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ABSTRACT

Many economic models in the fields of public finance, location theory, and choice
under uncertainty involve characteristic nonconvexities in either preferences or production
sets for some types of commodities. One useful way to attack such nonconvexities is to
employ the convexifying effect of large numbers of agents on demand for a finite number of
commodities. The alternative proposed here relies on the convexifying effect of large
numbers of commodities rather than agents. Sufficient substitutability and a large number
of commodities can be used to replace some convexity assumptions. Existence of an
equilibrium and the first welfare theorem are proved using Zame’s existence theorem and
Lyapunov’s theorem as the key tools.
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I. Introduction

In many economic contexts, nonconvexities in preferences or technology arise
naturally. These nonconvexities create well — known problems with the existence of
an equilibrium. One useful way to attack such problems is to use the convexifying
effect of large numbers of agents when there is a finite number of commodities.
However, this method might not be available in some situations. For instance, there
might be an infinity of commodities generated by the location, time, or state —
dependence of commodities and preferences, so that these convexification arguments
might not work. Another possibility is that the number of commodities grows with
the number of agents, for example when there are externalities or public goods and
personalized commodity markets. Finally, there are the problems discussed in
Berliant (1985b) with the foundations of models having a continuum of consumers
and land. In this paper, we show that equilibria might exist in these various
contexts due to the convexifying effect of a large number of commodities. In this
sense, our work can be viewed as dual to the large number of agents story told in
the work of Hildenbrand (1974).

We will allow nonconvexities in preferences of any consumer, or alternatively,
any producer, but not in both the consumption and production sides of the economy
simultaneously. For the sake of brevity, we discuss in this paper only nonconvexities
in preferences; the case of nonconvexities in production can be covered in an
analogous manner. Consider a consumer who has non—convex preferences (made
precise in the next section) over a continuous set of commodities T. For these
commodities, it is assumed that there is sufficient substitutability in both the
preferences of this non—convex consumer and production of some producer. Standard
consumers and producers satisfying convexity restrictions can also be accommodated
in the same economy with the same commodity space. These assumptions are made

precise by specializing the framework of Zame (1987). In particular, our assumptions



on (non—convex) preferences and production sets have a hedonic interpretation. The
commodities over which preferences are nonconvex are mapped into their
characteristics. Preferences and technologies satisfy the usual convexity assumptions
over these characteristics and the remaining (convex) commodities. The
nonconvexities that we allow are introduced in the hedonic map from the nonconvex
commodities to their characteristics. Heckman and Scheinkman (1987) is an example
of a model with infinitely many inputs (in their case, labor supplied by different
workers) where production depends on the characteristics of those inputs. They
assume a linear map between inputs and characteristics. Our model allows for more
general hedonic technologies.

For other examples of nonconvexities we refer to the public finance literature;
see, for example, Baumol (1972), Starrett (1972), and Khan and Vohra (1987). Note
that our results are more concerned with nonconvexities in isoquants and preferences
than with increasing returns. However, our result does cover certain kinds of
increasing returns and demonstrates the existence of a true competitive equilibrium.
This is in contrast to the marginal cost pricing literature, where the notion of
equilibrium merely requires firms to satisfy the first order conditions for profit
maximization but not necessarily to choose a production plan that maximizes profits.
The assumptions we use also have an expected utility interpretation, so that traders
who prefer extreme over average lotteries can be accommodated.

The proofs of the existence of an equilibrium and of the first welfare theorem
are straightforward applications of Zame’s existence theorem and Lyapunov’s theorem.
For brevity, the only case considered here is that of nonconvexities in preferences.
An analogous proof will work when there are similar nonconvexities in production.
The existence proof begins by defining an artificial economy with piecewise linear
utility for the nonconvex commodities. An extreme point of the set of equilibrium

allocations is shown to be an equilibrium of the original economy. The moral of our



story is that sufficient substitutability and a large number of commodities can be
used to replace some convexity assumptions.

The next section describes our model. Section III contains the statement of our
existence theorem and its proof. Section IV concludes with a discussion of our

assumptions and the potential extensions of our results.



II. The Model

Our focus in this paper is not to generalize existence theorems in convex
economies with topological vector spaces as commodity spaces, but rather to examine
existence of equilibrium with nonconvexities in such economies. For this reason, we
wish to specialize the framework so that we can prove theorems.

We use the basic framework of Zame (1987) with some further assumptions.
First, we define L = (Lp)k x L, where 1 < p < o, k is a finite integer, LP has the
norm topology, and L is a normed lattice. Then L is a normed lattice with

non-negative orthant L, , which is assumed to be the consumption set for each

+)
consumer. We use x, y and z to denote generic elements of L + When we wish to
A

decompose x € L into its two basic components, we write x = (xA,xB), where x° €
(Lp)k and x© € L. Let the domain of functions in (Lp)k be given by T, and let t
be a generic element of T. T will represent the set of commodities over which
preferences can be nonconvex. We postulate existence of a o—algebra on T, call it J
so that we can discuss measurability. The measures on T will be nonatomic. Let q
be such that 1/p + 1/q = 1.

There are several possible interpretations of the elements in the consumption set

L,. The set T could represent a set of differentiated commodities. Then xA would

+
give the consumption of each of these commodities, which could be different in k

different locations, states of nature or time periods. A natural situation where

nonconvexities occur would be when T represents a set of indivisible commodities. If

A

k were equal to the number of consumers then x*° could represent personalized

commodities in the context of externalities. Alternatively, T could represent

A can be interpreted as a

continuous time, states of nature or locations. Then x
continuous—time consumption path, the state-contingent consumption or the

location—specific consumption of k ordinary commodities.



There are N consumers, indexed by i, where N is a finite integer. There are M
firms, indexed by j, where M > 1 is a finite integer. Consumer i has an endowment

eieL+

N
land X ﬂi. = 1 for all j. The preferences of consumer i will be given by a strict
i=1

while the profit share of consumer i in firm j is given by 0ij with 0 ¢ 0ij <

preference correspondence Pi: L 4 2L+. The production set of firm j is called Yj C

L.

An allocation is given by an N + M - tuple [(xi),(yj)] where x; € L, for all i

N N M
and y. € Y. for all j; the allocation is feasible if¥ x, =Y e + ¥ y. An
b i=1 ! i=1'  j=179

equilibrium is an N + M + 1 - tuple [r,(xi),(yj)] where 7 is a non-zero continuous

linear functional on L and [(xi),(yj)] is a feasible allocation such that ﬂ(yj) = max

M

{7r(y"]) | y:]- € Yj}’ m(x;) < n(e;) +j£1l9ij7r(yj) for each i, and if x € L with x’ ¢
M

P.(x;), then n(x’) > n(e;) + Bijﬂ(yj). An equilibrium allocation is an allocation
=1

[(xi),(yj)] such that there exists 7 that makes [w,(xi),(yj)] an equilibrium. A Pareto
optimum is a feasible allocation [(x;),(y;)] such that there is no other feasible
allocation [(x{),(y{)] such that x{ € P.(x;) for all i.

The economy is said to be irreducible if whenever i # i’ and [(xi)’(yj)] is a
feasible allocation, then there is a vector z in L such that z < € and X +z¢€
Pi(xi).

Next we proceed to list the assumptions that distinguish our framework from
that of Zame (1987), aside from the particular form of L.

On the consumption side, we assume that for each consumer i, either Pi satisfies
all of the assumptions of Zame (1987)!, or i is a non—convex consumer, which means

that consumer i has a complete preorder represented by a utility function of the

In particular, the Standard Assumptions on p. 1080 and the assumptions used in
Theorem 1 on p. 1090.



form:

u(x) = £( b, A0),1) dmpyen, (o)1) dmg, x5)
T T

where fi: IRfo_, 4 R is continuous, quasi-concave, and non—decreasing in its first C
arguments (given a fixed argument C+1); h cis 2 measurable function mapping from
RExT into R that is continuous in its first k arguments for each fixed t and, for

. . k .
almost every t, satisfies sup {limsup h (a_,t)/lla |l | {a }p_; € R, I11:1:)1 la ll = o}

- )
< w; and m, is a nonatomic, positive measure on (T,J for each c. Notice that hc
need mot possess any concavity properties. We assume that the preferences induced
A B
(

by u; are locally non-satiated in L:Vx=(x"x ) € L+, V ¢ > 0, there exists EB

¢ L, with 5(%) > u(x) and [x%] < ¢ where ¥ = (x*x).2 Note that if we
want the hC functions to differ across consumers, we can simply include all of them
in 1,...,C and let the dependence of the utility functions on some of the functions h c
be trivial.

When the h o are convex these assumptions allow non—convex preferences.
Extremes can be preferred to averages. So consumers may prefer to concentrate their
consumption on particular commodities, at particular times, in particular states of
nature or locations depending on the interpretation of T. The indifference curves
describing trade—offs between commodities indexed by T, and between those
commodities indexed by T and those in fJ, can appear to be badly behaved. Note
that the functional form of u; can be given a hedonic interpretation, in which each

integral aggregates some characteristic of a commodity bundle. The nonconvexities

we allow arise in the hedonic map from commodities to characteristics and we require

2Alternatively, we could assume that fi is increasing in its first C arguments and hc
is increasing in its first argument for each i and c. This would place assumptions

on preferences over (Lp)k rather than preferences over L. We could not simply
assume local nonsatiation for preferences, since those preferences generated by the
"artificial" economy below do not necessarily inherit this property.



characteristics to be additive across the index t. Finally, note that externalities and
personalized commodities can be handled by having an h, depend only on the
coordinates of x‘?‘(t) that are associated with an externality (with k=N).

On the production side, we assume that if there is a non-convex consumer, the

production set of at least one firm (firm 1) is of the form:

A A B *
Yl ={yel| (fﬂl(t)'y (t) d)\l,...,JrﬂG(t)-y (t) d)‘G’ y)E Yl}
. T T
where Y, is a given closed, convex subset of RCxi, containing 0; ﬂg € (Lq)k Vg

and A g is a nonatomic measure for each g. For other producers (j > 1) we assume
that Yj is a convex subset of L containing 0.

The essential property of this assumption is that if there are commodities over
which preferences are non—convex then there is a linear technology (Yl) over these
commodities. For example, suppose T is a set of differentiated commodities with G
=k =1 and YI = 0. Then Y1 represents a constant returns technology with
B,(t)/B,(t") being the marginal rate of transformation between commodities t and t’.
Another way of interpreting the technology described by Y, is that production
depends on G characteristics and the commodities in i, where the characteristics are
additive across the T-indexed non-convex commodities.

For example, suppose that housing density (per unit area of land) yA (t) can be
produced at each point teT with inputs yB that must be allocated to G tasks (e.g.
time spent building walls). The interpretation of ﬂg(t)-yA(t) would be the amount
of task g (in terms of density per unit area) that is needed to produce housing
density (per unit area) yA(t). The densities are integrated over an area to obtain
total inputs and outputs. The production set YI describes the technological
relationship between the inputs yB and the amount of each task that can be
accomplished. For example, if yB represents total labor time then YI might be

defined by the constraint that the G integrals sum to this total time. On the



A

consumer side of the model, we can employ a hedonic interpretation: x™ is the

amount of housing per unit area (if k > 1 there could be several housing styles), and

A to characteristics, such as square feet of bedroom space per unit of

h maps x
housing area for the particular style. Other interpretations of the model can be
constructed, but this should always be done carefully. See, for instance, the relevant
examples of Jones (1984).

In the following, the roles of the special forms of production sets and utility
functions can be interchanged without altering the proofs much. Hence, we could
just as easily cover the case when the hedonic map for producers is nonconcave, and
the hedonic map for consumers has a linear form.

As mentioned previously, our interest is in existence of equilibrium with
nonconvexities. Thus, we alter Zame’s (1987) Main Theorem in that we relax the
convexity/concavity assumptions, but we strengthen other assumptions. In particular,
the assumptions about the existence and form of a utility function as well as the
form of production are strengthened. Since we have postulated little about the form
of the utility function acting on the well-behaved commodities in L as well as how
production acts on i, we must impose the same assumptions as Zame does in order
to prove that an equilibrium exists.

As in Zame (1987), aside from the norm topology, we need a topology 7 on L
that makes the feasible consumption and production sets compact. The most
convenient topology to impose on L for this purpose depends on the particular space

employed. For the space (Lp)k, we shall explicitly use the Mackey topology for the
topology 7] For the space L, we shall leave the choice of the topology open for

purposes of flexibility. Our prototypical model is when L is an LP or Euclidean
space, and the topologies that are most suited to these spaces are discussed in Zame

(1987, section 4). As this issue is not our focus here we shall simply assume that
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there is an appropriate topology, Tg, ON L. Obviously, we impose the product
topology 7 = 7x7, on L = (Lp)kx L.

We use the norm topology on our commodity space L in order to be able to
define the notions of extreme desirability and bounded marginal efficiency of
production. They are needed for Zame’s theorem. As these assumptions are not the

focus of this paper, we do not dwell on this point.
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III. Results

Theorem: Let L = (Lp)k x L be a normed lattice
satisfying the assumptions of Section II. Let 7 be a
Hausdorff vector space topology on L which is weaker
than the norm topology, and such that: (1) the feasible
consumption and production sets are compact in the
topology T, (2) each order interval in L is compact in
the topology 7, (3) for each nonconvex consumer i3, u,

is continuous in the norm topology and fi is
upper-semicontinuous in the Euclidean x Tq topology, (4)
for each j the production set Yj is closed in the

topology .
In addition, assume that for each i there is a
N
vector v, with 0 < v, < ¥ e, and a relatively open
i=1

subset W, of L N which contains the feasible consumption
set such that v, is extremely desirable (see Zame (1987,
p. 1086)) for P, on W;. Assume also that the marginal

efficiency of production is bounded (see Zame (1987, pp.
1088-1089)). Finally, if the economy is irreducible, then
there exists an equilibrium.

Proof: We set up an artificial economy as follows. For W C REFL gt co(W)
denote the convex hull of W. Define:

Graph (1) = {(2,b) | 2 € K, b € B, b = h (at), 2 > 0},

for a 2 0, b (at) =sup {r e R | (ay) € co(Graph (t))},

u(x) = fi(le(xA(t),t) dml,...,fEC(xA(t),t) dm,, xB) for each non—convex
T T
consumer i.
Since hc is continuous in its first argument and sup {limsup h c(an,t)/llan” |
N-mo
k

{a dnoq ¢ R, IIILT lajll = o} < o as., h (at) < » as. Next we must check the

standard assumptions of Zame (1987, p. 1080) for the artificial economy. First, L "

3See footnote 1 concerning other consumers.
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is (norm) closed, convex, and e €L + for each i. Second, it is easy to see that
Hc(-,t) is continuous a.s.(m ), and consequently that u; is continuous in the norm
topology. By definition, Hc(-,t) is concave for each ¢ and t a.s., so since fi is
quasi—concave and nondecreasing in its first C components, ﬁi is quasi—concave.
Local non-satiation has been assumed. The profit shares satisfy the usual conditions.
Finally, Yj is (norm) closed and convex, and 0 € Yj'

Given our assumptions, it is easy to verify that the artificial economy satisfies
the conditions of Zame (1987, Theorem 1) and therefore has an (artificial)
equilibrium ﬁ,(il),(§l)] The remainder of the proof proceeds in a fashion similar to
Berliant (19852). Fix an equilibrium [7,(%)),(7))], and let E(7) = CHAK:
(LD Nx(P)kM | [a(xf;,z?),(yf}i?)] is an equilibrium.} # 0. Notice that E(7) is
a closed and therefore Mackey compact subset of (L_I:_)kNx(Lp)kM since 7 is a
continuous linear functional, Yj is closed in the 7 topology, and u, is upper
semi—continuous in the 7 topology on L. It is easy to see that E(m) is also a
convex subset of (L;I:_)kN X Lp)kM. The Krein—Milman theorem (see Rudin (1973, p.
70)) tells us that a compact, convex set in L is the closed, convex hull of its
extreme points; so E(7) has an extreme point. The next step is to show that any
extreme point of E(7) has the property that for all c, hc(i‘?‘(t),t) = Hc(i"?(t),t), $0
w(x) = y(x;) for any consumer i. |

If this is not the case, then there is a consumer i and a ¢ such that hc(i‘?‘(t),t)
< Hc(i?(t),t) for t € D, where m C(D) > 0. The next step is to show that there
exists a set W C D, m (W) > 0, and points z;,z, € (Lp)k, 2y # 2o, with z;(t) =
2g(t) = 0 for t € T\W as., (1/2)-2,(t) + (1/2)-25(t) = X;(t) for t € W as. and
Ec(i‘?(t),t) = (1/2)-Hc(z1(t),t) + (1/2)-Hc(z2(t),t) for t € W a.s. By definition of
Hc, a.s.(t) there exist {(wlll,...,wgn)}zzl (where Wg € (Li)k for all d and n) and

by

) ag = 1) such that

{(alll,...,aﬁ .)}i—l (where ag € Li for all d and n, for all n
n d=1
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n n
(t) ad wd, k (x (t),t) - d ad -h (wd, ) < 1/n. (Note: To simplify

notation, we omit the t index in both w and «, as well as the "almost surely in t €
D" statements.) Define ad 0if d > b . Using the Banach—-Alaoglu theorem, for
each fixed d, {cvd}Il=1 is contained in a weak:.= compact set in L_‘:.
{(alll,ag,...)}ni’_f_l to be a sequence in the product space (Li)m (with the product

Considering

topology), we can pass to a converging subsequence (without changing notation) with
limit (ay,aq,...). Now if for some d, ¢y = 1 on a set § C D with m (5) > 0, then

it must be the case that hc( (t) t) = h(x ( ),t) for t € S, a contradiction. Hence

m
for each d, oy = 1 only on a set of measure zero. Also, % ay = 1, so there
d=1

exists d and V € 2 such that og(t) > 0 for t € V, m (V) > 0. For some ¢ > 0,
there exists W C V, m (W) > 0, with 1-¢ > oF(t) > € as. (t € W). Let a = ¢,

and let zlll(t) = a%(t)-w%(t)/a for t € W, z?(t) = 0 otherwise. Let zg(t) Ed?’d

n :

ad(t)-wg(t)/[ka] for t € W, zg(t) = 0 otherwise. Now {zrll}nz1 and {zg}nil are

norm bounded sequences in (Lp)k (for otherwise ||3E‘?|| is infinite), so by the Banach
*

Alaoglu theorem, we can pass to weak convergent subsequences (without changing

notation) with limits z; and z,.

Without loss of generality, suppose a < 1/2. Let zj = 2a-z; + (1-20)-2,, and

let z5 = zy. Then z] # zg, with z1(t) = z5(t) = 0 for t € T\W a.s., and
(1/2)-2{(t) + (1/2)-z5(t) = i";.\(t) for t € W a.ss. and Hc(i‘?(t),t) = (1/2)-h (21(t).t)
+ (1/2)-h [(z5(t),t) for t € W a.s. A symmetric argument works for o > 1/2.
Then z{ and 2 have the desired properties.

Define a bounded, additive set function g on (T, by p(Z) = ?(lz-i‘?). Next

we show that u is a nonatomic measure on (T,J.4 The argument to show that p is

countably additive is parallel to the proof in Bewley (1972, Theorem 2). If u is not

4This part of the proof need only be used if p =
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countably additive on T, then there exists an increasing sequence of sets Fj € Jsuch

® ®
that V j, u(F.) < w( U F) — ¢, where u(T) > ¢ > 0. Let E.=F. U(T\ U F),
j g=1 8 J J g=1 §

where U E, =T and \ means set-theoretic subtraction. So V j, p(Ej) < iT) - e
s 1

Let v f (t)

x“i&(t)-lE'(t) € (Lp)k and v, (v xB) + ev/ m(y;) € L, where v, is
J

the extremely desirable vector. Then ?(vj) ¢ m(x;), and for large j, u u(v ) > u(x,),
a contradiction, so u is a measure. Next, suppose that y has an atom at t € T.
Hence p({t'}) > 0. Let vA(t) = T0(t) for t # , vA() 2 0. Lev v = (WA 30) +
p,({t*})/ () vy, Then n(v) = m(x) but u(v) > y(x), a contradiction.

Notice next that the integrals {fﬁl(z’ (t)t) dmy,..., fHC(z’ (t),t)
dm; [ B (2(t),t) dmy,..., [B(zg(t),t) dmg; [8,()-25() a2, f Bglt) 21
dAG;fﬁl(t)-z2(t) dA, fﬁG(t) zy(t) dAg}, along with p, form a finite set of
nonatomic measures on (T,9. In particular, they are nonatomic when restricted to
the o-algebra of measurable sets contained in W, (W, #).

Using Lyapunov’s theorem on the vector measure, there are disjoint sets V,V’ €

#such that u(V) = u(V’) = (1/2)-p(W), J'E (21(t)t) dm, = J B (a1(t),t) dm =

\Y \'4
(1/2)- J B (z1(t),t) dm, for each ¢, J'B (z(t)t) dm, = JTE (2(t),t) dm
A \Y% \'4
r‘ / —
(1/2)- J B (z5(t),t) dm_ for each c, j ﬁ (t)-z j ﬂ )-z1(t) dAg =
(‘ _ (‘ ’ —
(1/2)- | ﬂg(t -21(t) dAg for each g, J ﬁg (t)-z5(t) d,\g = J ﬂg(t)-z2(t) dAg =
A \'4
(1/2)- J ﬁ ) d)\ for each g. Now we can construct two allocations that

yield the equilibrium allocation as a convex combination. Let x € (Lp)

(
A fort ¢ W, £h() = 2j(1) it € V, 23() = z5(t) if t € V', Let % = (xA
A

Let the new production plan of firm 1 be 5’1 = (5,1}5]13 ), where y’i‘ = yA + x -

E‘? All other agents get the same bundle or production plan in this new allocation

) =
B,
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(), 6] Let X3 € (WP, %5(0) = &} for ¢ ¢ W, %§(0) = 2500 if ¢ € V, H(0)

1
=z(t)if t € V. LetX (5"(?,35113) Let the new production plan of firm 1 be ¥,

= (?‘?5113), where ?f‘i‘ = ?’i‘ + 5“(‘? - “?‘. All other agents get the same bundle or

production plan in this new allocation [(X;),(¥;)] as in the equilibrium allocation
[(ii),(ij)]. Given the form of firm 1’s production set, both §; and ¥y, are in the
production set since y,; is. Notice that for consumer i, u(x) = 5(%) = ﬁi(?ci),
mx;) = m(%;) = 7zr'(?'ci), and profits are the same under all 3 production plans for each
producer. The material balance conditions also hold for all three allocations. Hence,
all three are equilibrium allocations with respect to prices 7. Finally, [(ii),(§j)] =
1/2'[(5%):(5’1)] + 1/2'[(§i)’(3~ri)]’ [(il):(&l)] # [(;Cl);(g’l)] Hence [(}_{1)’(%)] is not an
extreme point of E(7), a contradiction. So the hypothesis is false, and any extreme
point of E(7) has the property that for any consumer i, ui(ii) = ﬁi(ii).

Finally, we claim that [7,(X),(7)], where [(zf;‘*),(yf;*)] is an extreme point of

E(7), is an equilibrium for the original economy. For each consumer i, any bundle

x’ with w(x’) > y(x;) also has y(x’) > y(x) > u(x) = u(x), so m(x’) > (e;)
M
+ 3 6 j'ﬁﬁj). Feasibility and profit maximization follow from the fact that
=1
['1_r,(1_ci),(§r'j)] is an equilibrium for the artificial economy.
Q.E.D.

Finally, notice that by standard arguments any equilibrium allocation of an

economy satisfying the assumptions of section II can be shown to be Pareto optimal.
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IV. Conclusion — Discussion and Potential Extensions

We have shown that sufficient substitutability and a large number of
commodities can be used to alter or replace some convexity assumptions. This
provides a method dual to the continuum (of agent) models for dealing with the
problems created by nonconvexities in preferences and technologies. The hedonic
interpretation of some of our assumptions might make our model useful for various
kinds of applications.

It would be desirable to consider formally the large, finite economies that
approximate our continuum of commodities model. This might yield more insight
into how the convexifying effect of a large number of commodities works. We would
expect that the Shapley-Folkman theorem could be used to obtain approximate
equilibria for the finite economies.

Note that one case in which our assumption might be reasonable is when the set
T represents a set of indivisible commodities. These will generally be the same for
all agents. One would want each indivisible commodity to be consumed by exactly

one person, and this happens in any equilibrium of such a model.
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