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Abstract

This paper constructs a consistent test for the null of stationarity
against the alternative of a unit root, utilizing the regression properties

investigated by Kahn and Ogaki (1990).
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1. Introduction

This paper constructs a consistent test for stationarity against ﬁnit
root nonstationarity, utilizing the regression properties we investigated in
Kahn and Ogaki (1990). In Kahn and Ogaki (1990), we used the regression
properties to develop a chi-square test for the null of a unit root. We
found that our test is more powerful than standard Dickey-Fuller tests when
the sample size was small and the autoregressive root is close to one. Thus
it is of interest to see if these regression properties will lead us to a
powerful test in small samples when we flip the null to stationarity.

The null of stationarity is more attractive than the null of unit roots
in many applications, as Fukushige, Hatanaka, and Koto (1990) and Ogaki and
Park (1990),among others, emphasized. This is especially true in the
context of cointegration. However, most tests for unit roots employ the
null of unit roots, and hence most tests for cointegration take the null of
no cointegration against cointegration or the null of a smaller number of

cointegrating vectors against a larger number of cointegrating vectors.

2. Regression Properties
This section reviews some of the results in Kahn and Ogaki (1990) in
the context of the set of assumptions that the present paper use. Consider

a stochastic process {xt:tzl} generated in discrete time according to

(L) X = oax + u (t=1,2,...)

where {utzczl} is a sequence of independent normal random variables with
mean zero and variance ai (i.e., u NID(O, ai)). As Phillips and Ouliaris
(1990) pointed out, it is not simple to construct a consistent test for the
null of stationarity against the unit root nonstationarity. As a result, we

need this stringent distributional assumption that Kahn and Ogaki (1990) did



not require to construct a test for the null of stationarity.

We assume that the initial wvalue, X is N[O, ai/(l-pz)], whére
p is an unknown real number with |p|<l. The null hypothesis of our test is

=p, so that X is strictly stationary under the null. The alternative

hypothesis is a=1.

To motivate the test we develop, let us consider the regressioﬁ
(2) xt=ﬂAxt+et .
Then B=0.5 under the null hypothesis and B=1 under the alternative
hypothesis of a unit root in the sense discussed in Kahn and Ogaki (1990).
It should be noted that pg=0.5 for any value of o as long as X is

stationary. This invariance property is useful in constructing a test for

the null of stationarity.

3. A Consistent Test for Stationarity
In this section, we develop a consistent test with the null of

stationarity. Let bT be the OLS estimator:

T T
(3) b= [T @x)*17T x,5x ).
t=1 t=1
Since §:=1nt= O.S(X: —xz ),
T
(4) (b,-0.5) = [Tty (Axt)z]-IO.S T-l(xi X2 ).

t=1

Kahn and Ogaki (1990) showed that {bT-O.S:Tzl} converges in distribution to
O.SXi under the unit root hypothesis, where xi is a random variable with the
Chi-square distribution with one degree of freedom.

Under the null hypothesis of stationarity, it is easy to see that (i)
{TebT:Tzl} converges to zero in probability for any e<l, and that (ii)

{T(bT-O.S):Tzl) converges in distribution to {1/[4(1-a)]}(y1-yz) where Y,



and y, are independent Chi-square variates with one degree of freedom.

To see this result, note that Tt Z:=1(Axt)2 converges almost surely to
E[(Axﬁ)z]=[2/(1+oz)]0‘21 , and X ~ converges in distribution to a random
variable with the stationary distribution, N[O, ai/(l—az)] that is
independent of X Hence (x:-xi)/[ai/(l—az)] converges in distribution to
Y,Y,- The conclusion follows immediately from equation (4).

Thus 4(1-a)T(bT-0.S) converges in distribution to the difference of two
independent Chi-square variates with one degree of freedom, whose density
function was derived in Miller (1964, Corollary 3 on p.65). Since a is
unknown, we replace o by the OLS estimator of a in equation (1), which we
denote by a. However, a, may not satisfy the condition |aT|<l. Hence we
choose a constant . depending on the sample size that is smaller than one
in absolute value, and we replace a by . instead of a if IaTl>cT. When we

make c. approach one at a slow enough rate, we obtain a consistent test.

Specifically, we choose a sequence of real numbers {cT:Tzl} that satisfies

the following two conditions: (1) |cT|<1, and (ii) 1-cT = O(T—(l-s)) and
1im T1—6+€(1-c )= for any e>0. Define a sequence of functions
T T
a if -1<a<cT
(6) ¢T(a>—4[
. otherwise.

for any real number a. The test statistic we propose is
7) KT = 4{1-¢T(aT)}T(bT-O.5).

If |a|<1l, then {KT:Tzl} converges in distribution to a random variable
that is the difference between two independent chi-square variates with one
degree of freedom. This follows from the fact that ¢T(aT) converges in

probability to a because asymptotically |aT|<cT and hence ¢T(aT)=aT.



Next, consider the case where a=1 to show that the KT test is

consistent against the alternative of o=1. In this case ¥, converges to
one, and aT-1=O (T_l). Since a converges to one faster than <, does,
p
. -(1-6)
< =C . - =
asymptotically ¢ <a, and ¢T(aT) < Thus 1 ¢r(ar) Op(T ) and
T(1—¢T(aT)) diverges. Since bT-O.S converges in distribution as shown in

Kahn and Ogaki (1991), K{%%(TS) and KT diverges if a=1. Thus the KT test
is consistent against the alternative of a unit root when the null is

rejected when KT is large.

4. Finite Sample Properties

We compare finite sample properties of the KT test with those of Park
and Choi's (1988) G(0,q) tests based on 3000 replications. Recently,
Fukushige, Hatanaka, and Koto (1990), Kwiatkowski and Schmidt (1990), and
Saikkonen and Luukkonen (1989) also developed tests for the mnull of
stationarity. We chose to compare our test with Park and Choi’s test
because Park and Choi’s test and its extension for the null of cointegration
have been used in several recent applications (see, e.g., Costello (1990),
Ogaki and Park (1990), Ogaki (1990), and Cooley and Ogaki (1990)). Data
were generated by the model (1) with the u independent and identically
distributed N(O,l).1 The RNDN function of GAUSS was used to create (pseudo)
random variables.

Table 1 reports our Monte Carlo results. For our KT test, we used
cT=O.95 for all experiments. For the G(0,q) test, an estimate of the long
run variance is necessary. For this purpose, we used Andrews and Monahan's

(1990) prewhitened QS kernel estimator based on AR(1l) prewhitening (the test

1We used the RNDN function of GAUSS to create pseudo random variables.



is denoted GP(O,q) in this case) and Andrews's (1990) nonprewhitened QS
kernel estimator (the test 1s denoted GN(O,q)). Andrews’'s automatic
bandwidth parameter estimate based on AR(1l) is used in both cases.2

The first panel reports empirical sizes when the five percent critical
values implied by asymptotic theories are used. Here p=a, so that X is
stationary. We estimate the nominal critical value for the KT test at the
5-percent level to be 3.2 from 3000 replications of yi-yz where Y, and v,
are independent normal random variables. The KT test has little size
distortion. The Gp(O,q) tests are conservative especially when q is large.
The GN(O,S) test is as conservative as the GP(O,S) test when T=100, but the
size distortion begins to disappear quickly when the sample size is
increased to 200. The GN(O,l) and.GN(O,S) tests are liberal.

The -second panel of Table 1 reports powers when the nominal critical
values are used. The third panel of Table 1 reports size corrected powers.
Size is adjusted by taking the empirical critical value from the experiment
with a=p reported in the first panel for each p. The Gp(O,q) and GN(O,S)
tests have too small powers when T=100 to be practically useful when the
nominal critical values are to be used. The KT test is more powerful than
Gp(O,q) and GN(O,q) tests when T=100. When the sample size is increased to
200, it is less powerful than the GN(O,3) test. The GN(O,l) test is more
powerful than GN(O,B) test when T=100 while GN(O,l) test is less powerful
than GN(O,B) test when T=200. Considering this result and the size
distortion problem, it is recommended to increase q for the G N(O,q) test

when the sample size is increased.

2'I'he bandwidth parameter is bounded by the square root of T. When the
prewhitened QS kernel estimator is used, we bounded the AR coefficient to be
less than 0.95.



5. Conclusions
The present paper developed a test for the null of stationarity against
the alternative of a unit root. We used the regression property previously
employed in Kahn and Ogaki (1990) in constructing a test for the null of a
unit root. Our test is more powerful than Park and Choi'’'s (1988) tests

(which have been used by several authors) when the sample size is small,
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Table 1

Monte Carlo Results

T P K& GP(O,l) GN(O,l) GP(0,3) GN(O,3) GP(O,S) GN(O,S)

Empirical sizes using five percent nominal critical values

100 0.85 0.041 0.029 0.111 0.007 0.027 0.002 0.002
100 0.90 0.044 0.023 0.170 0.002 0.046 0.001 0.001
100 0.95 0.066 0.024 0.295 0.003 0.114 0.001 0.001
200 0.85 0.050 0.040 0.096 0.016 0.056 0.004 0.010
200 0.90 0.041 0.028 0.130 0.005 0.101 0.001 0.012
200 0.95 0.072 0.042 0.242 0.009 0.249 0.001 0.053
Empirical powers using five percent nominal critical values
100 0.85 0.564 0.211 0.547 0.073 0.384 0.018 0.000
100 0.90 0.567 0.217 0.577 0.079 0.405 0.020 0.002
100 0.95 0.533 0.016 0.553 0.062 0.388 0.016 0.001
200 0.8 0.519 0.533 0.640 0.507 0.767 0.409 0.480
200 0.90 0.685 0.519 0.625 0.499 0.759 0.393 0.460
200 0.95 0.667 0.519 0.625 0.506 0.755 0.401 0.467
Size adjusted powers of five percent tests
100 0.85 0.580 0.254 0.448 0.170 0.510 0.111 0.210
100 0.90 0.576 0.282 0.396 0.208 0.422 0.153 0.143
100 0.95 0.508 0.272 0.242 0.223 0.241 0.184 0.097
200 0.85 0.677 0.544 0 569 0.609 0.753 0.545 0.761
200 0.90 0.695 0.547 0.519 0.635 0.651 0.598 0.670
200 0.95 0.649 0.537 0.394 0.625 0.488 0.625 0.461

NOTE: Estimates obtained from 3000 replications.



