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Abstract

Consistent Extensions

Consistency is a property of allocation rules which says that what a solution
recommends for any economy is always in agreement with what it recommends for
associated "reduced economies". We propose here to evaluate the extent to which a
solution may fail to be consistent by identifying its "minimal consistent extensiom,"
that is, the smallest consistent solution that contains it. We calculate the minimal
consistent extensions of two solutions that have played a central role in the literature
on the problem of fair division. We also propose the concept of "maximal consistent
subsolution" and show how it can be used to relate several solutions that had been

discussed separately in that literature.

JEL Classification Nos: D63, D71
Key words: Consistency. Minimal consistent extension. Maximal consistent

subsolution. Fair division.



1. Introduction. A property of allocation rules, or solutioms, that has played a
fundamental role in some recent literature is conmsistency. A general statement is as
follows: Consider a solution defined on some class of problems. Apply the solution to
a problem in the class. Then consistency says that the restriction of any payoff vector
chosen by the solution for that problem to any subgroup of agents is what the solution
would recommend for the "reduced problem" obtained by imagining the departure of
the members of the complementary group with their payoffs, and reevaluating the
situation from the viewpoint of the subgroup.

When a solution is not consistent, one would like to know how serious the
violations of consistency are. Omne way to evaluate these violations is to ask how much
the solution would have to be modified in order to satisfy the property. In this note,
we first propose to do that by minimally enlarging the solution. This is a well-defined
operation since it follows from elementary considerations that there always is a minimal
consistent ectension of a given solution. We consider this notion in the context of fair
allocation in classical economies and show that the minimal consistent extensions of two
solutions that have often been discussed in the literature can be characterized in a
simple way. Unfortunately, for these examples, the enlargement needed to obtain
consistency is quite considerable. It remains to be determined whether this remains
true in other models.

Another way to recover consistency when the solution in which one may be
interested does not satisfy the property, is to subtract from, instead of adding to, what
the solution recommends. Here, one would like to subtract as little as possible. This
can be done in a meaningful way whenever the solution does have a consistent
subsolution, since here too it follows from elementary considerations that such a
solution has a mazimal consistent subsolution. We show how this concept can be used

to link several solutions that have been discussed separately in the literature.



2. Minimal consistent eztensions. Although the principle of consistency has been
applied in a wide variety of models (for a review of this literature, see Thomson,

1990, 1992a; also see Young, 1991, where it is a central theme), we will limit ourselves
here to an examination of problems of fair division in classical economies and to the
specific form of consistency that is appropriate for such a domain.

We consider economies with arbitrary finite numbers of agents. Let £ € N be

++
the number of goods. Let lN++ = {1,2,...} be the set of "potential" agents and 2 be
the class of all finite subsets of N with generic elements Q, Q’.... FEach agent i €

+4

N 4t is equipped with a preference relation on R_f, denoted Ri' Let Pi be the strict

preference relation associated with Ri and Ii the indifference relation. Let £ be the
class of continuous, convex, and monotone (zi > 2z = ziPiZi)l preference relations.
An economy is a pair ((Ri)ieQ’Q)’ or simply (RQ,Q), where Q € 4 for each i € Q, R,

€ &% and 0 € IRZ is the endowment. Let ‘@‘Q be the class of economies so defined

++
and §= U eQ Given Q ¢ Zand e = (Rq,Q) € 5Q, the feasible set of e, denoted
Qe2
Z(e), is defined by Z(e) = {z € IR_le| | X z; = Q}. A solution is a mapping defined
i€eQ

on a class of economies which associates with each economy in the class a non—empty
subset of its feasible set. We will consider solutions defined on & and the subdomain

5 = z.P.Z{). If

of & obtained by requiring preferences to be strictly monotone (zi > zf Pz

z € p(e), we will say that z is @—optimal for e

A solution is consistent if what it recommends for any economy is never
"contradicted" by what it recommends for any associated "reduced" economy obtained
by imagining the departure of some of the agents with their allotted consumptions, and
reconsidering the problem of dividing the remaining resources among the remaining

agents. Formally, let ¢ be a solution. Given Q € Zand e = (Rn,{2) € 5Q, let z be
g Q

Vector inequalities: given a, b € [RZ

gbanda#b;a>bmeansak>bkforallk.

, @ > b means a; > by for all k; a > b means a



one of the recommendations made by ¢ for e, that is, let z € ¢(e). Then, let some of
the agents in Q leave the scene with their allotted consumptions, Q’ C Q designating

the group of remaining agents. For the economy (R,,¥ z.), would the solution
& Q i€eQ’ 1

recommend that each agent receives the same bundle as before, so that ZQ’ €

<p(RQ,, % Zi)?2 If the answer is always yes, the solution is consistent. This
ieQ

property, and related ones, were studied by Thomson (1988).
Consistency. For all Q, Q’ € Z2with Q’ C Q, for all e = (Rq,ﬂ) € éQ, and for all

z € ¢(e), zq. € w(RQ,,i}gQ,zi).

The pair (RQ”ng,zi) is the reduced ecomomy of e with respect to Q’ and z. Let
it be denoted té, (e).

A number of solutions are consistent. Examples are the pareto solution, which
associates with each economy its set of efficient allocations, and the no—envy solution
(Foley, 1967), which associates with each economy its set of allocations at which no
agent would prefer someone else’s consumption to his own:.

Pareto solution, P: Given Q € Zand e = (RQ,Q) € EQ, P(e) = {z € Z(e)| there is
no z’ € Z(e) such that z{R.z for all i € Q and z{P;z, for some i € Q}.

No—envy solution, F (Foley, 1967): Given Q € Zand e = (Rq,ﬂ) € (‘iQ, Fle) = {z ¢
Z(e)| for every pair {i,j} C Q, ziRiZj}'

However, some interesting solutions are not comsistent. Our objective here is to
formulate a way of evaluating how far from being consistent a solution may be. We
propose to enlarge it in a minimal way so as to recover the property. That this can

be done is a comsequence of the following observations: It follows directly from the

definition of consistency that if all the members of a family ¥ of solutions with

20f course, if ¢ is multi-valued there may exist -optimal allocations other than 2/ in
the reduced economy.



common domain and range are consistent, and the intersection p(e) = N 9(e) is
cv

non—empty for each economy e in the domain, then the well-defined solution ¢ also is
consistent. Now, given a solution ¢, let ¥ be the family of consistent solutions
containing ¢; that is, ¥ = {¢|¥ 2 ¢, ¢ is consistent}. The solution that associates
with each economy its whole feasible set is of course consistent. Therefore ¥ # §. Let

©= n 9. Since p I ¢, ¢ is a well-defined solution. Therefore ¢ can be described
Yev

as the minimal consistent eztension of p. The "size" of the difference ¢\y is the price
one has to pay to recover consistency if it is insisted upon that all the allocations
picked by ¢ be included.

Minimal consistent eztension. Given a solution ¢, its minimal consistent eztension,

mee(p), is defined by mce(p) = N ¢ where ¥ = {¢|¢ 2 ¢, ¥ is consistent}.?
Pev

The next lemma relates the minimal consistent extensions of the union or the
intersection of two solutions to the minimal consistent eztensions of the components.
Lemma 1. Given two solutions ¢ and ¢/, mce(pUp’) = mce(p)Umce(yp’). Also, if
@np’ is a well-defined solution, mce(pny’) C mce(p)nNmcee(p’); the inclusion may be
strict.4
Proof. To prove the first statement, let, ¥ = mce(pUp’). Then ¢ belongs to the
family {u|p 2 ¢, p is consistent}, so that ¢ ) mce(p). Similarly, % J mce(p”).
Therefore mce(pUyp’) I mce(p)Umee(p’). To show the converse inclusion, let 9 =
mce(p) and ¢’ = mce(p’). Since ¥ 2 ¢ and ¥’ I ¢/, YUY’ I gUp’. Moreover, since
consistency is preserved under union,’ YUy’ is consistent. Therefore, 9Uy’ belongs to

the family {u|p 2 @Up’, uis consistent} so that mce(wUp’) C mee(y)umee(p’).

3The concept of a minimal monotonic extension of a correspondence, similarly defined,
was proposed and analyzed by Sen (1987).

4The same statements hold true for arbitrary unions and intersections.
5This fact will be fully exploited in section 4.



To prove the second statement, let 9 = mce(y) and ¢’ = mce(yp’). Clearly ¢ 2
Ny’ and ¢ is consistent. Therefore mce(¢pNy’) C ¢. Similarly mce(eny’) C 9.
Altogether we have mce(pnp’) C YNy’ = mce(yp)nmee(p’), as claimed.

To show that the inclusion in the second statement may be strict, consider the
following example: let ¢ be the solution that coincides with P for economies of
cardinality 2 and with F otherwise, and let ¢’ be the solution that coincides with F
for economies of cardinality 2 and with P otherwise.

We obtain that mce(y) coincides with FUP for economies of cardinality 2 and with
F otherwise, and mce(y’) coincides with FUP for economies of cardinality 2 and with P
otherwise. Indeed, the solutions so defined are comsistent and contain ¢ and ¢’
respectively. To show minimality for mce(p), let Q € 2 with |Q| = 2, e = (RQ,Q) €
& and 2 € F(e), and let i € Q. We enlarge Q by adding one agent — let him be
indexed by k — with preferences identical to the preferences of agent i. Let Q’ =
Qu{k}, 07 = Dz, e = (Rpy,,0) € £ and 27 € 7(e’) be such that 24 = 7 and
z{ = z;. It is immediate that z* € F(e’) and since mce(y) 2 F for any economy of
cardinality 3, z- € mce(p)(e’). Then, by consistency z = z() € mce(cp)(ta/(e’)) =
mce(p)(e). The argument for mce(y’) is similar. Also, ¢ny’ = FNP, which is
consistent. Since mce(yp)nmce(p’) coincides with FUP for economies of cardinality 2
and with FNP otherwise, we have the strict inclusion mce(yp)nmce(yp’) 2 mce(pny’).

Q.E.D.

In the next section, we identify the minimal consistent eztensions of two solutions

that are commonly discussed.

6This is a variant of an example suggested to me by Steve Ching.



3. Two ezamples. An example of a solution that is not consistent is the solution that
associates with each economy its set of allocations that pareto dominate equal diviSion;
these allocations are usually described as "individually rational from equal division."
The individually rational solution from equal division is often advocated in the |
literature on the problem of fair division (see Thomson, 1992b, for a survey; also see
Moulin, 1990, 1991). Many authors even take it as the definition of fairness.
Individually rational solution from equal division, I Given Q € Zand e = (RQ,Q) €
R, 14e) = {s € %e)|zR,(2/]Q]) for all i € Q).

Another solution that is not consistent is the solution that picks the allocation(s)
that all agents find indifferent to the same scale multiple of the aggregate bundle
(Pazner and Schmeidler, 1978; Thomson, 1987; Moulin, 1991). This solution has played
an important role in the literature as a resource-monotonic and population—monotonic
selection from the individually rational from equal division and efficient solution.

An egalitarian solution,” E: Given Q € Zand e = (Rq,ﬂ) € SQ, E(e) = {z € Z(e)|
there exists A € [R+ such that for all i € Q, ziIi()\Q)}.

Note that the solution I ed usually selects a continuum of non-pareto indifferent
allocations, but that the solution E satisfies "pareto-indifference": if z, z’ € E(RQ,Q),
then for all i € Q, ziIizf.

We would first like to calculate the minimal consistent ertension of the intersection
of Ie d with the pareto solution, but it turns out that it is a little more convenient to
work with a subsolution of the pareto solution that is in fact very close to it. It is
defined as follows: given Q € Zand e = (RQ,Q) € ‘@‘Q, let P*(e) be the subset of its
efficient allocations admitting of supporting prices such that the values of all

consumptions be positive (excluded in particular is any allocation at which one agent

*
receives nothing). It is straightforward to verify that P is consistent.

TWe refer to this solution as an egalitarian solution since there are other ways of
defining egalitarianism.



Theorem 1 says that if the point of departure is the distributional requirement of
pareto domination of equal division, then in order to obtain consisten(:y;” this
distributional objective has to be given up altogether.

*. *
Theorem 1. On & the minimal consistent ertension of Ie an is P-.

B'l +

* *
Figure 1. The minimal consistent eztension of I.4nP is P (Theorem 1). In this
illustration Q = {1,2,3}.

*

Proof. (Figure 1). Let Q € 4 e = (RQ,Q) € éQ, and z € P (e) be given.
Let p € Al—l be a price vector supporting z and such that pz; > 0 for all i € Q. Let
I= min{pzi|i € Q). Note that I > 0. Let a, b ¢ IR_ﬁ be such that pa = pb = I/2
¢ defined by o" =

‘ +
[2+n(a+b))/(|Q|+2n) be strictly below both {a}+Rf and {b}+R. Let R, and Ry €

and a #b. Let n e N it be large enough so that the point o™ € R

A be two preference relations whose upper contour sets at a and b respectively admit
P as a supporting price, and such that aRawn and bwan. Let e’ be the economy

obtained from e by adding n agents with preferences R,, n agents with preferences Ry,

{
L

ZQ =1z 2{ =a for each new agent i with preferences Ra’ and z{ = b for each new

and the additional resources n(a+b) € R;. Let z- € Z(e’) be the allocation defined by

*
agent i with preferences R,. Note that z- € I_.nP (e’). Let ¢ = mce(I_,NP¥).
b ed ed



Since 9 2 1.,P , 2 € 9(e’). Since ¥ is consistent, z = 24 € (R, B 2¢) = 9(e).
ed Q QiEQ i

* *
Therefore ¢ 2 P . Since P is consistent, we are done.

Q.E.D.

As a simple corollary of Theorem 1, we obtain the minimal consistent extension of
another solution, the solution that associates with each economy its set of allocations at
which each agent prefers what he receives to the average of what the others receive.
Average no—envy solution, A (Thomson, 1979, 1982; Baumol, 1986; Kolpin, 1991; Fluck,
1991): Given Q € Zand e = (Ry,) € R Ae) ={z€2e) | forallieq,

ZiP‘i[. %o Zj/(|Q|—1)]} if Q| > 2 and A(e) = {0} if |Q| = 1.
jeQ\{i}
Corollary 1. On & the minimal consistent eztension of ANP* is P*.

Proof8 Given two solutions ¢ and ¢’ such that ¢ C ¢, if follows directly from the
definition of a minimal consistent eztension that if ¢’ C mce(y), then mce(y) =
mce(yp’). This result applies to ¢ = Iean* and ¢’ = ANP*. Indeed under convexity
of preferences I.g ¢ A (Thomson, 1982), and by Theorem 1, ANP* C mce(I_4nP¥) =
P*.

Q.E.D.

Next, we turn to the solution E. The minimal consistent extension of its
intersection with the pareto solution can be described in terms of the

egalitarian—equivalent solution, defined thus:

8The proof can also be obtained by a simple modification of the proof of Theorem 1.
The argument is the same until the choice of n, which should be made so that the

points wg = [Q+(n-1)a+nb]/(|Q|+2n-1) and wﬁ = [Q+na+(n-1)b]/(|Q|+2n-1) be

strictly below {a}+[R_f_ and {b}+[Rf_ respectively. Then the preferences R, and Ry are
chosen so that the upper contour sets admit p as a supporting price at a and b
respectively, aRaw;1 and bwaE. The proof continues as before.



*
Egalitarian—equivalent solution, E (Pazner and Schmeidler, 1978): Given Q € Zand e

£ such that for all i € Q,

* _
= (R ) € éQ, E (e) = {z € Z(e)| there exists z; € R,

z;Lz.}.

It will be convenient here to slightly modify this definition. We will use instead
the solution E** defined by requiring the reference bundle zy to be positive. Let % ¢
% be the subclass of strictly monotone preferences. Given Q € % let ‘@‘”Q C é‘Q be

the subclass of economies (RQ,Q) where for each i € Q, R, € &'. Let & = U 5 Q.
Qe 2

*%
Note that on &, the solution E NP is consistent.?

*%
Theorem 2. On &, the minimal consistent extension of ENP is E nP.

Ry
%
R, | Ry
Y “
\
\
z2 \
\
o B
\
P ‘\ z

(0+22)/(1Q[+2) DY

*%
Figure 2. The minimal consistent extension of ENP is E NP (Theorem 2). In the

illustration, Q = {1,2,3} and the smallest value of n for which a € lR_ﬁ is 3.

9Alternatively, we could have considered the doma.m of preferences that are stnctly

4
mo:}otl;)ne in Ry | and such that for all x. € R +\IR L0 %10 On that domain, E NP
= knP.
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*x
Proof. (Figure 2) Let Q € 4 e = (RQ,Q) € g’Q, and z € E nP(e) be given. Let

l
g € Ry,

vector for z. For each n e N, let W= (1/0)[(1Q[+n)zy—].  Let AT ¢ R, be such

that the point a = wn—)\nzo satisfies pa” = Dz, Asn — o * — Z- Therefore,

. . n 14
and since zy > 0, there is n € IN++ such that a~ € [R+.

simplify notation, write a = a®. Then, let Ra € X be a preference relation whose

K

be such that ZiIiZO for all i € Q and let p € be a supporting price

Let n be so chosen and to

upper contour set at a is supported by the prices p and such that al 220" Let Q7 2 Q
be obtained by adding n agents such that for each i € Q’\Q, R, =R, let 0’ =
Q+na, and e’ = (RQ”Q’) ¢ & Let s ¢ Z(e’) be defined by 74 = 2 and z{ = a
for all i € Q’\Q. Then z’ € EnP(e’) with reference bundle z proportional to €2’
(indeed 2z = [|Q|+n(1—)\n)]_19’) and supporting prices p. Let ¢ = mce(EnP). Since
v ) EnP, z’ € ¢(e’). Since ¢ is consistent, z = zQ € v(RQ,E zi) = Y(e).

*%k *%k IEQ
Therefore ¥ J E NP. Since E NP is consistent, we are done.

Q.E.D.

4. Mazimal consistent subsolutions. The procedure discussed in the preceding sections
is certainly not the only way of evaluating the extent to which a solution ¢ may fail
to be consistent. Alternatively we could delete from, instead of adding to, the
@-optimal set, and ask how much should be deleted to recover the property. This will
work only if ¢ does contain a consistent subsolution, but this is the only precondition.
Indeed, if all the members of a non—empty family ¥ of solutions are consistent, then so

is the union p = U ¢ If ¢ C ¢ for all ¥ € ¥ then of course p C p, so that g can
P e’

be described as the mazimal consistent subsolution of .
Mazimal consistent subsolution. Given a solution ¢ containing a consistent subsolution,

its mazimal consistent subsolution, mes(yp), is defined by mcs(p) = U ¢ where ¥ =
€

{¢|¥ C ¢, ¥ is consistent}.
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Here too, we would like to know how different mcs(yp) is likely to be from .
Note that mcs(y) is equal to the solution ¢ defined, for each Q € Zand e = (Rq,ﬂ)
€ éQ, by
(*) ole) = {z € Z(e)|zg, € wlt.(e)) for all Q* ¢ Q}.

Indeed, p is consistent, and of course ¢ C ¢ (set Q' = Q in the definition).
Maximality follows from the fact that these conditions are necessary.

The next lemma relates the mazimal consistent subsolutions of the union or the
intersection of two solutions to the mazimal consistent subsolutions of the components.
To facilitate its proof, we introduce a property dual to consistency. It says that the
p-optimality of an allocation for some economy can be derived from the y—optimality
of its restrictions to all the associated 2-person reduced economies: the solution ¢ is
conversely consistent if for all Q € 4 for all e = (RQ,Q) € gQ, and for all z € Z(e),
if [for all Q7 € Q with [Q’| =2, 2, € w(té,(e))], then z € p(e). The no—envy
solution is trivially conversely consistent and under appropriate smoothness conditions on
preferences, so is the pareto solution. (See Thomson 1992a for a discussion of these
facts.)

Of course mcs(pUy’) may be well-defined without either mcs(yp) or mes(p’) being
well-defined. For instance, if ¢ is consistent but has no consistent proper subsolution,
any pair {p,0’} for which Uy’ = ¢ will be such that mes(¢) = ¢ while neither
mes(p) or mes(p’) is well-defined. If either ¢ or ¢’ has a consistent subsolution, then
@wUp’ also does and mcs(pUyp’) is well-defined.

Lemma 2. Given two solutions ¢ and ¢’, each of which contains a consistent solution,
mes(@pUy’) 2 mes(p)Umes(p’); the inclusion may be strict. Also, if ¢ny’ contains a

consistent solution, mcs(pNy’) = mes(p)Nmes(¢p’).10

0As in Lemma 1, the statements hold true for arbitrary unions and intersections.
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Proof. To prove the first statement, let ¢ = mes(y) and 9’ = mes(¢’). Then %
belongs to the family {u|u C ¢, u is consistent} and 9’ belongs to the family {u|p C
@’, p is consistent}, so that 9Uy’ belongs to the family {u|p C @Up’, p is consistent}.
Therefore mes(pUp’) 2 YUy’ = mes(p)Umes(p’).

The example to prove that the inclusion may be strict is the one we used in the
proof of Lemma 1: consider a domain on which P is conversely consistent and let ¢
coincide with P for economies of cardinality 2 and with F otherwise and let ¢’ be
defined in a symmetric way. Note that mcs(y) coincides with P for economies of
cardinality 2 and with FNP otherwise. Indeed, it is easy to check that the solution so
defined is a consistent subsolution of . To show that it is maximal, given Q € 2
with |Q| > 2, e = (RQ,Q) e & and z ¢ mcs(p)(e), note first that since mes(yp) C ¢,
z € F(e). Also, since mcs(yp) is consistent and mcs(¢) C P for economies of cardinality
2, 2, € mcs(cp)(ta,(e)) c P(t(g,(e)) for all Q’ C Q with |Q’| = 2. Since on the
domain under consideration, P is conversely consistent, it follows that z € P(e).
Altogether z € FnP(e). Similarly, we deduce that mcs(y’) coincides with F for
economies of cardinality 2 and with FNP otherwise. Also, ¢Uyp’ = FUP, and since FUP
is consistent, pUp’ = mcs(@Up’) = FUP. Finally, we observe that mcs(p)umes(y’)
coincides with FUP for economies of cardinality 2 and with FNP otherwise. Therefore,
we have the strict inclusion mcs(pUyp’) d mes(p)Umes(p’).

To prove the second statement, note first of all, that if ¢Ny’ contains a consistent
subsolution, then so do both ¢ and ¢’, and therefore mcs(pny’), mes(y) and mes(p’)
are all well-defined. Let ¢ = mcs(p)nmes(p’). Since 9 C ¢y’ and 9 is consistent,
mes(pNy’) 2 9. To show the converse inclusion, let ¥’ = mecs(¢np’). Since ¢” C ¢
and v’ is consistent, ¢’ C mcs(y). Similarly, ¢’ C mes(p’). Therefore ¢ C
mces(p)nmes(p’).  Altogether, we have mes(pny’) = mes(p)nmes(p”’).

Q.E.D.
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We will illustrate the notion of a mazimal consistent subsolution by considering
again the individually rational from equal division and efficient solution. Let ¢ =
mes(I e an). The existence of a mazimal consistent subsolution of this solution follows
from the fact that there is indeed a consistent subsolution of Ie an, namely the
Walrasian solution from equal division. From formula (*), we obtain that for each
economy e, ¢(e) is the set of allocations that pareto dominate equal division in e and
whose restriction to any subgroup pareto dominates equal division in the associated
reduced economy.

Consider now the following property of solutions:

Replication invariance. For all Q, Q’ € 4 for all e € c%‘Q and e’ € EQ,, for all z €
if e’ is obtained from e by k—times replication

++
and z’ is obtained from z by k-times replication, then z’ € ¢(e’).

o(e) and z’ € Z(e’), for all k € N

Note that replication invariance is also preserved under union so that the existence
of a mazimal consistent and replication invariant subsolution of a given solution will be
guaranteed if the solution contains at least one subsolution with these properties. This
is the case for the individually rational solution from equal division, since the
Walrasian solution from equal division, which it contains, is consistent, as already
noted, and it is also replication invariant. The next theorem says that its mazimal
consistent and replication invariant subsolution, coincides with a solution introduced by
Kolm (1973, 1991) and defined, for each Q € Zand e = (Rqy,0) € &R vy

K(e) = {z € Z(e)| for all i € Q, for all z; € co{zj|j € Q}, zR;zp}
where co{-} denotes the convex hull operator.

Theorem 3. The mazimal consistent and replication invariant subsolution of Ie d is K.
Proof. First, note that K is consistent and replication invariant. Let ¢ be the

- mazimal consistent and replication invariant subsolution of Ie q Since K C Ie 4 K C o
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To show that ¢ C K, let Q € 4 e = (Rq,Q) € & and 2 € ¢(e) and suppose by
contradiction, that there are i € Q and z; € co{zj| j € Q} such that zoP;z;. By
continuity of preferences, there are positive integers {A j]j € Q} such that Yo =
Y Xz, /(X X)) satisfies y,P.z.. Let A = max{\.|jeQ}. Let e’ and z’ be obtained
. il J 0"i"1 J
J€Q JeQ
from e and z respectively by A—times replication. By replication invariance of ¢, z’ €
¢(e’). Let Q" be a subgroup of agents in e’ containing for each j € Q, )‘j agents
with preferences Rj' Let e" = ta.’,(e’). By consistency of ¢, Zdn € ¢(e"). However,
equal division in e" is Yo and since for all k € Q" identical to i, yOPizl’q = 1z, we have
Zn ¢ I4(e") in contradiction with ¢ € I,

Q.E.D.

A similar argument shows that the mazimal consistent and replication invariant
subsolution of I o an is KnP.

The concept of a mazimal consistent subsolution can be used to reformulate a
characterization of the Walrasian solution from equal division obtained in Thomson
(1988): under the assumption of smoothness of preferences, any subsolution of the
individually rational from equal division and efficient solution satisfying consistency and
replication invariance is a subsolution of the Walrasian solution from equal division.
Since the Walrasian solution from equal division satisfies all of these properties, it is
the maximal such solution. Therefore, under smoothness of preferences, the mazimal
consistent and replication invariant subsolution of 1 o an is the Walrasian solution from
equal division.

The concept can also help us establish a connection between two other notions.
Recall the earlier definition of an average envy—free allocation as one such that each

agent prefers his consumption to the average consumption of the others. Now, require
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that each agent prefers his consumption not only to the average of what the others
receive but also to the average of what any subgroup of the others receive:

Strict no—envy solution, S, (Zhou, 1992): Given Q € Zand e = (Rq,ﬂ) € éQ, S(e) =
{z € Z(e)| for all i € Q and for all Q" ¢ Q with Q" # § and i ¢ Q’,

ZiRiLEQ?jjl”Q |}

As noted, S is a subsolution of A. Also, A is not consistent but S is. Since an
allocation is strictly envy—free if it is average envy—free and its restriction to any
subgroup is average envy—free in the associated reduced economy, it follows directly
that S is the mazimal consistent subsolution of A. Consider now the solution that
associates with each economy its set of efficient allocations whose k-teplicas are strictly
envy—free for the economy replicated k times, for all k € N. This solution is consistent
as well as replication invariant. It is simply the mazimal consistent and replication
invariant subsolution of the average envy—free and efficient solution. Zhou (1992) shows
that under smoothness of preferences it coincides with the Walrasian solution from
equal division. This result also follows from the fact that on the domain of smooth
preferences, any subsolution of the average envy—free and efficient solution satisfying
consistency and replication invariance is a subsolution of the Walrasian solution from

equal division (Thomson, 1988), and the fact that the Walrasian solution from equal

division does satisfy consistency and replication invariance.

5. Concluding comments. We proposed a way of measuring the extent to which a
solution may fail to be consistent by introducing the notion of its minimal consistent
extension and we applied the notion to two examples concerning the problem of fair
allocation in classical exchange economies. We also considered the notion of mazimal
consistent subsolution of a given solution and showed how it can help relate several

concepts that have played a role in the literature on the problem of fair allocation.
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These notions are certainly applicable to other domains where consistency has been
found useful, such as bargaining theory, coalitional form games, and bankruptcy, and to
other classes of allocation problems. We provide two additional examples of
applications to allocation problems.

Tadenuma and Thomson (1991) analyze a model of fair allocation in economies
with indivisible goods and show that there is no proper subsolution of the no—envy
solution satisfying consistency and a condition of neutrality.t* (The no—envy solution
satisfies both properties). Neutrality also is preserved under intersection, and since the
feasibility correspondence is neutral, the reasoning that led us to the concept of minimal
consistent estension gives us the concept of minimal consistent and meutral extension.
Thus, the result stated above can be rephrased as follows: all subsolutions of the
no—envy solution have the same minimal consistent and neutral ertension, which is the
no—envy solution itself.

Sasaki and Toda (1992) consider the class ofmatching problems and search for
subsolutions of the solution associating with each matching problem its set of matches
that cannot be improved upon by any pair of agents; this solution coincides with the
core. They show that there is no proper subsolution of the core satisfying consistency.
Therefore, this result can be stated as: all subsolutions of the core have the same
minimal consistent ertension, which is the core itself.

The determination of the minimal consistent extensions and mazimal consistent

subsolutions of important solutions for other domains will be left to future research.

1A solution ¢ is neutral if whenever a @-optimal allocation is such that permuting its
components leave all agents indifferent, then the permuted allocation is also p-optimal.
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