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Abstract

A completely new asymptotic theory of regression is introduced
for possibly non-stationary time series. The variables are assumed to
be generated by a vector linear process with martingale difference in-
novations. The conditional variances of these martingale differences
are allowed to be non-stationary processes. The primary requirement
imposed on these processes is that they converge weakly in the Skoro-
hod metric to cadlag stochastic processes. The types of non-stationary
variances thereby permitted include deterministic variances, multiple
structural breaks with random shift points, and positive functions of

integrated or near-integrated processes.

*A very preliminary version of this research was circulated as “Regression Theory
When Variances Are Non-Stationary,” RCER Working Paper No. 226. This research was
supported by the NSF.



It contrast to much of the existing literature which attempts to
generalize the assumptions of the classic regression model, we find
that, in general, the asymptotic distributions of the ordinary least
squares (OLS) and generalized least squares (GLS) estimators are not
normal, nor even mixtures of normals, unless the asymptotic variance
processes are exogerneous in a specific sense. Under the latter assump-
tion, however, GLS estimation is efficient within the class of weighted
least squares. An adaptive estimator is proposed, based on local aver-

aging of the squared OLS residuals, which is asymptotically equivalent

to GLS.



1 Introduction

Many econometricians are beginning to seriously entertain the notion that
some economic series might violate the assumption of covariance stationarity.
Covariancestationarity is a very strong assumption, requiring time invariance
of unconditional variances and auto covariances. Casual examination of plots
and recursive of rolling estimates of variances for many series, however, sug-
gests non-constancy. Recent papers which formally discuss this phenomenon
include DeLong and Summers (1986), Pagan and Schwert (1990a, 1990b) and
Phillips and Loretan (1990).

The finding of covariance non-stationarity has implications for both eco-
nomic and econometric theory. This paper is concerned exclusively with the
second topic. Virtually all econometric theory (with the exception of the lit-
erature on unit roots and cointegration) assumes that the data are draws from
stationary distributions (or asymptotically stationary distributions, such as
mixing processes). The implicit assumption is that if the data are approxi-
mately stationary, then the use of the theory for stationary random variables
is still useful. This view seems reasonable, if the departures from station-
arity are minor. On the other hand, if the departures from stationarity are
substantial then it seems clear that we need a new theory, and it is currently
unknown what constitutes a “minor” or a “substantial” departure. This pa-
per attempts to break new ground by developing a large-sample distribution

theory for random variables with possible non-stationarity in the variance.



To handle the difficult concept of non-stationary variances, we work with
linear processes with martingale difference innovations. We allow for non-
stationarity by assuming that the conditional covariance matrix of the mar-
tingale differences can be approximated as a cadlag stochastic process. This
allows (as special cases) for constant variances, single or multiple structural
breaks, polynomial or sinusiodal deterministic trends, and positive functions
of Brownian motions or Gaussian diffusion processes.

Under this assumption, a large sample theory of inference can be derived.
Consider the ordinary least squares (OLS) estimator. We can show that
the coeflicient vector is consistently estimated. The asymtotic distribution,
however, is only multivariate normal if the limiting variance processes are
deterministic which is the assumption commonly found in the current liter-
ature, such as Wooldridge and White (1988), Harvey and Robinson (1988)
and Davidson (1992). In general, when the limiting variance processes are
stochastic, the asymptotic distribution can be represented by a ratio of ran-
dom variables. The distributions bear a striking resemblance to those ob-
tained in the unit root literature, as the numerator of the distribution has a
stochastic integral representation, and the denominator is an integral over a
stochastic process. In the special case in which the asymptotic variance pro-
cesses are independent of the stationary part of the variables, the asymptotic
distribution is a random mixture of normals, so inference can proceed con-
ventionally. Without this assumption, however, the asymptotic distribution
of test statistics is non-standard.

Since we are allowing for the variance of the regression error to be time-

varying, it makes sense to consider generalized least squares (GLS) estima-
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tion as well. In particular, we propose an adaptive GLS estimator which uses
conditional variance estimates constructed by local averaging of the squared
OLS residuals. This estimator process is shown to be uniformly consistent
for the limiting variance process, and the adaptive GLS estimator is asymp-
totically equivalent to the GLS estimator using the true conditional variance
sequence.

Section 2 introduces the model and assumptions. Section 3 examines
OLS estimation. Section 4 examines GLS estimation. Section 5 contains the
proofs of all lemmas and theorems.

Throughout the paper || refers to the Euclidean norm |4| = (tr(A'A))l/2 ,
lIll,, to the L,— norm [|A||, = (E |A|P)/? | [] refers to integer part, vec(A) is
the vector operator which stacks the columns of the matrix A, and = denotes
weak convergence with respect to the Skorohod metric. All limits are taken

as the sample size, n, diverges to positive infinity.



2 Model and Assumptions

2.1 Regression Model

Let {yni,zni : 1 < i < n} be a random array, where y,; is real-valued and
Zn; 18 an m-vector. The regression model of interest is the following linear

relationship.
Yni = m;iﬂ + Uni.

For some array of sigma-fields {S,; : 1 < ¢ < n} to which z,; and w41 are

adapted, we assume that u,; is a martingale difference array:
Cx —
E (um- l \S‘m') = 0

and z,; is a linear process with martingale difference innovations:

o0

_ & —
Tni = Y Ajvnizj, E (vni| Snica) =0
k=0

where A is normalized to be the m x m identity matrix I,,, and the coefhi-

cients satisfy the summability condition

S5 145 < oo, (1)

i=0
The regressor is well defined under the following moment condition.

Assumption 1 For some p > 2, sup,,5; Sup;<, ||vm~||z2, <C < .

These conditions describe a fairly typical set of assumptions in linear time

series analysis.



2.2 Conditional Variances
Define the conditional variances:

2 2
E (v} |Sw) =0

and
E (vnivy; | Snic1) = Qi
We will frequently desire to separate out the variance part of these arrays.

This can be accomplished by defining the standardized arrays

Zni = uni/ani (2)

and
eni = Dy vp; (3)
where D,,; is the upper triangular square root matrix of §2,,;. By construction,
Zni is a martingale difference array with unit conditional variance, and e,;
i1s a vector martingale difference array with conditional covariance matrix
I,.. Equations (2) and (3) yield the equivalent expressions t,; = opnizsi and
Uni = Dypien; which give the desired separation.
It turns out that the asymptotic limit theory depends upon the following

m? x mrandom array. Set

00
’
Qni = Z Eni—kZni ® Ak,

k=0
and its associated partial sum process



and set

o0
bri = vec i = Y €nickZni ® ak,

k=0

where a; = vec(A}). Note that {dn;, Sni} 1s a martingale difference ar-
ray, and for each £ > 0, E (em-_ke’ kzﬁi) =F (em-_ke’ (2% 3,”-)) =

ni— ni—

E (em-_keju-_ k) = I,,. Thus ¢,; has the degenerate covariance matrix

o0 o
2 ! !
Vi =E> enik2iiehi r ® aral =In ® D axaj.
k=0 k=0

If |¢ni|? is uniformly integrable, then it is well known that Bunr) = B(r)
where vec B () is a Brownian motion with covariance matrix V,. We assume
the latter directly in assumption 2.

The purpose of the present paper is to study distributional theory when
the conditional variance is “non-stationary.” This is a rather vague concept

which needs to be made more precise. We will use the following condition.

Assumption 2

(Bn[m], 0121[711'], Qn[m]) = (B(r),a2(r), Q(r))

where B(r) is a vector Brownian motion with covariance matriz Vg, o(-) is

an element of D[0,1], and Q) is an element of D[0,1]™*™.

This condition directly assumes that the conditional variances can be
approximated (for large n) by a random element on the space of cadlag
matrix functions. This doesn’t seem like a very strong assumption, and
captures fairly neatly the basic idea of non-stationarity. The fact that Q,;

doesn’t need to be scaled by a function of n is with no loss of generality,
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since we are directly working with random arrays. (This turns out to be
particularly convenient for most examples we find of interest).

Note that assumption 2 includes constant conditional variances as a spe-
cial case.

Note as well the parellels with the standard theory of non-stationarity.
If a variable z; = 7 is a deterministic trend, when normalized its conditional
expectation (trivially) is approximated by the linear function r. If z; is
I(1), its conditional expectation is cointegrated with it, and both can be
approximated by a vector Brownian motion. If z,; is a “near-integrated”
array, its conditional expectation is approximated by a Gaussian diffusion
process. Assumption 2 allows for the conditional variance (as opposed to the
conditional mean) to be approximated by a cadlag process.

Assumption 2 allows for either the conditional variance of the regression
error or the conditional variance of the regressors to be non-stationary, or
both. This allows for a range of possible applications. Some researchers
may believe with high confidence that their regression errors will not display
non-stationarity in the conditional variance, because they have scrutinized
the time-series properties of their residuals to eliminate such possibilities.
In this case, they would likely assume that the limiting process o?(r) is
a constant o2. The same researcher, though, may not be confident that the
conditional variance of the regressors is stationary. This mix is allowed under
assumption 2 as an interesting special case.

The assumption requires that the three arrays converge jointly. This is
frequently easy to verify when the processes are asymptotically continuous,

so long as the variables are defined on the same probability space. When
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the variance processes are asymptotically discontinuous, then the joint con-
vergence requirement is more restrictive. Note that no assumption has been
made regarding the relationship of B(r),¢%(r), and Q(r). Thus the processes
may be independent or interdependent. As we discuss later, this has impor-
tant implications for inference.

Our final three conditions are required for idenfication and other techni-

calities:

Assumption 3 M = [} Q(s)ds > 0.

Assumption 4 For some ¢ > 2, sup,s; sup;<, lloZ]], < oo.
Assumption 5 sup;c;c, v/ || Dni = Dnica |, = O(1).

We discuss particular examples which satisfy assumptions 2-5 in the fol-

lowing section.

2.3 Examples

2

The conditional variances o,

and §2,; can be constructed as non-negative
definite functions of random arrays with weak cadlag limits. That is, if the
s x 1 vector Sy; is an array such that Sy(,,) = S(r) for some process S(r), and
Qi = Q(Sp;) where Q(+) is a mapping from R* to M™*™, the space of positive
semi-definate m x m matrices, then 1,; is a valid conditional covariance
matrix and Q) = Q(S(r)). Similarly for the scalar 02.. The array Sy;

can be any standard example used in the literature on empirical processes.

Possible candidates include deterministic functions such as polynomials and
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sinusoids. (For a linear trend, set S,; = 7/n.) Structural change is permitted

by functions such as

S S, 1< nT ,
Sy, 12> nT
where the timing of structural change 7 is a random variable in [0, 1}.

Stochastic nonstationarity can be allowed by using functions of partial
sum processes. Take a sequence of iid random variable §; and set S,; =
-\/1—-7; Y i1 &), so that Syjn = S(r), a Brownian motion with variance E (&)?.
A useful functional for the mapping 02(S) in this context is 02(S) = (a + 5)°.
Thus o,; = (a + Spi)? and the limit variance process is o%(r) = (a + S(r))?
which is bounded above zero, a useful property for a variance process.

The random walk model assumes that shocks to the variance process
are “persistent.” A process with less persistence than a random walk can be
achieved by setting
1

\/-7'1'51" (4)

Here, Syjnrp = S(r), a diffusion process which satisfies the stochastic differen-

Sni = (1 - C/n)Sni—l +

tial equation dS = —cS+dW, where W is a Brownian motion. This process is
a continuous-time approximation to a first-order autoregressive process, and
is used in the literature on near-integration. Again, setting o2; = (a + Sy:)”
bounds the conditional variance above zero.

To construct a martingale difference with the given conditional variance
simply requires the construction of a mixture random variable. For example,

let z,; and e,; be iid random variables, and set v,; = Dy;€en; and up; = OpiZni,
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where D,; is the upper triangular square root of ;. Then set J,; to be the
smallest sigma-field containing the past history of (2p:, €ni, Dni, oni). Then the
arrays {vni, Sni} and {un;, Sni} are martingale differences with conditional
covariances §},; and o2, respectively. The latter satisfy the convergence of
assumption 2, and the moment requirements can be satisfied directly by
assumption on the iid innovations.

Recently, Nelson and Foster (1992) have argued that ARCD models may
be viewed as useful filters to estimate conditional variances when the data
are discrete measurements from an underlying continuous-time diffusion pro-
cess. In fact, their model is that the observations and conditional variance are
generated by a joint diffusion process, which is the continuous-time analog
of the specification in (4). The asymptotic theory in their paper is derived
as the time interval goes to zero, which is analogous to our near-integration
specification. While not strictly nested, their models is quite close to ours,
although their purpose is to investigate the properties of ARCH models as op-
timal filters, not to investigate the properties of classical regression methods
as in this paper.

Before we turn to the anaysis of regression methods, we need to examine
the unusual cbndition given in assumption 5. We can show that this condition
is valid for several examples of interest.

First, suppose that D,; is a function of a polynomial in time, so that

D.,,=f (%) for some uniformly differentiable f. Then

(5) -1 (57)] < 7z e L -

Second, suppose that D,; arises from a structural shift, so D,; = D; +

\/ﬁma‘x IDni - Dni—ll = \/;L—ma'x f
i<n i<n
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D,{i > nr} where {} denotes the indicator function, and = € [0,1] is a

random variable which denotes the timing of the structural shift. In this cas,
\/ﬁm<ax | Dni — Dricall, = ADQ\/ﬁm<a,x P{i=[n7]} =0

if the random variable 7 has a density function on [0, 1].

Third, take that case of D,; being a near-integrated partial sum process.

Then

C
Vnmax||Dni = Dl < T X [15ni-aly + max &l = O(1)

if maxi<, ||&ill, = O(1).
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3 Ordinary Least Squares

The ordinary least squares (OLS) estimate of the regression parameter f is

given by

k3 -1 n
ﬂn = (Z Ini:E:u‘) (Z zniyni) .
=1 =1
Centered and standardized, this equals

-1

)= () ()

3.1 Numerator

Our first result is for the numerator of the OLS estimator. Define D(s) as
the upper triangular square root matrix of {(s), and o(s) as the positive
square root of o?(s). Here and elsewhere, let X~ (r) denote the left limit of

X atr.

Theorem 1 =3I, nitini = G = [y dB(r) vec D(r)~o (r)” .

The limit random variable G has a distribution which can be represented
as a stochastic integral with respect to a matrix Brownian motion. When
D(s) and o(s) are deterministic functions, G specializes to a normal random

vector. This is essentially the situation studied by the previous literature
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allowing for non-stationarity in the variance, such as Wooldridge and White
(1988), Harvey and Robinson (1988), and Davidson (1992). When either
D(") or o?(-) is a non-degenerate random process, however, G has a non-
normal distribution. This is a new result and will be discussed in more detail

in the section 3.3.

3.2 Denominator

The derivation of the limiting representation for 1 "%, znzl; is based on

the decomposition

Tl = M + M2+ MY, (5)
where
Mg;=3 AjVni-jn;_j Al (6)
7=0
and
‘Algi = Z Z Ajvni—jv:u-j-kA}Jrk- (7)
k=1 j7=0

This decomposition was introduced by Phillips and Solo (1992) for the anal-

ysis of scalar linear processes (with asymptotically constant variances).
Lemma 1 1370, M2 = J =32, A;MA}, where M = [j Q(s)ds.
Lemma 2 1y M} —, 0.

These two lemmas immediately yield our desired result.
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Theorem 2 - Y%, zqal; = J(r).

1=1

Theorem 2 gives the asymptotic distribution of the regression design ma-
trix. Note that the limit variate J is function only of the random matrix M
and the constant matrix 322,(A, ® A;), since

vece(J) = ivec (AJ-MA;) = i(As ® A;) vec(M).

s=0
3.3 Asymptotic Distribution

We can now establish a general theorem for the OLS estimator.
Theorem 3 /n (Bn - ﬂ) = J71G.

The least squares estimator converges to the ratio of random varaibles
discussed in the previous sections. The distribution given in Theorem 3
resembles those found in the literature on unit roots and cointegration, as
the numerator is a stochastic integral with respect to a Brownian motion,
and the denominator is an integral of a stochastic process.

The nature of the distribution in Theorem 3 will depend upon the rela-
tions between the limiting variance processes (¢2(-),(+)) and the limiting
partial sum process B(:). We start our analysis with the relatively simple
case in which these two processes are independent. Set Sq, = o((s),0?(s) :

0 < s < 1), the sigma-field generated by the limiting variance processes.

Theorem 4 If B(-) is independent of Sq., then
Vi (Bn—B) = JG = /N (0,01577%) dP (4,5),
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where P(.,.) is the probability measure over the joint distribution of J and

S=Y A /T Q(s)o?(s)dsAj.
k=0 0

Corollary 1 Ifo%(r) and Q(r) have degenerate probability distributions (that

is, are deterministic functions), then J and S are constant matrices and
Vi (B —B) = N (0,J715J7).

Corollary 2 Ifo%(r) = o? and Q(r) = Q are constants, then J = Y32, AL A
and S = o%J so
Vi (Ba— 8) = N (0,77%0?).

Corollary 2 gives the asymptotic distribution theory for the conventional
regression model. The parameters estimates are asymptotically normal with
a covariance matrix of conventional form. Corollary 2 gives the asymptotic
distribution theory when the conditional variances are allowed to asymptot-
ically non-stationary, but deterministic. The asymptotic distribution of the
OLS estimator is again multivariate normal. This case is analogous to the
models studied by other authors, such as Wooldridge and White (1988) and
Davidson (1992). The implicit message in results such as Corollary 2 seems
to have been that non-stationarity in the variance does not matter for infer-
ence in large samples. This conclusion is based, however, on the important
restriction to asymptotically deterministic variance processes.

Corollary 2 is a specialization of Theorem 4. In the latter, the asymptotic
variance processes are allowed to be stochastic, but are required to be inde-

pendent of the asymptotic partial sum process B. In this special case, the
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asymptotic distribution [ N (0,J-1SJ~1)dP (J,S) is a variance mixtures of
normals, similar to the distributional results obtained in the cointegration
literature. Mixtures of normals are essentially normal distributions with a
random covariance matrix. If the random covariance matrix is known, then
confidence intervals with the correct asymptotic coverage probabilities can
be constructed. The fact that the covariance matrix is random means that
the amount of information in a sample is random, and so will be different in
repeated samples.

The assumption of independence in Theorem 4 is quite strong. We do
not expect this condition to hold, in general. Without a complete probability
model for the data, it is hard to know whether or not it is reasonable. It is
not a vacuous assumption since it is easy to construct processes which satisfy
this condition, such as the examples of section 2.3.

In the most general case, where the asymptotic variance processes are
stochastic and not necessarily independent of the process B, the limiting
distribution of the OLS estimator given in Theorem 3 is non-standard. The
divergence from the normal distribution will depend critically on the extent

to which the processes (0%(+), Q()) are correlated with B(-).

3.4 Conditionally Homoskedastic Regression Error

It is common for researchers to pay close attention to the time-series proper-
ties of their regression residuals. When there is evidence of serial correlation
or heteroskedasticity, most will attempt to correct the problem through an

appropriate data transformation. As a result, it might be expected that the
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2.
n?

likelihood of the variance of the regression error, o2,, being non-stationary is
quite low, even if the regressors z,; have time-varying variances. In this case,
02 = 07, a constant, and the limiting distribution of Theorem 4 special-
izes to [ N (0,02J71)dP (J). This is still a mixtures-of-normals distribution,
but the conditional covariance matrix is of a simpler form, as expected. In
this case, the natural estimate of the covariance matrix for calculation of test

statistics and confidence intervals is given by

J 162
where
a 1
!
J==3 tuty,
n =1
and

with 42, being the least squares residuals, @i, = yni — =, 5,.

3.5 Covariance Matrix Estimation

In the general case in which the regression error is conditionally heteroskedas-
tic, the conventional covariance matrix estimate will not be appropriate for
calculation of test statistics and construction of confidence intervals. An

appropriate estimator will be of the Eicker-White form, that is

J-18J1

where J is defined above and
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n
! '*2
Z.’B TpilUp;-

i=1

3!»—*

..

We know (Theorem 2) that J = J, and our hope is that § = .

As a first step it is natural to analyze the idealized estimator

and demonstrate that S = S. The second step of course would be to demon-
strate that S— 5 —, 0. Unfortunately, the proof for just the first step appears
to be quite complicated and lengthy. Rather than burden the present paper
with this derivation, we now turn to the more interesting problem of efficient

estimation.
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4 Adaptive Estimation

4.1 Weighted Least Squares

It is well known that when the regression error is conditionally heteroskedas-
tic, ordinary least squares is not efficient. A more efficient estimator will
utilize the information in the conditional variance. The generalized least
squares (GLS) estimator, for example, weights the data in inverse propor-
tion to the square root of the conditional variance. Since the conditional
variance is not observed, however, an estimate must be used in its place.
We first consider the general problem of weighted least squares regression,
for a fairly arbitrary array of real-valued weights, {h,;} with asymptotically

continuous trajectories.

Theorem 5 Define the weighted least squares estimator

n -1 n
Br = (Z hgsmmz;,-) (Z h;-l:vmym-) :
i=1

If hni is adapted to Sy, hni 2 ¢ > 0. and by = h(r) € C[0,1], where the
convergence is joint with the processes Qyi, 02, and By;, then

Vi (Bt - B) = JiGy
where

oo 1
=Y A / h(r) "1 (r)dr AL
k=0 0
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and

Gi= | " h(r)1dB(r) vec (D(r)) o(r)".

4.2 Generalized Least Squares

If it were possible to directly observe the array {o2;}, then one could obtain
the GLS estimator by setting h,; = o2, in the definition of the weighted
least squares estimator. Even though it is unlikely that ¢2; could be directly
observed, we study this case as a precursor to adaptive estimation. Theo-
rem 5 gives the asymptotic distribution of the GLS estimator when o2, is

asymptotically continuous and bounded above zero. We have

n -1 n
fo _ -2, .1 =20y
:Bn - Zani Lnilpy Z Opi Tnilni
i=1 =1

and
Vi (g - 8) = J7'G,
where
oo 1
J,=S A / o(r)~2Q(r)dr AL
k=0 0
and

1
G, =/ o(r)"'dB(r) vec (D(r)") .
0
When B(-) is independent of Jq,, this distribution is the mixture of

normals given by

/ N(0,J7)dP(J,)
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where P(-) is the probability measure for the random design matrix J,. Note
that the inverse of the design matrix is the asymptotic conditional precision
matrix, hence the estimator Bg is asymptotically efficient within the class
of weighted least squares regression. Asymptotic standard errors can be

calculated using the matrix

1¢ -1
-1 __ -2
J; = ;E O iTniTn; | -
=1

It is important to note, however, that the asymptotic efficiency of the GLS
estimator relies on the assumption that the process B(-) is independent of
Sqo. This is the same requirement needed for asymptotic mixture normality
of the OLS estimator. The endogeneity of the conditional variance of either
the regressors or the regression error is sufficient to invalidate asymptotic

mixture normality. Reweighting cannot solve this problem.

4.3 Non-Parametric Variance Estimation

If the variance of the regression error is asymptotically continuous in C[0, 1],
it should be possible to consistently estimate it using a non-parametric esti-
mator. While it may be possible to consistently estimate variance processes
which are not necessarily asymptotically continuous, we will exclude this
case from consideration as this would require a more complex estimation

technique and asymptotic theory.

Assumption 6 ¢%(-) € C[0,1], o2(r) > c.
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Our idea is to estimate o2; by averaging the regression residuals 42;_; for

small j. Specifically, we use a non-parametric kernel of the form
N
Gpi = D Wil i, i 2 N
—

A2 a2 .
Ghi=0in, t <N,

where the weights w,; > 0 satisfy

N N
Y wpj=1land NY wl =0(1).
=0 =0

The weights w,; can be any typical kernel weights (normalized to sum to
unity), such as from the Bartlett or Parzen kernels. One simple choice would
be a rectangular kernel, where w,; = 1/N. The integer N is a bandwidth
number, and controls the degree of local smoothing. We require that the

bandwidth number grow like a power of sample size:

Assumption 7 N = Bn® for some 0 < B < oo and % < a <1, wherep is

defined in assumption 1.
We also require the following moment bound:

Assumption 8

2
max max F (|um| p) < 00.
n>1 <n

The bandwidth N is required to grow at a rate slower than sample size,
but not too slowly. If p is not much greater than 2, then a needs to be close
to 1. If u,; has more finite moments, then « can be smaller. Intuitively, a

smaller o implies less smoothing, and an attempt to estimate the variance
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array o2; at a higer resolution. This is more difficult without the presence
of higher moments in which case more smoothing is required (and hence a

larger @) to estimate the variance array uniformly.

We have:
Theorem 6 &2, 1 = o*(r).

Theorem 6 shows that consistent estimation in C[0,1] (in the sense of
weak convergence) of the asymptotic variance process is possible by a simple
non-parametric kernel technique. This result is a consequence of the assump-
tion that o?(r) is continuous, so local averaging can reveal the underlying
variance process. As a practical matter, it should be obvious upon reflec-
tion that the theorems are a bit more optimistic than should perhaps be
warranted. The estimated process §2; will tend to be more smooth than the
true conditional variance. The estimates will reveal the long-run trends in the

conditional variance, but cannot hope to uncover high-frequency movements,

in the style of ARCH or GARCH estimation.

4.4 Adaptive Least Squares

Our definition of 52, uses a one-sided backward-looking estimator. Consistent
estimates could also be obtained by using a two-sided estimator, or a one-
sided forward-looking estimator. The use of a backward-looking estimator,
however, is particularly convenient for use in a weighted least squares context.
The estimate array 52, is adapted to Sy, so the conditions for Theorem 5 are

nearly applicable. We need to be concerned, however, about the possibility
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that a sample realization of &2, might be too close to zero. We therefore

suggest using the following trimmed version:

2

52, = max(6Z,, c).

Since &2},,) converges weakly to o*(r), and we have assumed that o(r) > ¢,
&2nr Will converge weakly to o%(r) as well.

We can now define the adaptive least squares estimator.
n -1 n
fa ~—2 N ~ -2
57?. = z Opi Tnily; Z Opni Tnilni | -
1=1 1=1

Theorem 7 /n (,@f; — ﬂ) = J1G,.

Theorem 7 shows that the adaptive estimator achieves the same asymp-
totic distribution as the generalized least squares estimator. We give special

cases in the following results.
Corollary 3 If B(-) is independent of Sq,, then
JG, = / N (0,7;%) dP (J.),

where P(.) is the probability measure over the distribution of J,.

Corollary 4 Ifo*(r) and Q(r) have degenerate probability distributions (that

is, are deterministic functions), then J, is a constant matriz and

J71G, = N(0,771).

24
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The general properties of the asymptotic distributions are quite similar
to those obtained for the least squares estimator in section 3.3. When, and
only when, the asymptotic variance processes are deterministic, the limiting
distribution of the adaptive GLS estimator is multivariate normal. Mixture
normality is obtained under the strong assumption of independence of B
from Sq,, which we cannot expect to generally hold. In the general case, the
limiting distribution is not a mixture of normals, even though the estimator is
asymptotically equivalent to the true GLS estimator. This lack of normality
occurs if either the variance of the regression error or the covariance matrix of

the regressor innovations is endogeneously related to the partial sum process

B,..
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5 Conclusions

It is probably the case that most applied time series analysts pay insufficient
attention to the long-run properties of the second moments of their data.
Some attempt to reduce the extent of residual heteroskedasticity by data
transformation, but few pay any attention to the second moment properties
of their regressors. The implicit assumption, of course, has been that such
properties do not really matter. As the distributional theory of this paper
shows, however, the long-run properties of the second moment properties
of both the regression error and the regressors matter for the large sample
distribution of estimators. If the asymptotic variance processes are not exo-
geneous in the particular sense made precise in section 3.3, the asymptotic
distributions of the OLS and GLS estimators are not mixtures of normals,
so conventional inference procedures are not justified.

The major lesson of this paper, therefore, is that empirical researchers
should pay more attention to these properties of their data. It is not exactly
clear how this should be done, but visual examination of time series plots of
the data might be a useful first step.

When the regression error has a conditional variance which displays long-
run non-stationarity, OLS estimation is not efficient. Feasible GLS techinques
are available, one of which is outlined here, which allow for the conditional
variance to be approximated by a weighted average of the squared residuals.
Such techniques do not require explicit modeling of the variance process but
can lead to potentially major gains in estimation efficiency.

Unfortunately, conventional inference procedures rely upon asymptotic
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mixture normality, and this only arises in the restrictive case in which the
asymptotic variance processes are exogeneous to the stationary part of the
variables. Generalized least squares techniques cannot eliminate this prob-
lem. Methods to deal with this situation are currently unknown, and would

be an interesting subject for future research.
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6 Mathematical Proofs

Proof of Theorem 1: We first show that

1 & 1)
-\7_7; Z; (kz: Ak (Dm - Dni—k) eni-—k) ZniOni —p O, (8)
1= =0

which holds if (3°52 o Agv/7 (Dni — Dhnizk) €ni-k) 2ni0ni is uniformly integrable.
(See, for instance, Theorem 2.2 of Hall and Heyde (1980)). Indeed, by
Minkowski’s inequality, double application of Holder’s inequality, the fact

that ||eni—k2nil|, = 1, and assumptions 4 and 3,

;

o0 k
<D 1A YS “ VRAD, i jenikZniOni
k=0 7=1

L

A0 (Dyi — Drick) 6m'—k> ZpiOni

i
=)

49/(3¢+2)

49/(3g+2)
0 k

<D A D VR | ADuiz j0nill g g4y eni-knill,
k=0 1=1

< k};()k Ak Vi max | A Duill max [|onilly, < oo, (9)

uniformly in 7. Since 4¢/(3¢ + 2) > 1 under assumption 4, the array 1s uni-
formly integrable and (8) is established.
Second, by Theorem 2.1 of Hansen (1992), which is a special case of
Theorem 4.6 of Kurtz and Protter (1991),
——1—7; }TL: ivec(Dpi)omi = /01 dB(s) vec(D(s)) " o(s)”. (10)

i=1
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Combining (8) and (10), we find

n

no o
Z Lnilni = 7 Z Z k-Dm'—keni—kzniani

Z Aanieni—kzniani + OP(]')

n; 1 k=0

1 n oo}
1=

Ly
Vn iz

= Ln i O, vec(Dpi)on: + 0,(1) = /01 dB(s) vec(D(s)) o(s)”. B

1=1

Z (znie;i_k ® Ak) vec(Dyi)on: + 0,(1)

1 k=0

Proof of Lemma 1: Expression (6) for Mg, is not particularly amenable

to linear analysis, but the work becomes easier by vectorizing the expression:

me; = vec(M) = D (4; ® Aj) vec(vni—jv

=0

A°(L) vec(vnvh;)  (11)

m—J)

where

=S (4; ® AL
7=0

A°(L) is a standard linear operator, to which we can apply the Beveridge-

Nelson decomposition:

A%(L) = A°(1) — (1 — L)A%(L)

where
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ALy =3 ALY
7=0

and

o0

A?= 3 (A, @A)

s=j+1

For a recent exposition of the Beveridge-Nelson decomposition, see Phillips

and Solo (1992). We can rewrite (11) as

m2. = A%(1) vec(vnivl;) — (1 — L)wp;,
where
wni = AY(L) vec(vavl).

Summing over (12) we obtain

1& 1 1
0
- d “mi, == g A°(1) vec(vnivl;) + —Wno = —Wrn.

=1

By the triangle inequality, unlformly in 1,

E Iwnzl - < Z ‘AOI E ’vnz-—] 'n.z-—]!

o0
E vec(vnim ]vm_]

<CY Y ARAISCY S AL <CZJIAI<oo

J=0s=j+1 J=0s=5+1

where C' is defined in assumption 1. Thus by Markov s inequality
7—1‘ |wn0 — w,m| —p 0.
Further,
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(13)

(15)

(16)



e, 1e, 1 1
—Zvnivni = "Z Um‘vm' - Q’n,i) -+ '—ZQM' = / Q(s)ds =
n i=1 n =1 n i=1 0

since {vnvl; — Qni, Sni} is a uniformly integrable martingale difference array.

Together with (14) and (16) this yields

1< oo
=y " ml == ZAO ) vec(vnivh;)+0,(1) = A%(1) vec (M) = vec (Z AjMA;)
n =1 n 7=0
which completes the proof. O
Proof of Lemma 2: Vectorizing M?;, we obtain
mfu- = VeC.]Wb Z Z ]+L®A vm'_j_k®vm~_j) = Z Ak(L)(v,-_j_k(X)v;_j)
=175=0 k=1

where

[o.e]

Z J+k®A

A Beveridge-Nelson decomposition on A¥(L) for each k yields

AR(L) = A*(1) - (1 - L)A*(L) (17)
where
AX(L) = fj AL,
and



o0

Af = 37 (Akgs © Ay).

s=j+1

Applying the decomposed filter (17) to m?; yields

Mg = i = (1 = L)Ans (18)

where

oQ

i = 3 AF(1)(Vnick @ Uni)

k=1
and

= Z /ik(L)(vi_k &® ’U,’).
k=1
Summing over (18) we obtain

n

13, 1 1 1
_E .—_E ni + =Ano — —Ann. 19
n i i n g n'™ (19)

1=1

First, note by the triangle inequality, for all 7,

E\u|=E

i A1) (0o @ i)

oo
Z ’ ‘E |vm—— k—j ® vm—_yl

Mg "M8

0 oo
<X
k=1j=0 s=j

1Al < © (Zy 14; I) (i 4]) < o

0

[ Akt @ As| [[vni-k-jll; l[0ni-jll5

1

+

uMg
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Thus by Markov’s inequality,
1
~ |Ano + Ann| —5 0. (20)
Second, by Minkowski’s inequality,

nill, 2 < D2 JAFD] Iloniok @ vaill, o < C 0D |Ajael 145, (20)
k=1

i=0

2
and thus |7,;| is uniformly integrable (since p/2 > 1). Since {9, Sni} is also

a martingale difference array, this implies

1 n
— ni 0. 22
n ; Nni —p ( )

(19), (20) and (22) combine to yield the desired result. O

Proof of Theorem 2: Summing over (5), we obtain

> it = =3 Mib >0 M+ =3 MY
= =1 1=1 =1

1=1

1
n

The result is immediate from Lemmas 1 and 2. O

Proof of Theorem 3. Theorems 1, 2, assumption 3 and the continuous

mapping theorem complete the proof. O
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Proof of Theorem 4. We can rewrite the matrix process B as
-5 B 6 4

where the By(-) are independent Brownian motions each with covariance

matrix I,,. We then have

/01 dB(r) vec(D(r)")o (r)” = /01 kij: (dBi(r) ® Ag)vec(D(r)")o (r)”

i / D(r) o(r)"dBx(r). (23)

For each k, conditional upon Sq,, the vectors fy D(r)~o~(r)dBi(r) are in-

dependently normally distributed with mean zero and covariance matrix

[ D=(s)D~(s)(07(s))%ds = f; Q(s)o?(s)ds. Thus the sum in (23) is condi-

tionally normal with mean zero and conditional covariance matrix 332 Ax fo 02A} =

S. Hence the limit variate J~'G is conditionally normal with covariance ma-
trix J-1SJ~1. Unconditionally, the distribution is therefore a mixtures of

normals over this random covariance matrix. O

The following results will be useful in the proofs of Theorems 5 and 6.

Lemma 3 . If X, = X(r) € C[0,1], and N = Bn* where B < co and
0<a<l,then

max |z\m+] — Xni| =5 0.
i<n, j<

Proof of Lemma 3. Since X(r) lies in C[0,1], X, converges weakly in

the uniform metric, and therefore must be tight in that metric. This implies
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that for all € > 0 and 5 > 0, there exists a § > 0 and an integer no such that

for all n > ny,

i<n, j<[én

P ( max ]IXm-Jrj - Xpi| > e) <.

See, for example, Billingsley (1968, p. 55). For any 6, however, we can find a
ny sufficiently large such that for all n > ny, N = Bn* < [én] (since a < 1).
Thus for all n > max(ng,ny),
‘,r . 4 . P 7 . < 3 > . R fni
i max Xy — X < max | Xnidj — Xnil

and thus

i<n, j< i<n, j<[6n)

P ( max | Xiv; — Xui| > e) <P ( max | Xpiy; — Xni] > 6) <.

Since € and 7 are arbitrary, the proof is complete. O

Lemma 4 If X,,,) = X(r) € C[0,1], and X,; > ¢ > 0, then

1 1 0
max - | =
i<n -Xni Xni—l i
Proof of Lemma 4:
1 1 KXni — Xnic1
- -2
max - = maX|————| < ¢ “max | X,; — X,i-1| =, 0
isn Xni Xni—l i<n Xni—ani i<n | I P

by Lemma 3. O

Proof of Theorem 5.
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Step 1: % n o hitzax!; = Jyn. The proof follows those of Lemmas 1 and
2. Using the notation defined in their proofs,

1

Yo hilwaa, = L YohiMy+ 1 o hiiM+ L > hMY
n n i=1 n =1 n =1

=1

Using equation (12),

vec (l > h;}]\lg,-) _1 > hitme,
Nzt n =1

= -1— Z h;}AO(l) vec (Vniv);) — 1 Z RZH1 — L)wy;
n i=1 n

1< 1 1 1
:Aol o ]_l "ill' - A ]—1 ni —h3} 'n'_"'_l nn
(1) vec <n; v vm) + n; (zm)w +nhnlw 0 nhnnw ,
(24)
where A (h;}) = 5= — - and wy; is defined in (13). We now examine

each term on the right-hand-side of (24).

First,

1 & 1E& 1 &
-1 o ~1 L -1 L )
- § :hni Unily; = E :hni Qm § :h’ni (Q’m vmvni)
i=1 iz n

n.- i=1

n 1
- %Zh;}ﬂni to,(1)= [ hr)70(r)dr (25)
=1 0
where the second equality uses the fact that {h;} (R — vaiv!)),Sni} is a
uniformly integrable MDA.
Second,

lZA (B wni ——

ni hni—l

1 n
=2 lwnil 2,0 (26)

i=1

< max
13

<n n
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by Lemma 4 and the fact that

E Z lwns| < maXE |wai] < o0
nr’l

by (15).
Third,

1

1
< =
T ecn

1
“hZtwe — =h wn,
ln nl n

(lwnol + |wnn|) —p 0 (27)

since E (|wno| + |Wnxa|) is uniformly bounded by (15). Equations (24), (25),
(26), and (27) together yield

vec ( Zh e, > = A%(1) vec (/: h(r)"lﬂ(r)dr>
i:: (Ax ® Ag) vec (/01 h(?")_lﬂ(r)dr)

= vec (g A ( /0 h‘19> A;) = vec(Jy) .

It remains to show that L Y2 ~1M?; is asymptotically negligible. Using
(18) we find
vec <l > h;}]\lﬁi> _ 1 SThitmb = = Do kil (i — Adn)
n i==1 n i=1 n =1

_ 1 Lmapmt 1 -1
== ; Bt + — ; Ahzf A+ = (bt hao = hogpadan) - (28)
First, since {nni, Syi} is a uniformly integrable MDA (as shown in (21))

s0 is {h i, Sni}, and thus
1 n
= Z hi i =5 0. (29)
n =1
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Second,

ZA} Il < max | -— — h ZI)\m
an n'l"'
< 2 max |hni — hnio1] - O(1) -, 0 (30)

by Lemma 4 and the fact that

E Z | Ani] < maxE |Ani] < o0

i=1

as shown by (21).
Third,

= (b hwo = Bk o)

by (21). Equations (28), (29), (30), and (31) together demonstrate that
1<

Ly hpi MY, —, 0. This completes the first step.

1
< =7 (Anol + [Annl) =5 0 (31)

Step 2: \/— Yy hy '2pituni = Gu. The proof follows that of Theorem 1.
First, note that

(Z Arv/n (Dni — Dri—i) eni—k) Z0iOni
k=0

by (9). Thus this array is uniformly integrable and

h;il (Z‘Ak\/ﬁ(Dni - Dni—k) eni-—-k) ZniOng

49/(3¢+2)

< o0
49/(3¢+2)

o0

\/LH Sohg} (}: Ak (Dni = Drii) 6m’—k> ZniOni —p 0, (32)
=1 :

k=0
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Therefore

1 n 1 n oo
% Z} h;il.’lfniuni = ﬁ Zl kZ Akh'r—l.ianie’ni-—kzniani + Op(l)
= i=1 k=0

= _\;—H- i hl @l vee( Dyi)on: + 0p(1) = /01 h(s)"'dB(s) vec(D(s)) o(s)”.

The Theorem follows from steps 1 and 2 and the continuous mapping theo-

rem. O

Proof of Theorem 6. We start by showing that

N

. 2 2
Z Wn (uni—j - Um'—j)
§=0

By Burkholder’s inequality for martingale differences (see Hall and Heyde
(1980), p- 23),

]\1]21?%(” —, 0. (33)

P

max F
N<i<n

(34)

N

.2 2
Z Wnj (Um'—j - Um'—j)
=0

p

<n max F
N<ikn

N
.2 2
E Wnj (um'—j - Um'-j)

j=0

N 2
2 2 2

Z W5 (uni—j - Jni—j)

i=0

where K = 187 [p®/(p — 1)]’/*. The last term can be bounded using Minkowski’s

p/2

< Kn max E
N<i<n

inequality by




Now by Minkowski’s inequality, the Rao-Blackwell theorem, and assumption

, o

uniformly in ¢ and n. Further, by assumption 7, ap/2 > 1, so

2 2
Up; = Opy

UQ-

TLlp

E

e

)” < 9 [[un]| < 00
p) = 2» ’

N p/2
" (Z wij) = 1 (O(L/N))"'* = O(n'==712) = o(1)

This establishes that (34) converges to zero as n — oo, which implies (33)
by Markov’s inequality.

Next, note that by the triangle inequality and Lemma 3

N
U Zlvn] m 7 Z ( nz ])

max
N<i<n

= max
N<1.<n

o2, <  max

e ni=g| = i<n, j<N

N
w max
Z: nJ N<i<n

Next, we show that

max U Zw _
N<ikn njthni g

Since 2, — 1, = —2unity(B — ) + (§ — BYaialy( — B), we have

, 0. (36)

(“m'-j - u72u'—j)

A . 2|1
= 2 WnjtniejTois| [VA(B = B)| + V(B = B)| | = 30 wnini-jzni s -
=0 7=0

Now ‘ﬁ(ﬁ—ﬂ)' = 0,(1) and maXi|%Z§V=ownjwni-jw;i_j| = Op,(N/n) =

0p(1). Further, since {w,juni—jzni—;} is a MDA, by a derivation similar to
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that to show (33), we can show that max;

\/“ Z i=0 WnjUni—j Ty ,_]l —p 0. (36)
follows, and together with (33) and (35) establishes that

A2 2 :
82X |G — 0| =5 0. (37)
Finally, note that
52— ol | = ~2 2.
i e
< |62y — o2 10— 2l —,0 (38)

by (37) and Lemma 3. (37) and (38) imply that

&TQL[TLT] = a?z[nr] + OP(]') = 0.2(,,.),
completing the proof. O

Proof of Theorem 7: As discussed in the text, the adjusted variance
estimator satisfies 67,1 = ¢*(r). The conditions of Theorem 5 are nearly
applicable, except that the array &2; is not adapted to Sy for i < N. A

review of the proof shows that this is only used for the convergence of the

numerator: \/-Zl L ontxiun; = G,. The discrepancy only involves the

term

Z O 2 iU, (39)

Fix some n > 0. We can then find some § > 0 such that F tf(f o~ 1dB’' vec D‘l <
n. Yet for large enough n, N = Bn® < én. Thus

1
Zo Tnillni E Ol Tnitini

1—1

- F

/ o~ 1dB'vecD™| <
0
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Since 7 is arbitrary, the discrepancy term (39) is asymptotically negligible.

The conditions of Theorem 5 are satisfied and the proof is complete. O
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