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1. Introduction

The general equilibrium approach to modeling the location of economic activities
and the uses of resources distributed over a spatial dimension has largely been ignored
by economic theorists over much of the history of economics. There might be several
reasons for this. The problems could be uninteresting, too hard, or thought to be
subsumed by more general abstract models. Indeed, examples used to justify various
abstract models often involve a spatial dimension. Isard (1956, pp. 24-27) proposes
that the reason for this lack of interest is that the Anglo—Saxon influence on the
discipline biases economists toward an interest in the temporal rather than the spatial
dimensions of economics.

Independent of the reasons for a lack of interest in the area, the result is that
many fundamental questions in the field remain open. The following is a selection of
such questions. How should land be modeled in a general equilibrium framework?
When does equilibrium exist in a spatial model? When do the welfare theorems hold?
What happens as the number of agents in the economy becomes large? Are the
~ answers to these questions as well as comparative statics model-dependent? Analogous
questions in other subfields of economics were answered long ago. Answers t0 these
questions clearly affect the validity of applications of these models, be it comparative
statics or empirical work. For example, it makes little sense to look at the
comparative statics of a model if an equilibrium does not generally exist. The ultimate
goal of our research is to make the basis of work in urban economics as solid as in
other subfields. This does not necessarily mean that the models used in practice will
be justified or rejected, but rather that the assumptions underlying any particular
variéty of model will be exposed. This will aid in the empirical or comparative static
applications of models, especially if the implications of the various models differ, as well

as in making policy prescriptions and predictions. The use of an inappropriate or even



flawed model can invalidate results. Moreover, scientific objectivity leads us to
examine the assumptions underlying models, independent of the investment that might
already have been made in them.

The purpose of this paper is to examine one of these questions, the one pertaining
to existence of equilibrium, for one model. This model is important because it seems
to have the classical properties of economic models, unlike the standard model used in
the New Urban Economics. In order to motivate our results and connect this work to
the rest of the literature, we shall first survey the related work in urban economics as
well as touch on related work in general equilibrium theory.

The standard model used by New Urban Economists, called the monocentric city
model, has a continuum of consumers each of whom locates in one of a continuum of
locations. A mobile good as well as a density of land can be consumed at any given
distance from the city center. Prices are densities (unit costs of land) over locations.
We refer to Beckmann (1969) and Wheaton (1979) for complete descriptions of the
model. Mathematical economists will notice two aspects of this model immediately.
First, the model has a double infinity (agents and goods), so that classical results
might not be expected. Second, densities are defined with respect to location (distance
from the city center), not with respect to agents. Thus mean demand and supply
might not be defined on a per capita or per agent basis.

Certainly one of the most prominent features of urban models in general and the
monocentric city model in particular is the use of a continuum of consumers with land.
Unfortunately, little has been done to examine the consistency of models employing this
framework or to look at the economies with a finite number of consumers that
approximate continuum models. In essence, the justification for the use of models with
an infinite number of consumers is that finite models correspond roughly to reality,
continuum economies approximate reasonable large (but finite) economies and that the

mathematics of the continuum are simpler. In particular, in order to justify the use of



a continuum model, it is necessary that the equilibria and comparative statics of a
continuum model approximate those of some reasonable finite model. It is commonly
thought that the relationship between continuum and finite models with land is exactly
the same as the relationship between continuum and finite models without land, the
latter relationship having been examined by Hildenbrand (1974), for imstance. Thus, it
is assumed that the proofs of conmsistency of models with a continuum of consumers and
land and the justifications for models with a continuum of consumers and land are
analogous to those for models with a continuum of consumers without land. However,
it is possible to show that the land densities cannot be interpreted as actual areas of
land because there are not enmough disjoint subsets in the plane to give positive area to
each of a continuum of consumers. It is in this precise sense that there is a logical
problem with such models. As a consequence, the analogy to the standard large
economies literature breaks down and it can be demonstrated that continuum models
with land (and in particular, monocentric city models) are approximations, in the
standard sense used by Hildenbrand, only to large finite economies in which land
endowments and consumption vanish almost surely. Proofs of these results and a more
thorough discussion can be found in Berliant (1985a). An alternative interpretation is
that the continuum of agents represents fractions of individual consumers rather than
individuals themselves. This interpretation has severe limitations as well; see Berliant
and ten Raa (1991). Not only does it involve an aggregation problem, but if
transportation cost is involved, then one must know the equilibrium distribution of
agents in the continuum economy before the preferences and endowments of the finite
economy can be designed. Papageorgiou and Pines (1990) claim to have shown that
the equilibria of the finite and continuum models are the same under this
interpretation. However, their results are limited to a single type of agent, no
transportation cost, and presume existence of equilibrium in both the finite and

continuum models. Counterexamples when each of these assumptions is relaxed can be



found in Berliant and ten Raa (1991). Precise and detailed criticisms of much of the
literature that attempts to justify the standard model of urban economics by using
finite approximations can be found in Berliant (forthcoming). As this is a scientific
endeavor, the burden of proof is on those who wish to use continuum models.

A belief that the results of the monocentric city model hold for related finite
models is clearly insufficient. Consider a model with an equal number of (identical)
agents and indivisible (homogeneous) land parcels. Land consumption is clearly uniform
in this model, unlike the monocentric city model. How small do parcels have to be
before the results are close to those of a continuum model? If land consumption tends
to zero, why isn’t the consumption of other goods permitted to tend to zero as well?
There are also problems with existence and welfare in such finite models (with
transportation cost); see Koopmans and Beckmann (1957).

Until récently, little attention has been paid to the existence of equilibrium or the
welfare theorems in the context of the model proposed in the New Urban Economics;
the assumption seemed to be that the appropriate theorems hold and that their proofs
are a technicality (see, for example, Arnott (1986)). Fujita and Smith (1987) have
conditions on both utility and demand that yield existence of equilibrium in the context
of a type economy and location-independent utility functions. Consider a monocentric
city model with location-independent, Cobb-Douglas utility functions and a linear
transportation cost. It seems to be analytically impossible to derive an explicit
contract curve. However, it seems likely that some points on this contract curve do
not have price support. The difference with the Fujita-Smith model is that this might
not be an economy with a finite number of types or utility levels. Allowing
location—dependent utility, there are two varieties of examples that yield no equilibrium
even with identical consumers and the standard assumptions of general equilibrium
theory. These examples can be found in Berliant and ten Raa (1991, example 3) and
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theorems can fail in this model when utilities are location—dependent. Examples of this
phenomenon can be found in Berliant, Papageorgiou, and Wang (1990).

Perhaps the model in this literature that best captures at least the spirit of the
development below is that of Alonso (1964). This is a monocentric city model in
which there is a finite number of consumers. An equilibrium is not shown to exist in
this model, although some loosely defined algorithms are used to illustrate how one
might go about finding an equilibrium. Moreover, equilibrium prices are not additive
(at least in chapter 5), so there are arbitrage opportunities in equilibrium. As a
consequence, the equilibrium concept is not a very good one, and equilibrium
allocations, if they exist, are not necessarily Pareto optimal. An attempt is made to
‘correct this problem in an appendix of the book, but other problems arise there.
Overall, neither the shape nor the location of land parcels is treated well in this model.
In any case, Berliant and Fujita (forthcoming) have an existence theorem for this
model when prices are additive, all traders are identical, and preferences are
independent of both location and shape. In fact, there is a continuum of equilibria in
this context.

We turn next to a consideration of general equilibrium theory and its relation to
spatial economics. Land has several properties associated with it that are relatively
unique as compared to other commodities. Most models attempt to assume these
properties away in order to be able to treat land in the same manner as other
commodities. This, of course, facilitates the proofs of various propositions common to
these models, but it also destroys conclusions that may be drawn concerning the special
role that land plays in the real world.

The features that distinguish locational economic models from other economic
models can be summed up in two words: indivisibilities and nonconvexities. They arise
naturally in these models because the choice of location is always a discrete choice in

some sense, and because agents will generally prefer concentrated to diversified bundles



of locational commodities. These features are discussed in detail in section III below,
where they are used to motivate our assumptions. Problems in demonstrating that an
equilibrium exists in a model with these properties are well-known. For example,
Shapley and Scarf (1974) present an example with indivisible housing goods in which
‘the core is empty. Examples with nonconvex preferences and no equilibrium are
classical.

As Debreu (1959) made clear, the attributes that can be specified in the definition
of a commodity include location. Thus, in a sense, land or location can be put into a
classical general equilibrium model. Problems arise only when examining the
assumptions that are needed to demonstrate the existence of an equilibrium. In
particular, Schweizer, Varaiya, and Hartwick (1976) point out that the assumption of
convexity of preferences makes little sense, as it implies that consumers would desire to
own land that is spread out rather than concentrated. There are also nonconvexities in
production and consumption sets, as detailed by Koopmans and Beckmann (1957).
Finally, if land is infinitely divisible, then there is an infinity of commodities. Thus,
the classical general equilibrium framework is inadequate for handling land. Modern
~variants of the classical framework and their suitability for use in a model of land are
discussed in Berliant (1985a). The important work on models with infinitely many
commodities, such as Bewley (1972), Jones (1984), Mas—Colell (1986), Zame (1987), and
Aliprantis, Brown, and Burkinshaw (1987), is not very useful for our purposes due to
the general orientation of the assumptions made to obtain existence. All of these
articles use a linear commodity space (or a convex subset thereof) in conjunction with
convexity of preferences and assumptions that bound marginal rates of substitution,
such as uniform properness. The nonconvex and indivisible nature of locational
commodities renders such models inappropriate for our context. However, these models
remain quite useful for modelling other kinds of commodities (such as commodities with

temporal attributes).



For the reasons listed above as well as in Berliant (1985a), attempts to push
location models into standard general equilibrium frameworks have failed. Assumptions
that one might expect to be satisfied in aspatial models, such as convexity of
preferences, are not expected to be satisfied in spatial models. Indeed, attempts to
integrate spatial and temporal economics, such as Faden (1977), require identical
assumptions on spatial and temporal commodities, and their use tends to be unnatural
in one dimension or another.

The purpose of this paper is to analyze the question of existence of an equilibrium
when a finite number of consumers! have a commodity space that is a natural
representation of land, a collection of subsets of the plane. We shall explicitly address
the complications that are due to the size of the commodity space and the indivisibility
of the elements of the commodity space. The usual assumptions concerning the _
convexity of preferences will not be used, since they would generally imply that agents
prefer to own land that is spread out as opposed to coherent, and this does not make
sense from an intuitive viewpoint. |

The model has a finite number of consumers, each of whom can own a positive
area of land rather than a density. Thus, the natural consumption set to consider is a
sigma algebra. Hints of such a modelling technique had appeared in the urban
economics literature (see Alonso (1964) or Beguin and Thisse (1979)). Such ideas have
also been used in the mathematics literature in the context of fair allocations; see
Dubins and Spanier (1961) or Hill (1983). (However, the fairness concept used in this

literature is not the same as the concept used in economics.) Further detail on the

10f course, a finite number of consumers is used because the problems outlined above
arise with a continuum of consumers. If a continuum could be employed,
convexification of the economy might be possible using Lyapunov’s thoerem. As
remarked above, even large, finite economies must have land consumption tending to
zero, so although Shapley-Folkman arguments might yield approximate convexification
of such economies and existence of approximate equilibrium, these economies will have
land consumption close to zero.



history of this model as well as motivation for it can be found in Berliant (1985a).

An important alternative interpretation of the model is that the commodities
consist of a large number of indivisible goods. With some restrictions on preferences
and a large number of goods (i.e. the model used below), the difficulties of the
Shapley—Scarf housing example, in which consumers receive utility from owning several
commodities, disappear. Such an interpretation could have ramifications for recent
developments in the theory of uncertainty, as in Kreps (1988), where agents might have
preferences over and buy sets of the options available to them. For a potential
application to labor economics, we refer to Heckman and Scheinkman (1987).

In previous work with this model, one assumption that has been made is that the
utility for land can be expressed by the integral or aggregation of a given marginal
utility density. Necessary and sufficient conditions for preferences to have such a
utility representation are given in Berliant (1982). Implicit in such a representation is
that parcels of land are not complements, since the utility from the union of two
disjoint parcels is equal to the sum of the utilities of the two parcels. Thus, the
closeness or coherence of parcels cannot matter. Although such an assumption is quite
strong, it is useful for developing techniques to deal with land. It was used to give a
characterization of demand in Berliant (1984) and to demonstrate the existence of an
equilibrium in Berliant (1985b) for an exchange economy and in Berliant and Jeng
(1990) for an economy with production.

Once the basic techniques of proof were found, it was possible to discard the
assumption of linear utilities. Berliant (1986) gives a utility or set—function
representation theorem without the linearity assumption, while Berliant and ten Raa
(1988) show that demand is non-empty provided that preferences or utilities are
continuous with respect to a certain topology. This topology can be given by a
pseudometric which accounts for both the Hausdorff metric on complements of the

interiors of sets, along with the integral of some marginal utility density over sets.



Examples given in that paper show how the coherence of sets can make a large
difference in utility when preferences are continuous with respect to this topology.
Berliant, Dunz, and Thomson (forthcoming) examine fairness concepts in the context of
this model. Dunz (1991) examines the core with non-linear utilities and proves that it
is nonempty for preferences whick are a special case of those satisfying the key
convexity assumption given below. Berliant and Dunz (1990) study nonlinear pricing
(called the "land assembly problem" in the urban economics literature) in this model
and more generally.

The intent of this paper is to extend the results using non-linear utilities to the
point of establishing existence of an equilibrium. There are several complications,
relative to classical existence theorems, that must be addressed when using as the
consumption set a topological space that is not necessarily a subset of a linear space.
First, we note that the basic technique used in Berliant (1985b) cannot be used here.
When utilities are linear, we can embed the space of measurable sets in a larger, linear
space such as L® (by using their indicator functions), extending utilities in an obvious
manner. Employing an existence theorem for this larger space, an extreme point of the
set of equilibrium allocations can be shown to be a vector of indicator functions.

When utilities are not linear, it is possible that there is no extension of utilities to a
larger linear space that retains the properties needed for existence of an equilibrium.
Of more importance, linearity is virtually necessary in order to show that an
equilibrium exists (where quasi—concavity is used) and that an extreme point of the set
of equilibrium allocations is a vector of indicator functions (where quasi—convexity is
used).

The task ahead appears daunting. We have a commodity space with no notion of
convexity or linearity, natural or otherwise. Nonconvex preferences are not illegitimate
or even exceptional, but the rule. Commodities are indivisible, and their physical form

is fluid and can affect utility.
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Here we examine the land market under the assumption of perfect competition. It
~will be important and interesting to study the land market in the context of imperfect
competition. However, as we need to solve simultaneous equations in either case (i.e.
find fixed points), we concentrate on the basic mathematical techniques needed for this
commodity and structure in the base case of perfect competition, leaving the study of

models of imperfect competition to future research.

The outline of the remainder of the paper is as follows. Section II contains the
notation, the model, and formal statements of the basic assumptions. Section III
contains a further development of the themes of indivisibilities and nonconvexities for
the ‘purpose of motivating the key convexity assumption. This section also presents
several examples of utility functions that satisfy our convexity assumption (as well as
the other assumptions employed). - Section IV contains the main results and proofs.
Section V contains conclusions and suggestions for extensions and future work. An

appendix contains two lemmas crucial to the proof of the main theorem below.
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II. The Model

Let K be a positive integer, let m be Lebesgue measure on lRK, let L be a
compact subset of IRK, and let .2 be the o—algebra of measurable subsets of L. If the
framework is interpreted in location — theoretic terms, L is land, a subset of IRK, and
2 is the consumption set of each agent. Land can be heterogeneous and anything
immobile can be imbedded in it, so it is a differentiated commodity that can be
divided and recombined in an infinity of varieties. Elements of Z that are the same
almost surely are not considered to be equivalent. Combination with a null set might
create a non—equivalent parcel by virtue of, for example, the new set having a larger
connected area. Furthermore, there is only one instance of each potential parcel of
land, so that there is a discrete choice as to whether to purchase it or not; there is an
indivisibility associated with this commodity.

For x € L, let ||x|| denote the standard Euclidean norm on RrK, Capital letters
will generally denote elements of 2 while script letters will generally denote subsets of
2 TFor AB € 2 define the set difference by A\B = {x € A | x ¢ B} and the
complement of A by A°=1L\A. B¢ 3 B is the interior of B in the relative
topology on L induced from RK. 4B is the boundary of B in the usual topology on
IRK; 6B is the set of points in L each of whbse neighborhoods in IRK contains members
of both B and RK\B.

If Ae B letl A be the indicator function of the set A.

Define the e-ball around A € 2 by
Bf(A):{yEL | 3xe Awith] x-y]| < ¢ Forxel,let

rad(x,A) = sup{e > 0 | Be(x) C A} and let §x,A) = in“{ | x -y |- A partition of
ye

n
L is a collection of a finite number of sets {Al""’An} with Aj € BY j, m(I\[U A))
i=1

= 0 and Vi¢j, m(A; N Aj) = 0.

Next we define the Hausdorff metric H on nonempty, closed sets in 2 (see
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Hildenbrand (1974, p. 16)). Let C,D € 2 where C and D are closed and nonempty.
Then
H(C,D) =inf{e¢ 2 0 | C C BE(D), Dc BG(C)}.

There are N consumers or traders in this exchange economy, where N is integer
and finite. Consumer i has an endowment E; € 3 where {El"”’EN} partitions L.
Without loss of generality, m(Ei) > 0 V i, for otherwise we can eliminate any consumer
with m(Ei) = 0 from the model.2 Each consumer has the consumption set &
Consequently, we assume that consumer i has a complete preorder 2, over 2 that is
the consumer’s preference ordering.

At this point, it is convenient to discuss the assumptions on preferences or utilities
employed below. The first assumption is the continuity of preferences. As discussed in
the introduction of Berliant and ten Raa (1988), there are many topologies on Z with
respect to which one might assume preferences to be continuous. For example, one
might restrict to closed subsets of L, and impose the Hausdorff metric topology. The
introduction to the aforementioned paper provides reasons not to use this topology. As
detailed in that paper, most topologies are inappropriate for our context for several
reasons. In some topologies, such as the weak* topology, Zis not closed. In other
topologies, such as the Hausdorff topology, budget sets are not closed under limits. In
most topologies, either #is not compact or the topology does not capture our intuitive
notion of continuity with respect to the coherence of a parcel; it seems important that
the topology allow sets that differ by only a few points to be far apart in the topology

so that the utilities of the two sets can be vastly different. For example, it is possible

2This is accomplished using the following argument. If consumer i has m(E;) = 0, give

his endowment to some other consumer and remove i from the economy. Apply the
desired theorem (either 1 or 3) to the modified economy, and give i the parcel §. The

resulting equilibrium for the modified economy, that has prices in Ll, will be an

equilibrium for the unmodified economy. This argument relies on prices in L1 and the
attendant continuity assumptions on preferences, including the fact that parcels of zero
measure are equivalent to the empty set under the topology.
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to turn a coherent set with high utility into a badly shaped set with low utility by
removing a countable number of points. Topologies that discriminate among such
parcels tend to have many open sets, and thus tend to yield non—compact budget and
consumption sets. In fact, such topologies are often not locally compact. For these
reasons, we employ a generalization of the topology proposed in Berliant and ten Raa
(1988), which makes & compact (see Lemma 2 in the Appendix below), preserves the
budget under limits, and yet discriminates among parcels with different sizes, shapes
and locations.

The topology on 2 proposed in Berliant and ten Raa (1988) can be given by the
following pseudometric. Fix i<N and let h; be an integrable function on L. For AB ¢
2 A+ L, B# L, define

&(AB) = H(A)B)) + | /() dmx) - JBx) dmlx)),
A B.

d(L,L) =0, d(L,A) = d,(A,L) = sup {d;(A,B) | Be & B # L}. In Berliant and
ten Raa (1988), it is assumed that consumer i has a preference order that is continuous
in this topology in the sense that the upper and lower contour sets of the preference
ordering », are closed in the topology. Under this assumption, Theorem 1 of that
paper shows that demand is nonempty while Theorem 2 demonstrates the existence of a
continuous utility representation. In fact, we use a relative of this topology here. Let
‘% be the collection of relatively open sets in & and give it the topology induced by
the metric H(AC,BC) for AB € @2 We note that :‘Z?is compact since the Hausdorff
metric on closed subsets of a compact set generates a compact topology. Let hi: Lx .2
- R be continuous for i = 1,2,...,I. Define a new pseudometric d exactly as above
except allow each h, to depend on the interior of the set and allow for an arbitrary

(but finite) number of functions h;:

] L] I L (]
d(A,B) = H((A)¥(B)®) +_21 S hy(x,A) dm(x) - Jby(x,B) dm(x)
1=1A B
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for AB€ 2 A #L, B# L As before, let d(L,L) = 0,
d(L,A) = d(AL) = sup {d(A,B) | B # L}. This allows us to use the same
topological space for all consumers (each employing perhaps a different hi) as well as
allowing a slightly more general continuity assumption. As in the previous work, shape
and location of the interior of a set are topologized by the Hausdorff metric on
complements of interiors. Now we also allow the linear portion of the "marginal
utility" of each point to depend on the shape, location, and area of the interior of the
set as well. Clearly, if no hi depends on its second argument, we have specialized to
the case examined in the previous work on preferences and demand (modulo the
continuity assumption imposed on hi)‘ It is straightforward to extend the theorems in
Berliant and ten Raa (1988) to admit preferences continuous with respect to the
topology induced by d (as opposed to di)' In fact, Lemma 2 of the appendix below
implies that demand is nonempty when preferences are continuous with respect to this
more general topology. Like the topology induced by di’ the topology induced by d on
2 (henceforth called the outer Hausdorff topology) does not separate elements. For
example, B and C might have common interior and equal hi values for all i, but
different locations. Also, L is isolated in this topology.

With this topology in hand, we can talk about continuity of preferences. A
preference ordering » is said to be continuous if for each A € 2 the sets
{Be 2| B> A} and {B € 2| A} B} are closed in the outer Hausdorff topology.

Notice that this assumption generalizes the assumption of linear utilities employed
in Berliant (1984, 1985b). Suppose that the preferences of trader i can be expressed as

u(B) = ff(x) dm(x) for some continuous density f. One can always choose h, = f
B
for the topology, which makes this utility continuous. (If one wishes to employ a

discontinuous but integrable f, the topology of Berliant and ten Raa (1988) can be used

below in place of the outer Hausdorff topology.) Thus, linear utilities can be made
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continuous with appropriate choice of h.. Although it is slightly bothersome that the
topology chosen for the consumption set might depend on the preferences of traders,
this is the best we can do for now.

In fact, continuity of preferences is stronger than necessary. A preference ordering

» is said to be upper semi-continuous if for each A € 2 theset {Be 2| B A} is

closed in the outer Hausdorff topology.
Local non-satiation of preferences is also used below to prove a first welfare

theorem. We say that the preference order ¥ is locally non-satiated if for all € > 0

for all B € 2 with m(B) < m(L), there exists A € 2 such that m(A\B) + m(B\A) <
¢ and A » B. This is analogous to the standard local non—satiation assumption, except
that we use the L1 metric in place of the outer Hausdorff topology because value is
not continuous with respect to the outer Hausdorff topology; see Berliant and ten Raa
(1988).

Surprisingly, local non-satiation is not needed to prove existence of an equilibrium
or a second welfare theorem. Instead, a different but related assumption is used. In
place of postulating that locally there is always a better parcel, we assume that locally
there is always a worse parcel. We say that the preference order » is locally
non—minimized if for all A,B € 2 with m(B) > 0 and B » A, there exists C € 2 with

C ¢ B as., m(B\C) > 0, and C > A.

We continue the development of the model by defining the space of prices next.
The price space corresponding 10 the commodity space 2 is somewhat problematic, as
@ is not linear. Hence, it does not have a natural dual. It can, however, be
embedded in any one of a number of linear spaces by using the indicator functions of
sets, as in Berliant (1985b). There is a natural argument for placing prices in Ll ora
subset of it. It is desirable to have no arbitrage in equilibrium, for otherwise traders
would always wish to change their demands. In the context of the model, no arbitrage

means that traders cannot put parcels together or take them apart and make a profit.
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Hence prices should be at least additive set functions. If traders are not to make a
profit in equilibrium by putting together or taking apart an infinity of parcels, then
prices should be countably additive. Continuity of preferences will imply that parcels
of zero measure are equivalent to the empty set. Hence, if a parcel of measure zero is
to have zero price, then the Radon-Nikodym theorem (see Rudin (1974, p. 129)) yields
a price space that is the set of all integrable functions on L (called Ll). In other
words, we are assuming that the price space is Ll, and that the embedding of Zis as
indicator functions of elements of Zin L®. Other possible dual pairings are clearly
possible, and such dual pairings will yield different continuity assumptions on
preferences. We have chosen this particular dual pairing because it makes the
mathematics of the problem relatively easy to handle.

For the remainder of the paper, when we write p-S for p € L1 and S € B we
mean p-ls.‘

The maximization problem of consumer i is:
(1) Find B € 2 such that p-B < p-E,

and
Y Ce Bwith C g B, p-C > p-E
for given prices p € L.

This problem is studied in detail in Berliant (1984) and Berliant and ten Raa (1988).

An allocation is a vector (Bl""’BN) with B; € ZV i. An allocation (Bys-By)
N

is called feasible if it is a partition of L, i.e. U B; = L a.s. and V i,j with i#], Bi n Bj
i=1
= 0 as.
An equilibrium is (p’Bl""’BN) e L x such that (Bl’“"BN) is a feasible
allocation and such that for each i, 1 <i < N, Bi solves (1) with respect to prices p,
where p # 0.

An equilibrium allocation is (Bl""’BN) € @ such that 3 p € L1 such that
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(p;Bl,...,BN) is an equilibrium.
A feasible allocation (Bl""’BN) is called an_equilibrium with respect to a price
system p if p € L' and if V i and for each C € Bwith C » B, p-C > p-B;.

A feasible allocation (B,,...,By) is called Pareto optimal if there is no other
feasible allocation (Cl""’CN) such that Ci L) Bi V i with strict preference holding for
some trader j.

A coalition is any subset C of {1,2,...,N}. A coalition C is said to block a
partition (B,..,By) if for each i € C there is a C, € Fsuch thatU C;, =U E; as,

ieC ieC
Vi,j € C with i#j C, n Cj = @ as., and C, ¥ B, Vi € C with strict preference holding
for some j € C. The core is the set of all partitions that are not blocked by any
coalition.

Finally, it is important to note that "ordinary" commodities can be included in
this model. Simply reserve subsets of L disjoint from the rest, and let the utility of
each trader depend on ownership of these sets only through the measure of the
intersection of their parcels with each set. This measure of intersection can be
regarded as a quantity, where each of these extra sets is homogeneous. In this way,

the model presented here generalizes the standard general equilibrium model with

finitely many commodities. Our example in the next section employs this structure.
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III. Convexity

The final assumption on preferences used below is that of convexity. As
mentioned in the introduction, the lack of convexity in consumption sets and
preferences seems to us to be a distinguishing feature of the fields of location theory
and urban economics. In general, a consumer has the discrete choice of owning a
parcel or not owning it, thus generating a nonconvexity in the consumption set, which
is @ or indicator functions of elements of 2 in this model. Notice that a convex
combination of indicator functions is generally not an indicator function. With regard
to preferences, it is not at all obvious what a linear or convex structure on 2 should
look like. To see the problem, consider two disjoint sets S and T. In order to define
a linear structure, oS + (1-@)T, where 0 < a < 1, must be identified with some set in
@ Tt is not clear what this set should be. One might think that it should be a set
containing @ of S and 1-a of T, but there are many such sets. Even if we picked one
of these sets and associated it with oS + (1-o)T, there is another problem. Convexity
of preferences is not necessarily a natural assumption when the commodity is land.
For example, think of S and T as representing 1 acre of land on the East and West
coasts, respectively. An agent might be indifferent between S and T, but prefers either
of these parcels to having 1/2 acre on both coasts. This could be true no matter how
(1/2)S + (1/2)T were defined. This idea becomes more and more important as one
takes further convex combinations with other parcels. In essence, consumers will prefer
bundles that are extreme in the sense that land is close together as opposed to average
bundles in which land holdings are diversified. This notion runs opposite the standard
convexity assumption. We refer to Berliant (1985a) for further discussion of these
issues.

In spite of the problems presented by the imposition of convexity assumptions,
some further convexity-like assumption must be imposed, as the following example

illustrates.
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The idea behind the example is very simple. The utility of the agents will depend
on the measure of land in each part of a 2 element partition of land. This means that
there are essentially two homogeneous commodities or types of land. So the example
will appear to be equivalent to a standard 2 x 2 exchange economy. Formally, there
is one potential difference. An additive price function need not give two parcels of
equal size and type the same price. However, it will be shown that this possibility
cannot occur in our example, and the intuition that the example is equivalent to a
standard 2 x 2 exchange economy with nonconvex preferences is correct. It is well
known that, in such economies, the second welfare theorem need not hold.

Let (A,B) be a measurable partition of the space of land with m(A) = m(B) = 1.
Define the utility functions of agents 1 and 2 by
4,(C) = m(A n C) + 5m(B n C) + DR
u,(D) = [m(A n D) + Ym@BnD) + 3

Pick C; such that m(C, n A) =m(C, n B) = % and let Cy = 0(1:’ Give agent

and

1 initial endowment C1 and give agent 2 initial endowment Cz. It is easy to verify

that the allocation (C,,C,) is in the core. To see this, look at the associated 2 x 2

exchange economy where (C;,C,) is represented by the vector ((%,%—),(%,%)), ie.

((m(A n C;)m(B n C,))(m(A n Co)m(B N C,))). Notice first that neither
one—person coalition will block this allocation. To see that it is Pareto efficient,
compute u,(D) given that (C,D) is an allocation. The expression obtained is

13 7 5 2 1 3
(D) = 1 + -8—-m(B n D) - Z-[m(B n D)* + 5-[m(B n D))°. The first order
condition for maximization of u, yields

7~ 5m(B n D) + 3m(B n D)I*.

It is easily verified that the zeros of this equation are at m(B n D) = :,12- and
m(B n D) = %, and that the slope of u2(D) is positive for m(B n D) < % and
negative for m(B n D) > %, som(B n D) = %—is the global maximum. Hence the

allocation is Pareto efficient. In addition, agent 1 has nonconvex preferences in this
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economy, and as a consequence there do not exist prices that support this allocation.
The following shows this formally.

Suppose that p € L' supports (C;,C,). Let S C C; N A, T C Cyn B, 8" €Cyn
AandT’QClnB.

First we show that if m(S) = m(S’) > 0 then p-S = p-S’. [A similar statement
holds for T and T’]. Suppose p-S > p-S’. Notice first that if S C S, m(S) > 0,
then p-S > 0. For if this were not the case, then agent 2 will acquire S and increase
his utility, and p will not support. Next, divide S into two subsets of equal measure,
Sl and Sz. Either p-§1 < %-p-S or p-§, ¢ %-p-s. Choose a subset satisfying the
inequality, and again subdivide it into two sets of equal measure. Continue this
procedure for a finite number of steps until the resulting set, S, is such that
p-S < p-S — p-S’. Define S* = S\S. Since m(S) > 0, 0 < p-S =pS - p-S* <
p-S - p-S’. S0 p[S'UC,\ST)] = p-Cy - p§ + p+§’ < p-Cy, and S U (C,\8) is

affordable to agent 1 under the supporting prices. Also,

m(S’ U (C,\S)] N B) = §

m([s U (C\S] 1 A) = 1 - m(S") + m(s")
= 1-m(s) + m(s)
= %— + m(8) > %

Hence u (S’ U (C;\S ))> uy(Cy)-

The last inequality follows because uy depends only on the area of each type of
land. So S’ U (Cl\S*) is an affordable parcel that yields a higher utility than C,,
which contradicts the hypothesis that p supports (01’02)‘ If p-S’ > p-S a similar
argument using u, results in the same contradiction. This result implies that if two
agents have positive amounts of the same type of land, then an additive supporting
price must price equal-size parcels of that type the same. Note that if one trader
owned all of the land of a particular type then this argument does not apply, and it

would be possible for p to price parcels of the same size and type differently.
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The argument used to show that equal-size parcels of the same type must be
priced the same by supporting prices is essentially a no-arbitrage argument.

Now consider the following trades involving S, §’, T, and T’ that agent 1 can
make. Loosely speaking, suppose S and T are such that agent 1 prefers to give up S
in exchange for T. Since p supports (01,02), p+T > p-S for all such S and T.
Formally,

u,(T U (C)\8)) = 5 - m(S) + L1+ m(1)? > uy(C) =12 p-T > p:S.

Similarly, for S’ and T’ such that agent 1 prefers to give up T’ for S/, p-S > p-T.
Formally,

uy(8" U (C\T)) = 3 + m(S") + L1 - m(T)? > uy(C)) =12 p-8" > p-T".
Note that for m(S) = m(S8’) = .1 = m(T) = m(T’) the first inequality of each of the
above statements is satisfied. Therefore, for such S, S/, T, and T’, p-T > p-S and
p-S’ > p-T’/. This is impossible, as the earlier argument implies that equal-size
parcels of the same type are priced the same, i.e. p:S = p-S’ and p-T = p-T".
Hence p does not support.

It is instructive to see why the standard proof of the second welfare theorem fails
here. First, note that by identifying sets with their indicator functions (embedded, say,
in L®), preferences are weakly convex in the sense that the indicator of a set is not
contained in the convex hull of its (strict) upper contour set. In fact, the upper
contour set of any agent at any parcel can be separated from the parcel by a linear
functional that is zero on the parcel in question and one everywhere else. The example
shows that this condition is not sufficient for the second welfare theorem to hold.

Next we shall examine the breakdown of the second welfare theorem for this example,
and see that the functionals supporting upper contour sets must be related in order to
have a second welfare theorem.

In general, one must extend the commodity space to a larger, linear space

containing indicator functions, such as L®. The utility on indicators must be extended
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in a continuous (in some sense) and quasi—concave manner because standard proofs of
the second welfare theorem (see Debreu (1954)) use the sum across consumers of the
sets of bundles at least as good as the Pareto optimal allocation to a consumer (where
" the interior is taken for one such set).: To see how the standard proof breaks down for
our example, let A = [0,1], B = [2,3]. Let a; be the indicator of [0,.5] U [2,2.5] and
let a, be the indicator of [.5,1] U [2.5,3]. (a;,a9) are indicators of a Pareto optimal
allocation as shown above. Let aj be the indicator of [0,.4] U [2,2.6], let aj be the
indicator of [0,.6] U [2,2.4], and let a; be the indicator of
[4,.5] U [.6,1] U [2.4,2.5] U [2.6,3]. It is easy to see that trader 2 is indifferent between
a, and aj and that trader 1 prefers both aj and a'l' to a;. Provided that the topology
on indicators is chosen such that the utility of trader 1 is continuous, aj and ai are
both in the (relative) interior of the set of bundles at least as good as a;. Notice that
ay + 8y = 1 = 5{af + ay) + gfa] + ag)
Thus, we cannot separate the sum of indicators of the Pareto optimal allocation (1L)
from the convex hull of the sum of sets of bundles at least as good as the Pareto
optimal bundle (with one interior taken).

Next we introduce and discuss the convexity assumption that is used in our
existence proof. One way to motivate this assumption is to consider an implication of
convexity of preferences in a standard finite dimensional setting. If preferences are
convex in such a setting then at every point, x, there exists a hyperplane, p(-), such
that y preferred to x implies p(y) > p(x). In other words, if preferences are convex
then the upper contour set of a point can be separated from the point by a
hyperplane, i.e. a linear functional. This statement is well-defined even in the
nonlinear infinite dimensional setting of our model and leads to the following definition.

To formulate this definition, we give the space of continuous functions on L
mapping into R " call it C_?_, the norm topology. Let G C C_?_ be a convex collection
c*-llx — y||) such that sup

Ve

*
of Lipschitz functions with constant ¢ (i.e. |g(x) — g(y)|
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{g(x) | g€ G, xeL}=¢< oandinf {g(x) | geG xeL}=c>0 Note
that by Ascoli’s Theorem the assumptions on G imply that it is compact.? A
preference ordering » satisfies separation by hyperplanes if for each B € B there exists

gg € G such that for all A € £ with A » B, ng(x) dm(x) 2 ng(x) dm(x). Note
A B
that strict preference is only required to yield a weak inequality between the integrals.

However, it is easy to see that if ¥ is also locally non-minimized then the inequality is
strict.

Notice that this assumption uses only a one-way implication; that is, any parcel
preferred to B has value at least as high under gg a8 B. The assumption does not
require that any parcel with value under R at least as high as B is more preferred.
In this sense, the assumption is quite similar to the condition that a point is not in
the convex hull of its preferred set, a condition that is common in the literature on
economies with infinitely many commodities. However, as illustrated above, the
condition that a point is not in the convex hull of its preferred set is insufficient in
our model to prove the second welfare theorem (even with continuity, etc.). We shall
demonstrate below that separation by hyperplanes (along with other assumptions
unrelated to convexity) is sufficient to prove a second welfare theorem.

One implication of this assumption is that marginal rates of substitution are
bounded in some sense. Such boundedness assumptions are common in the infinite
dimensional commodity space literature (some of which was cited in the Introduction).
The bounds on g imply that if A » B then m(B\A)/ m(A\B) < ¢ [/ ¢. So preferences
have bounded marginal rates of substitution in the sense that if a set of positive

measure is subtracted from a parcel, then the minimum measure that must be added to

3The assumption that G consists of Lipschitz functions is actually stronger than
necessary, but it makes the condition easier to check. All that is required to prove

the theorems is that G is a compact subset of L1 with the norm topology. For a
characterization of such subsets, see Dunford and Schwartz (1988, p. 301%.
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obtain something preferred is bounded away from zero. In other words, if a set of
positive measure is subtracted from a parcel then it is not possible to obtain something
preferred by adding arbitrarily small measure.

Next we discuss some examples of preferences that satisfy separation by
hyperplanes. Omne example is a preference relation that can be represented by a utility
function of the form: U(B) = f(ml(B),...,mK(B)), where f:IRI_l{_-’ Ris C' and

quasi—concave and each m,(B) = fhi(x) dm(x) is a measure. So preferences over land
B
parcels are equivalent to convex preferences over K characteristics of land parcels.

Separation by hyperplanes places additional restrictions on f and the hi' To find these
we find the gg for such preferences. Let m(B) = (ml(B),...mK(B)) and let Df|p be
the vector -g-)fa-(ﬁ(B)), i=1,...,K. Since { is ¢! and quasi—concave, U(A) > U(B)

1

K
. — — of —
implies Df|5-m(A) > Df|g-m(B). So define gg(x) Eizlﬁﬁ—i(m(B))-hi(x). Then U(A)

> U(B) implies |'gg(x)dm(x) = Df|g-m(A) > Df|p-m(B) = S gg(x)dm(x), as
A B
required by separation by hyperplanes. The gg generated this way must be bounded

and Lipschitz. For example, this holds if each h, is Lipschitz with 0 < ¢ < hi(x) <c
<oforall xand 0 < ¢ < Z(@(B)) < ¢ < wforalli = 1,.,K and B ¢ 2
1

Actually it is not necessary that all of the derivatives of f be positive. For example,

consider the utility function U(B) = fh(x)/(1+m(B)) dm(x), which can be written as
B
( fh(x)dm(x),m(B)), where f(x,y) = x/(1+y) is the required quasi—concave function.
B
The supporting hyperplanes can be defined by gB(x)

[h(x)—U(B)]/[1+m(B)].‘ For a
more specific example take L = [0,1] and h(x) = 1 + cx. For 0 < ¢ ¢ 2 this yields
preferences that satisfy separation by hyperplanes and are monotone. Another example
of preferences of this general form are those represented by the negative of the variance

of a set (in R). These preferences indicate a desire for coherence of a parcel. Such
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utilities are clearly a quasi—concave function of two measures since variance can be
written as EB2 - (EB)2, where E is the expectation operator. For suitable densities,
e.g. uniform on [0,1}, such preferences satisfy separation by hyperplanes.

As in much of the literature on infinite dimensional existence problems, it is rather
difficult to find closed form examples of utility functions satisfying the assumptions of
_the theorems that are not additive across commodity indexes or quasi—concave functions
of a finite number of continuous linear functionals. We have found such an example;
it satisfies a rather technical but minor modification of the upper semi—continuity
assumption and requires minor modifications of the proofs, so we omit it here.
However, it does demonstrate that the results presented here expand the domain on
which existence of equilibrium and the welfare theorems can be proved for this model,
relative to previous literature.

Next we discuss how separation by hyperplanes excludes the counterexample to the
existence of additive supporting prices given above. It is worthwhile to sketch a more
precise argument that any preferences that depend monotonically only on a vector of
positive, nonatomic measures and are nonconvex in these measures do not satisfy
separation by hyperplanes. We skip the details as similar arguments appear in the
proof of our main theorem. Let utility depend only on the positive, nonatomic
measures ml(-),...,mk(-). The presence of a nonconvexity in the dependence on these
measures implies that there exist A,A’,B € 2 with A A’ preferred to B and o« € (0,1)

such that mj(B) = am (A) + (l—a)mj(A’) for j = 1,...,.k. Suppose that separation by

J
hyperplanes holds. Cover G with ¢ balls and let g,,....g be the centers of the balls in
a finite subcover, where n depends on e. Then since preference depends only on the

measures, Lyapunov’s theorem implies that there exists C € 2 m.(C) = m.(B) G =

..,k) so C ~ B, J g;(x) dm(x) = aj g(x) dm(x) + (l—a)j g(x) dm(x) for i =
C A A’
1,...,n, where C depends on e. Then for small e, BC from the separation by
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hyperplanes assumption is close to some g;, and hence fgc(x) dm(x) is close to
C
a fgC(x) dm(x) + (1-a) Jrgc(x) dm(x). However, A,A’ » B ~ C and monotonicity
A A’
imply ['go(x) dm(x) > J'go(x) dm(x) and ['gg(x) dm(x) > Jgg(x) dmx), so
C

A C A’
a fgc(x) dm(x) + (1-a) fgc(x) dm(x) > fgc(x) dm(x), a contradiction. So such
A A’ C

preferences cannot satisfy separation by hyperplanes.

Finally, we want to point out that standard general equilibrium models with
finitely many commodities satisfy all of our assumptions if marginal rates of
substitution are bounded away from 0 and o. In this case the separating hyperplanes
can be chosen to be constant on each subset corresponding to a commodity with values
in a compact subset of (0,0). By choosing the subsets representing commodities to be
a nonzero distance apart, these supporting hyperplanes will be Lipschitz and form a

compact set.



27

IV. Results

The main result of the paper can now be stated and proved.

Theorem 1: Let ti be upper semi—continuous,

locally non-minimized, and satisfy separation by
hyperplanes for each i. Given endowments (El""’EN)’

there exists an equilibrium with positive prices.

Proof: We begin by giving the general outline of the proof. First, we define a

[+

q=1 ©f measurable partitions of L and a sequence, {s"}® of finite

sequence, { ¢} n=1’

subsets of G. For each n, #" and S™ are then used to define a map, the fixed points
of which can be used to find a feasible allocation and prices. Finally, limit points of
these allocations and prices are shown to be equilibria.

The sequence of measurable partitions of L is constructed so as to have the
following properties. Each # has n elements denoted by (C?,...,CE) with m(Ca) >0
for all k. Also, for each ¢ > 0, there exists n* such that n > n* implies for all k =
1,...,n there exists x € L with Cil C Be(x)' Finally, there is an @ > 1 such that for
every n and for all j and k, m(Cﬂ)/m(C?) < a

To construct {Sn}:=1, fix n and cover G by taking the open ball (in G) of radius
1/n around every element of G. Our assumptions on G and Ascoli’s Theorem (see
Munkres (1975, p. 290)) imply that G is compact. Therefore, for each n, this cover
has a finite subcover. Let S™ be the collection of centers of the open balls in this
subcover.

Now fix n and consider the measurable partition #* of L and the finite subset st
of G. Since n is fixed, for notational simplicity we will suppress the superscripts and
denote these sets by (Cl""’Cn) and S = {gl,...,gs}, respectively. Define I =
{(yi"“’yi)iil € (IR_?_)N | there is a feasible allocation (By,...,.By) with fgj(x) dm(x)

B.

1
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y for each i and j}. Dubins and Spanier (1961, Theorem 1) implies that I is a
compact, convex subset of BN Let co(S) denote the convex hull of S in C0 Next
we define a map p x ¢ : I x [co(S)] —Ix [co(S)]N. To accomplish this, we first
consider the following economies.

Given gy,...8y € G, let &gl,...,gN) denote the exchange economy in which agent i
has the utility function uw,(B) = 2 [m(BnC )]1_(1/ n), j g;(x) dm(x)/m(C,) and the

Cx

endowment e, = = [m(E, nCl) m(E;nC o). This is a standard N agent, n commodity
exchange economy in which agent i’s consumption of commodity k is given by zk =
m(Bian). Using the quantity zk in place of m(Bian), the consumption set of agent
i is clearly IR_I:_. Thus, we have constructed a (strictly) convex exchange economy with
n homogeneous commodities. Any standard existence theorem can be applied to obtain
a nonempty set of equilibrium prices. It is straightforward but tedious to calculate
demand in this economy. This demand is single-valued and C1 for strictly positive
prices. In addition, it is straightforward to show that this economy satisfies the gross
substitutes assumption (see Arrow and Hahn (1971, p. 221)). Therefore, by Arrow and
Hahn (1971, Corollary 9.7), &gl,...,gN) has a unique equilibrium.

Next define p: [co(S)]N - I by p(gl,...,gN) = {y € I | there exists a feasible
allocation, (Bj,...,By), such that for all i and k, m(B;nCy) = zli( and fg'](x) dm(x) =

B;

y}, where (zl,...,zN) is the unique equilibrium allocation of ?{gl,...,gN)}. Using
standard arguments and Dubins and Spanier (1961, Theorem 1), it is easy to verify
that p is nonempty, convex-valued, and has a closed graph.

Define o: I = [co(S )]N by o(y) = {(g;- 48N) € [co(S)]N | for each feasible
allocation (By,... By) such that j gk dm(x) = yk for each i and k, for each i g

Bl
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satisfies A € & A » B, implies | g;(x) dm(x) 2 [ g(x) dm(x) - 2m(L)/n}. Let

A Bi

(Bl""’BN) be a feasible allocation with fgk(x) dm(x) = y]i( for all i and k. The

B.
i

separation by hyperplanes assumption on preferences implies that there exists ER. such
i

that A € 4 A ». B. implies M gn (x) dm(x) 2 fgn (x) dm(x). Since there exists gk
i1 Bi Bi

A Bi
¢ S with [|g* - gg | < 1/n, J'g") dm(x) + m(L)/n 2 [gp (x) dm(x) > Jep (*)
1 A A 1 B. 1

i
dm(x) > fgk(x) dm(x) — m(L)/n. Hence the vector of such gk is in o, and o is
B.

1
nonempty. The definitions of S and o can be used tob show that o has the same
properties as p. Hence p x ¢ is nonempty and convex—valued with a closed graph, and
the Glicksberg (1952) fixed point theorem implies that this correspondence has a fixed
point.

A fixed point [i,(gl,...,gN)] of p x ¢ has the property that there exists an
equilibrium [(zl,...,zN),q] of é{gl,...,gN) (where q,zi € IR_I;_; normalize q; = 1) and a
feasible allocation (Bl""’BN) with zli{ = m(Bian) such that, for each i, A > B
implies fgi(x) dm(x) > fgi(x) dm(x) - 2m(L)/n. Define p € L” by p zkﬁlqk-lck.

A B,

Applying this argument for each n (and thus for each pair (#,Sn)) yields
sequences {(gI{,...,gN)}zzl, {(Blll""’Bll\II)}z=1’ and {pn}zzl. Since G is compact, we

can pass to a subsequence (without changing notation) such that for each i lim glil =
- o

_ . . n ' n n .
g € G. Next we show that a limit point of {p }y_, and {(By,BN)p=1 15 a0
equilibrium.

First we consider the sequence {pn};___l. Fix w,w’ € L and suppose (without loss

of generality) that w € Ci‘ and w’ € Clll for all n. The fact that qi is equal to each
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consumer’s marginal rate of substitution between goods k and 1 in the finite economy
é{g?,...,gf\}) implies
p"(w) - p'(w)|

= lap - @

= |[ou"/day)/[06" 02]) — [05"/6ap]/ (00" / Bel]]

= uzl/zk]l/n { j "g"(x) dm(x)/m(C])}/{ J "g"(x) dm(x)/m(C])} -

1
OTARAN fg%x) dm(x)/m(C})}/{ J g'(x) dm(x)/m(Ch)}|,

k 1
where z' is an equilibrium consumption bundle of the consumer with utility i’ we

have thus eliminated some subscripts to simplify notation. Since z' is an equilibrium
consumption bundle, for each n and t we can find agents such that zlll/zi <
[1/N]-[m(C})/m(C})] ¢ o/N and zt/zt > [1/N]-[m(C})/m(CE)] 2 1/aN, where the last
inequality in each string follows from the properties of the partition #. Using the fact
that G is a set of Lipschitz functions, using gr € G, and using the properties of & ,
for all € > 0 there exists n* such that for all n;t > n*
10%w) = P wW)] < [{(a/M)Y/P[gh(w) + 2¢ €l/[g%(w’) - 2¢ €]}

- (/) Ui w) - 27 d/84w ) + 2}
Now note that as r tends to infinity, (a/N)l/I — 1, (l/aN)l/r — 1, g'(w) — g(w),
and g'(w’) — g(w’). Therefore for every € > 0 there exists an @i such that n,t > &
implies [p"(w) — p'(w)| < [{(1+6)lgw) + ¢ + ¢ d/lgw’) - € — ¢ d} - {(1-¢)[g(w) -
€ — c*e]/[g(w’) + €+ c*e]}l, which tends to zero with e. Since w and w’ are
arbitrary, we have p" converging uniformly to some p € L®. Similar arguments show

that p%(w) > (Na) /2

¢ / T, so p is bounded away from zero.
Next apply Lemma 2 of the appendix to pass to a subsequence (without changing

notation) {(Blll""’BII\II)}nfl such that, for each i, 1im B1 B, and lim j p(x)
- n-o N~ B
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dm(x) = fp(x) dm(x), where (By,...,By) is a feasible allocation. Now we show that
B;
(p;Bl,...,BN) is an equilibrium.
Since pn converges to p, consumer i’s sequence of wealth in the finite economies,

{qn-elil};:l, converges to wealth in the actual economy, fp(x) dm(x). Also,

E;
| /3760 ame) = 500 dm()|
BY B;
glfp (x) dm(x) — Jp(x ) dm(x I ljpx)dm(x)—}p dmx)l
< fllpn(X) - p(x)] dni(x) + | S p(x) dm(IX) - Jo(x) dm(llt)l-
B} i i

The first term in the last expression tends to zero as n tends to infinity since pn
converges uniformly to p. The definition of Bi implies that the second term in the

last expression tends to zero as n tends to infinity. Hence fp(x) dm(x) = lim
B - w
' i
j = lim q"- ’n, where z''" is agent i’s consumption bundle at the
n-w
1

equilibrium of g" ..., Ex). Since for all n, qn-zi’Il = q"-e?, we have "p x) dm(x) =
81BN i

B,

fp(x) dm(x). Finally, we must show that any A > B, is not affordable. Suppose
i
the contrary, J p(x) dm(x J p(x) dm(x). Then, using local non-minimization of

A B,

preferences twice, we can find A",A’ € 3 A" C A’ C A as., with m(A") < m(A’) <

m(A) and A’ », B,, A" », B, Hence er(x) dm(x) < fp(x) dm(x). So for large n,

A’ Bi

J p(x) dm(x) < J p"(x) dm(x) and A’ defines an affordable bundle in the economy

BY
i
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aglll,...,gll\}). Also, using upper semi—continuity of preferences, fgril(x) dm(x) >
A"
Jg7(x) dm(x) - 2m(L)/n. Hence, for large "g™(x) dm Fe™(x) d S
g; : , ge n, J g;(x) dm(x) > jngi(X) m(x). So
B} A’ B:
i i

for large n, A’ is preferred to BIil and affordable in &glll,...,gN), which contradicts that
(Brll,...,Bll\}) is an equilibrium allocation for this economy. Therefore A is not affordable
and (p;Bl,...,BN) is an equilibrium.

Q.E.D.

Note that Lemma 2 of the appendix shows that the set of partitions of L with N
elements is compact. If it is assumed that each preference order ¥, or utility u, is
upper semi-continuous with respect to our topology, then the existence of Pareto
optima of any variety (utilitarian or Rawlsian, for example) is guaranteed. Here we

examine price support for such allocations.

Theorem 2: Under the conditions of Theorem 1, every
Pareto optimal allocation is an equilibrium relative to
some positive price system.

The assumptions used for the second welfare theorem are necessary in the sense
that there are counterexamples without them, one of which is given in section III

above.

Proof: Let (Bl""’BN) be a Pareto optimal allocation, and set endowments (El"“’EN)
= (Bl"“’BN)' Apply Theorem 1 to this vector of endowments to obtain an
equilibrium (p ;Cy,-Cy). We claim that (p"iBy-Byy) is also an equilibrium. For if
not, for each i B, is affordable to i at prices p*, so there exists j such that Cj >j Bj'
By individual rationality, C; ¥ B, for all i. Hence (Cl""’CN) Pareto dominates

*
(B .,BN), a contradiction. Therefore (p ;Bl,...,BN) is an equilibrium, and we have

1
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*
found supporting prices p for (Bl”"’BN)'
Q.E.D.

Theorem 3: If for all i, i = 1,2,..,N, ¥, is locally

non-satiated, then any equilibrium allocation is in the
core, and hence is Pareto optimal.

Proof: Standard.

Theorem 4: If for all i, i = 1,2,...,N, r satisfies the

assumptions of Theorems 1 and 3, then the core is
nonempty.

Proof: Follows immediately from Theorems 1 and 3.
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V. Conclusions

The main goal of this paper was to demonstrate the existence of competitive
equilibrium in models with land under reasonably general conditions. The main
difficulty in dealing with land is that the natural commodity space, subsets of the
plane, has no convex structure. This makes determining general, reasonable
assumptions on preferences problematic. Our key assumption, separation by
hyperplanes, seems to be a natural analog of standard convexity assumptions and
therefore appears "necessary" for competitive equilibrium to exist in general. Of course,
it would be useful to know more about the kinds of preferences that satisfy this
assumption.

Much work remains to be done to extend the results presented here. First, it will
be useful to extend the model to allow transportation cost as, for example, a
continuous ﬁmction of parcels. Second, the model could be extended to allow
production, as in Berliant and Jeng (1990). Third, it would be convenient to derive
some rules for generating comparative statics in this model. These comparative statics
properties could be useful for testing the finite model against the continuum model.
Fourth, the mathematics could easily be extended to a more general underlying space.
L could simply be a compact subset of a metric space and m could be a positive,
nonatomic measure defined on the Borel subsets of L. The proofs of Theorems 1 — 4
would hardly change, since the arguments and mathematical theorems employed can
handle a more abstract structure. However, from the point of view of applications, this
generalization does not add much.

Finally, it would be interesting to set up a finite model approximately analogous
to a monocentric city model. Let L be a homogeneous disk of land in the pia,ne and
measure transportation cost as distance to the point at the center of the disk. Let all
consumers have identical utilities and endow them with income. Then we will see if

the equilibrium and comparative statics are the same (even in their signs or
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magnitudes) as those derived for the monocentric city model as in Wheaton (1979).
Berliant and Fujita (forthcoming) make a first step in this direction by developing
Alonso’s classical model with a finite number of consumers using the tools of

contemporary microeconomics.
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APPENDIX

Lemma 1: Let Bl € @V j j = 1,20 with lim BJ =
ho
B, then V x € B, 3 J such that V j > J, x € BY.

Proof: By definition of outer Hausdorff convergence, lim H((fB)c, (ij)c) =0,50V €>
. e
0, 3 J such that V j 2 J, (BN ¢ BE((B)C). Now Be((B)c) -+ (B)® pointwise as € - 0,

soVx€ f3, 3 € > 0 such that x ¢ BE((f3)c) (since B is open). Let J correspond to
this ¢ Then V j 2 J, x ¢ (1°3j)c, so x € B,
Q.E.D.

Lemma 2: Let {ps}§=1 be a finite set of functions

integrable over L and let {(Blil)lle}nil C Bbea
sequence of partitions of L. Then there exists a

n
N .. N
subsequence {(B. )izl}rzl and a partition (B;); _; €

n
. r _ . r
Zof L such that Vi lim B;” = B; and lim [ py(x)
I+ o o pT
i

am(x) = ['p,(x) dm().
B.

1

Proof: If for some i BII1 = L infinitely often, the lemma is trivial. Hereafter we only
consider the case Bll1 4 L for all i and n. Then for each i, {(ﬁ?)c}nzl is a sequence
of nonempty, compact subsets of L. By Hildenbrand (1974, p.17), there is a
subsequence converging in the Hausdorff topology. Since N is finite, there is a

subsequence that converges for all i simultaneously. We pass to this subsequence, but
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call it {(1.3111)0} for notational simplicity.

The next task is to find a limit. Let D, be the Hausdorff limit of {(B )i I =1’
this limit exists and is unique. Notice that if m(DinDi’) > 0 for some i’ # i, then by
Lemma 1 and Lebesgue’s dominated convergence theorem, m(firilnﬁ’il,) > 0 for n

sufficiently large, a contradiction. Hence m(DinDi’) = 0 V i#i’. For notational
N
simplicity, let C; = DS and let A = L'\ (U C;). Let .6 be the o-algebra of
y 1 1 1 g
i=1

measurable subsets of A.

We will now employ Theorem 1 of Dubins and Spanier (1961), which says that if
a vector measure & = ¢, 4p is nonatomic, the range % of TxN matrices with
elements %(Ai), where Al""’AN € ¢ partitions A, is a convex and compact set of
matrices. This theorem is an extension of Lyapunov’s theorem. In fact, we only need
the compactness part of the result. Notice that for each n, (AnBIil)I;I__=1 forms a
partition of A. Let 4 = fhll(-,Cl) dm, « = jhl(-,C2),...,aI_N = th(-,CN) dm,
41.N)41 = /p; dm,.. SALN)4S = ]ps dm. Using the theorem cited just above, we

can draw a subsequence {(B ) 1—-1}r _p and a partltxon (K) _1 € Aof A such that

lim J xC) dm(x) = J hv(x,Ci) dm(x), v = 1,2,...,], i = 1,2,...,N, and

Do B, InA K,

lim Jn (x) dm(x) = fps(x) dm(x), s = 1,2,...,8, i = 1,2,..,N. Now K, n C; =
I-w )
B, ThA ;

0 as. Vi. Let o/ be a countable dense subset of A. Define Y, = C; U (X; \ o). Let

= C; U (K, \ {&U [Y \ C}), as in Berliant and ten Raa (1988, p.347). This is
done to make sure that no interior is added to B; by K. Then B = C;, B, \B = K,
a.s. Now
' [ b,(x,C,) dm(x) - B (xC) dm(x)l
B.' B,

= | [ b(xC) dm(x) + Jn hy(x,C;) dm(x)
B."nA B,'nC,

1
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+ Ja hy(x,C;) dm(x)
B, "n(L\[AUC)])
_ f hv(x’ci) dm(x) - f hv(x,Ci) dm(x)|
B, NA B;nG;
o B0 ame) - (e anto)
B."nA K;
+|Jn h(5Cy) dm(x) — Jh(x,C;) dm(x)]
B nC i
+ | Ja hy(xCy) dm(x)'

B, n(L\[AUC )]
The first term tends to zero by choice of K, while the second term tends to zero

by Lemma 1 and Lebesgue’s dominated convergence theorem. Using the fact that for

n

each T, (Bir)lf=1 partitions L, Lemma 1 and Lebesgue’s dominated convergence
theorem imply that the third term tends to zero as r tends to infinity. An identical
argument will work for p g 8= 1,2,...,S, in place of hv' Applying the uniform

continuity theorem to each h - it follows that

llthxB)dm Jh(xB)dm()
I-wm
B
B;
Thus, the appropriate integrals converge. By choice of B, {Bi}i 1 Dartitions L, and

on L] n
lim H((B;") (B,)) = 0, 50 lim d(B,,B;") = 0.

I-m I- o

Q.E.D.



