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1. Introduction

Although mathematical statistics has as its foundation the assumption that random
variables are identically and independently distributed, it is generally recognized that
the distribution functions may well not be identical. Despite the fact that a failure of
this restriction could be due to any moments lacking constancy, it has been the second
moment which has attracted the most attention, and which has led to interest in
detecting whether an assumption of constancy across units of observation is reasonable.
In econometrics a constant variance tends to be referred to as a random variable
exhibiting "homoskedasticity" whereas a non—constant one is said to be
"heteroskedastic."! Sometimes one sees the equivalent term of heterogemeous; certainly
the latter description is a more meaningful one for those unfamiliar with econometric
rhetoric but the two terms will be used interchangeably in this paper.

Early interest in heteroskedasticity arose from the concerns of users of the linear
regression model. It was demonstrated that the ordinary least—squares (OLS) estimator
was not efficient if the errors in the regression model were heteroskedastic, and, more
seriously, any inferences made with standard errors computed from standard formulae
would be incorrect. To obviate the latter problem, methods were derived to make
valid inferences in the presence of heteroskedasticity—Eicker (1967), White (1980). To
address the former problem it was desirable to perform efficient estimation in the
presence of heteroskedasticity. If the heteroskedasticity had a known parametric form
the generalized least—squares (GLS) estimator could be invoked; if the form of the
heteroskedasticity was unknown, Generalized Least Squares based on a non—parametric

estimation of the variance could be implemented along the lines of Carroll (1982) and

tThe argument given by McCulloch (1985) regarding the spelling of heteroskedasticity
with a "k" rather than a "c" seems to have been almost universally accepted in
econometrics in the last decade.



Robinson (1987). One has the feeling that the development of these procedures has
mitigated some of the concern about heteroskedasticity in the basic regression model.

The basic regression model is now only one of the techniques used in econometric
work, and the development of powerful packages for PC's such as LIMDEP, SHAZAM,
GATUSS, and RATS has resulted in a much wider range of methods of examining data.
Analyses of binary data, frequently called "discrete choice models" in econometrics,
censored data, "count" data in which the random variable is discrete and takes only a
limited number of values, and models in which "volatility" affects the conditional mean
of a variable to be explained, as in the ARCH-M model of Engle et al (1987), have
the characteristic that heterogeneity is an integral part of the model; or, in terms used
later, the heteroskedasticity is intrinsic to the model. In these instances, what is of
interest is whether the pattern of heteroskedasticity in the data differs from that in the
model; if so, it is generally the case that the estimators of the specified model
parameters would be inconsistent, and t:;:efore, a re-specified model is called for e.g.,
see Arabmazar and Schmidt (1981) for an analysis of this for a censored regression
model. For such cases, the detection of the correct format for any such
heteroskedasticity is- of fundamental importance and should be a routine part of any
empirical investigation.

This paper aims to provide a review of work done on testing for heteroskedasticity.
The basic approach taken is that all existing tests can be regarded as "conditional
moment tests" (CM Tests) in the sense of Newey (1985a), Tauchen (1985) and White
(1987), with the differences between them revolving around the nature of the moments
used, how nuisance parameters are dealt with, and the extent to which a full sample of
observations is exploited. Given this view, it is natural to devote Section 2 of the
paper to a general discussion of CM tests and complications in working with them.
Section 3 proceeds to categorize existing tests for the regression model according to this

framework. This section is lengthy, largely because most of the existing literature has



concentrated upon the regression model. In fact, there are good reasons for working
through the diversity of approaches in this area. Binary, count and censored regression
models, dealt with in section 4, can be regarded as specialized non-linear regression
models, implying that approaches developed for the linear model will have extensions.
What differentiates the models in section 4 is that these exhibit intrinsic
heteroskedasticity, and the prime question is whether there is any "extra"
heteroskedasticity that is not in the maintained model. Many terms to describe this
situation are in use— for example over—dispersion, but it is useful to adopt the
descriptor of "extrinsic heteroskedasticity," as this is neutral towards the issue of
whether there is "too much" or "too little" heteroskedasticity in the maintained model.
Section 4 also contains a discussion of specification testing in volatility models; this
material falls into the general framework advanced in this section, because it is likely
that a simple model of volatility has already been fitted and the question posed is
whether this simple model is an adequate explanation of the data. Section 5 reviews
work done on the size and power of test statistics proposed in the literature, while

section 6 concludes the paper.

2. Conditional Moment Tests and Their Properties
When models are estimated assumptions are made, either explicitly or implicitly,
about the behavior of particular combinations of random variables. Let such a
combination be denoted as q’)i, i =1, ..., n, and assume that the restriction is that
E(¢;| #,) = 0, where &, is some sigma field associated with the random variables.?
This is a conditional moment restriction that is either.implied by the model. or is used
in constructing an estimator to quantify it. It is useful to convert this to an

unconditional moment restriction by denoting z, as a (gx1) vector of elements

2Mostly ¢i will be a scalar in what follows, but there is no necessity for that.



constructed from & .. By the Law of Iterated Expectations it then follows that

E(zi¢i) = E(mi) = 0. (1)

Of course it is clear that (1) is not unique, as any non-singular transformation of it

satisfies the restriction i.e.,

E(Az4) = 0, (2)

where A is non-singular. A particularly useful choice of A is (Szizi')—'l,

Given that (1) and (2) should hold in the population, it is natural to examine the
sample moment(s) r = n_l}]zigéi or :y = YAz¢, as a test of this restriction. It is
clear from this why choosing A =(2Zizi)_1 is helpful, since then :y will be the
regression coefficient of d)i on z, whereas :ris the regression coefficient of zi¢i against
unity. As emphasized in Cameron and Trivedi (1991), the regression of ¢, on z allows
one to think in traditional terms about "null" and "alternative" hypotheses simply by
considering whether 7 (the population counterpart to :y) is zero or not. Selecting either
7 or :y it is logical to test if (1) holds by testing if either 7 or 7 is zero. If m, does
not depend upon any nuisance parameters that need to be estimated, one would expect
that var(:r) » 02 var(¥m,) = n2 Tvar(m,) = n2 V, if observations are independently
distributed. Using a central limit theorem, nl/2 7 should be (0, Illl)oné n—1V) and S
= o2rvlr = (Emi)'V—l(Emi)Will be x2(q), where all these distributional statements

- are meant to hold under (1).? Hence a large value of this test statistic, relative to a

Xz(q) random variable, would be grounds for rejection of (1).

In what follows, m, will either be Zi¢i or Aziqﬁi as the argument does not depend on

the specific format. No attempt is made to spell-out what conditions are needed for
central limit theorems etc. to apply, but a recent detailed reference would be Whang
and Andrews (1991).



Of course, V is an unknown and the issue of its estimation arises. Omne possibility
is to evaluate var(m,) = E(m;m;) directly, but that may require some auxiliary
assumptions about the density of m,, Or the random variables underlying it, which are
not directly concerned with (1). This point has been made very forcibly by
Wooldridge (1990) and Dastoor (1990); the latter emphasizes that large values of S
might simply reflect a violation of the auxiliary assumptions rather than a failure of
(1). Such arguments have led to proposals that the test statistics be made robust i.e.,
dependent on as few auxiliary assumptions as possible, and to this end V is replaced
by \~/ = Zmimi'.4 Unfortunately, there appears to be a tradeoff between the desire for
robustness and the need to use asymptotic theory, as the test statistic é =
(Zmi){f_ (¥m,) is likely to converge to a xz(q) slowly, because V is a random variable
itself. Much depends on how "random" \~/' is, and that in turn depends on the nature
of m,. If the m, are highly non-linear functions of the basic random variables, for
example being quartic or higher polynomials, V will exhibit a good deal of randomness,
and this will result in large departures of é from a xz(q). An example of this problem
is in the component of White’s (1980) information matrix test focusing on excess
kurtosis, which involves the fourth power of a mormally—distributed random
variable—see Chesher and Spady (1991) and Kennan and Neumann (1988). For tests
of heteroskedasticity in the basic regression model the m, are not highly non-linear
functions, and therefore no major difficulties have been reported; however, that situation
may be modified when more complex models such as censored regression are thoroughly
investigated.

Tt is worth drawing attention to a potential difference between tests of (1) based

on 7 and 7.5 In theory, there should be no difference, but the fact that 7 can be

“When m, is dependent this formula would need to be modified. A range of possibilities
is set out in Andrews(1991)
5The discussion that follows takes 7 and 7 as scalars for simplicity.



computed by regressing ¢i against z leads to the temptation to utilize the t-ratio from
such a regression as a test of (1). But the correct t-ratio has to use var(:y) =
szar(Ezi(bi), whereas the regression program takes it to be var(¢i)A. Unless it is
known that the var(¢;) is a constant, whereupon var(¥z;4,) = var(qﬁi)A-l, to obtain
the correct test statistic it is necessary to use the option for finding "heteroscedastic
consistent standard errors” built into most econometric packages these days; failure to
do so would create the potential for differing conclusions based on 7 and :y

In practice it will rarely be the case that m, can be regarded as solely a function
of random variables. Either d)i or z; will involve nuisance parameters, 6, that are
replaced by estimates 9 when computing r ie., r=n! Zmi(b). This feature may

create difficulties in evaluating V. To see that, expand Zmi(O) around the true value

of 4, 00, retaining only the first terms
Zm. () » Im.(6,) + M ,(6-0,), (3)
where M, = E[20m,/d0].5 Accordingly,

var(Sm,(0)) = V + cov{Sm,(6)(8-0)}M} + M jeov{(6-6,)5mi(0.)}
+ Mvar(6)M}, (4)

‘and the appropriate term to substitute for the variance of 7 will be 02 var(2m,(06))
rather than n 2 V. Inspection of (4) shows that the two are equal if My = 0 and,
“happily, for many tests of heteroskedasticity in the basic ‘regression model, that

restriction will hold. It is important to observe that M, is fo be evaluated under (1),

6The symbol ~ is meant to indicate that terms have been neglected that will not affect
the asymptotic properties of the left hand side variable after it has been appropriately
normalized.
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since it is the var(¥m,(0)) under that restriction which is desired. Some cases of
heteroskedasticity feature M g # 0, except "under the null hypothesis."

~ When M g # 0 a separate computation of var(Emi(b)) is needed and, although fairly
easy with packages that have matrix manipulation capabilities, it is unlikely that a
regression program can be utilized for the computations. Generally, there will be some
set of first—order conditions defining :9, say Ehi(b) = 0, and (b = ) ® —H'él Yh.(0,),
where H, = E[Y0h,/00],” making the middle terms in (4) depend on the
cov{(Zmi(OO))(Ehi(ﬂo)}. If this turns out to be zero, var(Emi(b)) > var (8my(f,)), and
any tests performed utilizing V would overstate the true value of the test statistic i.e.,
result in over-rejection of the hypothesis (1). Unless h(-) is specified however, there is
no way of knowing if such "directional" statements might be made. By far the
simplest procedure to effect an adjustment is to jointly specify the moment conditions
to be used for estimation as E(m,-r)=0 and E(h;(6))=0. By definition the method of
moments solutions to this problem will be 7 and b, and the var(:r) would be
automatically computed by any program getting such estimates. Notice that with b
and ; as starting values iteration will terminate in one step, so there are no
convergence problems.

The literature does contain one instance in which any dependence of var(;) or 0
can be accounted for. This is when ;9 is estimated by maximum likelihood. Then hi
are the scores for 8, and application of the generalized information equality—Tauchen
(1985)—yields E(Om,/d0) = -E(h;m;), E(dh,/d0) = -E(hk;). After substituting these
into (4) it is possible to construct the test statistic as the joint test that the intercepts
are-all zero in the regression of mi(b) against unity and ‘hi(b)'—see Tauchen (1985),

Pagan and Vella (1989). A disadvantage of the proposal is. that it introduces

randomness into the "denominator" of the test statistics owing to the move from M g to

7If h is not differentiable H, will be replaced by EﬁE(hi) /80, see Whang and Andrews
(1991).



Ehim{ etc. Some preliminary evidence in Skeels and Vella (1991) using simulated data
from a censored regression model is that dm./d6 is poorly estimated by n_lzhimi, and
that the estimator deteriorates as the degree of censoring increases. However, provided
the inaccuracy does not have too great an impact upon the properties of the test it
may be a small price to pay for the convenience of the test.

(1) is a very general statement of what might be tested. Another viewpoint is to
conceive of an alternative model to the one being investigated which has q extra
parameters v, with the alternative and basic models coinciding when 7 takes values 7*.
By specifying a density or a set of moment conditions 7y could be estimated and tested
to see if it equals 4*. However, if 7 is not of interest per se, the most likely way to
perform such a test is with something like the Lagrange Multiplier (LM) Test or Score
Test. In this approach the score for 7, di’ is evaluated at the MLE of ¢ and 7, given
v = ~*, and this is tested for whether it is zero. Formally, this is a special case of
(1), as the scores should have a zero expectation under the null hypothesis that 7 =
7*. Accordingly, setting m; = d, makes the score test a special case of what has
already been discussed. The main advantages of the score test are that it yields a .
very precise moment condition (1) and it also produces a test with optimal properties
~if the demsity it is based on is correct; its principal disadvantage is that it introduces
an auxiliary assumption pertaining to densities that may be invalid, and such a
circumstance would cause it to lose its optimality properties.8 Nevertheless, the score

test is very useful as a benchmark, in that it can suggest suitable moment conditions

8The LM test has been shown to possess a number of optimal properties. For local

- alternatives, it has maximal local power in the class of chi-square criteria, and in some
situations, may be the locally best invariant test— see King and Hillier (1985). The
situations where this is true center largely on the regression model in which a single
parameter entering the covariance matrix of u, is tested for being zero against the

alternative that it is positive. In fact it is not the LM test per se which has this
property but the one-sided version of it.



which may be modified to allow for unknown densities; a further discussion on this
point is given in Section 3.

- The presence of nuisance parameters in m, may actually be converted into an
advantage rather than a disadvantage. Suppose that there are two possible estimators
of 6, 9 and ~0, which are the solutions of Ehi(b) = 0. and Egi(b) = 0 respectively, and
that both ;9, b are consistent if ‘what is being tested is‘ true, while they converge to
different values for @ if it is false. A comparison of b with ~0 i.e., forming ¢ = b—~0, as
recommended in Hausman (1978), enables one to form a test statistic that the
hypothesis being tested is true, since ¥ will only be close to zero if this is so.
Asymptotically, an exactly equivalent procedure is to test if E(hi(ﬂ)) = 0 using Ehi(b)
(or B(g(9) = 0 using 3g;(9)), since Th(0) # Tny(6) + H,(0-0) = H¢-0), and, if H,
is non-singular, the tests must give the same outcome. Hence, one can define m, as g
and use § from Ehi(b) = 0 to produce a moment test. As seen in later sections, such
an idea has been a popular way to test for heteroskedasticity.

Ultimately, we are interested in testing for heteroskedasticity in various comtexts.
If data is ordered either chronologically or by some variable such as (say) firm size,
then it is natural to think of heteroskedasticity as involving structural change in
whatever constitutes the scale parameter of the model.? Defining E(mi)=0 as the

moment condition used to estimate this scale parameter, it is therefore reasonable to

nk n
test for heteroskedasticity by examining the cumulative sums % m,(0), where k is a
i=1

fraction of the sample and @ includes both the scale parameter (01) as well as any
others (f,) which form part of the model. Since 6 is being estimated from the same

data as is being used for specification testing, some allowance has to be made for that

9To apply the theory that follows the heteroskedasticity cannot arise from the variable
by which the data is ordered, since that variable now has a trend associated with it
and the asymptotic theory being invoked explicitly rules out the possibility of trending
variables.
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nk
fact in determining the var( Y m (0)) It will be assumed that E(8m,/86,)=0, as this
=1

can be shown to be true for estimators of the scale parameter used later, and such a

restriction therefore means that (0,-0,) asymptotically behaves like

-(__Izi ami/aal)‘l( 3 )

Linearizing nlf(llm (6) around 6 and applying the assumptions just made gives

nk nk nk R

3 om@) 5 3 m(0) + [ 3 (0my/00))01-0) (5)
nk nk n 1,2 ,

s 3 m(0) + [ 2 (om/00)] (=3 (8m,/90)) (% my(0)) (6)
i=1 i=1 i=1 i=1 v

nk _jnk 10 n

= 3 my(0) - RIERT S (@ /00T (Gmg/00)I(E m(@) (D)
nk :

x % m(f) - k( 3 m.(0)), ' (8)
i=1 =1

nk n
as (nk)'—1 2 (Om, / 601)— ly (0m,/80,) should be op(l) for large enough n and for
i=1

fixed k as they both estimate E(dm,/d0 ), which is constant under the null hypothesis.

nk
Consequently, the var( Y m, (0 ))—-var{ E m (6) - k E m( 0)}. To evaluate this
=1

variance assume that mi(0) is i.i.d. with variance v; the same results hold if it is

dependent and Hansen (1990) has a formal proof of that fact. Then
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nk n nk nk n
var{ ¥ my(f) - k X m,(0)}= var( ¥ m,(6)) ~2kcov{[ ¥ m(6)][ X m, (0)}
i=1 i=1 i=1 i=1 i=1

+ Kovar ('flz_lmi(o)) (9)
= (nkv)—2k(nkv)+k2nv (10)
=(nkv)—k2(nv). (11)

nk
Defining V(k)= var( ¥ m(6))= nkv, (11) can be expressed as
i=1

= V(k)-k>V(1) (12)

V(K)-V () V(1) V(K) (13)

using the fact that k=V(k)/V(1). Consequently, var(Sm(?))x V(K)-V (k) V(1) V()
- nk -
and V(k) can be estimated by V(k) = X m?( f). Using these pieces of information
i=1

the following CUSUM test can be constructed:

nk - - - . .
() = (5 my()}/] VR-VEV(D) V)] . (14)

i=1

For any k this will be asymptotically a xz(l) if the model is correctly specified.
A number of different tests can be associated with this approach.

(a) Let k=(1/n), (2/n), etc. and define SC = sup C(k) i.e., look at the maximum of
k

C(k) for all values of k from (1/n) to (n-1)/n in increments of (1/n). By definition of



12

- n ~
0;, % mi(01)=0, forcing one to find the sup of C(k) over a restricted range; Andrews
i=1
(1990) suggests .15 to .85.
n—1
(b) L= by C(j/n). This is an average test. The L comes from the fact that, if
j=1

the scale parameter is estimated by ML and m, are therefore the scores with respect to
it, the statistic can be thought of as the LM test for the hypothesis that var (1)=0 in
the model =0, ,+v; (see Hansen (1990)). The distribution is non-standard and is
tabulated in Hansen’s paper.
(c) Ly = n‘1V(1)‘1I_1§1 (% m2

j=1 i=1
This is also an LM test like (b), differing in the covariance matrix assumed for v,
under the alternative. Hansen also tabulates the distribution of this test. On the
basis of simulation studies (for testing constancy of location parameters) he finds it has
better correspondence with asymptotic theory than (b) does. Probably this is because
one is using less random elements in the denominator of the statistic. The more
randomness one induces into denominators of test statistics the slower their convergence
to limiting distributions tends to be. In some cases it can be very slow indeed, and

leads to substantial over-rejections e.g. Chesher and Spady (1991).
3. Testing Heteroskedasticity in the Regression Model

3.1 Testing Using General Moment Conditions

The basic regression model is
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where x, is a (px1) vector and u; will be assumed independently distributed (0,0?),
with a? being a function of some variable summarized by the field & .. Initially, x
will be taken to be weakly exogenous and A will be a scalar. If the errors are to be
homoskedastic, E(zi(a—2u? — 1)) = E(z¢;) will be zero, where a? — o2 under the
assumption that there is no heteroskedasticity, while z, is a (qx1) vector drawn from
& possessing the property E(z;) = 0. 10 The set of moment conditions E(z;4;) = E(m,)
— 0 will therefore be used to test for heteroskedasticity, and this was the structure set
out in (1).

There are obviously many tests for heteroskedasticity that may be generated by
selection of z, and this was the theme of Pagan and Hall (1983). Examples would be
2. = (xf)? used in MICROFIT (Pesaran and Pesaran (1987)); 2; = (¥j; - x_ 6>
the test for first—order Autoregressive Conditional Heteroskedasticity (ARCH) introduced
in Engle (1982); z, = vec(xiexi) (excluding any redundant elements), used in White
(1980); and z; = i, which was suggested by Szroeter (1978), and applied by many
others after him. All of these tests can be constructed by regressing ¢i upon z;, and
all the issues concerning robustness and dependence on nuisance parameters set out in
Section 2 apply. Perhaps the issue that occupied most attention in Pagan and Hall
was the latter one. As argued in Section 2, a necessary condition enabling one to
ignore the fact that ¢ = (f 02) is estimated rather than known, would be

E(0m,/d6) = 0.1t From the definition of m;, dm,/d0 = (0z;/ 90)4; + 2, ;(0¢;/06).  Both

of these two terms will have expectation of zero; the first because E(¢;| ¥ ;) = 0 and

10 Although, z will typically be a function of f, this dependence will be suppressed unless
its recogmtlon is important. The assumption that E(z) 0 means that whatever is
selected to represent z, will need to be mean corrected.

11Because z; has been assumed to have zero mean, there is implicitly another parameter,
E(z ) that needs to be estimated. However, it is easily seen from the same argument

~

as used later for § and a that it does not affect the distribution of T =1 12mi.
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0z,/00 € ;; the second because it equals either E(a’zuixizi') = 0 (for f) from E(y| )
=0, or —E(zia—4u? = —E(zi)a_2 = 0 (for 02), given the assumption E(z) = 0.
Consequently, when testing for heteroskedasticity in the regular regression model, there
“will be no dependence of ; =‘n"121;1i upon b or ;2,‘ and the variance is therefore"
simply found from var(m,).

When x, is not weakly exogenous i.e., some members of X, are endogenous
variables, it will no longer be true that E(dm;/80) = 0, since E(a’zuixizi') #0. In
these circumstances, an allowance must be made for the estimation of 8. The simplest
procedure would be to jointly estimate 7 and § and to then test if 7 takes the value
zero. An alternative is to use the variance given in (4), or to explicitly evaluate it in
the simultaneous equation context as dome in Pagan and Hall (1983, p. 192-194).
There are papers in the literature which claim that the distribution does not depend on
b——Szroeter (1978) and Tse and Phoon (1985)—but the assumptions made to get this
result imply a degeneracy in the reduced form errors which has to be regarded as
implausible; a fuller account of this point is contained in Pagan and Hall (1983, p.
195).

Another choice of moment condition that is slightly more complex leads to the
Goldfeld-Quandt (1965) test. Essentially they compare the residual variance estimated
over a sub—period i = 1,> ey Iy with that over i = n, + k, ..., n, with k being the
number of observations dropped.i? Omne would effect such a comparison by making m,
= zi(yi - xi'ﬁ)z, with z; being nIl fori=1, .., n;2 =0 fori=mn +1,.,n04 +
k; and z; = n;l for i = n + k+1, ..., n, where n2=n—(n1+k). In fact, because

Goldfeld and Quandt estimate [ separately for both i =1, ..., n; and i = n1+k+1, ey

n, there are really two sets of parameters ﬂl and ﬂ2 in 0, with moment conditions for

12In fact, they use the ratio of these variances and order the observations in ascending
order; the difference in variances is used here so that E(mi) = 0 when there is no

heteroskedasticity.
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n n
‘ 1
estimating these being E[ ¥ x,(y; — xif;)] = 0, E[ X x;(y; — x6)1 = 0.
1=1 i=n1+ +1

However, Goldfeld and Quandt did not intend thaf ﬂl and ﬂz be different; they were

- - gimply trying to make the estimated residual variances independent of one another, and

this could not be done if § is estimated utilizing the full sample. But this choice of
method to estimate § should not be allowed to disguise the fact that, underlying
Goldfeld and Quandt’s test, is a very specific moment condition. It would be possible
to generalize the Goldfeld-Quandt test to allow for more than one break. Doing so
with three contiguous breaks would produce a test statistic emulating Bartlett’s (1937)
test for homogeneity, popularized by Ramsey (1969) as BAMSET after the OLS
residuals are replaced by the BLUS residuals. It is not possible to express Bartlett’s
test exactly as a conditional moment test, but asymptotically it is equivalent to one in
which the z; are defined as for the Goldfeld Quandt test over the three periods.

Some of the testing literature is concerned with robustness. Finding the variance
of m; could be done by writing var(m;) = var(z;)var(4;) = var(zi)a—4var(u?-—02), after
~ which a distributional assumption: concerning u, would allow var(mi) to be quantified
exactly. However, a distributional assumption for u must be an auxiliary one, and it
is not directly connected with a test for heteroskedasticity. Consequently, as discussed
in Section 2, it may be desirable to estimate var(m;) without making distributional
assumptions, in particular, n_lEmimi' = n_lzzizi' ¢? could be adopted as the estimate.
Alternatively, if E(¢?) is a constant one might use (n_12¢?)(n_12zizi'). This was
Koenker's (1981) criticism of the test for heteroskedasticity introduced by Breusch and
Pagan (1979) and Godfrey (1978), and his version using the second formulation above
has become the standard way of implementing a test which stems from the moment

condition E(z;4;) = 0.3 It appears that there can be some major differences in tests

13There can be some dangers to this strategy in that one is attempting to estimate E(u;l)
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constructed with different estimates of var(¢;). In Monte Carlo experiments Kamstra
(1990) finds that the Koenker variant which adjusts the size of the test using the outer

product n_12mimi, leads to severe over—rejection.

3.2 Testing Using the Optimal Score

Although the treatment of tests according to the selection of z, and the extent to
which robustness is addressed yields a satisfactory taxomomy, it does not address either
the question of the optimal choice of z;, Or the possibility that the distribution of u
might affect the nature of the moment condition itself. Ome resolution of this lacuna
is to derive the Lagrange Multiplier or score test. To this end, let the density of €& =
ailui be f(¢;), where the ¢ are identically and independently distributed random

variables. The log-likelihood of (15) will therefore be
L = -1/2 Slogo? + Slogl(c] (y; — X}6): (16)

If v are parameters such that y = 7* makes a? = ‘02, the scores for v are the basis

of the LM test, and these will be

robustly. If E(u‘ll) did not exist, Koenker's test might not even be consistent whereas

the Breusch/Pagan/Godfrey test would be as it uses 20% as the variance, i.e only a
second moment is used as a divisor. Phillips and Loretan (1990) make this observation
in comnection with recursive tests of the sort to be discussed in section 3.4. The
problem is likely to be particularly acute when one is trying to make tests robust to
'ARCH errors as the conditions for the existence of a fourth moment in u, are much

more stringent than for a second moment. The problem will only affect the power of
such robust tests as it is under the alternative that the moments may not exist. One
of Kamstra’s (1990) experiments had an ARCH(1) model for which the robust test had

very poor power properties. When the density of a.'lu. is 0,1) the fourth moment
i

fails to exist if the ARCH(1) parameter exceeds .57 and, although Kamstra sets the
true parameter to .4, there may be some small sample impact of being near the
boundary.
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8L/ oy = -1/2 26;260%/ 0y — (1/2) 3108/ 9€)07(003/07)e; (17)
After re-arrangement and simplification,

GLj0y = 1/2 $(00%/07) 6 e, ~ 1], | (18)
where ¢, = ql(afi/ 661). Under the null hypothesis Hy: v = ¥,

00| = 12 07 8(005/87),_ ol (08/06)g; — 1] (19)

Studying (19) it is apparent that the "optimal" choice of z should be (80?/ 67)72 e
and that the nature of the distribution of ¢; impinges directly upon the "optimal" test.
For moment conditions having the structure E(z¢,)=0, the best choice of ¢, is
—fi_l((?fi/ 0¢)e; — 1, constituting a non-linear function of ei=a_1ui that depends directly
upon the density of ¢. Interestingly enough, ¢, will only be (a_zu? — 1) if f(e) is the
standard normal density; in that instance fi_l(afi/ 0c;) = —¢;, revealing that the moment
conditions E[zi(a_2u? — 1)] = 0 implicitly have the assumption of a Gaussian density
for ¢ underlying their construction. Notice that E[zi(a_2u? — 1)] = 0 regardless of the
nature of the density; it will only be the power of the test statistic that is affected by
not allowing ¢, to vary according to f(-).

Consideration of (19) points to the fact that there are two issues in devising an
appropriate test for heteroskedasticity in the regression model. The first of these is
how to approximate (00?/ 07) o the need to form.a.derivative of a? emphasizes .
that the alternative has a major role to play in determining what z will be. If a? has
the "single index" form a? = g(zi'y), where g is some function, then (60?/ 37)|,Y= ¥ is

812 with g; being the derivative of g. Setting v = 7%, g(zi'y*) must be a constant,

02, if there is to be no heteroskedasticity, and 81 will therefore be constant under the
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null hypothesis. In these circumstances, (60?/ o) | y=nt = g’i‘zi, and the constancy of
g’{ enables it to be eliminated, leaving the appropriate moment condition as E(zid)i) =
0 i.e., the test statistic is invariant to g’{ and is the same as if a? was the linear
function zy. This was the observation in Breusch and Pagan (1979). It is important
to emphasize however, that the result depends critically on the single index format, and
it is not true that the test statistic is invariant to general types of heteroskedasticity,
an interpretation sometimes given to the result.

Another approach to estimating 80?/ dv is to use non—parametric ideas i.e., since
0? is an unknown function of elements in &, one might take z;, as known functions of
these elements and then approximate a? by the series expansion zi'fy. Examples of z;
would be orthogonal polynomials or Fourier terms such as sines and cosines. Kamstra
(1990) explores this idea through the theory of neural networks, which is a procedure
for doing mon—parametric regression by series methods. As z; he selects a set of q
principal components of Cij:: (1+exp(—xi'6j)), where values of 6j (j=1,...,r) are found by
randomly drawing from [-R,R] and then used to construct Cij' The parameters r and
q are chosen as 4p and p if 1<50; for n>50 r is increased according to 2log(n)nf1/ 6
and this rule is also applied to q after n>100. R was always equal to unity in Monte
Carlo experiments performed with the test. In his Monte Carlo work he finds that this
"nets" test works well in a wide variety of circumstances.

Although the score test is a useful benchmark for suggesting suitable choices for z,
it is known that it is only "locally" optimal in large samples, and if departures from
the null are strong, one might do better using alternative information more directly.
Considering the score in (18), 01—2 60?/ dy =610g0?/ Oy = —2610gai'1/ dvy. For small
departures from the null i.e. =7, a linear approximation to this quantity is likely to

suffice and that can be regarded as being proportional to ail(fy)—-a;l('f") = ai—l('_y)——a‘l.

Hence, one interpretation of the LM test is that it takes as z,, ai"l('_y) for a value of 7,

v close to 7*. For larger departures this argument indicates that it would make sense
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to use ai_lﬁ) as z;, where 7 is now some specified value of y thought to reflect the
alternative hypothesis. Thus a family of tests, :r('_y), indexed upon 7, could be formed.
Evans and King (1985) make this proposal.i¢ They find that choices of 7 can be made
‘that are superior to the LM test in small samples, even -if v lies away from the true
value 7. In the event that 4 = 7 their test is a point.optimal test, in the sense of
the Neyman—Pearson lemma applied to testing the simple hypotheses of v = ~* versus
7=

Even after a candidate for z has been determined, the optimal score in (19)
depends upon the function ¢i, and therefore requires some knowledge of or
approximation to the density f(.). Because f(.) will be rarely known exactly, it is of
interest to explore the possibility of allowing for general forms of 1/)i. Within the class
of generalized exponential densities giving rise to generalized linear models (GLM), i€
is known as the "deviance" function, see McCullagh and Nelder (1983), and one could
work within that framework in devising tests for heteroskedasticity, see Gurmu and
Trivedi (1990). Alternatively, there is a large literature on estimating § efficiently in
the face of unknown density for u, and it can be applied to the current situation, see
Bickel (1978). Two interesting ways of approximating ¢, are proposals by Potscher
and Prucha (1986) and McDonald and Newey (1988) that the Student’s t and the
generalized t density be used for f(.), as that allows a diversity of shapes in . For
the generalized t density 1/)i=(rs+1)sgn(u)|u|r_1/(q0r+|u|r), with 1,8 being
distributional parameters. - McDonald and Newey propose that either r,s be estimated

by maximizing Ylogf(r,s), where § is replaced by the OLS estimate , or by minimizing

14zi has to be normalized such that 7y could be interpreted as a coefficient of variation.

In their test 02 is estimated as the OLS residual variance while the # appearing in
¢ = [a"2(yi - xi'ﬂ)2 — 1] is estimated from the GLS moment condition
E[(1+zi"—y)_1/ 2(yi - xif)] = 0. Because the distribution of 7 does not depend on § or

~

02, this switch is asymptotically of no consequence.
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the var(b), where b is the MLE, because the latter depends upon (r,s) solely through a
scalar.

Within the literature there are examples of ¢i functions that can be regarded as
performing the- same task as- 9, does, namely-adapting the functional form of ¢, to the
nature of the density. One that appears in many econometric packages is Glejser’s
(1969) test that sets ¢i=luil_E(lui|)' Glejser proposed regressing [u.| against a
constant and z;, and the intercept in such a regression essentially estimates E|u|
under the null hypothesis.t5 Since the optimal ¢i is —1/)iei—1, Glejser’s test will be
optimal if y=|u|/u;= |€ |/ ¢,=sgn(;). The density with such an ¢ is the double
exponential f(e):Ce—l e|, showing that Glesjer’s test is likely to be successful in the
situation of fat tailed densities. This would constitute an argument for its use when
ARCH is being tested for, as it has been observed that f(.) has fat tails even after an
ARCH process has been allowed for, Engle and Bollerslev (1986) and Nelson (1991).

Rather than approximating wi it is tempting to estimate it non—parametrically.
For example, one could estimate f(-) and its derivative by a kernel estimator at the
points ';i’ where ;i are the standardized OLS residuals, and then proceed to form -the
test using this estimated quantity, @Abi, in place of ;. Whang and Andrews (1990)
provide theorems regarding the distribution of conditional moment tests when a
component of the test is estimated non—parametrically. A critical condition in their

theorems needs to be verified in order to ensure that the distribution of 7 does not

15In order that the distribution of Glejser’s test be independent of § it will be necessary
that E(zix{sgn(ui))=0, and this requires conditional symmetry for the distribution of u..

“Thus in Kamstra’s (1990) simulations one would expect that referring Glejser’s test to
a chi square distribution would be in error if the underlying density was an exponential
or a gamma, and this is apparent in his results. Conditional symmetry is also required

for the optimal score test to be asymptotically independent of § as the derivative of
(19) with respect to § will only be zero if E(x;%:)=0. For independence from 02,

E[(aa?/ 67)|7=7*]=o is needed, the analogue of E(z;)=0 used earlier.
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depend upon the non—parametric estimator of ¢i asymptotically. Here that condition

requires ot/ 2{E[zi(—g“isi—l)]}l C-=;ﬁ- to be op(l), where ¢, is a function of data
i1

preserving whatever features f(-) is known to possess, such as symmetry, while the
expectation is taken before the substitution of ':/)i for Ci' Writing the expectation in
the condition to be tested as nt/ 2E{zi[—(Ci—'(pi)ei—z/)iei—l]} , independence of z; and ¢
along with E(z,)=0 would ensure that E(z;%,¢;)=0, reducing the requirement to

ot 2zi(1})i-¢i)ei being o p(l), which necessitates nl/4 consistency for whatever

non—parametric estimator of 1/)i is used for ;.

3.3 Test Statistics Based on Estimator Comparison

As mentioned in section 2, one possible test for a specification error is to compare
estimators whose probability limit differs only if there is a mis-specification. One way
to effect such a comparison is to substitute the parameter estimates from a set of
first—order conditions defining them into those for another estimator. When testing for
heteroskedasticity there have been two proposals based on this line of thought.

Koenker and Bassett (1982) estimate § in (15) by a quantile estimator i.e. ﬁ(n)
was chosen to minimize Epn(yi—xi'ﬁ), where pn()\)=|n—1()\<0)| |Al, 1(+) is the indicator
function, and 0<n<1 defines the 7'th quantile. They show that the quantile estimators
of the slope coefficients, bl’ are consistently estimated when there is no
heteroskedasticity, but that plim bl(n) differs according to 7 if there is
heteroskedasticity. This feature leads to a test for heteroskedasticity based on a
comparison of estimators of ﬁl at two different quantiles 7, and Ty i.e. the test is
based on bl(’/i)‘bl(’?z)' Interpreted as a conditional moment test of the form
E(z; ¢,)=0, this would be E[xli(nl—l(yi<xi'ﬂ))ui]=0, where x,. are the mean corrected
regressors corresponding to the slope coefficients ﬂl. Their computation of the

asymptotic local power function of this test when U?=1+x1i6n_1/ 2 revealed that power
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was larger for this "comparison" test than for the LM test appropriate when f(.) is
normal i.e one based on ¢i=a_2u?——l, whenever the true density f(-) was a

contaminated normal. As Newey and Powell (1987) point out, these power

- computations made by Koenker:and Bassett exaggerated the power gain due to -an-error

in deriving the non—centrality parameters of the test statistics, but, even after
correction, there was still an improvement.

A major disadvantage of working with quantile estimators is that the function
pn(-) is not differentiable. This feature led Newey and Powell to replace pﬂ(') of the
quantile estimators with p ()= |I/—1()\<0)|)\2; the estimator of # found by minimizing
this function is b(u), and was termed Asymmetric Least Squares (ALS). Their
recommended test is then based on bl(z/l)—bl(yz). After examining a numerical
experiment they find that V1=.46, I/2=.54 seems to give best power. With these values
of v their test performs in a very similar fashion to the Koenker—Bassett test when the
density f(-) is contaminated normal, but has much better power if f(-) is normal,
leading to their conclusion that the comparison be based on the ALS estimator. Now,
‘the implicit moment condition used in the comparison is E[x(v;—1(y;<x{8))u;]=0, and,
when v;=.5, this becomes Efx;(-5-1(v;<0))u;]= E[.5x;sgn(u, )u;]=E(.5x;;|u,|)=0, which
is just the moment condition used in constructing Glejser’s test, provided z; is set to
xq;- Moreover, when the error density is symmetric, bl(.S) will be OLS. This
argument points to the fact that the performance of the ALS comparison test
bl(.46)—b2(.54) should be very close to Glejser’s test based on Exlil;lil. Indeed this is
what Newey and Powell find, culminating in their conclusion that using Glesjer’s test

would be a simple way of attaining the benefits of doing the ALS test.

3.4 Test Statistics Based on CUSUMS of Moments
Under the null hypothesis the scale parameter o2 is estimated from some moment

condition. If the errors € are normally distributed, the moment defining an estimator
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of o® would be E(Ea_zu?—1)=0. For other densities, using the score for o from (16),

with ar? replaced by 02, might produce a more satisfactory estimate. Focusing upon

the normal case, the general treatment of testing for structural change in the variance
nk - 99

provided in section 2 involved looking at the CUSUMS % (o “uj-1), or just
i=1

nk. o~
b(k)= % 0_211?. Harrison and McCabe (1979) proposed b as a test for
i=1
heteroskedasticity with fixed k, while Breusch and Pagan (1979) adopted the C(k) test

in (14). Because the C(k) test is just a transformation of 20_211?, there will be no
difference in conclusions based upon it or b(k) provided they are referred to their
appropriate critical values. An advantage of C(k) is that it is centered and scaled so

that asymptotically it is a x2 random variable. McCabe (1986) mentions the

possibility of using max b(k). However, he did not find the distribution of this test.
k

~

Instead he ordered 0_211? and computed a test based on the order statistics for this

sequence. As Andrews (1990) has now tabulated the distribution of max C(k) it seems
k

more satisfactory to perform a test in this way. The other two test statistics given

earlier——LW and LC—do not seem to have been formally used in the literature.

4. Testing Heteroskedasticity in Models Featuring Heteroskedasticity

Section 3 was devoted to procedures for detecting heteroskedasticity when the
maintained hypothesis was that there was none. However, the last two decades have
seen a proliferation of models incorporating heteroskedasticity as one of their
characteristics. Such heteroskedasticity is intrinsic to the model and what needs to be
tested is not the presence of heteroskedasticity per se but whether it departs from that
featured in the maintained model, that is it is extrinsic heteroskedasticity which is
important. Indeed, one might argue that it is rare to have a situation in which there

is no intrinsic heteroskedasticity in linear models such as (15). If y, was a member of
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the exponential family the density of u, is rarely homoskedastic, with the normal
density being the dominant exception. Moreover, the heteroskedasticity will generally
have the characteristic of being a function of the conditional mean ,ui=E(yi|xi). Many
examples' of models with intrinsic heteroskedasticity might -be given, but four
répresentative "types" are set out in this section. FEach may be regarded as a
regression model with heteroskedasticity, and it is desired to test if the predicted type
of heteroskedasticity is sufficient to account for non—constancy in the variance of the
errors. These models arise in situations where there is "count," binary or censored
data or in which there is interest in explaining volatility in a series. Our enumeration
is scarcely exhaustive. Many extensions can be made to the basic models, for example,
the type of censoring giving rise to selectivity bias or the possibility of multiple rather
than binary responses, but the collection should illustrate the common themes regarding

testing that will be found in all such models.

41 A General Approach to Testing for Extrinsic Heteroskedasticity

All the models considered in this section can be regarded as being characterized by
an error term u, that has variance :7? when the maintained model is correct. The
variance (;'? is a function of some parameters §. Defining ei=;f;1ui, it is e which is to
be tested for heteroskedasticity i.e., in terms of the analysis of section 3. 3? will now
be the variance of u, becoming equal to c;? when there is none. Hence, under the null
hypothesis, the variance of e , o?, is unity. = With this change, the moment
conditions used for tests of heteroskedasticity in section 3 will simply be modified by
replacing u, by e, and by setting o to unity. Thus the basic moment condition used
below (15) becomes E(zi(e%—l))zo.

There are however some complications. A minor one arises because the parameters

to be estimated will now include not only those like 4 in (15) but also 6, the

parameters entering into the intrinsic form of heteroskedasticity. Except for a few
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instances, the distribution of tests for heteroskedasticity in the basic regression model
did not depend upon any nuisance parameters such as § and 02, but this is unlikely
for 6. When mi=z.( 2——1) and there is no overlap between § and ,[3,

om. / 96=(dz;/ 06)(e; ——1)-z u (60 /86), which has expectation of ~E[z;0; (aa [80)], a
quantity unlikely to be zero. Accordingly, the var(T) must be computed from (4), or 7
and § must be jointly estimated.

As pointed out in the introduction to this section, there are instances in which the
variance of u, and hence o?, will always depend solely upon whatever parameters f
enter the conditional mean (along with x;) i.e. § coincides with B. In these situations
Cameron (1991) points to the possibility of modifying m,, so as to asymptotically
eliminate any distributional dependence. Defining mi'=mi+[E(6mi/ Bpi)lp,i](yi—ui), it is
clear that E(0m:/06)=E(dm,/d6)+
B{(GE[(m,/ 315) | 15)/ 90) (-1} -BAE( O,/ 81 4] (8o / 96)]. 9 Tn this expression. the
middle term is zero and the last is just —E(dm,/d6), making E(6m;/86)=0. Thereupon,
adopting E(mi')=0 as the requisite moment condition would allow any distributional
dependence upon & to be eliminated. - Cameron puts m.=z{(y;—) —:7?} so that m;

i
would be z{(y; —u) ——a (60 /0 )(y .—#;)}. For the moment condition mi=zi(e?—1), and

o= (y), t=xif, Bl(0my/0u) | p5)= —EI(903/04s)0” | ] making
mi=z,(2-E[(30%/ 3) 75 | 5]e;1).

Inspection of the modified moment m; in Cameron's case highlights the fact that
the new test involves a component (.e;, where <i="ZiE[(0‘;i/ a“i);i-ll'“i]’ that is testing
for specification error in the conditional mean, which makes sense given that the

variance a? is a function solely of the conditional mean (due to the fact that there. are

16The term E[(0m,/ Op:)| ps] would actually be evaluated under the null hypothesis. It is
also obvious that it could be replaced with the unconditional expectation E(&m, / 6;/,)

without changing the argument. In most instances it is probably easier to find the
conditional moment, but not always.
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no parameters in § not appearing in ,ui). Although in the regression model with
normally distributed errors it is possible to make a distinction between whether it is
the conditional mean or the conditional variance which is mis—specified, outside of that
- context it is frequently very difficult to conceive of an alternative model in which
changes in s do not impinge upon a?. Therefore, tests of extrinsic heteroskedasticity
inevitably involve a test for the correct specification of the conditional mean. Many of
the models analyzed in this section have such a property. Moreover, because tests for
correct specification of the conditional mean generally involve lower order moments i.e
involve a test of E((iei)zo, it is unclear that tests involving the square of e? would
ever be preferred. Indeed, as will become apparent, score tests for some of the models
of this section do in fact involve examining a moment condition like E(Ciei):o and do

not involve the squares of e, at all.

4.2 Testing for Heteroskedasticity in Discrete Choice Models

Discrete choice models are associated with observations on a binary random
variable y; taking values zero or one, and some causal variables x,, with the two sets
- related in such a manner that Pr(yi=0|xi)=F(xi,0)= F., where F(t) is a distribution
function. A standard way to motivate this probability is to interpret it as arising from

a latent variable model
* , E 3

*
where var(u;)=1 and yi=1(y’i‘20). Then F(-) will be the cumulative distribution
*

function of the errors u i

and, using the binary structure of Y

y, = (1-F) + u, (21)
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where Fi=prob(u:$—x{ﬂ)=}?(—xi’ﬁ) and v, is heteroskedastic with conditional variance

Fi(l_Fi)‘ Hence, the conditional variance is always related to the conditional mean.
One might introduce extrinsic heteroskedasticity into this model by setting

\var(uf)=(1+w."y), thereby modifying F. to F(exfﬂ/('1+W"y)1/ 2) where F(:) is now the

distribution function of the standardized errors, (1+w; ) 12,

u,. Intrinsic
heteroskedasticity will be a? =F Oi( - oi)’ where F Oi=F(—xiﬂ), and the task is to see if
there is any extra heteroskedasticity i.e. to test if y=0. Following the discussion in
section 4.1 one could form a test statistic based on Ezi(e?—l), where eiz;i_l(yi_Foi)'
Alternatively, following Davidson and Mackinnon (1984), the score test for v being zero

could be used. As the log likelihood of (yl,...,yn), conditional upon {Xi’zi}n , will be
i=1

L= g {(1-y,)log(F,)+y;log(1-F,), (22)

under H 0:fy=0, the scores become

=3 > [(Fy/09),,_ol(1-F ) " Fo (3F ) (23)

n
=i 0

222 b ()i )(l—FOi)"1/2F;%/2. As

where z,=[(0F,/0) 7:0](1’F01) Foi

foreshadowed earlier the optimal test therefore does not involve the squares of € and

is effectively testing for specification errors in the conditional mean function.

4.3 Testing for Heteroskedasticity in Censored Data Models
There are many types of censored data but the simplest would be the case of left

*
censoring at zero of the latent variable y, in (20) introduced by Tobin (1958).
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* *
Observed data is then yizl(yi>0)yi' For a non—negative random variable it is known

® *
that E(y;|x,)=J ﬂ(l—F O(/\))d)\ , where F () is the distribution function of u;, while
—x!

1

~ ®
‘the conditional variance of y; would be a? = 2 ‘(l—FO()\))Ad)\ +2x:0

1

) ¢ ]
[ (1-F(A))dA —{ ] [1-F o()\)]d)\}z, and these could be used to define e, for the
“xp x!f
purpose of constructing the moment n’lzzi(e?—l). A disadvantage of the approach is

that Fo()\) must either be estimated or specified. Ome possibility is to estimate it by
non—parametric methods, see Whang and Andrews (1991), but no applications in that
vein are reported in the literature, and there would seem little benefit in so doing as a
mis-specification of either heteroskedasticity or the density for u); essentially has the
same impact, and it is going to be very difficult to distinguish between the two types
of specification error. For that reason F O(-) is likely to be specified, and therefore one
might as well construct a score test for heteroskedasticity.

*

. *
Assuming that a?:var(ui) is a function of some parameters y such that y=7v

* _
produces a constant variance 02, f(-) is the density function of u; / a3, and

A
F(\)= [ f(u)du, the log likelihood of the data is

-

n n
L= _21(1—yi)log F(-x/f/7,) +.21yi{—-51085? + logfl(y;xi6)/0)1}, (25)
i= 1=

*
with scores evaluated at y=7v

1/2iilo“l<a?c‘?/av>|,,=7* (13t (£)FS (£)&5;(%5-1)}, (26)

1 _1 1 -1 * 1 .
where §i=(xiﬁ)/ 0, &=0 (yi—xiﬂ), e;=0; u;, and ¢i=f(_)i(ei)(6foi/ 6ei). As expected, if
there is no censoring (yi=1), the test would be identical to that for the uncensored

case (see (19)). In general, it does not reduce to a test involving the squares of ;.
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Jarque and Bera (1982) derived this test and Lee and Maddala (1985) interpret it as a
conditional moment test. As with the regression case one might base a test on a
comparison of the MLE of § and another estimator that is consistent when there is no

 heteroskedasticity. ‘Powell’s (1986) censored ‘quantile estimator minimizing

n ,
¥ ply;-max{0x;f}], where p(A\)=[1-1(A<0)]}, could be used as the analogue of the
i=1

Koenker—Bassett proposal for the linear regression model discussed in section 3.3.

4.4 Testing for Heteroskedasticity in Count Data Models

The modelling of discrete count data, such as the number of patents granted or
the number of visits to a medical facility, has become of greater interest to
econometricians as large scale data sets containing such information have emerged.
Naturally, the "work horse" in the analysis of such data sets has been the Poisson
regression model, but, owing to the fact that it forces a restriction, upon the data, that
the conditional mean of Vi M is equal to the conditional variance, there have been
attempts to supplement it with models based on other densities not having such a
restriction. An example would be the negative binomial density used by Hausman,
Hall and Griliches (1984) and Collings and Margolin (1985). However, sometimes such
alternatives are difficult to estimate, and it is not surprising that a literature developed
to test for whether the type of heteroskedasticity seen in the data deviated from that
intrinsic to the Poisson model i.e., to test whether var(y;) equaled the E(y;).

Since the maintained model is generally the Poisson model the situation is one of a
regression such as (15), albeit the conditional mean g may no longer be linear in the
X, but rather may be a non-linear function such as exp(xiﬂ). Given some specification
for i, the Poisson regression model has ;T?—':Mi and the obvious moment condition to

. 2
test is E(z;(ej-1))=0 -
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An alternative way to write this condition is as E(zi(e?—pi'lE(yi))=O which, under
the maintained hypothesis of a Poisson model, becomes E{zi“il[(yi—”i)2_yi]}=
E{Ei[(yi—pi)2—yi]}=0. Defining a class of regression models for count data that are
“indexed by a parameter 7, and which reduce to the Poisson-model when =0, Cameron
and Trivedi (1990) point out that the last mentioned condition coincides with the score
test based on 7 if the wider class derives from the Katz system of densities set out in
Lee (1986), or from the "local to Poisson" case of Cox (1983). Differences in score
tests therefore reside solely in the nature of Zi.i"

Selecting Ei requires an alternative model for the variance of wu, E? = c}?a? =p,ia?,
and may be found as follows. From (18) z should be set to (60?/ 67)|,y=0 and, if
a?=1+'yg1(ui), this would make zi=g1(,ui) under the Poisson specification. Converting
to Ei gives -z—i=”;1g1(”i)=”i_2g(”i)’ adopting Cameron and Trivedi's notation. For their
tests they employ g(ui) as either p, or ,u? ie., gl(,u,i) is either unity or s, leading to
tests based on the moment conditions E(e?—l):O and E(,ui(e?-l))=0. In simulation
studies reported in their paper the variances of the test statistics are formed in a
number of ways, either by explicitly evaluating E(mimi') under the maintained

hypothesis of a Poisson model or by the adoption of a robust version, and it was the

latter which had better performance.

4.5 Specification Tests for Additional ARCH Effects
In recent years the ARCH model and its variants have become a very popular way

of modelling heteroskedasticity in econometric models, particularly those concerned with

17Assuming that 4. is a function of parameters f§, when using the moment

mizii[(yi——ui)z—yi] it will be the case that E(dm,/80))=0 and, consequently, there will
be no nuisance parameter dependencies. In contrast, as Cameron and Trivedi observe,
if m; was replaced by iﬁi=5i[(yi—ui)2—ui], now there would be nuisance parameter

dependencies, even though E(ﬁi)zo under the null hypothesis of a Poisson model.



31

financial time series—see Bollerslev et al (1990) for a survey. In terms of the
structure of section 4.1, u, is defined by (15) ( perhaps with a non-linear rather than
linear function of xi) with variance E?, becoming a? with a particular maintained type

-of conditional heteroskedasticity. A number of alternative specifications for‘?? have

emerged. A general expression would be g( a0+ E a; _]hl ,]( )), which is indexed by

three characteristics, g(-), hij(-) and r. Table 1 prov1des a list of some of the most
popular cases according to the values assigned to these functions and the parameter r.
Others would be possible e.g. one could make 52 functions of a series expansion in u, .
or e,_, e.g. using the. Flexible Fourier Form as in Pagan and Schwert (1990) or the

neural network approximation in Kamstra (1990).

Table 1

Autoregressive Conditional Heteroskedasticity Formats

Name I g(¥) hij(ul-—j) Source
ARCH(p) finite  identity uf_j Engle(1982)
GARCH . identity u?_j Bollerslev(1986)
NARCH finite M7 u?jj Higgins and
Bera(1989)
MARCH ® identity sm( )1f Friedman and

a,ul_j (7/2) Laibson(1989)
unity if
2
aui_jz(vr/2)
EGARCH m exp(¥) be,+ Nelson(1991)
1/2
eI~/
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r
. The basic model is E?=g(1/)) where y=ay+ % ajhij(-), where (-) can be either U or
=1

&_j When r=o there are restrictions between the @

One can distinguish two different situations in connection with the above formats.
The first is when :T? is nested within the alternative, 'a:?, so that E?=;i when a set of
parameters < take the value ,),* e.g. if the maintained model is ARCH and the
alternative is GARCH or NARCH. Then, as detailed in section 3.2, the optimal choice

of z depends upon (6@?/ o). * = ;;2(65?/ )| *, because a?:??/ ;r? and 7 does

=7 =7
not appear in the denominator. Consequently, it is simply a matter of finding the
derivatives of E? with respect to v evaluated with v = * i.e.,f'E? = ;? For the
r -~ ~ ~ -~ -
NARCH model as alternative this becomes z= ¥ aje%_jlog(e%_j)—ailog(ai) (Higgins
=1

and Bera (1989)). If, however, the two conditional variances are non-nested, as occurs
with an EGARCH/GARCH comparison, this strategy will not work. Ideally one wants
z; to reflect the "extra" information in E? not contained in ;f Because the term

;i— (65?/ (97),):7* in the nested case essentially represents the difference between :7? and
E?, z is ideally very like E?. However to measure this we would need to estimate
under both the null and alternative, which is not in the spirit of a diagnostic test. A

simple solution is to think of E? as a function of a? and to choose z, in that way. If

~ ~

. .. . -2 2 .
one has a precise alternative in mind, one could form o7 from o} using whatever

transformation defines E? e.g. exp(;f?) might be used for z, when EGARCH is thought
of as the alternative. Pagan and Sabau (1987a) used ;7? itself, although, as Sabau
(1988) found, the power of such a test is unlikely to be very strong in many instances.

The reason is set out in Pagan and Sabau (1987b); the power of their test derives from
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the extent of the inconsistency in the MLE estimator of § induced by mis—specification
of the conditional variance. In the basic regression model there will be no
inconsistency, but, because § also enters into the determination of ?c?, the possibility of
* inconsistency ‘arises in ARCH models. . -Pagan and Sabau determine that inconsistency
only eventuates if the true conditional variance is an asymmetric function of u, which
it would be if the alternative model to an ARCH was (say) EGARCH, but would not
be if the alternative was GARCH. Apart from this research, the question of good
choices for z; does not seem to have been explored in the literature, and it is worthy
of some further study.

Tests for different types of volatility specifications also encounter the same set of
difficulties as arose when testing for whether there is any heteroskedasticity in the basic
regression model viz. possible dependence upon estimated nuisance parameters and the
fact that the optimal form of the test will depend upon the density of e With regard
to the first, ;? depends upon both # and other parameters 6 ( as seen in Table 1).
Taking mizzi(e?—l) it is necessary that E(zi(ae?/ 80))=0 if there is to be no
dependence upon estimates of 0. It is easily seen that this is unlikely to be true for
0=6, and is even problematic for §. To appreciate the complications with the latter,
differentiate ;;2(yi—xiﬂ)2 with respect to f, giving —-;fi_2xiui—;;4u?(6;i /0B). This will
only have zero expectation if 6;i/ f is an odd function of u, and w is in turn
symmetrically distributed around zero (conditional upon (91') For the GARCH model,
the errors u; are generally taken to be conditionally normal, while 6;?/ df is an odd
function, thereby satisfying both conditions, but that would not be true of the
EGARCH model. It would also not be true of the GARCH model if the density of u,
was not symmetric. However, since the parameters are most likely to have been
estimated by MLE, one could always regress I;Ii upon unity and the estimated scores to

allow for the effects of prior estimation. Turning to the second question of the

selection of ¢; in mi=zi¢i, there has been little research into using the alternative
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moment condition, mentioned in section 3.2, in which ¢, is set to (~¢;e;-1) rather than
(e?—l), although Engle and Gonzalez—Rivera (1991) attempted estimation in this way.
Many applications of the ARCH technology are not to pure ARCH models but to
~ ARCH-M (ARCH' in mean) contexts, in which a function of-;? appears among the:
regressors in (15). Thus a specification error in the conditional variance now affects
the mean and the situation is reminiscent of the models discussed in sections 4.2 and
4.3. Therefore, although a test might be based upon Ezi(:e?—-l), it is likely to be better
to directly test the mean using n—lﬁzi;}i. Oddly enough, in Pagan and Sabau’s(1987a)
application of these tests to the ARCH-M model estimated in Engle et al(1987), the

test based on the squares of e? gave much stronger rejection than that based on e;.

5.The Size and Power of Heteroskedasticity Tests

5.1 The Size of Tests

The moment tests outlined in section 2 are based on asymptotic theory, raising the
possibility that the asymptotic results may fail to be a reliable indicator of test
performance in small samples. Many simulation studies have shown that this is true
for score tests of heteroskedasticity in the regression model, especially for those based
upon normality in u,, with a frequent finding being that the actual size of the tests is
less than the nominal one available from asymptotic theory. When robust tests are
utilized it is equally common to find that the nominal is less than the actual size e.g.
Skeels and Vella (1991) find that the true size for tests of heteroskedasticity in the
censored regression model obtained by robustly estimating E(0m,/dy) and var(m;) can
be twice the nominal size. Only rarely can the exact distribution of any of these tests
be analytically determined, an exception being the Goldfeld—Quandt test, creating an
interest in approximating the finite sample distributions or modifying the test statistics
to more closely approximate the asymptotic distribution. There are four broad

approaches in the literature and these are summarized below.
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(i) Approximation by Expansion.

When the m, are the scores the test statistic will be a score test and a general
formula for the finite sample distribution of score tests (S) was provided by Harris
(1985):

_ -1
P[Sgc]-—Pq+(24n) {oz3Pq+6+(a2—3a3)Pq+4+(3a3—2a2+ al)Pq+2
-1
+(a2—a1—a3)Pq} + o(n ) (27)

where P q=Prob(xigc), q is the dimension of the extra parameters being tested by the
score test, and ay, 0, 0 2T€ functions of cumulants of derivatives of the log likelihood.
Computing ), 0 and ag can be very complex and mostly needs to be done with a
symbolic differentiation package. Honda (1988) specialized this general formula to the
case where one was testing for heteroskedasticity in the linear regression model. A
serious reservation with this approach is that the exact score test needs to be used; in
particular, the information matrix needs to be employed as the var(mi), thereby
precluding the use of robust estimates. In practice the exact score test is rarely used
e.g the modification in Koenker (1981) of the score test for heteroskedasticity in the
linear regression model is what appears in most regression packages, and the
distribution of that statistic would be different to what is presented in (27). Of
course, if the robust statistic has the same asymptotic distribution as the score test we
might hope that (27) would be a reliable guide to its distribution in finite samples.
Recently, Smith (1990) has shown that the form of (27) remains valid even when
Var(¥m;) is estimated by ¥m,m!, except that the o's need to be re-defined. To date
his results have not been applied to heteroskedasticity tests.

(ii) Approximation by Distribution

An alternative to an asymptotic expansion is to regard the small sample
distribution as being well approximated by some density such as the beta, and to

estimate the parameters of the latter by matching up the finite sample moments with
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those of the approximating distribution. The approximate Prob[:rgc] may then be found
from the beta distribution. Harrison (1980) did this and found it worked quite well for
tests of heteroskedasticity in the linear model.
(iii) Numerical Determination of p-Values

Rather than approximate the complete distribution of the statistic ; it is only the
p—value for a given estimate (c) which is sought. In the linear regression model with
normally distributed errors and a single variable z;, the statistic 'Ar=)3zi(A_21A1?—1) can be
written as the ratio of quadratic forms in a—lui, allowing Imhof’s (1961) method of
computing p-values for such test statistics to be applied. With more than a single z
this is no longer true, but the fact that the quadratic form is in a_lui, an 40,1)
random variable, means that realizations of a_lui can be drawn from an .40,1) random
number generator. Counting the fraction of times for which :r, computed with these
numbers, is greater than c constitutes an estimator of the p value. Breusch and
Pagan(1979) advocated this approach and regarded it as a simple and cheap way of
finding p—values. The idea was originally mooted by Barnard (1963). In the context
of testing for heteroskedasticity it has been adopted by Bewley and Theil (1987) when
looking for this problem in systems of demand equations. Working with PC’s the
computation of p—values by simulation is very easy and quite cheap, although it does
require re-estimation of the basic model, and, in the context of censored regression or
discrete choice models, the cost may still be too high (although it should be
remembered that one is only dealing with cases where the sample size is small and the
iterative procedures to compute b can always be started with values from the previous
replication).

The procedure also applies to tests modified to gain robustness or those designed
to emulate the optimal score tests, since the latter are still functions of a_lui.

However, if the density of u, is unknown, one cannot simulate from it, and

bootstrapping is now the obvious alternative numerical procedure, with the ui( or mi)
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being drawn from the empirical rather than the assumed density function. Technically,
the conditions for the success of the bootstrap are not exactly satisfied here as the
statistics are not "pivotal," being dependent upon the estimated parameters 6.
However, as this dependence disappears asymptotically one would expect that the
method would work well.

(iv) Modifying the Test Statistic

Instead of finding an approximation to the small sample distribution of :r it is
sometimes more useful to modify the test statistic to make it correspond more closely
to the asymptotic distribution. | A simple adjustment in this vein is to form ;'= :r ~T,
where T is the E(:r) in finite samples, and to refer 7 to the asymptotic distribution of
T Essentially this is an attempt to correct for the fact that E(:r)=0 only in large
samples, and therefore :r will not be centered on zero in finite samples. Conniffe
(1990) reports some success with this adjustment for score tests generally while Ara
and King (1991) find that it works well for tests of heteroskedasticity in the linear
regression model based on Ezi(;_zﬁ?—l). The major difficulty in applying the idea is to

determine E(7), particularly if z; is stochastic or the data is censored, although one

might employ simulation methods to do this.

5.2 The Power of Tests

A number of studies have been developed to investigate the power of tests
mentioned in the preceding sections at detecting heteroskedasticity. Most effort has
been concentrated upon the linear regression model, although Skeels and Vella (1991),
working with n=600, found that score tests were good in the censored regression model
but very poor in the Probit model. Ali and Giacotto (1984), Griffiths and Surekha
(1986), Kamstra (1990) and Evans and King (1985), (1988) are perhaps the most
comprehensive studies available of the linear regression case. Sometimes it is difficult

to draw lessons from these reports as only overall results are provided, involving
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averaging across many experiments, and, unfortunately, some of these experiments fail
to satisfy the assumptions needed to apply either asymptotic or finite sample theory
when determining the distributions under the null hypothesis. Worst in this respect is
" Ali and Giacotto ‘who have an extremely large number .of ‘different experiments, some of
which feature moments of u that do not exist, while others are done with
non-symmetric densities for u, which would invalidate the reference of tests such as
Glejser’s to Chi Square distributions. It is almost impossible therefore to draw any
conclusions from their work, as one does not know which experiments are responsible
for the poor performance of any test. In other instances, for example Kamstra’s
demonstration that the power of robust tests using ¥m.m: as an estimate of var(Emi) is
- very weak when testing for ARCH, no explanation for the phenomenon has emerged
similar to those provided by Chesher and Spady (1991) and Kennan and Neumann
(1988) for kurtosis tests. Until one fully understands the causes of these results it is
hard to know if one should recommend against the use of the associated tests.

Some experiments come up with clear cut results, but the experimental design
seems to be too restricted or the conclusions are not sufficiently qualified. For
- example, Griffiths and Surekha conclude that the use of zi=i is to be recommended
over the Goldfeld Quandt and Breusch/Pagan/Godfrey (B/P/G) test if it is possible to
order the observations by increasing variance, and that one should use BAMSET if it is
not possible to do so.18 Because the ability to order data by increasing variance means
that the heteroskedasticity must be a monotonic function of i, it follows that setting
Zi=i rather than to dummy variables, as in Goldfeld-Quandt and BAMSET, should be

advantageous. What is surprising is their conclusion concerning BAMSET, since the

18]t may be worth emphasising that there is no such thing as a B/P/G test without
specifying what z is. What one specifies the heteroskedasticity to be when devising

the test, and what it actually is, are two different matters. For example, in Breusch
and Pagan (1979) a test was given with z, as a dummy variable, so one might even

refer to it as the Goldfeld—-Quandt test, showing how meaningless the appellation is.
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B/P/G test is invariant to ordering. In fact, the power of B /P/G can be directly
compared to BAMSET in their Table 1, and it is clearly much larger. Hence, their
conclusion is contradicted by their own results. It may be that the objective was to
“conclude "that, within the classiof tests that:used no :information about the variables
forcing the conditional variance, BAMSET was best, and indeed the body of the text
seems to read this way, but that is not the conclusion stated in the paper. Even
adopting such an interpretation would be odd, since the ability to order the data by
increasing variance means that one knows the variance is driven by a time trend.

A similar set of comments can be made about the studies by Evans and King
(1985), (1988), and their conclusion that "... the emphasis on the B and P test in the
" recent econometric literature is probably mis-specified." Their preference is for the
point optimal test described in section 3.2 over either the B/P/G or Goldfeld-Quandt
tests. Again the data is generated so that the true heteroskedasticity is always a
monotonic transformation of a trend term and the z; used is also a monotonic
transform of that variable. This feature produces a bias against the Goldfeld—Quandt
test, but there are two further factors in the experiment that help the performance of
the point optimal test. .~ First, the true heteroskedasticity is generated with a single
unknown parameter that is positive, and their test statistic takes account of the
positivity of that parameter, whereas the B/P/G test does not. Second, as seen in
section 3.2, the point optimal test uses information about the alternative, rather than
just local information as in the score test, so the fact that it has superior power when
there is a high degree of heteroskedasticity is quite consistent with the nature of each
of the tests. Even with these advantages the power -differential is only moderate, of
the order of 10%.

6. Conclusion
This paper has surveyed methods of testing for heteroskedasticity in a variety of

models. Some of these tests are routinely provided as the standard output of computer
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packages, whilst others still only have spasmodic use. Our strategy was to treat
existing tests as focusing on the validity of certain conditional moment restrictions,
since the general results from that literature can be brought to bear on this specific

- problem.” Our inquiry -also  revealed ‘that quite a deal of work remains to be -done ‘to
understand the performance of tests. Some of the issues raised relate to finite sample
performance, and others to the poor performance of tests designed to be robust to
departures from the auxiliary assumptions made in constructing them. To date,
simulation studies have not addressed these questions very effectively, even neglecting to
exploit what existing theory gives as the expected outcomes. As mentioned at various
points in section 5, asymptotic theoretical analysis can predict whether certain tests
would be expected to work well in a given experiment, yet such results have rarely
been incorporated into the analysis. For example, the power of any conditional
moment test against a sequence of local alternatives can be computed with formulae in
Newey (1985a). Combining together these different sources of information seems
mandatory if we are to fully understand the sampling behavior of tests of

heteroskedasticity.
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