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1. ;ntroduction1

Causality tests, vector autoregression, unit root tests, cointegration:
four of the prominent econometric advances of the past 15 years. These
techniques have been thoroughly, some would say over-actively applied to
virtually all macroeconomic and financial questions. All four are
derivatives of ordinary least squares (ols) with the consegquence that they
share a characteristic of the ols technique that is always mentioned in the
first chapter of textbooks on regression, but often neglected in practice:
the natural context for ols and its applications is that of stationary time
series, and severe problems of interpretation arise when ols ie used for

nonstationary data.

If time series are stationary, their first and second moments are well
defined and there is no conceptual problem in computing unconditional
means, variances and covariances based on observations over some sample
period. By contrast, nonstationarity implies that the "mean” of a sample
may become a function of its length whilst the mean of the true series -
the population mean - may not be defined. Also, although sample variances
and covariances can of course be computed, they cannot possibly provide
information about true unconditional second moments, gince these are
undefined. It follows that in the case of nonstationary time series
extrapoclations or forecasts should only be made in a conditional manner:
cne can produce forecasts of X,,, conditional on the realized process up to
observation X,, but such forecasts are no more than conditional
extrapolations instead of the unconditional forecasts correctly produced by

ols techniques in the context of stationary time series.

In this paper, based on materials from my (1993) book, I use Monte Carlo
technigues to illustrate some properties of causality tests, vector
autoregressions, unit root tests and cointegration techniques for
stationary, (almost) stationary and clearly nonstationary time series ang

contrast the findings with calculations performed by a multivariate Kalman

1 camiel de Koning contributed substantially to the development of the
Kalman filter software. Erzo Luttmer and Patrick Groenendijk very
competently organized and executed the calculations. I am very grateful to
them and also to René den Hertog for all their help.
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filter. Because the Kalman filter methodology processes observations
sequentially, either forward, bAckward or both, it produces conditional
distributions for means and variances and therefore lends itself in a much
more natural manner to analysis of nonstationary series. I shall also
discuss the common response within the ols context to nonstationarity -
whether certain or suspected - which is to difference the data. The results
will show that the Kalman filter does not regquire the user to make a
definite decision regarding the need for differencing the data and, if so,
once or twice, but instead offers automatic processing capacity for a wide

class of nonstationary time series.

In addition to the analysis of near-stationarity and nonstationarity, I
consider a second issue in time series analysis with important consequences
for the interpretation of ols-based statistical techniques. Traditional
time series analysis as exemplified by the Box and Jenkins (1970) book has
considered any single time series as being driven by a simple, serially
uncorrelated white noise process. Autoregressive and/or moving average
coefficients in the time series model describe any desired pattern for the
persistence of these simple innovations. Roots of the autoregressive part
of the model that lie on the unit circle represent the desired degree of
nonstationarity. By contrast, the Kalman filter methodology would look for
a simpler structure in modelling a univariate time series, but make it
subject to different types of shocks. The Kalman filter models in this
paper will consider three types of disturbances that effect a time series

continuously:

(1) temporary shocks to the level of the series;

(2) permanent shocks to the level of the series;

(3) permanent changes in the stochastic rate of growth of the series.
Formally, the two different descriptions, either a single type of
innovaticn but a complicated autoregressive and/or moving average
structure, or a simpler model driven by a variety of different shocks, are

equivalent. The Kalman filter representation has important technical

advantages over ARIMA modelling in the sense that parameters will always



lie within the admissible region, but on the other hand Kalman filter
estimation of the underlying hyperparameters - the variances of the
different types of shocks that hit the system - is more complicated than
the estimation of a simple autoregressive model. More important than these
technical considerations, however, are the differences in interpretation
that become crucial when the model is used for simulations. To take a very
simple example, assume that a time series can be modelled in the ARIMA

methodology as follows:

(1) Ay.=(1-0.5L)a,

where A denotes the difference operator, L denotes the lag operator and a,
is normally distributed and serially independent, with mean zero and

variance one.

The corresponding state-space model would be:

(23) y,=c,+v,

(2B) Ce = Cpey * Wy

with c, an unobservable state variable. The errors v, and w,, are
uncorrelated with mean zero and variances 0% and o0?%,, respectively, and
are serially independent. The state variable is not correlated with these

errors. The state-space model that corresponds exactly to equation (1)

requires values of 0.5 for o2, and 0.25 for 0%, .2

The natural context for a simulation exercise would be to assume that no
shockes have taken place for some time and then to compute the consequences
of a single innovation of size one at time ¢t=1, that is, &, =1. In the

Béx-Jenkins methodology that produces the following results:

2 The variances of the disturbances in the state space model are
computed by egualizing the complete autocovariance function for the first
difference of y, both for the Box-Jenkins model and in in the state space
formulation.



time -2 -1 0 1 2 3 4
Ay, 0 0 0 1 -0.5 0 0

Y. 0 0 0 1 0.5 0.5 0.5 PN

The user of a Kalman filter model would need no reminding that each
simulation exercise reguires an answer to the question whether the shock or
ghocks that affect the system should be of a temporary or permanent nature
or whether they should combine the different types of fundamental
disturbances in the same proportions as observed during some historical
period. Hence, the Kalman filter methodology is potentially much closer to
addressing the concerns of the so-called "Lucas critique”. Assume that one
wants to perform a simulation exercise th&t corresponds exactly to studying
the consequences of a single innovation in the Box-Jenkins model. Now an
apparent contradiction appears. On one hand the assumed value of the moving
average parameter in the Box-Jenkins model of equation (1) equals 0.5,
implying that the innbvation should be regarded as being fifty percent
temporary, fifty percent permanent. On the other hand, performing the same
exercise with the state-space model regquires us to apply a mixture of the
two basic disturbances in which the temporary component carries much

greater weight than the permanent shock.> How can this be?

We shall see that solution of the apparent paradox requires us to be much
more precise when specifying the thought experiment to which the simulation
exercise is supposed to provide the answers. Specifically, we shall find
that the apparently natural context for simulations, which is to assume
that no significant shocks have taken place immediately before the single
innovation under study, is logically incorrect given the estimated
parameters of both the Box-Jenkins time series model and the state-space
model. Also, analysis of the state-space model will lead to the conclusion
that the size of the innovation in the thought experiment becomes important

when trying to compute the outcomes of the simulation.

3 Conversely, if in the state space model the variances for the
temporary and permanent components are equal, indicating that temporary and
permanent shocks are equally important, the parameter in the corresponding
(0,1,1) Box-Jenkins model would be equal to 1.5 - 0.5/5 = 0.38, instead of
0.5 as one might naively expect.



The subseqguent sections of the paper will contain the description and
results of a variety of Monte Carlo experiments. In section 2 I describe a
first set of experiments in4which I use one random walk type variable to
predict a related random walk. By way of illustration, I show a single
representative realization before tabulating the results of the complete
set of replications for which every experiment is repeated 100 times. The
alternative Kalman filter methodology is described in section 3. Section 4
then contains outcomes for the simulated data when both ols and the Kalman
filter model are applied. In section 5 I describe a second series of
experimente based on data that exhibit medium term cyclical fluctuations.
Once again, in each experiment two series are paired and I inveétigate
whether the "X" series can be useful in predicting the "Y" series and vice
versa. The description again provides a selected representative
illustration. Tables for the outcomes of ols techniques, for each series of
100 replications are in section 6 of the paper together with Kalman filter
computations for the same set of data. Section 7 investigates how useful
the four econometric fashions that have been so influential over the past
15 years prove to be when applied to these artificial data. Finally,

section 8 summarizes the paper and draws some conclusions.

2. Experiments with artificial random walks

Ordinary least squares‘(ols) and its more sophisticated derivatives
continue to be the dominant statistical methodology in econometrics. To
work well and generate results that can be unambiguously interpreted, ols
requires stationary data. Hence, the great majority of simulation studies
that have tried to investigate what happens when regression models are
applied in practice, have used stationary time series or series that become
unambiguously stationary after taking first differences, or series that
were stationary around a deterministic trend. In this paper, by contrast,
all experiments are based on nonstationary series, or on series where the
analyst is uncertain about the stationarity issue. Differences between X
and Y will be stationary or will contain a random walk component as well as

a small stochastic trend.



The first set of experiments works with constructed “random walks with
stochasgic trends” i.e. series that do not have a fixed mean but are likely
to reach ever larger distances from the origin. I have used a series length
of 100 data points, equivalent to 25 years of quarterly cbservations or
about 8 years of monthly data.* Here follows the law of motion for the

first series, to be called Y.
(34) y,=c.+v,
(33) C. = Cpy + tIc-: + W, ¢ W,,

(3C) tIt = tIt—l + 02:’

where the errors v,, w, and ®,, are mutually uncorrelated with mean zero

1 2 2 2 3
and variances 0%, o?,, and o¢? , respectively.

With the specific values of 1 for o?,, 1 for %, and 0.1 for o?,,, equation

(3) can be written in state-space notation as:’
Ct
(42) ye=1[1 0] tr,) * Ve var (v,) =1

Ct - 1 1 ct-l 1 1 ("’1: u;; - 1 0
(45) (trt) - [0 1] (trt—l) ¥ [0 1] (“’2 t) .o var (“’z t) - (O 0.1)

I use two different specifications for the second series, to be called X.
In a first set of experiments, each realization of Y is paired with a

. realization of X that is constructed as follows:

4 120 Observations are generated, so that the first 20 can be
discarded in order to avoid transient effects of the initialization of the
autoregressive model components.

5 The next section has more on state space models.
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1. subtract the temporary component from Y. This leaves a pure random
walk with stochastic trend in which all increments in the series are

100% percent permanent;

2. add a high-fregquency autocorrelated disturbance to this stripped-down

Y series, as follows:

(5) Ve = 6ue,y v B, e,

Combining equation (4) and (5), with 6, =0, 0, = -0.75 and var(e ) =10,

the state-space model for X, becomes:®

(6a) X, =1[1010])

11 .

c, 0 0 Cea 1100 Wy w 1 0 0

(6B) tr, 010 O tre,y 0100}|lw,, var wye| = 0.0.1 0
Ve 0 00 -0.75|| Yer 0010} ¢, ! :gt 0 0 10
Ver/ 001 © Ve-z cooo/\0

In thie first set of experiments, each pair of an Y and a X have the same
underlying dynamics, as represented by ¢, tr, , and w,. But, in the case
of Y there is a simple serially uncorrelated noise added before Y is
observed by the econometrician; in the case of X there is no such "output
or observation noise”, but the underlying process of X is contaminated by
the high-frequency "vibration". Because the amplitude of the added high-
frequency disturbance in X is large, X loses some of its usefulness in

making forecasts of Y. In short:

{X} - {serially correlated stationary disturbance} + {observation

noise} = (Y}.

6 Having the current residual as a state variable results in an error-
free observation equation. Maybeck (1979) shows how the usual Kalman filter
algorithm can be adjusted for this case.
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1 use the following context to perform statistical analysis of the

relationship between Y and X:

1. observations of X are available for the past, the present and the
future;
2. the econometrician is not certain that all deviations between Y and X

are temporary, even though we know that such is the case.
Our interest now is in investigating standard statistical techniques for
relating Y to X and later to compare the results to those obtained with the
multivariate Kalman filter.
For a second series of experiments, X remains as before, but is paired with
an Y that is more loocsely connected to X, because differences between Y and
X are no longer temporary and stationary as before, but increase slowly

over time as follows:

(74) Ye=Co+d, + v,

(7B) d, =dpy + CIperp,r-1 * Wye * Wyr

(7 C) tIholp,c = trholp, t-1 + “)At

with var(w,) = 0.05, var(w,) =0.005 and c. as in equation (3B) above.
In this case, we can summarize the relationship between X and Y as follows:

{X) - {serially correlated stationary disturbance} + {random walk

with stochastic trend) + {observation noise} = {Y}.

Figure 1 shows a typical realization. For this second series of statistical

experiments I make the same two assumptions as before:

1. X is available to be used in predicting Y;



2. the analyst is not certain about the longer-term connections between
Y and X and has to derive from his statistical analysis whether
differences between Y and X are well behaved and stationary, or

whether Y and X may diverge ever further as time goes on.

As before, I shall investigate how standard econometric techniques and the
Kalman filter alternative compare in terms of being useful for tests of the

hypothesis that the long-run elasticity between X and Y is egqual to 1.0.

60

Y

40 ! I | | 1 ! I
0 10 20 8 40 50 60 70 80 90 100

Figure 1: Two non-cointegrated nonstationary series. The ols results from a levels regression of Y on X
were: DW = 0.861, R = 0.778, b = 0.871 with S.E. = 0.047, LBQ(29) = 492.71, ADF(1) = -5.16, ADF(4) = -
1.096 and ADF(8) = -1.073. For sbbreviations see table 1 below.

3. A multivariate Kalman filter

One way to embed any least squares equation in a richer dynamic model is to
change to the state-space formulation. The state vector is composed of the

regression intercept, all regression coefficients @ plus as many current



and lagged residuals as are required to represent any significant serial
correlation in the error term. The general specification of the
multivariate Kalman filter in the case of no serial correlation in the
residuals and a single regression coefficient a is as follows:

c
(8A) ye=(1 0 X.) [tr] + v,
« t

var{v) = R

Equation (8&) is the observation equation. It states that the level of y
equals the sum of a shift parameter, C, the product of the regression

coefficient and the explanatory variable, and a residual term v..

The Ralman filter methodology adds equation (8B), the so-called state
update equation. It shows how the three state variablees change from period
to period. The right hand side of this equation has two parts. In the first
part, the shift parameter C., is adjusted upwards by the amount tr..,.,
which represents the stochastic trend. In the second part, the shift
parameter c, is subject to permanent shocks ,. and w,, before being
included in the observation equation. The trend is subject to a stochastic
shock, ,,, whilst the regression coefficient, «, is not subject to change

over time.

The Kalman filter allows for nonstationarity in y.. In fact, Kalman filter
theory arose becaﬁse of the inadequacy of the Wiener-Kolmogorov theory for
coping with applications in which nonstationarity of the signal and/or the
néise was essential to the most natural description the model. Since it
operates in the time domain, the Kalman filter can provide densities of the

state variables conditional on the history of the system. Thie is the
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essential advantage of Kalman filtering over fregquency domain methods when

nonstationarity is a relevant feature of the data.

The user of a Kalman filter is asked to provide estimates of the variances
0,, 0,, and RrR.7 One also needs to postulate whether the filter starts
estimation with a diffuse prior or with some notion about the range of the
parameters and/or the state variables. The Kalman filter then processes the
data "on line"” and produces estimates of the state variables - here: the
shift parameter, the trend and the regression coefficient - and their
variance—;ovariance matrix, P,. The variances, 0,, 0,, and R may be chosen
in such a way that the specification becomes equivalent to either a
regression eguation between Y and X in levels or in first or second
differences. The Kalman filter specification includes all three
possibilities as special cases. Other statistical techniques for comparing
levels and first or second difference specifications suffer from the

disadvantage that the two competing hypotheses are non-nested.®

A normal ("forward") Kalman filter produces an estimate of the state
variables at time T+1 (in our case: the shift parameter, the trend and the
regression coefficient a, together a three-element vector V) based on all
the data from time t=1 up to and including time T=t. The forward filter
revises its estimate of the state variables for period T after it has
observed the dependent variable (in our case: the level of Y) for that
period. Denote the forward forecast for period T+1 based on

Vi, Vyouts Vi Xy, X500 Xgy Xy} a8 Vo (T+1|T) . V,(T+1|T+1) will refer to the
revised estimate of V,,, after the current level of Y has been observed. In
each iteration, a backward filter is also implemented. It generates a
backward "forecast"™ for time T using all the data from period T+1 through

to the final peried, j.

7 In the next section, the EM algorithm will allow for continuous
updates of these variance estimates. One also has to insert an arbitrary
non-zero value for the variance of the third element in the vector w. This
ie purely for computational reasons (see Maybeck, 1979) and hae no effects
on the estimates.

® see Nelson and Plosser (1982) for discussion of traditional
econometric tests of the levels versus first differences specification.
Such tests have low power. See also Christiano and Eichenbaum (1990) for
similar conclusions regarding the univariate analysis of US gnp.
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forward filter +——

vz(fr+1|T)

v (T | T+1 )

0 1 T-1 T T+1 J

v, (T+1 | T+2)

v (141 | T41)

+——+ backward filter

Figure 2: Combining forward and backward filters.

For the backward filter, V,(T|T+1) will represent the backward forecast
based on {Vy, V,y, ., Vry: Veuyi X5 Xyq0s Xpups Xp,y 0 Xy} where j repreéents the
final period in the sample and V,(T|T) stands for the revised backward
estimate after V, has been processed by the backward filter. Figure 2 shows
the relative position of the four estimates for the state variables at time

T=t.

A smoothed estimate of the state at time T=t can be formed by combining
V,(T|T) and Vp(T|T+1) . The optimal weights are directly proportional to the

amount of information in each of the estimates:
(9)  v(T|ty) = P(TIt) (P TITI VITIT) + P (T|T+1) V(T|T+1) )

In equation (9) the subscripts f and b refer to reapectj.vely the forward

and backward filters. V(T|t,) represents the smoothed estimate based on all

12



the data and P(T|t;) is its covariance matrix. The inverse matrix P7(T|t;)

equals the sum of P;'(T|T) and P;'(T|T+1). Obviously, one would obtain the
same results if the smoother combined the estimates V,(T+1|T) from the

forward filter and V,(T+1|T+1) from the backward filter.

In order to generate a covariance matrix for the smoothed estimates of the
states that is immediately suitable for hypothesis testing, one will
usually want to initialize both filters with an uninformative prior
distribution for this covariance matrix. Such uniformative priors imply
that the elemente of the covariance matrix of the states are infinitely
large before the first observation on the exogenous variable is processed.
Often, therefore, this matrix is initjalized for computational reasons with
large numbers on the principal diagonal and zero for all off-diagonal
elements. This procedure involves a numerical approximation. I have
followed an exact alternative procedure, advocated by Maybeck (1979, 1982)
which involves the so-called inverse covariance formulation. Whenever the
matrix P is ill-conditioned, one computes instead conditional estimates of
its inverse. In the implementation of the forward filter, the change to the
"normal” forward specification is made as soon as the matrix P becomes
numerically invertible; the backward filter remains in the inverse-
covariance formulation for the complete period of estimation. Hence,
equation (9) is not actually used but replaced by a smoother that combines
either one ordinary filter and one inverse-covariance filter or two
inverse-covariance formulations (see Maybeck, 1979, ch.5 and Maybeck, 1982,

ch.8).

With this initialization, the smoothing algorithm will exactly reproduce
the ols variance matrix of the parameters (and the olse residuals) in the
special, restricted cases in which the dynamics of Y and its relationship
to X can be represented by an ols regression for either the levels or the
first or second differences. This depends on the computed or imposed values
for the three unknown variances, Q,, Q,, and R. The remaining issue is how

to discover these optimal estimates.” I use the Expectation Maximization

9 The literature discusses a number of analytical procedures (see
Ljung and S&derstrtm, 1983, Maybeck, 1982). However, these authors tend to
concentrate on the physical sciences where the data series are much longer
than in economic applications and many model parameters are often known
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(EM) algorithm, to compute maximum likelihood estimates. The EM algorithm
is described by Dempster et al. (1977) and Watson and Engle (1983), and

adapted to our case by Shumway and Stoffer (1982).101112

4. Results for pairs of nonstationary time series

The firat set of 100 pairs of Y and X coneists of cointegrated series that
only differ because Y has a temporary component and X a high-frequency
autoregressive part. The second set of 100 pairs combines similar X series
with an Y series that differs from X because of a third, unobserved, random
walk with stochastic trend. Figure 1 above is a representative realisation
of the second set of 100 experiments. In both cases, the long-term
elasticity between X and Y eguals 1.0. I shall investigate whether ols
techniques are useful for teste of this elasticity and whether the unitary

elasticity is delivered by the Kalman filter.

The first 100 pairs of X and Y are tightly connected and cointegrated, but
the serially correlated disturbances in X would be expected to produce peoor
values for the Durbin-Watson statistic in the regressions in terms of
levels, even though levels would be correct in terms of the longer-term
dynamics of the series. It will be difficult for the analyst to decide
whether these warning signals of positive serial correlation in the
residuals of a regression in terms of levels signify an omitted variable,

pointing to the need for differencing once or twice (not in fact the case

with great precision. See also Pagan (1980) for an analysis within the
generalized least sguares context.

10 Separately, a parameter grid search was executed for a few models,
combined with a Newton-Raphson algorithm for a more precise determination
of the parameters. The grid search confirmed the outcomes of the EM method.

L Steyn (1987) and Nelson and Kim (1988) discuss other ways to
compute the variances that are needed for the state update equation in the
Kalman filter. Both papers caution against estimating hyperparameters on
the basis of a single run through the data.

12 gee Nelson (1988) for evidence from his univariate research of U.S.
gnp that optimization with respect to the unknown variances of the
different shocks to the level and the shocks to the trend of a
' nonstationary time series may be a delicate matter. This is a topic for
additional research.
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here, but the correct diagnosis in the next series of experiments when a
random walk with trend is placed "between" X and Y), or whether the serial

autocorrelation should be dealt with using a model for the residuals or a

smoother for the X series.

This prior is borne out by the results in table 1. Note the excellent
estimates of the elasticity with a mean of 0.96. 73 Percent of the sample
estimates are close enough to 1.0 that the null hypothesis of a unitary
elasticity would not be rejected at the 0.05 percent level. If, however,
the analyst decided to proceed Qith first~-differencing the data because of
the unacceptably high values for the Ljung-Box statistics, outcomes are
much less useful. For the equations in first difference form, the null
hypothesis of a unitary elasticity would be rejected in 100 percent of all
cases.’3 According to the Ljung-Box statistics, one might prefer the
equations in first difference form but that would mean not getting a handle

on the elasticity between X and Y.

Table 1: Cointegrated random walks with trends

ols levels ols first differences
mean stdev. min, max. mean stdev. min, max.
oW 1.90 0.18 1.13 2.20 1.95 0.37 1.12 2.68
Rt 0.95 0.083 0.51 1.00 0.035 0.031 0.00 0.12
b 0.96 0.079 0.55 1.00 0.050 0.033 -0.044 0.16
(S.E.) 0.016 0.012 0.00 0.05¢4 0.030 0.0047 0.022 0.044
LBQ 174.3 66.4 47.3 361.9 90.1 72.2 24.10 327.6
ADF(1) -9.49 0.80 -10.97 -6.21 -9.82 1.78 -13.97 -6.22
ADF(4) -5.05 1.35 -7.26 -0.82 -2.85 0.87 -5.15 -0.92
ADF(8) -2.91 1.04 -5.04 0.070 4-1.75 0.76 -3.78 ~0.0054

Note: DW = Durbin-Watson statistic, Rt = coefficient of determination, b = estimated value of
coefficient of explanatory variable, (S.E.) = estimated standard error of b, LB@ = Ljung-Box Q-statistic
with 29 (in levels) and 28 (first differences) degrees of freedom (critical values 42.56 and 41.34

respectively), ADF(x) = Augmented Dickey-Fuller statistic with lag length x indicated in parentheses
(critical value -2.89).

Turning now to the other 100 pairs of X and Y in which a random walk with
stochastic trend is placed between X and Y, we obviously have series that
no longer are cointegrated. Hence, the levels regressions would be

inappropriate. Results in table 2 show - as could be expected - a clear

13 The equations in second differences are even worse.
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deterioration over those in the previous table, with much more uncertainty

about b.
Table 2: Non-cointegrated random walks with trends
ols levels ols first differences

mean stdev. wmin. max. mean stdev. min. max.

bW 1.14 0.58 0.0074 2.08 1.93 0.39 1.03 2.91
Rs 0.86 0.25 0.0005 1.00 0.035 0.031 0.00 0.13
b 0.92 0.3% -0.73 1.84 0.050 0.035 -0.042 0.17
(S.E.) 0.029 0.04 0.0036 0.24 0.031 0.004% 0.022 0.044
LBC 291.5 228.0 65.0 1148.4 95.3 81.4 23.9 333.8
ADF(1) -6.17 2.58 -10.27 2.33 -9.75 1.96 -16.39 -5.73
ADF (&) -2.00 1.48 -6.05 1.78 -2.87 0.91 -5.12 -1.03
ADF(8) -1.37 0.93 -2.96 1.34 -1.77 0.83 -3.66 0.56

Note: For abbreviations see table 1, LBG = Ljung-Box Q-statistic with 29 (in levels) and 28 (first
differences) degrees of freedom.

visual inspection of the X series clearly shows the high-frequency cyclical
movements in the explanatory variable. Hence, the analyst might try the
somewhat old-fashioned technique of using a moving average of X rather than
the current value of X only. Largely because of the prominence of the four
econometric fashions that are the subject of this paper, older techniques
involving moving averages, such as Almon lags, are much less prevalent
nowadays than regressions in which large numbers of lagged values are
included without restrictions on their coefficients. For the purpose of
this illustration, I have used a simple 9-point moving average smoother,

defined as follows:“

14 rhis particular moving average, a linear smoother that is symmetric
around the origin, works well in view of the periodicity of our
autoregressive process. I have perfcrmed a large number of experiments with
a more limited 5-point moving average that produced similar results, but
obviously of somewhat lower quality than those in tables 3 and 4 below.
Also, I have performed experiments in which a first order Almon lag was
applied, so that the data determined whether the weights in the linear
filter were equal or declined linearly over time. In all cases the
estimated value of the slope parameter in the Almon lag was
undistinguishable from zero, so that the results reported below are
representative also of the linear Almon lag technique.
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t: -4 -3 -2 -1 0 1 2 3 4

weight: 1/16 1/8 1/8 1/8 1/8 1/8 1/8 1/8  1/16

Use of the linear filter assumes that the analyst made the correct
inference from the autoregfeasive part in X as well as from the Ljung-Box
statistics in tables 1 and 2, and used this or a similar smoother on the X
series in order to eliminate movements in X that are not useful in
forecasting and understanding Y. Table 3 deals with the 100 regressions in
which each pair of X and Y are cointegrated; table 4 with the pairs of
regressions in which a random walk with stochastic trend is added to the

underlying level of X to produce the permanent level of Y.

Table 3: Cointegrated random walks with trends - smoothed series

ols levels ols first differences

mean stdev. min. max. mean stdev. min. max.

W 1.42 0.17 1.00 1.80 2.64 0.15 2.29 3.04
Rt 0.99 0.015 0.9 1.00 0.25 0.14 0.037 0.61
b 1.01 0.014 0.98 1.08 0.84 0.12 0.50 ©1.05
(S.E.) 0.0062 0.0062 0.00 0.036 0.17 0.045 0.082 0.28
LBC 39.1 14.1 15.6 95.6 42.7 1.9 18.4 84.4
ADF(1) -7.08 0.68 -8.62 -5.36 -13.36 1.21 -16.81 -11.06
ADF(4) -4.41 0.64 -6.32 -3.26 -6.75 0.89 -9.09 -4 .81
ADF(8) -3.31 0.59 -4.61 -1.84 -4.08 0.86 -6.46 -2.37

Note: For abbreviations see table 1, LBQ = Ljung-Box Q-statistic with 27 (in levels) and 27 (first
differences) degrees of freedom (critical value 40.11).

In table 3, the elasticity is well-determined in case of a regression in
terms of levels and fairly close for regressions in first difference form.
The smoother has eliminaﬁed much of the irrelevant high-frequency
correlated noise in X and since the series are cointegrated and very
similar, both types of regressions work well. The Durbin-Watson statistic
would not provide clear guidance whether to work with levels or first
differences, being on average 1.42 for the 100 levels regressions and 2.64

for the regressions in first differences.

The elasticity is also reasonably well-determined in the regressions for
levels and first differences in table 4 which deals with series that are

not cointegrated. The null hypothesis of a unitary elasticity is rejected

17



in 98 percent of all cases. However, in this set of experiments, correct
knowledge of the dynamics of the unobservable random walk with trend that
has been placed "between” X and Y would dictate the taking of second
differences. Ols regressions for second differences of Y and X - not shown
in table 4 - produce extremely poor estimates for the regression
coefficient b, which has a mean of -0.0036 over the 100 experiments with a

standard deviation of 0.47.

Results for the Kalman filter models are in tables 5 through 8. Tables 5
and 6 relate to the original sets of data for Y and X; for tables 7 and 8 I
used the 9-period symmetric smoother described above to the X series before
applying the Kalman filter. We see immediately that results are very poor
for the Kalman filter models using the original, unsmoothed X data.
However, the Kalman filter is capable =f producing worthwile estimates for
the long-run elasticity between X and'Y when the 9-point smoother is
applied to the X series. In the case of the cointegrated series, the null
hypothesis of a unitary elasticity is rejected in 6 out of 100 cases; with
the random walk with stochastic trend between X and Y, the hypothesis is
rejected in 15 percent of all cases. It is interesting how the Kalman
filter estimates the elasticity with almost the same degree of exactitude
in both cases: putting a random walk with stochastic trend between X and Y
does not make it that much harder for the algorithm to estimate the long-
term relationship between X and Y. In the ols experiments described in |
tables 3 and 4 there was more deterioration of the estimates in the

experiments in which an unobserved random walk with trend was added to X.

Table 4: Non-cointegrated random walks with trends - smoothed series

ols levels ols first differences

mean stdev. min. max. mean stdev. min. max.

bW 0.37 0.33 0.0076 1.52 2.58 0.16 2.13 2.97
Rt 0.89 0.23 0.0029 1.00 0.24 0.15 0.026 0.64
b 0.96 0.4 -0.82 2.00 0.83 0.17 0.33 1.37
(S.E.) 0.026 0.044 0.0017 0.25 0.17 0.047 0.082 0.29
LBQ 443.1 252.938 241 1108.5 40.2 11.8 16.3 74.6
ADF(1) -2.75 1.72 -7.39 2.08‘ ~12.95 1.2 -16.69 -10.13
ADF (4) -1.56 1.18 -4.43 2.30 -6.07 0.90 -8.55 -4.02
ADF(8) -1.50 0.95 -4.20 1.28 -3.41 0.75 -5.19 -1.96

Note: For sbbrevistions see table 1, LBQ = Ljung-Box G-statistic with 27 (in levels) and 27 (first
differences) degrees of freedom. .
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Table 5: Kalman filter for cointegrated series - no smoothing

mean stdev. min. max.

bw(r) 2.68 0.17 2.29 3.10
b 0.032 0.029 -0.047 0.11
(S.E.) 0.026 0.0039 0.019 0.036
LBa(r) 50.8 15.1 24.0 101.9

Note: DW(r) = Durbin-Watson statistic of fit errors, b = estimated value of coefficient of explanatory
variable, (S.E.) = estimated standard error of b, LBA(r) = Ljung-Box Q-statistic of fit errors with 29

degrees of freedom.

Table 6: Kaiman filter for nmon-cointegrated series - no smoothing

mean stdev. min. max.
ouW(r) 2.69 0.17 2.25 .3.13
b 0.032 0.029 -0.047 0.12
(S.E.) 0.026 0.0040 0.020 0.037
LBa(r) 51.8 15.6 25.2 102.7
Note: for abbreviations see tables 1 and 5, LBA(r) = Ljung-Box G-statistic of fit errors with 29 degrees
of freedom.
Table 7: Kalman filter for cointegrated series with smoothed X
mean stdev. min. max.
oW(r) 1.99 0.29 1.52 2.67
b 1.00 0.071 0.63 1.10
(S.E.) 0.060 0.039 0.017 0.21
LBQ(r) 35.9 11.9 18.0 76.7
Note: for abbreviations see tables 1 and 5, LBA(r) = Ljung-Box Q@-statistic of fit errors with 27 degrees
of freedom.
Table 8: Kalman filter for non-cointegrated series with smoothed X
mean stdev. min. max.
pw(r) 2.27 0.26 1.66 2.91
b 0.92 0.14 0.48 1.22
(S.E.) 0.11 0.041 0.027 0.26
L8a(r) 38.2 12.4 17.0 87.9

Note: for abbreviations see tables 1 and 5, LBA(r) = Ljung-Box G-statistic of fit errors wWith 27 degrees
of freedom.

How do results for the Kalman filter compare to those of ols when smoothed
X are used? In the case of the cointegrated series, ols produces a more
precise estimate of the elasticity than the Kalman filter. However, in the

case of non-cointegrated random walks described in table 4, results for the
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Kalman filter are considerably better than the ols outcomes for levels and
first differences. The enormous discrep:incy in table 4 between the average
estimated standard error of b and the samplg estimate of the same standard
deviation is one indication that ols is not appropriate in the case of
nonstationary and non-cointegrated series. Results in table 4 for the
first-differenced series are poorer than those of the Kalman filter.
Results for second differences - as briefly mentioned above - are useless
in the case of ols. The Kalman filter encompasses all three cases and
produces results that are less precise in the case of cointegrated series,
but still useful when differencing the data once or twice would be in
order. The major advantage of the Kalman filter remains that it does not

require a choice between levels, first differences and second differences.

S. Artificial experiments with cyclical data

The levels (or natural logarithms of levels) of many macroeconomic time
series exhibit nonstationarity of the random-walk type, but other series,
particularly those that are studied in terms of percentage changes over the
previous quarter or year, show a combination of medium term cyclical
movements and temporary shocks. Important examples are growth rates of
output and employment and percentage changes in wages and prices. I have
tried to construct artificial time series that mimic this type of time
series behaviour. First, I have computed the average guarterly rate of
inflation in the so-called G-7 countries (United States, Japan, West -
Germany, France, United Kingdom, Italy and Canada) over the period 1965-
1989. In each country, inflation peaked around the time of the first cil
crisis of 1973-1974, exhibited a temporary low at some later stage during
the 19708, a second peak in the early 1980s in connection with the second
oil price crisis and a further low in the mid-1980s. I have fitted a cubic
spline function to the averages of these four local extreme values. The
resulting pattern in the form of a camel’s back, exhibited in figure 3

forms the basis for the experiments of this section.
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Figure 3: Fitted cubic spline function producing @ camel’s back pattern.

Adding a second order autoregressive model to this basic pattern produces
realizations of the X process. This is similar to the construction of the X
series in section 2, but in order to obtain greater similarity between the
artificial series and the real-life examples involving rates of price and
wage change, I have used a Student-t density function with 5 degrees of
freedom for the error process. This process has fatter tails than the

normal distribution.

As before, there are two sets of Monte Carlo experiments. First, I
construct 100 replications of the X process and pair each one of these with
an Y process that consists of the same camel’s back pattern with added
serially uncorrelated noise which has a t(5) distribution. In the second
series of 100 experiments, the X series remains as before, but now an
ARIMA(0,2,2) process is added to the camel’s back to produce a wedge
between the permanent level of X and the permanent level of Y before the
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observation errors are added to produce the Y series. The specification of

the (0,2,2) process is as follows:

(104) dy = dpy + EIpgrp,e-n ¥ Wie * Wyt
(108) EIpetp,e = tThetp,e-1 + Pue

with var(w,) =0.0025, var(e,) =0.00005, and further properties as in

equations (7B) and (7C) above.

As before, in the first set of 100 experiments, the two series are
cointegrated, whereas in the second Monte Carlo study the discrepancies
between the permanent levels of X and Y are nonstationary and may grow

without bound as time goes on.

-10 | 1 ! 1 ! ! | ! ]
0 10 20 380 40 50 60 70 80 80 100

Figure 4: Two non-cointegrated cyclical series. The ols results from a levels regression of Y on X were:
DW= 0.257, R* = 0.902, b = 1.307 with S.E. = 0.044, LBQ(29) = 255.683, ADF(1) = -12.35, ADF(4) = -
10.318, ADF(8) = -6.115. For abbreviations, see table 1 sbove.
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Figure 4 shows a typical example of the second set of experiments. Since

the connection between X and Y is - as before -

X - {autocorrelated temporary shocks} + {random walk with stochastic

trend} + {observation noise} = Y,

it follows that the long-term elasticity between X and Y equals 1.0 also in
this case. As before, I shall investigate whether ols-techniques are useful
for tests of this elasticity, both in the case of cointegrated and that of

non-cointegrated series, and whether this unitary elasticity ie delivered

by the Kalman filter.

6. Analysis of cyclical data

The first 100 pairs of X and Y are cointegrated series with an identical
underlying structure in the shape of a camel’s back. Additionally, Y has
serially uncorrelated random noise, whereas to each X series a second-order
autoregressive process of small amplitude has been added. As noted above,
the noise series are non-normal and have a t-distribution with 5 degrees of
freedom. I assume that the econometrician disposes of past and future X and
is interested in producing longer-term forecasts of Y for which a proper
_estimate of the elasticity between X and Y is essential. One would expect
ols in terms of the levels of X and Y to produce a sharp estimate of the
unitary elasticity, but a poor value for the Durbin-Watson statistic and

other indicators of serial correlation.

This prior is borne out by the results in table 9. Note the excellent
estimates of the elasticity with a mean of 0.97. 62 Percent of the sample
estimates are close enough to 1.0 that the null hypothesis of a unitary
elasticity would not be rejected at the 0.05 percent level. If, however,
the analyst decided to proceed with first-differencing the data because of
the poor Durbin-Watson statistics and the often unacceptably high values
for tﬁe Ljung~Box statistics, outcomes are much less useful. For the
equations in first difference form, the null hypothesis of a unitary
elasticity would be rejected in 100 percent of all cases. The equations in

second differences are even worse. According to the Durbin-Watson

23



statistics, one might prefer the equations in firet difference form but

that would mean not getting a handle on the elasticity between X and Y.

Table 9: Cointegrated cyclical variables

ols levels ols first differences

mean stdev, min. max. mean . stdev. min. max.

DW 1.08 0.17 0.74 1.56 2.43 0.18 1.96 2.93
Rt 0.96 0.012 0.91 0.97 0.12 0.051 0.035 0.28
b 0.97 0.028 0.88 1.03 0.36 0.091 0.13 0.60
(s.E.) 0.021 0.0027 0.017 0.029 0.10 0.013 0.063 0.14
LBa 67.2 26.1 28.4 152.2 47.7 14.2 21.4 100.5
ADF (1) -6.08 0.68 -7.89 -4.76 -12.41 1.21 -16.28 -9.7
ADF(4) 5.2 0.74 -7.24 -4 .04 -3.84 0.54 -6.04 -2.85
ADF(8) -3.49 0.56 -4.97 -1.66 -2.15 0.29 -2.89 -1.53

Note: For abbreviations see table 1, LBQ = ijé-Box Q-statistic with 29 (in levels) and 28 (first
differences) degrees of freedom.

Table 10: Non-cointegrated cyclical veriables

ols levels ols first differences

mean stdev. min. max. mean stdev. min. max.

D 0.64 0.29 0.14 1.40 2.42 0.18 1.95 2.93
Rt 0.90 0.081 0.51 0.97 0.12 0.051 0.036 0.27
b 0.95 0.18 0.55 1.35 0.36 0.092 0.13 0.59
(S.E.) 0.030 0.0095 0.018 | 0.059 6.10 0.013 0.063 0.14
LBC 167.0 110.4 35.34 486.14 47.3 14.2 18.7 104.8
ADF(1) -4.48 1.1 -7.29 -2.32 -12.36 1.22 -16.28 -9.63
ADF(4) -3.45 0.86 -5.74 -1.55 -3.83 0.54 -6.13 -2.83
ADF(8) -2.43 0.67 4.4 -0.47 -2.15 0.28 -2.88 -1.55

Note: For sbbreviations see tabie 1, LBQ = Ljung-Box @-statistic with 29 (in levels) and 28 (first
differences) degrees of freedom. -

Turning now to the other 100 pairs of X and ¥, in which a random walk with
stochastic trend is placed between X and Y, we obviously have series that
are no longer cointegrated. Hence, the levels regressions would be
inappropriate. Results in table 10 show - as could be expected - a clear

deterioration over those in the previous table.
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Table 11: Cointegrated cyclical variables with smoothed X

ols levels ols first differences

mean stdev. min. max. mean stdev. min. max.

DwW 1.39 0.27 0.66 2.18 2.88 0.7 2.50 3.33
Re 0.98 0.0045 0.97 0.99 0.28 0.043 0.19 0.37
b 1.02 0.030 0.97 1.09 0.98 0.051 0.85 1.10
(S.E.) 0.016 0.0018 0.012 0.02 0.17 0.018 0.14 0.22
LBQ 56.6 3.7 15.97 227.4 57.7 22.7 28.3 148.8
ADF(1) -6.98 1.076 -10.68 -4.30 -15.51 1.72 -21.54 -12.14
ADF(@) -3.5 0.60 -4.73 -1.79 -6.50 0.74 -8.95 -4.7
ADF(8) -3.23 0.68 -4.94 -1.49 -4.23 0.55 -5.98 -2.45

Note: For abbreviations see table 1, LBQ = Ljung-Box Q-statistic with 27 (in levels) and 27 (first
differences) degrees of freedom.

Table 12: Non-cointegrated cyclical variables with smoothed X

ols levels ols first differences

mean stdev. min. max. mean stdev. min. max.

DW 0.73 0.37 0.15 1.85 2.87 0.17 2.49 3.32
R: 0.93 0.074 0.55 0.98 0.27 0.043 0.18 0.38
b 1.00 0.20 0.53 1.45 0.98 0.053 0.84 1.10
(S.E.) 0.025 0.0087 0.014 0.05 0.17 0.019 0.14 0.22
LBO 185.8 105.4 26.3 433.5 56.8 22.1 25.8 144.9
ADF(1) -4.68 1.31 -9.00 -2.40 -15.40 1.70 -21.44 -12.06
ADF (&) - -2.63 0.64 -4.31 -1.19 -6.39 0.75 -9.00 -4.67
ADF (8} -2.56 - 0.60 -4.17 -1.43 -4.11 0.56 -5.95 -2.49

Note: For sbbreviations see table 1, LBQ = Ljung-Box Q-statistic with 27 (in levels) and 27 (first
differences) degrees of freedom.

The next two tables give results for regressions in which the X series have

been prefiltered with the symmetric 9-period filter. As before, I assume

that the analyst made the correct inference from the serial correlation in

the residuale and used a smoother on the X series in order to eliminate

movements in X that are not useful in forecasting and understanding Y.

Table 11 deals with the 100 regreesions in which each pair of X and Y is

cointegrated; table 12 with the regressions in which a random walk with

(small) stochastic trend is added to the underlying level of X to produce

the permanent level of Y.

In table 11, the elasticity is well-determined, both in case of a

regression in terms of levels and for regressions in first difference form.
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The smoother has eliminated much of the irrelevant high-freguency
correlated noise in X and since the series are cointegrated and very
similar, both types of regressions work well. The elasticity is also well~-
determined in the regressions for levels and first differences in table 12
which deals with series that are not cointegrated. It is interesting to
note that the deterioration in the estimates using ols when non-
cointegrated sefies are used is much less in this case than before when the
series were of the "random walk with stochastic trend" type. This »
phenomenon is related to the size of the increments in the random walks -and
their trends in the two respective experiments, and it is also obvious that
cyclical variables are more amenable to ols analysis than random walks with

stochastic trends that do not exhibit any low freguency cyclical movements.

Table 13: Kalman filter for cyclical cointegrate& series with smoothed X

mean stdev. min. max.

DW(r) 2.34 0.20 1.91 2.80
b 1.01 0.047 0.90 1.15
(S.E.) 0.057 0.018 0.022 » 0.11
LBO(r) 3.8 12.7 17.3 964.5

Note: for abbreviations see tables 1 and 5, LBQ(r) = Ljung-Box Q-statistic of fit errors with 27 degrees
cf freedom.

Table 14: Kalman fitter for cyclical non-cointegrated series with smoothed X

mean stdev. min. max.

ow(r) 2.38 0.1% 1.72 2.83
b 1.0 0.047 0.88 1.13
(S.E.) 0.062 0.017 0.024 0.1
LBa(r) 35.7 12.5 16.8 88.7

Note: for abbreviations see tables 1 and 5, LBQ(r) = Ljung-Box Q-statistic of fit errors with 27 degrees
of freedom.

Results for the Kalman filter models are in tables 13 and 14. In both cases
I have applied the 9-period symmetric smoother to the X series before
running the Kalman filter. In the case of the cointegrated series, the null
hypothesis of a unitary elasticity is rejected in 4 out of 100 cases; with
the random-walk-with-stochastic-trend between X and Y, the null hypothesis
is rejected in 5 percent of all cases. It is interesting how the Kalman
filter model estimates the elasticity with almost the same degree of

exactitude in both cases: putting a random walk with stochastic trend
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between X and Y does not make it harder for the algorithm to estimate the
long-term relationship between X and Y. In the ols experiments there was
some deterioration of the estimates in the experiments in which an

unobserved random walk with trend was added to X (see tables 11 and 12).

Using the smoothed X series, results for the Kalman filter are - as
before - similar to the best of the three sets of results with ols. The
advantage of the Kalman filter remains that it does not require a choice

between levels, first differences and second differences.

7. Four fashions in econometrics revigited

The general idea of a so called causality test is to regress a variable of
interest on a number of its own lags as well as on observations from
another variable. If, for instance, it appears that the predictions of a
geries Y based on past Y (notation: {¥-}) are inferior to forecasts based
not only on past Y but also on past X (notation: {¥-,X-}), then one may say
that X causes Y in the sense of Granger (1969). In another version of the
test, named after Geweke, Meese and Dent (1982), one regresses X on past X
as well as on past and future Y, tests whether (Y+} helps at the margin in
predicting X, and if so concludes that X causes Y in the sense of Geweke et

al.

The analyst has to decide how many lagged values to include in the
specification, but the actual regressions are performed without
restrictions on the coefficients of the included lagged endogenous or
exogenous variables. Also, no attempt is made to interpret the pattern of
the coefficients: the focus of attention is on comparing residual sums of
squares or an F-test in order to judge whether inclusion of a group of
explanatory variables does or does not help in predicting Y. If the
conclusion is that X does indeed "cause" Y, this finding is not necessarily
interpreted in a causal sense - after all people buy travel insurance
before they go on a trip, but it makes no sense to state that the purchase
of travel insurance "causes” the vacation. The finding that X “causes" Y
means no more than that X helps at the margin in predicting Y which might

signify either an errors in variables situation where the true process for

27



the underlying level of Y is observed with error so that using values of X
is valuable at the margin, or that movements in X antedate movements in Y.
The causality tests are incapable of distinguishing between these two quite

different interpretations.

Table 15: Causality tests

Granger Geweke
X causes (?) Y Y causes (?) X X causes (?) Y Y causes (?7) X
cointegrated random walks ™ 100X 1% 100%
with trends
non-cointegrated random 28% o7X X 92X
walks with trends

cointegrated cyclical 49% 97X 51% 95%
series

non-cointegrated cyclical 43% 1% 38% 78%
geries

Note: the figures in the table indicate the percentage of cases in which an F-test reached significance
st the 0.05 level.

Now consider the causality tests in the case of our pairs of artificial
series Y and X. All four sets of experiments have contemporaneous movements
in both series; there are no instances where X would change before Y or
vice versa. Results are in table 15. Note that the hypothesis that Y does
not cause X in the sense of Granger is rejected in 100 percent of all cases
in the first 100 experiments (two cointegrated random walks with stochastic
trends), in 97 percent of the esecond set of 100 experiments (two random
walks that are not cointegrated), 97 percent in the third set (two
cointegrated cyclical variables) and 91 percent in the fourth set of 100
experiments (two cyclical variables that are not cointegrated). The very
high numbers signify that Y is almost always useful in forecasting X, which
is understandable because X has high?ftequency cyclical movements that

obscure changes in the underlying level and underlying trend of X.

Tests for causality in the other direction reject the null hypothesis of no
causality from X to Y in far fewer cases. Again, we know that X does not at
all cause Y in the sense that movements in X antedate movements in Y, but
that X may be useful at the margin in producing forecasts of Y. Note that
the results for Granger's test and Geweke'’'s test are guite close in most

cases. Only in the case of the non-cointegrated random walks do the results
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for the test whether X causes Y differ considerably between Granger'’s

methodology and Geweke’s specification.

The results starkly exemplify the unavoidable ambiguity in the
interpretation of such causality teste. X and Y are obviously related in
our experiments, so that past values of either variable are useful both in
predicting its own future and in predicting future values of the other
variable. Since each variable X contains a high-freguency autocorrelated
component, past values of Y are helpful in distinguishing whether the most
recent movement in X has been predominantly temporary (part of the
autoregressive component) or predominantly permanent (part of the
underlying process, either the random walk with trend or the cyclical
process). Y also has a temporary component, but it is not persistent and
less important than the autoregressive temporary component in X. Hence,
{X-} can be somewhat useful in predicting future values of Y if the
regression alreay includes (Y-}, but the marginal contribution of {X-} to
predictions of Y will be less than the marginal contribution of {Y-} in
predicting X, for two reasons: past X is contaminated by temporary
auvtocorrelated movements that are irrelevarnt for future Y, and Y itself
only has uncorrelated observation noise in addition to its fundamental
process, so that past Y is a higher-quality series for predicting future Y

than past X.

In sum: causality tests only relate to questions about marginal predictive
power and have no clear relationship to the question whether movements in
one variable occur before anocther variable changes. In the experiments with
our artificial series we note that different types of temporary
disturbances can heavily influence the results of the causality tests,
leading to the conclusion that one series (almost) always causes another
series, even though movements in the permanent level and growth rate of the

series occur simultaneously.

Vector autoregressions have become a prominent tool in the analysis of the
dynamics of time series and especially in their interaction. Current levels
(or logarithms of levels) of two or more time series are regressed
simultanecusly on a lubstantial number of past values, both of the series

jtself and of all the other time series in the analysis. In the present
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study of pairs of Y and X, we simultaneously regress levels of Y and X on
{Y-} and {X-}. The regression coefficients are put in a matrix - in this
specifié case with two rowe and sixteen columns because we use eight lagged
values of both Y and X - and this matrix is manipulated to produce
estimates of so-called "impulse response functions". These purport to show

the effects of an "innovation" in either Y or X on each of the two series.

.
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Figure 5: The response of Y to an innovation in Y: mean and two-standard deviation bands; computed using
the Bayesian Monte Carlo integration technigue.

Figure 5 shows a representative implementation of this technique for a pair
of Y and X from the experiments underlying table 2 (non-cointegrated random
walks with stochastic trends, one of which (X) has a high-frequency
temporary component). The figure indicates the response of Y to a single
innovation in Y that occurs at time t=1. The indicated standard errors for
the estimated path have been computed using a Bayesian Monte Carlo

Intogration.‘s The next figure, figure 6, provides the same information

15 gee Kloek and Van Dijk (1978).
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for the effects of a unit innovatjon in X on X iteelf.'® Table 16 shows
statistics for our experiments with cointegrated and non-cointegrated
random walks with stochastic trends and temporary noise. The left-hand part
of the table deals with the cointegrated pairs of Y and X; the right-hand

part with the non-cointegrated series.

25

_0.5 ! | | | ! 1 1 | |
0 2 4 6 8 10 12 14 18 18 20

Figure 6: The response of X to & unit innovation in X: mean and two-standard devistion bands; computed
using the Bayesian Monte Cario integration technique.

The margins of uncertainty in figures 5 and 6 relate to uncertainty about
the coefficients in the vector autoregression. For, the size of the
innovation that takes place in period 1 is standardized across all
experiments to unit size and not followed by any subsequent observations. A
quite opposite way to consider the uncertainty surrounding this type of
experiment would be to change to the state-space formulation. Even though

state-space models are formally equivalent to ARIMA-models, the state-space

16 1+ is also possible to use the vector autoregreasion to compute
effects of innovations in X on Y and in Y on X, but these are not discussed
here.
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formulation emphasizes the continuous mixture of different types of shocks
and also makes a careful distinction between the observed values of the
process and the "underlying" level of the process without its temporary
component. To bring out this different perspective on the uncertainty
regarding simulation experiments, I have computed the expected path as well
as the accompanying two-standard deviation bands for the state-space
representations of Y and X in the asymptotic case that all hyperparameters
of the stae-space model are known with certainty. This assumption
corresponds, of course, to a ARIMA representation or Box-Jenkins model in
which all model parameters are also known without error. Even in this
extreme, asymptotic case, uncertainty remains regarding the path of the

level of Y or X after a unit innovation during period 1, for two reasons:

- we observe a unit surprise, but do not know to what extent the size
of the innovation is influenced by mistaken believes about the
underlying level of the process as estimated after period 0 for

period 1;

- the unit innovation is an unknown mixture of a temporary shock, a
permanent disturbance to the level and a permanent disturbance to the
rate of growth, and without knowing the allocation of the surprise
over these three components, it is impossible to compute with

certainty future values of the state variables.

Table 16: Vector autoregressions

Cointegrated Y and X (as in table 1) Non-cointegrated Y and X (as in table 2)
mean min, max. stdev. mean min. max. stdev.
X on X
expectation 0.79 -0.0019 1.74 0.36 0.48 -0.35 1.48 0.36
variance 0.22 0.035 3.28 0.34 0.12 0.0094 0.83 0.12
YonY
expectation 1.23 0.080 2.77 0.63 1.04 -0.95 3.00 0.83
varisnce 0.63 0.074 2.7 0.48 0.49 0.028 1.82 0.41

fiote: the figures in the table refer to the values of the varisbles 20 periods after the unit innovation
has taken place. X on X means the response of X to a unit innovation in X, YonY indicates the response
of Y to a shock in Y.

FPigures 7, 8 and 9 show the theoretical response to a unit innovation for

the following three cases:
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1. the response of X to a unit innovation in X according to the state-
space representation of the model for X as used in the first two sets

of experiments;

2. the response of Y to a unit innovation in Y using the state-space

representation of Y as used in the first set of experiments;

3. the response of Y to a unit innovation in Y, using the state-space
model for variable d which was defined in equation (10a) as the

differnce between Y and the permanent compeonent of X.

The figures show the asymptotic results that are based on numerical

solutions to the Riccati equations associated with the state-space models

in equations (4) and (6) above.'’

0F .

| ! ! 1 1 1 1 | |

0 2 4 6 8 10 12 14 16 18 20

Figure T: the theoretical response of X to a unit innovation in X: asymptotic path and two-standard
deviation bends.

17 The precise deriviations can be found in Stengel (1986) and Mendel
(1987).
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Figure 9: the theoretical response of Y to a unit innovation in Y: asymptotic path and two-standard

deviation bands.
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Analysis of the theoretical responses of a state-space model to a unit
innovation shows that the effects of an innovation will depend on its size.
The larger the innovation, the less important will it be that at the moment
it occurs we have an unavoidable residual amount of uncertainty about the
true state of the sustem, because in all periods prior to t=1 there also
were shocks that hit the system. For instance, in the introduction, we
looked at the simple case in which the Box-Jenkins parameter in an
ARIMA(O,1,1) model equaled 0.5, corresponding to variances of respectively
0.5 and 0.25 for the temporary and permanent shocks in the equivalent
state-space model. If now the inﬁovation hitting such a system follows upon
a long series of similar innovations we can use the Box-Jenkins
representation or the Riccati equation to compute the expected future path
after the innovation. However, if the true state of the system is known
without error when the shock hits, or - equivalently - if the shock is much
larger than those that occurred in the past, we should classify the
surprise into temporary and permanent parts according to the sizes of the
two variances in the state-space model, implying that in this case two
thirds of the shock should be classified as temporary and only one third as

permanent.

Here follows the same argument for the actual case of the Y series in our
first set of experiments. Solving the Riccati equation in the asymptotic
case of an infinitely long realization of Y results in the vector (0.712,
0.170). It follows that the innovation is classified in the following way:
71% is considered to be a permanent increase in the level, 17% is judged to
be a permanent increase in the rate of growth, and the remaining 12% should
be considered to be purely temporary. However, the three variances in the
model of equation (4) above are 1 for the temporary component, 1 for the
permanent shifts and 0.1 for the permanent changes in the stochastic trend,
suggesting a quite different split of any surprise over the three
components. In case a particularly large innovation had to be analyzed, the
classification of the purprise into its three components would shift from
the numbers indicated by the solution of the Riccati equation to the

proportions as indicated by the three variance terms.

Unit root tests have become guite popular for testing whether a single time

series should be differenced before further statistical analysis is
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undertaken. Table 17 shows the results of unit root tests applied to the
four sets of series in this Monte Carlo study. Numbers in the table are
based én the 0.05 significance level. We note that the low frequency
cyclical series with the camel’s back pattern are all classified as
stationary using unit root tests with four or more lags. The particular
construction of the camel’s back logically means that all series built on
that frame are nonstationary, but there exist stationary higher-order
autoregressive processes that could approach the same pattern to any degree
of accuracy. Hence, one should not find fault with the unit root test for
rejecting the null hypothesis of nonstationarity for the Y and X series
that are based on the camel’s back pattern. The Y series in the second set
of experiments do contain a purely nonstationary component, and again the

series are not recognized as nonstationary by the unit root tests.®

Many wrong answers, by contrast, are produced by the unit root tests in the
cases of the random walks with stochastic trend. Note that many
realizations of the Y series are classified incorrectly as stationary if

four or more lags are used.

Table 17: Unit root tests

X Y
lags ] 1 4 8 0 1 4 8
rarﬁan walks with trend (see table 1) 30 30 5 22 2 2 18 27
random walks with trend (see table 2) 4 5 14 26
camel’s back series (see table 9) 4 100 100 100 6 0 100 100
camel’s back series (see table 10) 46 33 100 100

Note: the figures in the table indicate the percentage of cases in which the null hypothesis of & unit
root was rejected using the Augmented Dickey-Fuller test.

The results in table 17 confirm much earlier evidence that unit root tests:
for single series have low power. This is also true for the results of the
Augmented Dickey-Fuller tests that were already incorporated in tables 1

through 4. These tests suffer from an additional disadvantage because their

18 ohe standard deviation of the permanent shift in the random walk
that is added to X equals 0.05; the permanent changes in the growth rate
have a standard deviation of 0.00707. Over 100 periods this produces on
average a deviation of 3.839 between the levels of X and Y, a distance that
should be compared to the range of the basic camel’s back which goes from
2.544 to 1B8.4495.
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null hypothesis is that of nonstationarity. For nonstationarity occurs in
infinitely many forms, implying the risk that in the casé at hand the model
of nonstationarity differs from those considered by Dickey and Fuller. In
fact, the table in their (1979) paper considers first order autoregressive
processes with values around 1 for the autoregressive coefficient, even
though one could claim that the time sefies models considered in this paper
which are of the ARIMA(0,2,2) or ARIMA(2,2,2) variety are closer to
macroeconomic time series. In my view, the state-space methodology has an
important advantage because it does not require any decision about the
number of unit roots, but instead transforms the problem into that of
properly estimating one or more hyperparameters that indicate the

importance of temporary versus permanent shocks to the system.

The cointegration technique can be used to test whether there exists a
unitary elasticity between X and Y in these Monte Carlo experiments, in the
sense that conditional forecasts of Y should be changed proportionally to
changes in one’s forecast of X. That happens to be correct for all the
Monte Carlo experiments. Results for the cointegration tests are in table
18. The tests are based on a bivariate regression in which first
~differences of X and Y are simultaneously regressed on a series of lagged
first differences of X and Y as well as on the lagged levels of the two

variables (see Johansen, 1991). Formally:

k-1
(11) Az, = }:F,Az,_, + 0z, , + B +€,,
.l

where Z is a vector containing Y and X and ¢, (t =1,.,T) are independent 2-
dimensional Gaussian variables with mean zero and variance matrix A. In
our case, k = 8. The parameters I',,.,I,,, p and A are assumed to vary
without restrictione, and the hypothesis of a single r cointegration

vector is formulated as the following restriction on I:

(12) I=af,

where P, the cointegration vector, and a, the adjustment coefficients, are 2x1
matrices. The test is then performed on the elements of P. The hypothesis

of a unitary elasticity requires B, = -f,.
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Table 18: Cointegration

reject hypothesis of no accept unit elasticity
cointegration
cointegrated random welks with 82% 86.6%
trends
non-cointegrated random walks 27X 40.7X
with trends
cointegrated cyclical series 98% 62.2%
non-cointegrated cyclical series 92% 7.6%

Note: the figures in the first colum indicate the percentages of cases in which the null hypothesis of
no cointegration could be rejected at the 0.05 ievel, those in the last colum refer to the percentage

of cases in which, given the rejection of the null, 8 unit elssticity between X and Y could not be
rejected.

The results in table 18 show that in the first set of 100 experiménts the
cointegration test correctly classifies 82 out of the hundred cases as
being cointegrated and subsequently does not reject the hypothesis of a
unitary elasticity at the 0.05 level in 7 out of 8 cases. However, once the
random walks with stochastic trends are no longer cointegrated, the
cointegration technique becomes incapable of producing useful results for
the test of the unitary elasticity; The percentages indicated in the table
are almost identical to the split over rejection versus non-rejection of
the null hypothesis of a unitary elasticity in case the cointegration
hypothesis is indeed rejected. In the third and fourth set of experiments
involving cyclical variables the cointegration technique claseifies
virtually all experiments as exhibiting cointegration. It is interesting to
note how in the 100 cases in which the cyclical variables are indeed
cointegrated the test quite frequently doés not reject the‘null hypothesis
of a unitary elasticity, but how again in the case of non-cointegrated
series the test is not at all useful in illuminating the question whether

the elasticity equals 1.0.

It seems to be the case that the test is not well designed to investigate
the long term elasticity between two variables X and Y in case X and Y are

not cointegrated.19 Nevertheless, this is a context that very frequently

19 Mccallum (1984) has correctly emphasized how ambiguous definitions
of elasticities can become in the case of stationary variables. It is
ironic that ols works best for stationary variables when elasticities are
often ill-defined or unobservable, whilst nonstationary series offer a
better context to precisely define elasticities, but are hard to tackle
using traditional ols methods.
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occurs in macroeconomics, for instance when one speaks about exact price
compensation in wages. Series for inflation and growth in nominal wages
need not be cointegrated; nevertheless it makes sense to talk about 1-1
compensation in wages for inflation. The cointegration technigue does not

seem capable of dealing with such instances.

8. Conclugions

In a recent article Lawrence Summers (1991) complains about the scant
progress made during the past two decades in applied macroeconomics.
Without necessarily agreeing with Summers’s analysis, let alone his
recommendations, many economists will share his sense of disappointment.
The present paper reconsiders four prominent econometric technigues that
have been used in many of the papers in applied macroeconomics during this
period. I have studies these four techniques in a number of Monte Carlo
experiments using nonstationary time series that were guite closely related
over the longer term, but subject to different short-term components.
Nonstationarity creates well known problems for ordinary least squares and
its many applications. At the same time, the "errors-in-variables” context
makes it impossible to interpret the regression findings: does the fact
that Y causes X mean that Y changes before X, or does it signify that
observations on X are more seriously contaminated by high-frequency noise

than observations on Y?

The paper combines experiments using causality tests, vector
autoregressions, unit root tests and cointegration with implementation of a
multivariate Kalman filter. This allows for a comparison between the
autoregressive-moving average interpretation of time series and the state-
space formulation. Even though the two modelling techniques are formally
equivalent, the state-space representation emphasizes the often useful
distinction between the observed series and its "underlying" level, and
allows for an interpretation in which a time series does not change over
time because of a single type of innovation with a complicatéd dynamic

' impulse reaction function, but because different types of disturbances,

temporary or permanent, occur simultaneously.
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Unsurprising is the general finding that observations on two time series
without additional structure are insufficient to draw interesting
conclusions about cause and effect, but can only be used to compare
different predictive formulas. A more interesting finding is that none of
the four econometric fashions is capable of delivering a useful estimate of
the unitary elasticity between the constructed time series, unless a simple
moving average is applied to one of the series. It seems fair to say that
moving averages and Almon lags went out of fashion with the introduction of
multicoefficient autoregressions and vector autoregressions, but in the
Monte Carlo simulations in this paper, the old-fashioned Almon lag
technique is capable of producing useful results, whereas unrestricted

estimates of many coefficients are of no help.

The multivariate Kalman filter also requires some smoothing of the
explanatory variable in order to produce useful forecasts and estimates of
the unitary elasticity between X and Y. The principal advantage of the
Kalman filter in this context is that it circumvents the di¢: :cult choice
between working with levels, first differences or second dif.:rences. In
the implementation chosen for this paper, the Kalman filter is capable of
dealing with any series that can usefully be described with an ARIMA(0,2,2)
model, and leaves it to the data to determine the relative importance of
the three types of basic innovations (temporary shocks to the level,
permanent shocks to the level, permanent shocks to the rate of growth) that

occur in such a model.

The contrast between regression techniques and Kalman filter estimation
also helps in the discussion of simulations based on a vector
autoregression. The Kalman filter (or state-space formulation) indicates
first why it is incorrect to talk about simulation experiments in terms of
a single shock that takes after a tranquil period, and second, shows that
the estimated response function must logically be dependent upon the size
of the shock. Both these inaighﬁs are impossible to get out of the
autoregressive-moving average representation of the same process.
Experiments in the paper show that at least sometimes uncertainty about the
classification of the innovation as temporary or permanent is much more
important for the margins of uncertainty surrounding the innovation

experiment than uncertainty about the coefficients in the corresponding
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vector autoregression. Differencee between the computed uncertainty
deriving from the true character of the innovation on the one hand, and
model parameter uncertainty on the other hand are so large, that this

finding should generalize to other contexts.
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