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Consumption, Income, and Cointegration:
Further Analysis

Abstract

The paper reexamines the long-run relation between consumption and
income in the U.S. that King, Plosser, Stock, and Watson (1991, KPSW)
studied. KPSW showed that a version of the permanent income hypothesis
(PIH) implies that the log of consumption and the log of income are
cointegrated with a known cointegrated vector of (1,-1)’. They also showed

that this cointegrating vector also eliminates the deterministic trends

arising from drift terms. This restriction, which we call deterministic
cointegration restriction, was not tested by KPSW. The purpose of the
present paper 1is to test this restriction. We do not reject this

restriction. (JEL E21, C32)
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1. Introduction

This paper reexamines the long-run relation between consumption and
income in the U.S., using the concept of cointegration of Engle and Granger
(1987). Two time series, log consumption and log income cén be modeled as
series with stochastic trends and deterministic trends arising from drift
terms. The present paper investigates the relation between the stochastic
trends and the deterministic trends arising from drift terms. Previous
empirical studies on cointegration of consumption and income focused on the
stochastic trends in these series.

In King, Plosser, Stock, and Watson (1991, KPSW), the difference
stationarity specification is employed to model nonstationarity. They show
that a version of the permanent income hypothesis (PIH) model with a
constant intertemporal elasticity of substitution implies that the log of
consumption minus the log of income is stationary. This implies that the
log of consumption and the log of income are cointegrated with a known
cointegrating vector (1, -1)". KPSW did not find evidence against this
cointegration restriction of the PIH.1 In their economic model, this
cointegrating vector eliminates both stochastic trends and deterministic
trends arising from the drift terms. This restriction, which Ogaki and Park
(1990) called the deterministic cointegration restriction, was not tested by
KPSW. The purpose of the present paper is to test this restriction.

Many other authors have tested the cointegration relation of the levels

lNeusser (1991) confirmed this finding for some other industrial
countries and for slightly different data for the U.S. Both KPSW and
Neusser include other economic variables such as investment to investigate a
neoclassical model that includes the PIH. The present paper focuses on the
PIH.



of consumption and income rather than the logs of consumption and income
(see, e.g., Campbell (1987), Engle and Granger (1987), Phillips and Ouliaris
(1988), and Park, Ouliaris, and Choi (1988)). As discussed in Cochrane and
Sbordone (1988), another version of the PIH model of consumption with a
representative consumer maximizing a quadratic utility function implies the
level of consumption (C(t)) and the level of income (Y(t)) are cointegrated.
Let us assume that the C(t) and Y(t) are difference stationary with drift.
Then this version of the PIH also implies the deterministic cointegration
restriction. Since C(t)-Y(t) is stationary while Y(t) grows, this version
of the PIH implies that the saving rate (C(t)-Y(t))/Y(t) declines as Y(t)
grows. This is not consistent with Kuznets's (1946) finding that the saving
rate is stable in the long run in the U.S. On the other hand, 1if the
log(C(t))-log(Y(t)) is (strictly) stationary as implied by the model of
KPSW, then the ratio C(t)/Y(t) 1is stationary and the saving rate is
stationary. Thus it is more natural to use the version of the PIH studied
by KPSW to investigate the long-run relationships between consumption and
income especially when both stochastic and deterministic trends are to be
investigated.

The deterministic cointegration restriction is implied by many economic
models. There are at least two reasons why testing this restriction is
important. First, a test for the deterministic cointegration is important
as a specification test for models implying cointegration. Since it is
difficult to test the existence of stochastic trends [see, e.g., Cochrane
(1988), Christiano and Eichenbaum (1989), Campbell and Perron (1991)], it is
difficult to test restrictions on only stochastic trends. Because it is

arguably easier to test the existence of deterministic trends, tests for the



deterministic cointegration restriction can be useful in discriminating
competing models.

Second, it is important to impose this restriction on estimators of the
cointegrating vector because large efficiency gains can be expected (see,
West (1988), Hansen (1989), and Park (1990)). For some models, this
restriction cannot be rejected (see, e.g., Cooley and Ogaki's (1990)) and
the cointegrating vector is estimated with this restriction imposed. On the
other hand, if the deterministic cointegration restriction is not satisfied
by the data, the cointegrating vector must be estimated from cointegration
of the stochastic trends (stochastic cointegration). The estimators for
cointegrating vectors are not consistent when the deterministic restriction
is erroneously imposed when it is mnot satisfied. For example, this
restriction has been rejected for some models in Ogaki and Park (1990),
Ogaki (1990), which lead these authors to explore (economic) specifications
that imply stochastic cointegration but do not imply the deterministic
cointegration restriction.

The rest of the paper is organized as follows. Section 2 presents the
econometric procedure we use. In Section 3, we report empirical results.
In Section 4, we investigates small sample properties of the tests we use.
Section 5 discusses directions of future research suggested by our empirical

results and contains our conclusions.

2. Econometric Procedure

Let X(t) be a 2-dimensional difference stationary process: X(t) -
X(t-1) = p + v(t) for t=1, where p is a 2-dimensional vector of real numbers
and v(t) is stationary with mean zero, with each component of v(t) having a

positive long run variance. Suppose that X(t) are cointegrated with a



cointegrating vector (1,-8) and that the deterministic cointegration
restriction is satisfied. Then we can apply the Canonical Cointegrating

Regressions (CCR) procedure developed by Park (1990) to

X (E) =¥ + BX,(t) + e(t), 9

This CCR procedure, which is asymptotically equivalent to maximum likelihood
estimation, only requires us to transform data before running a regression
and corrects for endogeneity and serial correlation. The CCR estimators
have asymptotic distributions that can be essentially considered as normal
distributions, so that their standard errors can be interpreted in the usual
way.2

An important property of the CCR procedure is that linear restrictions
can be tested by xz tests which are free from nuisance parameters. We can
use xz tests in a regression with spurious deterministic trends added to (1)
to test for stochastic and deterministic cointegration. For this purpose,
the CCR procedure is applied to a regression

q .
X (£) =% + ) r]itl+ BX (£) + e(t). (2)
i=1

Let H(p,q) denote the standard Wold statistic to test the hypothesis
nM T =nq=0 with the estimate of the variance of e(t) replaced by the

long run variance of the CCR (see Park {1990] for more explanations). Then

H(p,q) converges in distribution to a xz random variable under the null of
p-q

21n this special case of a single regressor, the CCR procedure is not
necessary to obtain normal asymptotic distribution in the regression (1) as
long as the regressor has nonzero drift. West (1988) shows that the OLS
estimator has asymptotic normal distributions in this case. However, the
OLS estimator for the regression (2) is asymptotically biased.



cointegration. In particular, the H(0,1) statistic tests the hypothesis
nl=0 in (17) and thus tests the deterministic cointegrating restriction. On
the other hand, the H(l,q) tests stochastic cointegration.

Efficiency gains in estimating the cointegrating vector from imposing
the deterministic cointegrating restriction was discussed by West (1989) for
the one regressor case and by Hansen (1990) and Park (1990) for the general
multiple regressors case. There are other estimation procedures which are
maximum likelihood or equivalent to maximum likelihood asymptotically such
as Johansen (1988, 1991), Phillips (1988, 1991), Stock and Watson (1989),
Phillips and Hansen (1990), and Saikkonen (1989)). We use the CCR because
Monte Carlo experiments in Park and Ogaki (1991) showed that the CCR
estimators are better than Johansen’s maximum likelihood estimators in terms
of the mean square error (MSE) when the sample size is small and because it
is easy to test the null of the deterministic cointegration restriction and
the null of stochastic cointegration with the CCR.

The CCR procedure requires an estimate of nuisance parameters such as
the the long run covariance of the disturbances in the system. We use Park
and Ogaki’s (1991) VAR prewhitening method with Andrews's (1991) QS kernel
and his automatic band width parameter estimator to estimate the nuisance
parameters.3 The VAR of order one was used for prewhitening. In the first
stage, we use a cointegrating regression based on the OLS. The OLS
estimates for the cointegrating vector are used to form estimates for the

nuisance parameters for the second stage CCR. In our empirical work and

3 . . .
Andrews’s (1990) automatic bandwidth estimator, ST, was constructed

form fitting AR(1l) to each disturbance.



Monte Carlo experiments, we report the third stage CCR estimators based on
the estimates of the nuisance parameters from the second stage CCR as
recommended by Park and Ogaki (1991). We report the results for H(p,q) test
statistics from the fourth stage CCR for which we bound the singular Values4

for the VAR coefficient matrix by 0.99 and the bandwidth parameter by VT.S

3. Empirical Results

We use the same consumption and income data as those used by KPSW. We
use GNP minus government spending, which KPSW called private GNP as income.
To obtain per capita values, reai consumption and income are divided by
total population at the end of month in each quarter. Table 1 presents test
results. Either consumption or GNP can be used as the regressand in the
CCR.6 We cannot reject the deterministic cointegration restriction in terms
of the H(0,1) tests. This result is robust to the choice of the regressand.
We do not find evidence against stochastic cointegration from the H(I1,q)
tests, This result is consistent with those of KPSW. They did not reject
stochastic cointegration for the logs of consumption and income, using
procedures developed by Stock and Watson (1988, 1991) and Johansen (1988).

According to the point estimate of B and their standard errors, we find
some evidence against the hypothesis that the cointegrating vector is

(1,-1). This is especially true when log(C(t)) is used as the regressand.

4We follow Andrews and Monahan (1990) in bounding the singular values.
We thank Don Andrews for clarifying the relation between the singular values
and the eigenvalues.

5We do not bound these parameters for the second stage CCR and the
third stage CCR because we find that the bounding often deteriorate the MSE
and bias in our Monte Carlo simulations.

6We use Ogaki’s GAUSS CCR package for our empirical work and Monte
Carlo simulations. See Ogaki (1991b) for details about this package.



The standard errors reported are based on the asymptotic distributions. It
is possible that the asymptotic distributions are not good approximations in

small samples. We investigate small sample properties of the CCR procedure.

4. Small Sample Properties of the H(p,q) Tests

In this section, we study small sample properties of the CCR estimators
and the H(p,q) tests, using Monte Carlo experiments.

We use two types of the data generation processes for the Monte Carlo

simulations. The data generation process called DGPl is

X (£) = BX () + e(t), (3)

AX_(£) = p, + v (t), )

Ae(t) = ¢ Ae(t-1) + (l-ﬁL)(l-vL)el(t), (5)

v.(£) = ¢ v (t-1) + (1-7L)e (£), (6)

for t=1,...,T, where L is the lag operator, A=1-L, |¢}<1l, |v]|<l, and -1<@<l.

Here e(t)=(el(t),ez(t))’ is NID with E(ej)=1, E(elez)=a, and |a|<1. When

=1, we interpret (5) to mean
e(t) = ¢ e(t-1) + (1-7L)e (v), (5)

so that e(t) 1is stationary and Xl and X2 are cointegrated with the
deterministic cointegration restriction. When |60|<1l, e(t) 1is difference
stationary and X1 and X2 are not cointegrated. We set fB=1. We set B, SO
that each element of X(t) has a common linear deterministic trend that is
comparable to that of the log of GNP. Let c(t) be the log of consumption
and y(t) be the log of GNP. We estimate means of Ac(t) and AY(t),

restricting the means to be the same. We estimate a common mean to be



0.0052 with the standard error of 0.0006.7 Since the sample standard

deviation of y(t) is 0.014, we set p2=0.0052 std(XZ)/O.Ola, where the
std(XZ) is the standard deviation of X2 that is implied by (6).

The data generation process called DGP2 is based on an error correction
model that is estimated from the data we used in the previous section for
the purpose of bootstrapping. The estimation is done as follows. We demean
Ac(t) and AY(t) by the estimated common mean of 0.0052. Then, assuming that
the cointegrating vector is (1, -1)’, we use the OLS to estimate the error

correction model:

Ac(t) = AIEC(t-l) + Al(L)AX(t-l) + el(t), 7N

Ay(t) = AZEC(t-l) + AZ(L)AX(t-l) + ez(t), (8)
for t=1,...,T, where X(t)=[c(t), y(t)]’, EC(t-1) is demeaned c(t-1)-y(t-1).
We first include four lags of X(t-1) in the regressors. After excluding

terms that are not significant at the 5-percent level, the final model is

Ac(t) = 0.058 EC(t-1) + 0.166 Ay(t-1) + € (t), (77)
(0.024) (0.043) 1

Ay(t) = 0.163 EC(t-1) + 0.368 Ac(t-1) - 0.196 Ac(t-3)
(0.039) (0.067) (0.083)

+ 0.327 Ay(t-4) + ez(t), (8)
(0.136)

7We restrict Ac(t) and Ay(t) to have the same mean, using
Hansen/Heaton/Ogaki GMM package that was supported by NSF Grant SES-3512371
(see Ogaki (1991a) for details about this package). The Lagrange Multiplier
test statistic for the restriction of a common mean is 0.206 with the
p-value of 0.65 when Andrews and Monahan's (1990) prewhitened QS kernel is
used with Andrews’s (1991) automatic bandwidth parameter estimate. If the
system is cointegrated, this Lagrange Multiplier test has a degenerate
asymptotic distribution.



where standard errors are in parentheses. When we write (7’) and (8’) as
B(L)X(t)=e(t), detB(z)=0 has one unit root and all other roots outside the
unit circle whose smallest absolute value is 1.16. We use sample covariance
matrix of the residuals as E(e(t)e(t)’). vAfter generating X(t) from (7) and
(8), a linear deterministic trend 0.0052t is added to both elements of X(t),
so that the resulting X(t) 1is cointegrated with the deterministic
cointegration restriction.

Table 2 reports results for the DGPl obtained from 1000 Monte Carlo
replications.8 The sample size T is set to 170 and all regressions include
a constant term. We use Park and Ogaki’s (1991) VAR prewhitening method
based on AR(1l) with the Andrews’'s (1991) automatic bandwidth parameter
estimate for the QS kernel. For each parameter values of (¢, v, a), we try
both X1 and Xz as the regressand and three values #, 1, 0.9, and 0.5. The
system is cointegrated when #=1. For this case, we report the empirical
sizes of H(p,q) tests when the nominal critical values are used. We also
report the empirical 5-percent and 95-percent critical wvalues of the
t-ratios for the hypothesis pg=1, t'05 and tas’ from the third stage CCR
that Park and Ogaki (1991) recommend based on the mean square error and bias
in small samples. When #=0.9 or §=0.5, the system is not cointegrated. We
report size corrected powers of H(p,q) tests and do not report tﬁS and tas
for this case. We report the results for H(0,1), H(1,2), H(1l,4), and H(1,7)
test statistics from the fourth stage CCR for which we bound the singular

values for the VAR coefficient matrix by 0.99 and the bandwidth parameter by

8The initial value XZ(O) is set to zero. 1In the case of y=0, we draw

the initial wvalue e(0) from N(O,l/(1-¢2)) that 1is independent from
e(l),...,e(T).
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When there is no MA component (y=0), the empirical ecritical values of
the t-ratios are close to those of the standard normal distribution and the
H(0,1) and H(1,2) tests have reasonable size properties under the null
unless the AR coefficient ¢ is close to one. This is true even when X2 is
used as the regressand and/or a is nonzero. The H(1,4) and H(1l,7) tests
have somewhat less stable sizes than the H(0,1) and H(1,2) tests in this
case. When ¢ is as large as 0.8, and the t-ratios and the H(p,q) tests
become less reliable under the null. The H(1,4) and H(1,7) especially have
very low empirical sizes and very high empirical sizes depending on which
variable is used as the regressand. When vy is nonzero the results under the
null are similar to the case where ¢=0.8 except that the H(0,1l) and H(1,2)
tests show more size distortion problems when y=0.5. When o=0 and thus Xz
is exogenous, the H(0,1) test often has lower power than the H(l,q) tests.
On the other hand, when a=0 and X2 is not exogenous, the H(0,1) test is more
powerful than the H(l,q) tests. Since one of the most appealing feature of
cointegration is that structural parameters can be estimated without
exogeneity assumptions, this is evidence in favor of the H(0,1) test.

Based on these size and power properties, we recommend the H(0,1l) test
and the H(l,q) test with small values of q when the sample size is small.
These tests performs reasonably well in general, but we find two cases where
the test overrejects the null hypothesis. First, when the autoregressive

coefficient ¢ is close to one, the system is close to no cointegration.

9We do not bound these parameters for the second stage CCR based on the
OLS and the third stage CCR based on the OLS because we find that the
bounding often deteriorate the MSE and bias in our preliminary simulations.

10



Second, when the moving average coefficient y is positive and close to one,
the random walk component in Xz(t) becomes small ‘compared with the
stationary component in the sense of Cochrane (1988). Both of these are
cases where the near-observational equivalence of stationary and integrated
processes (see, e.g, Campbell and Perron (1991)) 1is severe. Thus it 1is
natural that these tests have small 'sample problems in these cases.

Table 3 reports results for the DGP2 from 1000 Monte Carlo
replications. The sample size is set to 167 as in the actual data we used
in the previous section. The initial values of X(0) are set to zero and we
create X(t) for t=1,...,268 and sample from t=102 to t=268 for each Monte
Carlo replication.lo The H(0,1) test is conservative when y(t) is used as
the regressand and slightly overrejects the null of the deterministic
cointegration restriction when c(t) is used as the regressand. From tos
and tgs’ the computed standard errors tend to be too small when ¢ is used as
the regressand. Thus the evidence that we found in the previous section
against the hypothesis that (1, -1)’ is a cointegrating vector is likely to

be due this small sample problem.

5. Conclusions and Future Research

The present paper showed that the U.S. post war quarterly data supports
the joint hypothesis of the difference stationary consumption and income and
a version of the permanent income hypothesis. We tested the deterministic
cointegration restriction, which has often been neglected in the literature,
and found that we cannot reject this joint hypothesis. Our finding is also

consistent with Kuznets’s (1946) finding that the saving rate is stable in

loWe also use X(101) for estimating the nuisance parameters for the CCR.

11



the long-run in the U.S.
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TABLE 1

CANONICAL COINTEGRATING REGRESSION RESULTS

Regressand g2 H(0,1)" H(1,2)° H(L,4)° H(L,7)°
Consumption 1.048 0.311 0.120 5.663 8.047
(0.016) (0.577) - (0.729) - (0.129) (0.235)
GNP 0.953 1.810 0.022 1.250 3.062
(0.024) (0.179) (0.881) (0.741) (0.801)

NOTE: Park and Ogaki's (1991) VAR prewhitening method based on the
Andrews’s (1991) QS kernel with automatic bandwidth estimator was used.
®Standard errors are in parentheses.

P-values are in parentheses. This statistic tests the deterministic
cointegration restriction.

°P-values are in parentheses. These tests the null of stochastic
cointegration.
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TABLE 2

MONTE CARLO RESULTS BASED ON DGP1®

Regress- b
& t

c

HO, 1 HL,2)® B, 5 H, 7O

@ d and .05 t.gs
0.0 1.0 X1 -1.86 1.75 0.051 0.046 0.038 0.039
(3.87) (3.66) (7.51) (12.0)
0.0 0.9 X1 0.287 0.378 0.466 0.484
0.0 0.5 X1 0.359 0.462 0.612 0.621
0.0 1.0 Xz -1.77 1.80 0.047 0.048 0.046 0.042
(3.77) (3.81) (7.42) (12.2)
0.0 0.9 X2 0.272 0.338 0.434 0.423
0.0 0.5 X2 0.307 0.444 0.622 0.686
0.5 1.0 X1 -1.86 1.75 0.052 0.046 0.039 0.039
(3.86) (3.64) (7.53) (12.1)
0.5 0.9 X1 0.557 0.367 0.448 0.467
0.5 0.5 Xl 0.815 0.454 0.623 0.660
0.5 1.0 X2 -1.80 1.84 0.051 0.053 0.045 0.055
(3.85) (3.99) (7.59) (12.7)
0.5 0.9 Xz 0.527 0.301 0.363 0.317
0.5 0.5 X2 0.375 0.206 0.248 0.183
-0.5 1.0 X1 -1.86 1.75 0.050 0.046 0.038 0.039
(3.80) (3.66) (7.50) (11.9)
-0.5 0.9 X1 0.576 0.356 0.441 0.475
-0.5 0.5 X1 0.820 0.482 0.475 0.664
-0.5 1.0 X2 -1.85 1.82 0.047 0.052 0.050 0.061
(3.71) (4.02) (7.80) (13.2)
-0.5 0.9 X2 0.570 0.300 0.401 0.397
-0.5 0.5 X 0.852 0.576 0.835 0.921
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TABLE 2 - Continued

egress-
Reg b

c

HO,1)® B, H(1,5)® B,

@ 6 and .05 t.gs
0.0 1.0 X1 -1.90 1.79 0.040 0.037 0.032 0.031

(3.53) (3.41) (6.98) (1l1.6)
0.0 0.9 X1 0.302 0.323 0.372 0.329
0.0 0.5 X1 0.065 0.114 0.057 0.032
0.0 1.0 X2 -1.77 2.00 0.076 0.066 0.075 0.082

(4.39) (4.33) (9.08) (14.6)
0.0 0.9 X2 0.259 0.267 0.272 0.235
0.0 0.5 Xz 0.213 0.296 0.398 0.489
0.5 1.0 X1 -1.90 1.79 0.041 0.036 0.032 0.029

(3.52) (3.41) (6.93) (11.5)
0.5 0.9 X1 0.654 0.376 0.475 0.510
0.5 0.5 X1 0.592 0.341 0.448 0.463
0.5 1.0 Xz -1.81 2.02 0.051 0.046 0.035 0.028

(3.89) (3.67) (7.25) (11.4)
0.5 0.9 X2 0.368 0.225 0.248 0.188
0.5 0.5 X2 0.128 0.153 0.209 0.264
-0.5 1.0 X1 -1.90 1.79 0.038 0.037 0.032 0.030

(3.53) (3.48) (6.98) (11.4)
-0.5 0.9 X1 0.652 0.363 0.475 0.510
-0.5 0.5 Xl 0.601 0.353 0.460 0.491
-0.5 1.0 X2 -1.93 2.19 0.092 0.093 0.140 0.205

(5.17) (5.32) (11.0) (17.2)
-0.5 0.9 X2 0.520 0.252 0.317 0.320
-0.5 0.5 X 0.660 0.450 0.700 0.809
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TABLE 2 - Continued

Regress- b
g t

HO,1) #(1,2)* B, 1A, 7)®

¢ o d and .05 t.gs
-0. 0.0 1.0 X1 -1.73 1.73 0.056 0.045 0.059 0.049
(4.06) (3.88) (7.54) (12.4)
-0. 0.0 0.9 X1 0.276 0.384 0.510 0.535
-0. 0.0 0.5 X1 0.506 0.642 0.886 0.936
-0. 0.0 1.0 X2 -1.81 1.87 0.093 0.072 0.079 0.098
(5.47) (4.54) (9.35) (14.9)
-0. 0.0 0.9 X2 0.211 0.328 0.392 0.385
-0. 0.0 0.5 X2 0.333 0.516 0.746 0.815
-0. 0.5 1.0 X1 -1.74 1.72 0.055 0.052 0.047 0.050
(4.06) (3.93) (7.66) (12.5)
-0. 6.5 0.9 X1 0.448 0.347 0.446 0.437
-0. 0.5 0.5 X1 0.823 0.548 0.743 0.771
-0. 0.5 1.0 Xz ~-1.88 1.83 0.118 0.079 0.087 0.108
(5.65) (4.83) (9.05) (15.3)
-0. 0.5 0.9 Xz 0.562 0.314 0.399 0.351
-0. 0.5 0.5 Xz 0.791 0.360 0.480 0.423
-0. -0.5 1.0 X1 -1.90 1.79 0.056 0.053 0.045 0.048
(4.00) (3.87) (7.54) (12.4)
-0. -0.5 0.9 X1 0.492 0.332 0.450 0.441
-0. -0.5 0.5 X1 0.821 0.553 0.748 0.772
-0. -0.5 1.0 Xz -1.73 1.76 0.094 0.067 0.093 0.140
(5.50) (4.53) (9.65) (17.4)
-0. -0.5 0.9 X2 0.825 0.402 0.575 0.637
-0. -0.5 0.5 X 0.897 0.620 0.838 0.912
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TABLE 2 - Continued

Regress- b c d d d d

o g and t'05 t'g H(0,1) " H(1,2) H(1,4) H(1,7)

0.0 1.0 X1 -2.22 2.17 0.028 0.027 0.012 0.007

(3.25) (3.04) (6.08) (9.61)

0.0 0.9 X1 0.145 0.171 0.180 0.119

0.0 0.5 X1 0.214 0.183 0.202 0.188

0.0 1.0 X2 -2.40 3.31 0.202 0.195 0.340 0.475

(7.96) (8.43) (16.5) (25.0)

0.0 0.9 X2 0.074 0.093 0.092 0.101

0.0 0.5 XZ 0.072 0.041 0.026 0.020

0.5 1.0 Xl -2.22 2.16 0.026 0.026 0.013 0.007

(3.19) (3.05) (6.09) (9.58)

0.5 0.9 Xl 0.574 0.356 0.507 0.561

0.5 0.5 X1 0.301 0.215 0.264 0.279

0.5 1.0 X2 -1.92 2.64 0.084 0.078 0.088 0.095

(4.70) (4.67) (8.90) (14.7)

0.5 0.9 X2 0.099 0.101 0.133 0.114

0.5 0.5 X2 0.193 0.096 0.125 0.099

-0.5 1.0 X1 -2.24 1.20 0.027 0.026 0.012 0.006
(3.19) (3.00) (6.12) (9.53)

-0.5 0.9 X1 0.584  0.357 0.513 0.573
-0.5 0.5 X1 0.324 0.208 0.238 0.256
-0.5 1.0 X2 -2.69 3.97 0.302 0.276 0.508 0.743
(3.84) (3.84) (7.81) (12.6)

-0.5 0.9 X2 0.313 0.178 0.206  0.244
-0.5 0.5 X 0.051 0.091 0.100 0.081
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TABLE 2 - Continued

Regress- b c d d d d

a 6 and tms t'95 H(O0,1)  H(1,2) H(1,4) H(,7)

0.0 1.0 X1 -1.33 1.24 0.009 0.010 0.005 0.002

(2.10) (2.26) (4.50) (8.08)

0.0 0.9 X 0.283 0.384 0.518 0.529

0.0 0.5 X1 0.585 0.730 0.950 0.986

0.0 1.0 X2 -1.45 1.51 0.257 0.103 0.139 0.187

(11.5) (6.37) (13.1) (20.7)

0.0 0.9 X2 0.045 0.186 0.170 0.116

0.0 0.5 Xz 0.188 0.505 0.722 0.800

0.5 1.0 X1 -1.33 1.25 0.009 0.009 0.005 0.003

(2.13) (2.26) (4.46) (7.97)

0.5 0.9 X1 0.469 0.368 0.494 0.515

0.5 0.5 Xl 0.885 0.665 0.874 0.902

0.5 1.0 Xz -1.47 1.47 0.116 0.053 0.047 06.057

(6.39) (3.98) (7.73) (12.8)

0.5 0.9 k; 0.347 0.253 0.300 0.250

0.5 0.5 Xz 0.775 0.460 0.626 0.615

-0.5 1.0 X1 -1.33 1.25 0.010 0.009 0.004 0.002
(2.17) (2.25) (4.45) (8.02)

-0.5 0.9 X1 0.497 0.353 0.497 0.501
-0.5 0.5 X1 0.879 0.649 0.862 0.898
-0.5 1.0 X2 -1.33 1.40 0.267 0.119 0.181 0.265
(12.8) (7.16) (15.4) (27.4)

-0.5 0.9 X2 0.923 0.459 0.661 0.730
-0.5 0.5 X 0.902 0.555 0.750 0.801
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TABLE 2 - Continued

Regress- b c d d d d
¢ vy a 6 and t s t H(0,1) H(1,2)  H(l,4) H(,7)
0.0 -0.5 0.0 1.0 X1 -1.63 1.58 0.014 0.022 0.008 0.001
(2.71) (2.61) (5.42) (8.97)
0.0 -0.5 0.0 0.9 X1 0.290 0.350 0.417 0.375
0.0 -0.5 0.0 0.5 X1 0.116 0.200 0.147 0.058
0.0 -0.5 0.0 1.0 X2 -1.63 1.96 0.079 0.060 0.066 0.063
0.0 -0.5 0.0 0.9 X2 0.237 0.288 0.333 0.306
0.0 -0.5 0.0 0.5 X2 0.275 0.314 0.449 0.494
0.0 -0.5 0.5 1.0 X1 -1.63 1.55 0.014 0.022 0.008 0.002
(2.71) (2.63) (5.47) (9.11)
0.0 -0.5 0.5 0.9 X1 0.676 0.392 0.511 0.544
0.0 -0.5 0.5 0.5 X1 0.784 0.406 0.553 0.549
0.0 -0.5 0.5 1.0 Xz -1.49 1.90 0.058 0.041 0.032 0.019
(3.95) (3.58) (7.25) (11.3)
0.0 -0.5 0.5 0.9 X2 0.289 0.230 0.225 0.178
0.0 -0.5 0.5 0.5 X2 0.110 0.148 0.181 0.204
0.0 -0.5 -0.5 1.0 X1 -1.63 1.56 0.014 0.024 0.009 0.001
(2.69) (2.59) (5.46) (9.04)
0.0 -0.5 -0.5 0.9 X1 0.695 0.399 0.513 0.542
0.0 -0.5 -0.5 0.5 X1 0.777 0.431 0.553 0.568
0.0 -0.5 -0.5 1.0 X2 -1.78 2.06 0.080 0.080 0.103 0.146
(4.81) (4.61) (9.56) (15.5)
0.0 -0.5 -0.5 0.9 X2 0.551 0.273 0.336 0.321
0.0 -0.5 -0.5 0.5 X2 0.761 0.490 0.707 0.772
NOTE: The results are based on 1000 Monte Carlo replications.
*Equations (3)-(6) define the data generation process DGPl.
The empirical 5-percent critical value of the t-ratio for the

hypothesis g=1.
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°The empirical 95-percent critical value of the t-ratio for the

hypothe31s B=1.
“The rows with §=1 presents size based on asymptotic critical values

with the empirical 5-percent critical values in parentheses; the remaining
rows presents the size adjusted power.

TABLE 3

MONTE CARLO RESULTS BASED ON DGP2°

Regress- b c d d d d
and t.05 tas H(0,1) H(1,2) H(1,4) H(1,7)

c -2.62 2.39 0.057 0.114 0.146 0.263
(4.10) (5.41) (11.5) (23.2)

y -1.54 1.75 0.012 0.007 0.002 0.003
(2.55) (2.25) (4.20) (6.63)

NOTE The results are based on 1000 Monte Carlo replications.
Equatlons (7)-(8) define the data generation process DGP2.
The empirical 5-percent critical value of the t-ratio for the

hypothesis B=1.
“The empirical 95-percent critical wvalue of the t-ratio for the

hypothe31s B=1.
“The rows with 6=1 presents size based on asymptotic critical wvalues

with the empirical 5-percent critical values in parentheses; the remaining
rows presents the size adjusted power.
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