either the infinite
version of our model or the finite version of Friedman's.

23The scrambling assumption has the strong implication that finite period state distributions converge to -

an initial-state independent invariant distribution at a geometric rate that is uniform over all strategies.

24 Actually Lockwood assumes the stronger condition' that the payoff set formed by cycling over pure
Markov strategies is full-dimensional.

" 25For repeated games, Fudenberg and Maskin (199 1) have demonstrated the dispensability of public
randomization in folk theorem analysis. The critical issue in deriving a similar conclusion for stochastic
games is: can any feasible correlated long-run average payoff be exactly generated by high discount factors?
Without full dimensionality, the answer is no. It remains an open question whether, given (FD), public
randomization is inessential.
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Appendix

Proof of Lemma 1: The number of pure, Markov strategies is finite, and hence, €0 o(s,0) .

- is a closed, convex set.- Suppose w € F(s,8) and w & €O (s,d). Then, by the fstron‘g
- separating hypefplane theorem (Rockefeller;(1970)‘C_or‘bllary 11@4.-2);‘%7‘& and co ¢(¢s,d) lie -+
in opposite open half-spaces of some hyperplane. But Blackwell (1965, Theorem 7b) -
shows that for any extreme point of F(s,0) there is a pure, Markov strategy that generates

it. We clearly have a contradiction.

Let us now show that the extreme points of F(s) are also generated by pure,
Markov strategies. In other words, we prove

Lemma A.1 For all A, i=1,..n, and initial state s, there is a pure Markov strategy g* s.t.

Y AiWils;g*) 2 2 AMWisID A1)
1 1

for any feasible strategy 11

Pf. Consider any pure Markov strategy, say g, and let (tp)e0 be the sequence of t-period
expected returns for initial state s. Let p; be the associated probability distribution, ie.rg=

Sry(s)ps). We first show that '}f Zort has a limit as T—»~. Since the dynamic system
S =

formed by the strategy g is a finite Markov chain, we can partition the state space into a
subset of transient states, say B, and a finite number of closed sets, Ci, Cp,.Cp. Ifs €

Cp for some closed set, then a standard argument establishes the existence of a limit to

T-1
-1T— tz(gt. On the other hand, if s € B, then Wi(s;g) = T pu(sHWi(s';8) +
= s'e B

Y, pu(sHWi(s';8)- Since pi(s)—0, for all transient states it then follows that a limit exists
s'e C
1 T-1 _
for Z(l;t even when the initial state is transient. It then follows by Abel's theorem?26 that
1=

T-1 oo
1imT¢°°—T1- tZOrt = limsTy (1-8) E()Strt (A.2)
= 1=l

> T-1
26 Abel's theorem: for any sequence (bpp0, limg—1 (1-8) 28‘ b= 1imT—>oo-,1i: $by, if either limit exists.
t=0 =0



Now pick an arbitrary strategy IL Recall that its period t expected returns are denoted rj(t ;
Ti-1

- TI). Let Tt be a sequence such that 1im"[iTo°-,ﬁlr- 2 (6 II) = Wics; II). It is well known - =

=0

" that we can find a particular seriuence (Bm)m>0 and SmT1 with the property that limTiT‘”'-,fli-":},;

Ti-1 oo
z ri(t;I1) = limgmT1 (1-8m) ZStri(t;H), for all i=1,.n. Since the number of pure
t=0 t=0
Markov strategies is finite, for any SmT1, there is some pure Markov strategy g which

maximizes ZXiWi(s;H',S), over all feasible strategies IT', along a subsequence of &m. It
i

then follows that

Ti-1
> LiWi(s;ID = Y [1imTiToo:r-1-; Y, ri(ID) ]
1 i t=0

= 27»1 [limSmTl (1-0m) E()Stri(t;ﬂ)]
i =

= limgm 11 (1-8m) 2(,)& 2 Miri(tIT)
1= 1

< limgm?1 (1-8m) ant Y AiTi(tg) (A3)
t= 1
= Y ki [limgmt1 (1-8m) }:Oatria;g)] (A4)
1 t=
1 T-1
= D [limr e tzoria;g)] = Y AMWi(:9) (A5)
1 = 1

(A.3) follows from the optimality of g, in the discounted problems, while (A.4) and (A.5)
follow from the arguments in the preceding paragraphs. Lemma A.1 is therefore proved.
The remaining arguments left in order to establish Lemma 1ii) are identical to those used in

proving Lemmali).®

Proof of Lemma 2: Itis necessary and sufficient to show

a) v w for which there is a sequence 8 —1, and wn € F(s,80) with w W, W & F(s)
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b) v w in F(s), there is wg,W, Wg5 € F(s,0).

Invoking Lemma 1, all of these statements can be made for co ¢(s,0) and co o(s).

Then, both a) and b) follow frorri the continuity of the returns to pure Markov _strate:gies,'j;at/

d=1.e

k
Proof of Lemma 6  Let w be a payoff in F. By Lemma 1, it follows that w = '21 Ajw 3,

J:

where wj is the long-run average return to some pure Markov strategy gj.27 Consider the
following strategy tuple: the strategy g1 is used for Ty periods, followed by g2 for Tp
k

periods and so on. After T = _21 Tj periods, the cycle is repeated. Tj are chosen such that
J:
a) %‘- is arbitrarily close to Aj and b) Wi(gj:s,Tj) > wi-g, for all s and i. Clearly, this

strategy suffices.®

AN .
Proof of Proposition 9.4 Consider 11 i.e. infinite repetitions of the cycle g{,
gi2,... .in,, for Til, T;,....Tli) periods respectively. Consider the following modification of

~ the strategy to ensure that player i's payoffs are independent of the initial state, s, of the
cycle. At the end of the cycle, play proceeds to 1's most favorable strategy gl for TPll

periods and TPil is conditioned on s in such a way that state independence holds. As

before, this constant payoff is denoted Vii(S). Recall that vii(s; gli),TIi)) is 1's Tg period
discounted average payoffs in the play of gli) if the state at the beginning of that sub-cycle is
s. Let vii(s;p) denote player i's infinite horizon payoffs evaluated from the be ginning of the

i,TIi)), for

gli) sub-cycle. Suppose, without loss of generality, that vii(s';gpil,T pil) = vii(s; &

all p,s,s'. In particular, vii(s;p) 2> Vii(ﬁ), for all p.

Since the number of states are finite there is a period, say v, after which all pure

Markov strategies begin to cycle. Fix a min-max period Ty, satisfying for all 8201,

vi®) > o [bil+9] + 1 (A6)

2738 trictly speaking for two different initial states s and s, wi may be generated by different pure Markov
strategies gi(s) and gi(s). The argument that follows can be modified in the obvious way to account for
this.
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Now consider starting with the sub-cycle in) (and renormalize the initial period to

zero) followed by gpil, gpiz,...ctc. We will show that player i has no profitable

deviation in this subgame and this is true regardless of the length TII) Ift <, then S o

. . i
Vi(s) == [Visp) - (18) £ 8 55(0)]
ot 1=1

2 < [¥(® - -89 b (AT

We need to show that vii(st) > (1-8)b; + (1-8Tm)n + 5Tm+1vii(5), but that is seen to
follow from (A.6) and (A.7). Ift>7, gliJ is already in a cycle of states and actions. Let the

length of this cycle be A and player i's constant (per period) rewards during this cycle c;.
Writing T for the remaining periods of strategy gll), ie. T= TII, - t, we have

vii(st) = (1-8T)c; + STvi(s:p)
> (1-8T)c; + 8TV|(8) (A.8)

_From (A.8) it is clear that if there was no profitable deviation at the beginning of the
cycle, i.e. att =1, then there is no such deviation later. Making‘TIl) arbitrarily long makes

the payoffs of all players, v‘ji(s;p), sufficiently insensitive to the initial state of the sub-cycle.
Hence, the probabilistic construction of (18)-(20) is possible for the strategies fIij and ll\'Ii.
Proposition 9.4 follows.e

Remark: It can be checked that a similar method of proof works for fully stochastic games
or more generally for games whose transitions satisfy the following: for every pure Markov
strategy g and state s, the smallest closed set containing s has a single closed subset.

Proof of Lemma 14 It is not difficult to see that a consequence of the definition is the .

(ostensibly) stronger condition: there is a (possibly mixed) Markov strategy I1 s.t. for all
(s, s") there is N s.t. qN(s, s") > 0, i.e. that we have a stationary Markov chain. Since the

number of states is finite, by standard results they are all persistent. Let v(s') be a feasible

long-run average payoff from initial state s'. By Lemma 2, it is realized by ex-ante
randomization over Markov strategies. Starting from s=s', a strategy that follows {1 until
the first time s' is reached and then follows the Markov strategies that generate v(s'),

clearly generates the same long-run average payoff.
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