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1. Introduction

Sample selection models have dominated much of the literature in microeconometrics. Heckman’s
(1976, 1979) two-step estimation procedure and its variants have routinely been adopted in almost every
empirical study that involves selection bias (Maddala (1983), Amemiya (1985), Greene (1990)). In a
series of articles beginning with an empirical investigation on the demand for medical care from the Rand
Health Insurance Study, Duan et al. (1983, 1984, 1985) and Manning, Duan, and Rogers (1987) offer
by far the strongest criticisms against the sample selection model. They contend that "the selection models
are intrinsically flawed because they have to rely on untestable assumptions and have poor statistical and
numerical properties" and therefore they "may be inappropriate for any applications involving either
actual or potential outcomes” (Duan et al. 1984). They propose a two-part non-selection model as an
alternative and argue that it is much better than the sample selection model. Their ardent stand against
the sample selection model has inevitably and predictably provoked some intense debates. In an attempt
to defend the sample selection model, Hay and Olsen (1984) argue that the two-part model is built on
some unusual assumptions and that it can be nested in the sample selection model. By constructing a
counter-example, Duan et al. (1984) show that Hay and Olsen’s arguments are erroneous. Perplexed by
these exchanges, Maddala (1985a, 1985b) tries to sort out the different issues raised in Hay and Olsen
(1984) and Duan et al. (1984). However, Duan et al. (1985) reject much of Maddala’s analysis and
respond that from a policy perspective, their gxchanges with Hay and Olsen and Maddala "are much ado
about nothing." Clearly, the debates have yet to be settled.

The origin of the two-part model can at least be traced back to Goldberger (1964) who labels it
the twin linear probability approach. Cragg (1971), who appears to be the first to use the term "two-part

model," discusses several of its variants.! Researchers associated with the Rand Corporation in the

! Neither Goldberger (1964) nor Cragg (1971) is mentioned in Duan et al. (1983, 1984, 1985) and
Manning, Duan, and Rogers (1987).



seventies and the early eighties make extensive uses of the two-part model in their empirical work (e.g.,
Manning et al. (1981, 1984, 1985), Newhouse et al. (1981)). Although the term "two-part model" is
never mentioned, the model has actually been frequently used in numerous applied works.? In these
studies, ordinary least squares estimates obtained from regressions that omit the inverse Mills’ ratio,
which are usually reported along with Heckman’s two-step estimates for comparison purposes, can be
interpreted as the estimates of the second part of the two-part model. Given the widespread uses of the
two-part and the sample selection models in empirical work, and the strong claims by Duan et al. (1984)
that the sample selection model is intrinsically flawed, the debates between advocates of the two models
should not be overlooked.

While earlier comparisons between the sample selection and thé two-part models focus primarily
on theoretical issues, recent investigations have turned to Monte Carlo simulation experiments. Hay, Leu,
and Rohrer (1987) simulate a data set from the 1981 Population of Switzerland Survey and use a variety
of sample sizes, true model parameter values, and error term distributions to compare the performance
of the two-part and the sample selection models. They find that the two-part model performs at least as
well as the sample selection model in terms of mean prediction bias and mean squared prediction error,
and significantly outperforms the sample selection model in terms of parameter squared error. Although
Hay has criticized the two-part model in an earlier theoretical study (Hay and Olsen 1984), he and his
associates (Leu and Rohrer) have to admit that their Monte Carlo evidence lends some support to the
claims in Duan et al. (1982) and that the two-part model appears to be a more robust estimator than the
sample selection model. In a different Monte Carlo investigation, Manning, Duan, and Rogers (1987) put
the two-part model to a worst-case test by assuming that the true model is a selection model. When there

are no exclusion restrictions (i.e., the same regressor appears in the choice and the level equations), they

2 See, e.g., Dudley and Montmarquette (1976), Blau and Robins (1990), Grossman and Joyce (1990),
Kostiuk (1990), McLaughlin (1991).



find that the two-part model is much better than the sample selection model in terms of mean squared
prediction error and mean prediction bias, despite the fact that the selection model is the true one. The
sample selection model performs better than the two-part model only when there are exclusion
restrictions. Manning, Duan, and Rogers (1987, p.80) conclude that their "results are convincing for the
use of the data-analytic two-part model, because we stacked the comparisons against the two-part models,
and in favor of the selection models" and they maintain that "Given the uncertainty about the true
specification, these [sample selection] models will perform poorly in practice" (p. 81).

Although their simulation designs are different, both Hay, Leu, and Rohrer (1987) and Manning,
Duan, and Rogers (1987) reach the same conclusion that the two-part model appears to dominate the
sample selection model. The main and most intriguing finding is that even when the sample selection
model is the true model, the two-part model still considerably outperforms the selection model in most
of their simulation experiments. If this striking result is robust, then it would cast doubts on the reliability
of all the empirical findings that are based on the sample selection model in the literature in the past two
decades. This is undoubtedly an important issue that deserves further investigations.

In this paper, we éonduct a different set of Monte Carlo experiments to compare the performance
of the sample selection and the two-part models. In contrast to the overwhelming rejection of the sample
selection model found in previous Monte Carlo studies, we offer a more balanced account on the merits
of the sample selection and the two-part models. We demonstrate that the failure of the sample selection
model in Manning, Duan, and Rogers can be traced back to a subtle design problem in their simulation
experiments. The underlying shortcoming lies in the way the regressors are generated. In all of their
experiments, Manning, Duan, and Rogers draw the regressors from a uniform distribution with a range
of [0,3]. When there are no exclusion restrictions, the level equation contains the same U(0,3) regressor

as the choice equation.® The inverse Mills’ ratio, which is a function of the regressor, turns out to be

3 Throughout the paper, we will use U(a,b) to denote a uniform distribution with range [a,b].
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highly correlated with the regressor because the range [0,3] is far too narrow. As a result of high
collinearity between the regressor and the inverse Mills’ ratio, the Heckman two-step estimators have
large standard errors and behave badly. We prove this point by using different measures of collinearity
(such as correlation coefficient and condition number) and by widening the range of the uniform
distribution for the regressors. We show that when the regressors are drawn from U(0,10), the
collinearity problems vanish and the sample selection model behaves much better than the two-part model.
To further substantiate our claims, we conduct several t-tests to check whether the two-part model will
be rejected when the data are generated from the sample selection model. We find that the t-tests fail to
reject the two-part model when there are collinearity problems. When collinearity is lessened, the t-tests
strongly reject the two-part model. Based on these results, we can therefore explain Manning, Duan, and
Rogers’ striking result that the two-part model outperforms the sample selection model even when the
latter is the true model. Consequently, the favorable results on the merits of the two-part model reported
in Manning, Duan, and Rogers are not reliable because their simulation setups are biased against the
sample selection model.*

Without burdening the sample selection model with collinearity problems, we generate the
regressors from U(0,10) and thereby put the two-part and the selection models to a fair competition. We
conduct a series of experiments with and without exclusion restrictions, using various true models and
different degrees of censoring. Six criteria (mean prediction bias, mean squared prediction error,
parameter bias, parameter squared error, elasticity bias, and elasticity squared error) are employed to
evaluate the estimators. Our results stand in sharp contrast to those of Hay, Leu, and Rohrer and

Manning, Duan, and Rogers. We find that when the sample selection model is the true model, it performs

4 To our surprise, we find that the design problem on the data generating process in Manning, Duan,
and Rogers is actually very common in the sample selection literature. We will show below that a number
of widely cited Monte Carlo studies on the sample selection model are also marred by the same design
problem.



substantially better than the two-part model as long as there are no collinearity problems. When the two-
part model is the true model, the sample selection model is inferior, but is still reasonably close to the
two-part model. Hence, our results do not support the contention that the two-part model dominates the
sample selection. Nor do we find that the selection model is superior to the two-part model. We believe
that a balanced view is more appropriate because each model performs well under different conditions.

In addition to resolving the debates between the sample selection and the two-part models, another
contribution of the paper is the finding that Heckman’s two-step estimator is susceptible to collinearity
problems. Although several researchers have noted that collinearity is a potential problem in the two-step
estimation method, none have investigated it systematically.® We show that little exclusion restrictions,
a high degree of censoring, a low variability among the regressors, or a large error variance in the choice
equation can all contribute to near collinearity between the regressors and the inverse Mills’ ratio,
rendering the two-step estimator ineffective. In view of this, we suggest that applied researchers should
examine whether there exists high collinearity in the level equation whenever they implement the two-step
procedure. After investigating the performance of several different measures of collinearity, we believe
that the condition number is more accurate and dependable than the other measures.

The plan of the paper is as follows. Section 2 briefly reviews the models and the estimation
methods. The designs of the Monte Carlo experiments, the criteria used to assess the estimators, and our
measures of collinearity are all described in section 3. The simulation results are reported in section 4.

Section 5 discusses the results and section 6 concludes the paper.

5 See, e.g., Heckman (1979) and Manning, Duan, and Rogers. Nelson (1984) reports some simulation
results on the adverse effects of collinearity on Heckman’s two-step estimators; however, he only
considers the efficiency of the estimators. Our focus is different from Nelson’s and our study is also
broader in that we use several measures of collinearity and employ six criteria to assess the collinearity
problems. As will be shown below, our results are notably different from Nelson’s.
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2. Review of Models and Estimation Methods

2.1 Sample Selection Model
There are many variants of the sample selection model. Following Hay, Leu, and Rohrer and
Manning, Duan, and Rogers, we focus on van de Ven and van Praag’s (1981a, 1981b) Adjusted Tobit
Model (a Type 2 Tobit model in Amemiya’s (1985) classification system):
I=xa+u, 1)
= X0 + u,, @)
In(y) = m if 1 >0,
= - if 1 <0,
where x; = (1,Xp,...,X), X = (1,Xp,...X%), @ = (0, 0p,..0,05)"s B = (B1,B...,8x)", and individual
subscripts are suppressed for simplicity. The error terms u, and u, are assumed to be independent‘ and
identically distributed bivariate normal random variables:
(u,u)” ~ N (0,D),

r = [lpa}
po o2l

Eq. (1) is the choice equation that governs whether y = Oory > 0 is observed. If I > O, then
In(y) follows the level equation given by (2). The logarithmic transformation serves to reduce the
skewness of the y variable. There are many examples in economics in which the dependent variable is
highly skewed, e.g., individual medical expenditures in van de Ven and van Praag (1981a, 1981b) and
Duan et al. (1983).

The two most popular estimation strategies for the sample selection model are Heckman’s two-
step procedure (limited-information maximum-likelihood, LIML) and maximum likelihood (full-
information maximum-likelihood, FIML). For the LIML, the first step is to obtain an estimate of o from

(1) by means of maximum likelihood on the probit model. The estimates of 8 and po are then obtained



by running a simple ordinary least squares regression on the model
In(y) = x,8 + oo\ + ¢, 3)
using the sample of positive y’s, where i = ¢Q51&)/<I>@1&) is the estimated inverse Mills’ ratio. The
estimates for p énd o are then calculated as in Manning, Duan, and Rogers. For the FIML, the likelihood
function is simply
L= L[ 1-8(x,0)]*TL &((x, 0+ p(m-,8)/0)(1-0%) *) b (m-x,5) )/,

where II, and II; denote the products over the censored and the uncensored samples, respectively.
Although the FIML estimator is more efficient than the LIML estimator, the Heckman two-step procedure
is more popular because computationally it is faster and much easier to use. Furthermore, the LIML
estimator is more robust than the FIML estimator in some circumstances. Stapleton and Young (1984)
show that the FIML estimator will no longer be consistent when there are measurement errors in the
deéendent variable of the uncensored observations. The LIML estimator, however, will remain consistent
because the measurements errors are fully absorbed into the error term (u,) of the level equation and thus

will not affect the consistency of the estimators.

2.2 Two-part Model
The two-part model separates the dependent variable into two parts: y > 0 and y|y > 0. For
the first part, it is assumed to be a standard probit model
I =Xt o, 4)
u; ~ N(,1),
wherey > 0ifI > 0, and y = 0 otherwise. For the seéond part, it is a linear model with
In(y|I > 0) = x,8 + u,, (&)
where E(u,|I > 0) = 0 and u, is not necess{arily normally distributed. The two-part model does not

involve any sample selection or selectivity bias. Eq. (5) implies that E[In(y)|I > 0] = x,8, as opposed



to E[ln(y)|I > 0] = x,8 + poX in the sample sglection model, where A = ¢(x,a)/P(x,) is the inverse
Mills’ ratio. The two-part model maintains that the level of use, given any, is conditionally independent
of the decision to use.

The fundamental d‘istinction between the sample selection and the two-part models lies in the
assumptions on the error- terms u, and u,. The sample selection model presumes that E(u;) = 0 (and
hence E(u, |1 > 0) = po)\), whereas E(u,|I > 0) = 0 is assumed in the two-part model. This is the core
of the debate between Hay and Olsen (1984) and Duan et al. (1984). Hay and Olsen (1984) argues that
for E(u,|I > 0) = 0 to be consistent with egs. (4) and (5), the two-part model imposes some unusual
assumptions on the distribution of the error terms u, and u,. Duan et al. (1984) counter their criticism
by constructing an example in which both the joint and the marginal distributions of u; and u, are
consistent with (4) and (5). In particular, Duan et al. (1984) show that u, and u, can be correlated, but
the corre]atién coefficient need not be estimated and is irrelevant for the purpose of estimating the two-
part model.®

In Maddala’s (1985a, 1985b) adjudication of the disputes between Hay and Olsen (1984) and
Duan et al. (1984), he points out that the two sides are talking about two different types of models. He
maintains that the sample selection model deals with joint decision problems such as the decision to buy
a car and the expenditures on the car. In contrast, the two-part model is designed for sequential decision
problems such as the decision to visit a doctor and the medical expenditures. If an individual decides to
see a doctor, he puts matters in the doctor’s hands for he has little control over the costs and there may
also be unforeseen expenditures. Hencé, Maddala argues that the decision process (joint or sequential)

largely determines which model is pertinent. Nevertheless, Duan et al. (1985, p.22) dismiss Maddala’s

¢ On this part of the debate, Duan et al. (1984) are indisputably correct. In fact, one of our simulation
experiments below, which is based on the example in Duan et al. (1984), illustrates that it is possible to
generate the error terms u, and u, in a way that is consistent with (4) and (5).
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argument as "more semantic than substantive."’

Because (4) and (5) are conditionally independent, the estimation procedure for this model is
straightforward. For the probit model (4), o is estimated by maximum likelihood. For the linear model
(5), B is estimated by regressing In(y) on x, using the sample with positive observations. Fqllowing
Manning, Duan, and Rogers, we call this the naive two-part (N2P) model.

In addition to the naive two-part model, Manning, Duan, and Rogers propose a data-analytic two-
part (DA2P) model that tries to find the best specification for (5) by adding higher-order terms to the
rigﬁt-hand side of (5) and by looking for heteroskedasticity in the observed residuals. They use Mallow’s
(1973) C, rule to determine whether higher-order terms should be included into the model. For simplicity,
they only consider the second-order (squared) terms of X,. If the t statistic of a second-order term is
greater than 1.414, then the term will be included in the specification. In other words, the data-analytic
two-part model will coincide with the naive two-part model when each of the t-statistics of the second-

order terms is less than 1.414,

3. Experimental Designs, Performance Criteria, and Collinearity Measures

3.1 Experimental Designs
In our Monte Carlo experiments, we will focus on the case where there is only one regressor in
the choice and the level equations, i.e., J = K = 2. For brevity, let x;, = X, and x, = Xy, then x; =
(1,x,) and x, = (l,iz). Let 6(x,,x,) denote the theoretical correlation coefficient of x, and x,. We conduct
five experiments based on the following designs:
Design [1]: The sample selection model is the true model. The regressors are identical: X, = X, = X;

and x is drawn randomly from U(0,3). The error terms u, and u, are drawn randomly from a bivariate

7 In his rejoinder, Maddala (1985) insists that the issue is substantive and not semantic.
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normal distribution with zero means, var(u,) = 1, var(u) = 1, and p = 0.5.

Design [2]: The same as design [1] except that x is drawn from U(0,10).

Design [3]: The sample selection model is the true model. The regressors x, and x, have zero
correlation (6(x.,x,) = 0), and they are drawn independently from U(0,10). The error terms u, and u,
are drawn randomly from a bivariate normal distribution with zero means, var(u,) = 1, var(u,) = 1, and
p = 0.5,

Design [4]: The same as design [3] except that 6(x,,x;) = 0.5.°

Design [5]: The two-part model is thé true model. The regressors are identical: X, = X, = X; and x
is drawn randomly from U(0,10). The error term u, is drawn randomly from a standard normal
distribution and u,, given I > 0, is drawn from U(-1.5,1.5).°

We create 1,000 observations for each sample and perform 100 repetitions for each experiment.
In all of the experiments, we set o, = 8, = 1, and «; = f3,. Three different probabilities of a positive
outcome (I > 0) are examined: 0.75, 0.50, and 0.25. These probabilities, denoted by P, are obtained
by varying the intercept ;. It is clear from (1) and (3) that the larger the value of «,, the higher will be

P, (the probability that I > 0).% For each experiment, four estimators are considered: LIML and FIML

8 The regressors for the second case (8(x,,x) = 0.5) are created in the following way. First, we
generate two random variables w, and w, from a bivariate normal distribution with zero means, unit
variances, and correlation coefficient 0.526. Then we obtain x, and x, by setting ¥(x,) = $(w,) and
¥(x,) = ®(w,), where ®(.) denote the c.d.f. of N(0,1) and ¥(z) = z/10 is the c.d.f. of U(0,10). Then
x, and x, are uniformly distributed with a sample correlation coefficient of 0.5. Hence, accurately
speaking, 0.5 is the sample, not the theoretical, correlation coefficient of x, and x,.

 We adopt the example in Duan et al. (1984) and generate u, and u, in the following way. First we
draw (us,z) from a bivariate normal distribution with zero means, unit variances, and correlation
coefficient 0.5, i = 1,2,...,1000. For each observation i we check whether [, = x,oa + u; > 0.IfL >
0, we set F(u,) = &(z), where F(.) denote the c.d.f. of U(-1.5,1.5). If , < 0, we set u; = -°. In this
way, uy, and u, satisfy the assumptions of the two-part model.

10 When x is drawn from U(0,3), we choose o, = -0.57, -1.5, and -2.43 to obtain 25%, 50%, and
75% censoring, respectively. When x is drawn from U(0,10), we pick o, = -2.5, -5, and -7.5 to achieve
25%, 50%, and 75% censoring, respectively.
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estimators for the sample selection model, and N2P and DA2P estimators for the two-part model. !

3.2 Performance Criteria
We assess the performance of the estimators in six different ways. The first pair of performance
criteria is mean prediction bias (MPB) and mean squared prediction error (MSPE):
MPB = (1/n) It [EG)-EGD),
MSPE = (I/n) I, [EG)-EG)P,
where n = 1,000. Both criteria are used in Hay, Leu, and Rohrer and Manning, Duan, and Rogers.
Notice that we measure the prediction error of the expected untransformed unconditional outcome
E(y).”? As emphasized in van de Ven and van Praag’s (1981a, 1981b) and Duan et al. (1983, 1984,
1985), the quantity E(y) plays an important role in empirical work. For the sample selection model, it
is easy to verify with some calculations that
E(y) = [Prob( > 0)]E[exp(m)|I > 0]
= [®(x,a+p0)]exp(x,8+0%/2). ©)
The LIML and FIML estimators for E(y) are obtained by plugging the LIML and FIML estimators of
a, B, p, and ¢ into (6), respectively. For the two-part model, the expression for E(y) is simply
E(y) = [Prob( > 0)IE[exp(m)|I > 0]

= [2(x,0)][exp(x.5)]E[exp(uy)]. M

1 In Manning, Duan, and Rogers’ version of the data-analytic two-part model, they also test and
adjust for heteroskedasticity in the level equation. We do not follow this procedure for several reasons.
First, they do not indicate what test and adjustment they used. Second, they find that "Less than 10
percent of the time did the data-analytic two-part model use a heteroscedastic retransformation” (p. 79).
Third, unless one also tests and adjusts for heteroskedasticity for the LIML estimators, it does not seem
to be fair to do the procedures merely for the two-part model.

12 We have also calculated the MPB and MSPE using the conditional outcome E(y|y > 0) instead of
the unconditional outcome E(y). The simulation results are found to be very similar and therefore will
not be reported below.
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Hence, E(y) depends on u, through the retransformation factor E[exp(u,)]. If u, is assumed to be N(0,7?),
then E[exp(u,)] = 7%/2. Hence,
E@y) = [2x,0)]lexp(xB+72/2)]. ®)
If u,, given I > 0, is assumed to be U(a,b) (as in design [5]), then
Ey) = [2&,0)l[exp(xB)][exp(b)-exp(a))/ (b-2).
Instead of specifying a particular distributional form for u,, Duan et al. (1983, 1984, 1985) and Manning,
Duan, and Rogers advocate Duan’s (1983) distribution-free smearing estimator for E[exp(u,)]. Let m be
the number of observations with positive outcomes and :1“ denote the ordinary least squares residual from
(5), then the smearing estimate is giveh by s = X%, [exp(aai)]/m. Duan (1983) demonstrates that s is a
consistent nonparametric estimator of E[exp(u,)]. Thus, the N2P and DA2P estimates of E(y) are obtained
by substituting the N2P and DA2P estimates of «, 83, p, 0, and E[exp(u,)] into (7), respectively.
The second pair of performance criteria is the parameter bias (PB) and the parameter squared

error (PSE):

PB =, - B,

PSE = (8, - f,)%.
The parameter squared error is used in Hay, Leu, and Rohrer’s Monte Carlo study. We focus on 8,
because it is usually the parameter of interest in the model. Since Manning, Duan, and Rogers argue that
the parameter 8 of the sample selection and the two-part models are not comparable,”® we also examine
the elasticity bias (EB) and the elasticity squared error (ESE):

EB =1n-19,

ESE = (1- n)?,

3 Manning, Duan, and Rogers (1987, p.60) maintain that "the coefficients in the level-of-use
equations for the two models are incomparable. In the two-part model, the level-of-use equation models
the conditional distribution of the actual outcome (e.g., for those with any use). For the selection model,
the same equation models the unconditional distribution of the potential outcome."

12



where n = [9E(y)/dz][z/E(y)] for some variable z in x,. All elasticities are evaluated at the mean values
of the regressors. Apart from the quantity E(y), the elasticity # has also played a major role in empirical
work involving the two-part model; see, e.g., Manning, Blumberg, and Moulton’s (1991) recent study
on the demand for alcoholic beverages. The expression for # depends on the assumptions on x, and x,.
For the sample selection model, if z = x, = x,, then (6) implies that
1 = [0E(y)/dz][z/E(y)] = [a,A(x,a+p0) + Bolz. ®
Ifz = x, butz # x,, then
1 = Bz (10)
For the two-part model, if z = x, = x,, then (7) implies that
1 = [0E(y)/0z][z/E(Y)] = [aAxi0) + o)z, an
regardless of the distributional assumption on u,. The expression for 7 is the same as (10) when z = x,
but z # x,. Since we iterate each experiment 100 times, the numbers for MPB, MSPE, PB, PSE, EB,

and ESE reported below are the mean values out of 100 replications.

3.3 Measures of collinearity

One of the main objectives of the paper is to show that the LIML estimator for the sample
selection model is particularly vulnerable to collinearity problems. To that end we need to utilize some
measures of collinearity. It is well known that collinearity is a data problem and there is hardly a
consensus among econometricians on the best measure of collinearity. While we recognize that there may
not be a perfect diagnostic procedure for collinearity, we employ several measures to detect the problem.
The first one is simply r(xz,;\), the sample correlation coefficient of x, and i Because by design there
are only two regressors (x, and i) in the second step of the LIML in our experiments, r(xz,i) is obviously
an appropriate diagnostic measure for collinearity. Furthermore, the R? of the auxiliary regression

(regressing A against x,), which is a widely used measure of collinearity, is just [r(xz,,)\\)]2 (as there is only
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one regressor). It also follows that the variance inflation factor (VIF = (1-R?)), which is another
yardstick of collinearity suggested in the literature, has a one-to-one correspondence with [r(xz,i)]z.

The second diagnostic tool we employed is the condition number advocated by Belsley, Kuh, and
Welsch (1980). The condition number is defined as the square root of the ratio of the largest to the
smallest eigenvalue of the moment matrix X’X. As the eigenvalues are dependent on the scale of the data,
we follow Belsley, Kuh, and Welsch’s suggestion by normalizing the data matrix X to have unit column
length. Clearly, the condition number of any matrix is bounded below by one. It will attain unity when
the matrix has orthonormal columns (the perfect case). In general, the higher the condition number, the
more likely will there be collinearity problefns. Based on a series of Monte Carlo experiments, Belsley,
Kuh, and Welsch suggest that a condition number beyond 30 is indicative of collinearity problems.

In addition to using sample correlation coefficient and condition number, we also follow Belsley,
Kuh, and Welsch’s (1980, p.113) two-step diagnostic procedure. They suggest that "an appropriate means
for diagnosing degrading collinearity is the following double condition: 17 A singular value judged to have
a high condition index, and which is associated with 2* High variance-decomposition proportions for two
or more estimated regression coefficient variances."'* The number of high condition indices identifies
the number of near dependencies among the columns of the X matrix. The high variance-decomposition
proportions associated with each high condition index identify those regressors that are involved in the

corresponding near dependency.

“Lete (j = 1,2,...,K) denote the jth eigenvalue of the KxK matrix X’X (K = 3 in our regression
model) and e, = Max {e,,...,ex}. The condition index associated with the jth eigenvalue is defined as
(6mar/€)”. By definition, the largest condition index is the condition number. Let M be a KxK matrix that
diagonalizes X’X, then M'(X’X)M = D, where D is a KxK diagonal matrix with e, on the diagonal.
Consider a linear model Y = X0 + Z, with i.i.d. error terms z and Var(z) = s2. Then V(b,) =
s2X°X)" = s2MD'M’, or Var(f,) = s*Y¥.,[(my)*/e]], where M = (m,;). Then the variance-
decomposition proportion of 6, ; associated with e; is defined as [(m;)¥/e]/ L% _,[(m;)*/e;]. See Belsley,
Kuh, and Welsch (1980) for details.
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4. Simulation Results

4.1 True Model = Sample Selection Model with x, = x,

As a basis of comparison, we first run an experiment to replicate the key findings in Manning,
Duan, and Rogers. The experiment is based on design [1], which is essentially the same as the first
experiment in Manning, Duan, and Rogers, and the results are contained in Table 1. It verifies their
claims that the two-part model performs better than the selection model even though the latter is the true
model. The LIML estimator is worse than the other three estimators: the mean squared prediction errors
are substantially larger than those of the others regardless of the degree of censoring. In general, the
LIML estimators are poorer the higher the degree of censoring (the smaller the proportions of uncensored
observations). Although the LIML estimator has the smallest parameter bias, the parameter squared error,
the elasticity bias, and the elasticity squared error are all greater. than those of the N2P estimator, which
indicates that the LIML estimator is less stable and therefore less reliable than the two-part model.”

The second experiment is based on design [2] and the results are reported in Table 2. Compared
to Table 1, Table 2 gives a totally different picture. The sample selection model outperforms the two-part
model in all but one case. When P, = 0.25, the two-part model performs better in terms of MSPE, a
finding which will be explained below.

The striking differences between Table 1 and Table 2 can be explained by collinearity. Table 3
reports various measures of collinearity between the regressors in the second step of the LIML in the first

two experiments. When x is drawn from U(0,3), the absolute values of the sample correlation coefficients

are all greater than 0.95 and the condition numbers are exceedingly high for P, = 0.5 and 0.25."

15 Notice that even though the true model is the selection model, the Heckman two-step estimator
(LIML) is not unbiased. Hence one should not expect that the bias of the LIML estimator to be close to
zero.

16 One may wonder why the condition number in Table 3 (and also Table 8) is not equal to the square
root of the ratio of the largest to the smallest eigenvalue (e.g., (2.3574/0.0046)* = 22.63 # 23.036).
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Using Belsley, Kuh, and Welsch’s two-step diagnostic procedure, we find that the high condition indices
(53.708 and 155.68) are associated with the smallest eigenvalue (0.0009 and 0.0001) for P, = 0.5 and
0.25, and the corresponding high variance-decomposition proportions, all provide clear evidence that
there are collinearity problems. With such a high collinearity, the LIML estimators are unstable and hence
perform much worse than the two-part model, even though the selection model is the true model.
However, when x is drawn from U(0,10), the absolute values of the sample correlation coefficients and
the condition numbers for both P, = 0.5 and 0.75 are substantially lowered. There being no collinearity
problems, the LIML estimators behave much better than those of the two-part models. For the case P,
= .25, where the condition number reaches 64.45, collinearity problems reappear again. This explains
why the LIML estimator has a larger MSPE than the two-part model in this case.

Tables 1—‘3 indicate that collinearity problems become serious when the condition number is higher
than 20, which is lower than the threshold condition number (30) that Belsley, Kuh, and Welsch find in
their Monte Carlo studies. Table 4 shows that the degree of censoring has a dramatic impact on the
degree of collinvearity. Even when the regressor is drawn from U(0,10), the model can still suffer from
near colli‘nearity. Taking 20 as the threshold condition number, the sample must contain at least 80
percent uncensored data in order to avoid high collinearity in the U(0,3) case. For the U(0,10) case, at
least 50 percent uncensored observations are required.

Censoring increases collinearity in two ways. First, censoring reduces the number of positive
observations and hence lowers the variability of the inverse Mills’ ratio. Second, the range of the inverse
Mills’ ratio Mo, + o,x,) diminishes as censoring increases. To see this, notice that given o, = 1 and

x, ~ U(0,%) (¢ = 3 or 10), the range of A is given by [Ma; + £),M0)]. The upper bound is A(0)

The reason is that each condition number reported there is the mean of 100 condition numbers (each of
which is the square root of the ratio of the largest to the smallest eigenvalue) as there are 100 iterations.
Similarly, each eigenvalue in Table 3 is the mean of 100 eigenvalues. Hence, the mean of the condition
numbers does not exactly coincide with the square root of the ratio of the mean of the largest eigenvalues
to the mean of the smallest eigenvalues.
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because m is observed only if I = o + ax, = a; + & > 0 [see egs. (1) and (2)] and A(.) is a
decreasing function. Since a; < 0, a higher degree of censoring is achieved by a larger value of |o;].
As a result, given £, o, + £ falls as censoring (| e, |) increases. Hence, more censoring decreases the
range, and hence the variability, of A.

The poor performance of the LIML estimator stems from the highly conditioned moment matrix
in the second step of the two-step procedure. Although the FIML does not appear to depend on this
moment matrix, Tables 1 and 2 reveal that high collinearity also impairs the FIML estimator.”” In most
cases, the N2P estimator dominates the FIML estimator when collinearity is high. Hence our results do
not support Nelson’s (1984) finding that collinearity has relatively little effect on the FIML estimator and
his conclusion that the FIML should be used when collinearity is high. We believe that the N2P estimator
may be better than the FIML in these circumstances.

To compare the MSPEs across the three values of P, in Table 1, we normalize (scale) the MSPE
for each P, by taking the square root of MSPE and then dividing it by E(y). Figure 1 plots the
normalized root mean squared prediction error against the condition number. There are three distinct
clusters of data points because the ranges of the condition numbers of the three values of P, do not
overlap. From the left to the right, the clusters refer to P, = 0.75, 0.5, and 0.25, respectively. The
figure reveals that the normalized root MSPEs are roughly the same for P, = 0.75 and 0.5, but the

errors increase considerably when P, = 0.25.'® By normalizing the MSPEs from Table 2, a similar

17 As the likelihood equation for the FIML might not have a unique root, we tried many different
starting values to ensure that the weak performance of the FIML estimator was not due to the particular
starting values that we chose. Among the starting values we used were the LIML estimates and the true
parameter values, and the FIML estimates always remained virtually the same. We also estimated a Type
1 Tobit model (of which the root of the likelihood equation is unique) and still found that high collinearity
impairs the FIML estimator. These results suggest that the choice of the starting values is not the cause
of the problem.

18 Notice that a hugh outlier (156,15155) was deleted from the figure because it would dramatically
change the scale of the diagram.
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diagram is obtained as shown in Figure 2. It again indicates that the normalized root MSPEs are roughly
the same for P, = 0.75 and 0.5. The errors are in general higher when P, = 0.25. From these two
figures, one can see that the normalized root MSPEs increase appreciably only when the condition
numbers get very high.

Table 5 reports the effects of collinearity on hypothesis testing. Under the null hypothesis p =
0, a simple "asymptotic t-test" on the coefficient of ;\ can be used to test whether the sample selection
model is the true specification.’® As there are 100 replications in each experiment, the frequency of not
rejecting the null hypothesis should be close to the prescribed level of significance, given that the sample
selection is the true model. Using the 5 percent' significance level, the t-ratios in Table 5 show that, when
x is drawn from U(0,3) and P, = 0.75, the rejection frequency is only 24 percent. The rejection
frequency diminishes with the degree of censoring. When P, = 0.25, the t-test fails completely because
the null hypothesis is never réj ected. The rejection frequencies are clearly substantially below the expected
95 percent. When x is drawn from U(0,10), the rejection frequencies are higher, valthough they are still
considerably below 95 percent (especially for P, = 0.5 and 0.25). Thus, there is a considerable
divergence between the actual and the nominal sizes, although the discrepancy falls as collinearity
decreases. Only two of the six mean values of the t-ratios (column 3) are greater than 1.96 (the critical
t-value at thé 5 percent significance level), and it is no coincidence that the four cases in which the mean
t-ratios are less than 1.96 are exactly the ones with high collinearity. Therefore, high collinearity renders
the t-tests ineffective because they fail to reject the two-part model even when the true model is the

sample selection model. The lack of power of these tests manifest the harmful effects of collinearity.

19 Heckman (1979) suggests this t-test and Melino (1982) proves that the test is equivalent to the
Lagrange multiplier test and therefore has desirable asymptotic properties.

» Using Belsley, Kuh, and Welsch’s terminology, the collinearity is harmful because "it is first
degrading and then ... important tests based on the degraded estimates are considered inconclusive, for
these tests could be refined and made more trustworthy (even if the outcome is the same) when based on
better conditioned data" (p.172).
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4.2 True Model = Sample Selection Model with x; # X,

There are two different designs on the regressors in Manning, Duan, and Rogers’ experiments.
In the first design (the no-exclusion-restrictions case), x; and x, are identical and therefore perfectly
correlated. In this case, they find that the LIML estimator performs poorly. In the second design (the
exclusion-restrictions case), x, and x, are not correlated, and they find that the LIML estimator behaves
much better than the N2P and DA2P estimators. Based on these contrasting results from the two limiting
cases (6(x,,X,) = 0 and 1), they "conjecture that the LIML estimator will be less well behaved if x, and
X, are correlated. ... If this conjecture is correct, then the performance of LIML estimator may depend
on how correlated the measures are, not just the presence of exclusions” (p.74). The next two
experiments are designed to evaluate their conjecture.

Table 6 reports the simulation results based on design [3]. Similar to Manning, Duan, and
Rogers, the LIML estimator performs very well. The MSPEs of the N2P estimator are at least twice as
large as those of the LIML and FIML in all three cases. The N2P estimator is also inferior to the LIML
and FIML estimators in almost all of the other criteria, except in the case P, = 0.75 where the PB and
EB are notably smaller. In general, the FIML is slightly better than the LIML.

Table 7 describes the results based on design [4]. When x, and x, are imperfectly correlated, the
LIML and FIML estimators continue to outperform the N2P and DA2P estimators. Both Tables 6 and
7 indicate that the DA2P estimator is almost always the worst in terms of mean squared prediction error,
parameter squared error, and elasticity squared error. These two sets of experiments therefore clearly
disprove Manning, Duan, and Rogers” conjecture that the LIML estimator will not behave well if x, and
x, are correlated. Regardless of the degree of correlation between x, and x,, the LIML estimator will
perform well as long as X and X, are not highly correlated.

Table 8 shows that for both 6(x,,x,) = 0 and 0.5, the absolute values of r(xz,i), as well as the |

condition numbers, are very low. There are no signs of collinearity problems. This again verifies our
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claims that the sample selection estimators will perform well when there are no collinearity problems.
The t-tests also perform very well. Unlike the results in Table 5, Table 9 demonstrates that when there
are no collinearity problems, the t-tests on the coefficient of i are very effective. In all of the six cases,
the rejection frequencies are very close to 95 percent and the mean t-ratios are well above 1.96. The two-
part model is properly rejected when the true model is the sample selection model.

Although Nelson (1984) finds that the FIML estimator dominates the LIML estimator in terms
of efficiency, we observe that the LIML is not always inferior to the FIML when other criteria are
considered. Tables 2, 6, and 7 illustrate that the FIML is in general better than the LIML in terms of
squared errors (MPSE, PSE, ESE), but the LIML can be better than the FIML in terms of biases (MPB,

PB, and EB).

4.3 True Model = Two-part Model with x; = X,

Table 10 contains the simulation results based on design [5]. Given that the true model is the two-
part model, it is clear from Table 10 that the N2P model dominates the sample selection model in every
aspect. Nevertheless, the performance (in terms of order of magnitude) of the LIML and FIML estimators
is comparable to the N2P estimator especially for P, = 0.75 and 0.5. When the true model] is the two-
part model, the LIML estimator is expected to have larger squared errors because an irrelevant variable,
;\, has been admitted into the regression. The LIML estimator is not expected to behave well when P,
= (.25, for there exists high collinearity in the selection model (as we have seen from Table 3). Table
10 confirms these conjectures. A somewhat surprising finding is that the DA2P estimator behaves worse
than the LIML and FIML estimators in terms of PSE when P, = 0.5 and 0.25, and in terms of ESE
when P, = 0.25.

Table 11 indicates that when the two-part model is the true model, the frequency of rejecting the

null hypothesis p = 0 is very close to the prescribed 5 percent level of significance. For the three
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different values of P, the t-tests incorrectly reject the two-part model only 4, 5, and 11 times out of 100
replications. This again confirms that the t-tests are very effective when there are no collinearity problems

in the model.

5. Discussions

The results in the previous section clearly demonstrate that the merits of the two-part model have
been grossly exaggerated in the literature. We have proved that a deficient design in Manning, Duan, and
Rogers’ data generating process causes serious collinearity problems that lead to the poor performance
of the sample selection model. When the deficient design is corrected, the sample selection model clearly
dominates the two-part model when the former is the true model. In fact, Manning, Duan, and Rogers’
own findings corroborate with our argument that there is a design problem in the regressors in their
experiments. They chose a range of [0,3] for the regressors because they “tried a narrower range of 1,
but had severe numerical problems with the LIML version of the selection model" (p.65, footnote 10).
This suggests that the sample selection model experiences serious collinearity problems when the range
of the regressor is [0,1]. Had they gone further to pick a broader range than [0,3], they would have found
that their negative findings regarding the sample selection model are not robust.? Hence, the extreme
and negative remarks against the sample selection model made by Duan et al. (1983, 1984, 1985) are
obviously unwarranted and misleading. Although the sample selection model is susceptible to collinearity
problems, one cannot reject it in favor of the two-part model because of its numerical weakness. A model

is rejected if its implications are contradicted by data. Numerical problems encountered with a particular

. data set does not invalidate the model.

' We believe that Hay, Leu, and Rohrer’s (1987) negative results regarding the sample selection
model can also be explained by collinearity problems. As we do not have access to their data, we cannot
replicate their results and verify our conjecture.
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From va practical point of view, the distinction between the two-part and the sample selection
models is whether a selection-bias adjustment (adding the inverse Mills’ ratio in the normality case)
should be made. In a study using some simple truncation models, Goldberger (1983) finds that the normal
selection-bias adjustment procedure is quite sensitive to modest departures from the normality assumption
on the error term. While the bias of the normal selection-bias adjustment can be quite substantial when
the true distribution of the error term is not normal, the normal selection-bias adjustment appears to be
better than no adjustment at all. Partly based on Goldberger’s findings, Duncan (1983) extends the case
to censored (Tobit) models and recommends that given unknown error distributions, it will still be better
to include the normal selection-bias term than to drop it entirely. Our results, however, suggest that
Duncan’s recommendation is questionable because the normal selection-bias adjustment procedure may
do more harm than good. There is no selection-bias adjustment in the two-part model and we have seen
from Table 10 that when the two-part model is the true model, the LIML estimator is significantly
inferior to the N2P estimator. Hence, one should not blindly adopt the normal selection-bias adjustment
procedure in all circumstances.

In contrast to Duan et al. (1985) who argue that Maddala’s distinction between the sample
selection and the two-part models is semantic and not testable, we have shown that the two models are
testable in principle. With the null hypothesis that the two-part model is the true model, a t-test can be
used to test against the alternative hypothesis that the true model is the sample selection model. However,
the power of the test will be limited by the presence of collinearity problems, as we have seen from the
results in Table 5. Another problem with the t-test is that it is possible to find that the coefficient of i
to be significant (say, t-ratio > 2) and yet the data matrix has a high condition number. Figures 3 and
4 plot the t-ratio against the condition number for all three values of P In Figure 3, although the middle
cluster of data (i.e., when P, = 0.5) all have condition numbers higher than 40, some of the t-ratios are

larger than 2. Similarly, in Figure 4, some of the data in the right cluster (i.e., when P, = 0.25) have
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t-ratios larger than 2, even though the condition numbers are greater than 50. Hence, a t-ratio above 2
does not guarantee that the data are free of collinearity problems. The high condition numbers indicate
the presence of high collinearity and that the estimates may be very sensitive and unstable.

A high collinearity between x, and )\Qg,;) can arise in a number of ways. We have seen the case
that if x, = Xy, and x, has little variation, then x, and )\le;) will be highly collinear. A high degree of
censoring can also generate near collinearity because more censoring reduces the sample size and the
variation of i This has been shown in Table 4, where the absolute value of the sample correlation
coefficient and the condition numl')er decrease with the proportion of uncensored observations. A higher
variance of u, can also cause near collinearity because the variation of the inverse Mills’ ratio decreases
with the standard error of u,.2 In view of this drawback, we suggest that one should examine whether
there are collinearity problems whenever Heckman’s two-step procedure. is applied in empirical work.
Our experience is that a condition number above 20 is indicative of collinearity problems. This is lower
than the threshold condition number (30) suggested by Belsley, Kuh, and Welsch.

While Nelson (1984) recommends using the R? (from the regression of i against x,) to detect
collinearity, our results suggest that the condition number is a better measure of collinearity. To see this,
consider the following two cases in Table 4: (i) x ~ U(0,3) and P, = 0.9, and (ii) x ~ U(0,10) and P,
= 0.3. Although the condition number in case (i) is considerably smaller than that in case (ii) (13.63
versus 44.87), the sample correlation coefficients (the square of which are the R?s since there is only one
regressor in the model) are approximately the same (-0.9123 and -0.9157). The condition number in case
(i) does not signify collinearity problems whereas the condition number in case (ii) indicates serious
collinearity problems. In contrast, given the same sample correlation coefficient (about -0.91) in cases

(i) and (ii), one cannot tell whether there are collinearity problems. This example illustrates that the

2 When o, (standard error of u;) is not necessarily unity, the inverse Mill’s ratio is given by
A(x,a/0,). Other things being equal, the variation of x,a/o,, and hence A, decreases with o,.
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condition number is superior to the sample correlation coefficient in detecting collinearity.

Because the condition numbers reported in the tables are the averages of 100 replications, it may
be useful to examine their sample distributions. Table 12 describes some basic summary statistics of the
condition numbers. They show that the distribution of the condition numbers is fairly symmetric and
concentrated around the mean. Because the standard errors are small relative to the means, the condition
numbers are therefore reliable indicators of collinearity. In view of this and the previous results, and the
fact that condition numbers (or eigenvalues) can readily be obtained from most statistics and econometrics
softwares (such as GAUSS, SAS, SPSS), we recommend that they be used to detect collinearity.”

We believe that collinearity problems provide an additional (or alternative) explanation for the
anomalous results that many have found in their applications of the two-step procedure. For example, a
large number of empirical studies find (somewhat surprisingly) that the coefficient estimates on the
inverse Mills’ ratio are generally insignificant, contrary to what one would expect from economic theory.
Non-normality of the error terms and heteroskedasticity have often been employed to explain the
anomalies (e.g., Duncan (1983)). However, based on our Monte Carlo results, we believe that collinearity
may also be responsible for the large standard errors that give rise to the insignificance of the coefficient

estimates of the inverse Mills’ ratio.

6. Conclusion

Our results demonstrate that a biased experimental design can seriously distort the results of a
Monte Carlo study. Extensive Monte Carlo experiments are required before any reliable conclusions can
be drawn from the simulations. While we argue that there is a major shortcoming in Manning, Duan, and

Rogers’ experimental design that severely hampers their conclusions, we also recognize that our own

2 Of course, one should not indiscriminately rely on just one measure of collinearity. The condition
number is not perfect, nor are any other collinearity indices (see the discussions in Stewart (1987)).
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Monte Carlo experiments are not complete because we have not investigated other design issues. For
instance, we have not studied how the various biases and squared errors may change with the parameters
(e.g., a,, B,) of the true model and the distributional assumptions on the error terms.

As the sample selection and the two-part models perform well under different simulation setups,
we believe that a balanced view on the merits of the two models is more appropriate. The two-part model
does provide an alternative approach to the sample selection model that has dominated the literature. Each
model describes a different mode of decision making process. If the choice and the level of use decisions
are made jointly, which theoretically seems to be the case in most economic problems, the sample
selection model is the proper one to use. If the decisions are made sequentially, then the two-part model
is more appropriate.

Finally, we remark that the design problem in Manning, Duan, and Rogers is actually a pervasive
one in the sample selection literature. In most Monte Carlo studies on the sample selection model, the
designs are usually only focused on exploring the impact of different error distributions, sample sizes,
or degrees of censoring on the performance of the estimators. The role of the regressors and the data
generating process have often been ignored. We demonstrate in a separate paper (Leung and Yu, 1992)
that the ways the regressors are generated in these studies also produce collinearity problems: either the
ranges of the regressors are too narrow or the variances of the error terms are too high. For example,
Powell (1986) and Peters and Smith (1991) generate the regressors from U(-1.7,1.7), and the error terms
have unit variance. This design is clearly similar to the U(0,3) regressors in Manning, Duan, and Rogers.
Although Paarsch (1984) generates the regressors from U(0,20), the variance of the error term is 100.
With such a high standard deviation (10), the effective range of the regressor becomes [0,2].
Consequently, Heckman’s two-step estimator does not behave well in Paarsch’s simulations. Paarsch’s
results are particularly influential and héve led many to believe that Heckman’s two-step procedure is an

inferior one. Many researchers have since then adopted Paarsch’s designs and excluded Heckman’s two-
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step estimator in their Monte Carlo studies (e.g., Powell (1986), Duncan (1986), Fernandez (1986),
Moon (1989), Nawata (1990)). Hence, there are some notable misleading results in the sample selection

literature because of the inadvertent bias against Heckman’s two-step procedure.
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Table 1

Simulation Results based on Design [1]
True Model = Sample Selection Model
x; = x ~ U(0,3)

(Standard Errors in Parentheses)

Proportion of | Estimation Mean Mean Parameter | Parameter | Elasticity | Elasticity
Uncensored Method Prediction Squared Bias (PB) Squared Bias (EB) | Squared
Observations Bias Prediction Error Error
®.) (MPB) Error (PSE) (ESE)
(MSPE)
0.75 LIML 0.2383 1.7030 -0.0082 0.0326 0.0464 0.0203
(0.624) (5.677) (0.181) (0.049) (0.135) (0.050)
FIML 0.0979 0.4570 -0.0419 0.0209 0.0132 0.0079
(0.366) (0.675) (0.139) (0.041) (0.088) (0.0135)
N2P -0.0169 0.4220 -0.1714 0.0313 -0.0214 0.0059
(0.340) (0.400) (0.044) (0.015) (0.074) (0.007)
DA2P 0.0103 0.4773 -0.3083 0.1406 -0.0363 0.0066
(0.348) (0.579) (0.214) (0.171) (0.073) (0.008)
0.5 LIML 0.1420 0.8286 -0.0099 0.1451 0.0561 0.0497
(0.403) (5.289) (0.383) (0.238) 0.202) (0.150)
FIML 0.0564 0.2151 -0.1125 0.0805 0.0167 0.0511
(0.372) (1.179) (0.262) (0.141) 0.227) (0.292)
N2P 0.0065 0.0652 -0.2784 0.0806 0.0351 0.0164
(0.141) (0.071) (0.055) (0.031) (0.124) (0.022)
DA2P 0.0113 0.0750 -0.4283 0.2582 -0.0004 0.0138
(0.143) (0.104) (0.275) (0.311) (0.118) (0.020)
0.25 LIML 30.025 6.9%10° -0.0112 1.3618 0.2907 0.5351
(296.5) 6.9x10% (1.173) (2.494) (0.675) (2.491)
FIML 0.0116 0.0569 -0.1910 0.4022 0.0784 0.3204
(0.154) (0.203) (0.608) (1.879) (0.563) (2.352)
N2P 0.0082 0.0112 -0.3539 0.1352 0.0371 0.0606
(0.057) (0.016) (0.100) (0.075) (0.245) (0.098)
DA2P 0.0084 0.0136 -0.4269 0.3592 0.0112 0.0599
(0.057) (0.023) (0.423) (0.788) (0.246) (0.098)

Note: For P, = 0.25, the FIML fails to locate the .maximum of the likelihood function in one of the

iterations. Hence the FIML estimates reported in the table are based on 99 iterations of the model.
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(Standard Errors in Parentheses)

Table 2
Simulation Results based on Design [2]
True Model = Sample Selection Model
x, = x, ~ U(0,10)

Proportion of | Estimation | Mean Mean Parameter | Parameter Elasticity Elasticity
Uncensored Method Prediction Squared Bias (PB) Squared Bias (EB) Squared
Observations Bias Prediction Error Error
®.) (MPB) Error (PSE) (ESE)
(MSPE)
0.75 LIML 6.5810 4202 .4 0.00057 0.00057 0.0055 0.0130
(25.28) (6709.9) (0.024) (0.0008) (0.114) (0.0179)
FIML 6.4979 3999.2 0.00013 0.00048 0.0033 0.01128
(24.84) (6064.6) (0.022) (0.0006) (0.107) (0.0148)
N2P -14.73 5174.5 -0.0444 0.00225 -0.1562 0.0332
(22.42) (5575.1) (0.017) (0.0016) (0.094) (0.0337)
DA2P 11.376 8985.8 -0.2759 0.08605 -0.3576 0.1428
(28.33) (15773) (0.100) (0.0516) (0.123) (0.0835)
0.5 LIML 0.6207 44.031 0.00167 0.00240 0.0872 0.2772
2.317) (97.47) (0.049) (0.0042) (0.522) 0.421)
FIML 0.4999 39.933 -0.0024 0.00199 0.1114 0.2167
(2.329) (71.82) (0.045) (0.0031) (0.454) (0.344)
N2P -1.153 50.986 -0.0910 0.00918 1.0639 1.3266
(2.040) (49.78) (0.030) (0.0052) (0.443) (1.106)
DA2P 0.2696 52.055 -0.6280 0.45681 0.2496 0.4174
(2.362) (96.10) (0.251) (0.2761) (0.599) (0.638)
0.25 LIML 0.0793 0.6736 -0.0034 0.0293 0.3277 5.5860
(0.248) (1.374) (0.172) (0.0386) (2.352) (14.47)
FIML 0.0415 0.3762 -0.0353 0.0208 0.4789 5.2457
(0.208) (0.778) (0.141) (0.0309) (2.251) (13.05)
N2P -0.0269 0.3731 -0.2143 0.0493 1.4662 6.4335
(0.195) (0.402) (0.059) (0.0259) (2.080) (12.51)
DA2P -0.0070 0.3581 -0.9020 1.6406 0.1147 7.5091
(0.200) (0.414) (0.914) (2.347) (2.752) (12.87)
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Table 3
Measures of Collinearity: Designs [1] and {2]
True Model = Sample Selection Model
X, =X =X

r(x,A»

Distribution Proportion of Eigenvalue Condition Variance-decomposition Proportions
of x Uncensored Index ~
Observations Intercept X, A
U(0,3) 0.75 -0.9573 2.3574 1 0.0014 0.002 0.004
0.6381 1.9236 0.0001 0.008 0.040
0.0046 23.036% 0.9985 0.990 0.956
0.5 -0.9844 2.5665 1 0.00023 0.00037 0.001
0.4326 2.4382 0.00005 0.00260 0.013
0.0009 53.708* 0.99972 0.99703 0.987
0.25 -0.9926 2.7742 1 0.00002 0.00005 0.0001
0.2257 3.5141 0.00001 0.00079 0.0030
0.0001 155.68% 0.99997 0.99916 0.9969
U(0,10) 0.75 -0.6564 2.0638 1 0.013 0.0135 0.02484
0.9057 1.5097 0.001 0.0092 0.46675
0.0305 8.2399% 0.986 0.9773 0.50841
0.5 -0.7963 2.2272 1 0.0030 0.0029 0.02146
0.7653 1.7063 0.0007 0.0032 0.30015
0.0075 17.337* 0.9963 0.9939 0.67839
0.25 -0.9434 2.4964 1 0.00018 0.0002 0.006
0.5030 2.2310 0.00017 0.0005 0.086
0.0006 64.449% 0.99965 0.9993 0.908

Note: A condition index with an asterisk indicates that it is the condition number.
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Table 4
Effect of Censoring on Collinearity

X, =X =X
Distribution of x Proportion of (x,N Condition Number
Uncensored
Observations
U(0,3) 0.9 -0.9123 13.63
0.8 -0.9466 19.46
0.7 -0.9657 27.36
0.6 -0.9768 37.60
0.5 -0.9844 53.71
04 -0.9892 78.74
0.3 -0.9919 120.82
02 -0.9926 209.72
0.1 -0.9989 447.86
U(0,10) 0.9 -0.6241 6.04
0.8 -0.6409 7.25
0.7 -0.6791 9.33
0.6 -0.7370 12.43
0.5 -0.7963 17.34
0.4 -0.8577 26.19
0.3 -0.9157 44 .87
02 -0.9648 100.02
0.1 -0.9843 327.64
Table §
Summary Statistics of the T-ratios and Rejection Frequency: Designs [1] and [2]
Design on P, Mean Standard Skewness Kurtosis | Minimum Maximum Rejection
x; and x, Deviation Frequency
e e e
X =X, ~ 0.75 1.073 1.087 -0.064 2.769 -2.023 3.188 24
u(,3)
0.5 0.750 1.010 -0.265 3.007 -2.473 2.895 13
0.25 0.251 0.749 -0.307 2.103 -1.243 1.766 0]
X, = X ~ 0.75 3.378 1.137 0.054 3.259 -0.002 6.274 89
U(0,10)
0.5 2.669 1.044 0.147 2.332 0.292 4.970 68
0.25 1.229 0.992 0.005 2.372 -1.200 3.388 27
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xp, X, ~ U(0,10), 6(x,,x,) = 0
(Standard Errors in Parentheses)

Table 6
Simulation Results based on Design [3]
True Model = Sample Selection Model

Proportion of | Estimation Mean Mean Parameter | Parameter Elasticity | Elasticity
Uncensored Method Prediction | Squared Bias (PB) Squared Bias (EB) | Squared
Observations Bias Prediction Error Error
®.) (MPB) Error (PSE) (ESE)
(MSPE)
0.75 LIML 3.5985 2427.49 -0.00049 0.000183 -0.0025 0.00471
(17.84) (3130.5) (0.0136) (0.000257) (0.069) (0.0066)
FIML 3.5123 2373.34 -0.00058 0.000179 -0.0029 0.00462
(17.71) (3060.2) (0.0135) (0.000256) (0.068) (0.0066)
N2P 2.5682 6167.52 0.00027 0.000190 0.0014 0.00487
(18.45) (4409.6) (0.0138) (0.000261) (0.070) (0.0067)
DA2P 2.5722 6697.10 0.00038 0.001634 0.00147 0.0049
(19.23) (5188.1) (0.0406) (0.004285) (0.070) (0.0068)
0.5 LIML 0.2794 16.480 0.00039 0.0002763 0.00198 0.00711
(1.311) (22.29) (0.0167) (0.000384) (0.0847) (0.0099)
FIML 0.2579 16.002 0.00024 0.0002759 0.00120 0.00710
(1.305) (22.17) (0.0167) (0.000384) (0.0847) (0.0099)
N2P 0.2260 40.090 -0.00147 0.0002759 -0.00744 0.00709
(1.347) (33.15) (0.0166) (0.000398) (0.0843) (0.0102)
DA2P 0.2236 44.995 -0.00011 0.002320 -0.00740 0.00706
(1.451) (41.26) (0.0484) (0.006378) (0.0841) (0.0102)
0.25 LIML 0.0179 0.1186 0.000566 0.000479 0.0029 0.0123
(0.093) (0.154) (0.0220) (0.00074) (0.112) (0.019)
FIML 0.0166 0.1169 0.000127 0.000482 0.00064 0.0124
(0.092) (0.152) (0.0221) (0.00077) (0.112) (0.020)
N2P 0.0224 0.2551 -0.00478 0.000530 -0.0242 0.0136
(0.097) (0.254) (0.0226) (0.00083) (0.115) (0.021)
DA2P 0.0207 0.2685 .-0.00061 0.004627 -0.0238 0.0138
(0.099) (0.274) (0.0684) (0.0156) (0.116) 0.021)
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Xy, X3 ~ U(0,10), 0(x),x;) = 0.5
(Standard Errors in Parentheses)

Table 7
Simulation Results based on Design [4]
True Model = Sample Selection Model

Proportion of | Estimation Mean Mean Parameter | Parameter Elasticity | Elasticity
Uncensored Method Prediction | Squared Bias (PB) Squared Bias (EB) | Squared
Observations Bias Prediction Error Error
P.) (MPB) Error (PSE) (ESE)
(MSPE)
0.75 LIML 4.5801 2762.82 -0.00061 0.000173 -0.0031 0.0044
(21.49) (3535.0) (0.0132) (0.00027) (0.067) (0.007)
FIML 4.3635 2753.13 -0.00086 0.000174 -0.0043 0.0045
(21.57) (3578.4) (0.0132) (0.00027) (0.067) (0.007)
N2P 3.7209 3747.82 -0.01427 0.000373 -0.0722 0.0096
21.74) (4107.1) (0.0131) (0.00041) (0.066) (0.011)
DA2P 5.8444 4648.41 -0.02476 0.002808 -0.0749 0.0102
(22.79) (4884.0) (0.0471) (0.00516) (0.068) (0.011)
0.5 LIML 0.2247 20.3768 -0.00187 0.000252 -0.0095 0.0065
(1.733) (23.479) (0.0158) (0.00043) (0.080) (0.011)
FIML 0.2308 20.5593 -0.00172 0.000265 ‘ -0.0087 0.0068
(1.747) (24.426) (0.0163) (0.00048) (0.082) (0.012)
N2P 0.2617 31.6954 -0.0202 0.000655 -0.1023 0.0168
(1.772) (31.512) (0.0157) (0.00086) (0.080) (0.022)
DA2P 0.3126 39.5396 -0.0249 0.00505 -0.1047 0.0184
(1.908) (41.768) (0.0669) (0.0100) (0.087) (0.022)
0.25 LIML 0.0135 0.1677 -0.0031 0.00058 -0.0157 0.0147
(0.138) (0.183) (0.024) (0.00070) 0.121) (0.018)
FIML 0.0136 0.1647 -0.0024 0.00056 -0.0123 0.0145
(0.137) 0.174) (0.024) (0.00066) (0.120 (0.017)
N2P 0.0309 0.3654 -0.0251 0.00117 -0.1268 0.0299
(0.141) 0.274) (0.023) (0.00141) (0.118) (0.036)
DA2P 0.0262 0.4155 -0.0143 0.01307 -0.1177 0.0367
(0.152) (0.353) 0.114) (0.02691) (0.152) (0.042)
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Table 8

Measures of Collinearity: Designs 3 and 4

True Model = Sample Selection Model

Xy Xp ~ U(0,10)
6(x,,%5) Proportion of x,N Eigenvalue Condition Variance-decomposition Proportions
Uncensored Index -
Observations Intercept X, A
0 0.75 -0.0155 2.0857 1 0.05006 0.05035 0.0704
0.7777 1.6382 0.02182 0.03458 0.9168
2.0857 3.9068% 0.92812 0.91507 0.0128
0.5 -0.0299 2.1797 1 0.04355 0.04473 0.0753
0.6883 1.7805 0.02361 0.05545 0.88153
0.1320 4.0645% 0.93284 0.89982 0.04317
0.25 -0.0701 2.3917 1 0.03072 0.03481 0.06423
0.4930 2.2060 0.02250 0.11822 0.80370
0.1153 4.5570% 0.94678 0.84697 0.13207
0.5 0.75 -0.0155 2.0932 1 0.04917 0.04949 0.07100
0.7717 1.6473 0.02207 0.03515 0.91554
0.1352 3.9356* 0.92876 0.91536 0.01346
0.5 -0.039%4 2.1574 1 0.04453 0.04555 0.07429
0.7112 1.7427 0.02179 0.05129 0.88232
0.1315 4.0510% 0.93368 0.90316 0.04339
0.25 -0.0211 2.3796 1 0.03329 0.03687 0.06671
0.4961 2.1943 0.02793 0.11490 0.83688
0.1243 4.3765% 0.93878 0.84823 0.09641

Note: A condition index with an asterisk indicates that it is the condition number.

Table 9

Summary Statistics of the T-ratios and Rejection Frequency: Designs [3] and [4]

Design on P, Mean Standard Skewness Kurtosis | Minimum Maximum Rejection
x; and x, Deviation Frequency
]
x; ~ U@©0,10) | 0.75 4.474 1.080 0.047 3.027 1.257 6.909 99
x, ~ U(0,10)
8(x,,x;) = 0 0.5 4.409 1.152 -0.180 3.771 1.140 8.045 98
0.25 3.812 1.089 -0.003 3.375 0.441 6.440 97
x; ~ U@©,10) | 0.75 4.574 1.145 0.586 3.726 1.902 8.519 99
x, ~ U(0,10)
0(x,,%;) = 0.5 0.5 4.372 1.097 0.289 2.812 1.976 7.650 100
0.25 3.6%4 1.016 0.353 3.297 1.063 6.668 97
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True Model = Two-part Model

Table 10
Simulation Results based on Design 5

X = x, ~ U(0,10), u, ~ U(-1.5,1.5)

(Standard Errors in Parentheses)

Proportion of | Estimation | Mean Mean Parameter Parameter Elasticity Elasticity
Uncensored Method Prediction | Squared Bias (PB) Squared Bias (EB) Squared
Observations Bias Prediction Error Error
®,) (MPB) Error (PSE) (ESE)
(MSPE)
0.75 LIML 20.3178 3302.34 -0.00109 0.00034 -0.0025 0.00735
(13.84) (3346.6) (0.0186) (0.0005) (0.0862) (0.0099)
FIML 20.2447 3278.64 -0.00127 0.00034 -0.0030 0.00733
(13.83) (3220.1) (0.0186) (0.0004) (0.0860) (0.0100)
N2P 11.9245 1631.90 -0.00074 0.00018 -0.0057 0.0060
(12.14) (1776.6) (0.0135) (0.0003) (0.0774) (0.0050)
DA2P 11.2889 2033.24 0.00645 0.00260 0.0008 0.0073
(13.80) (2963.5) (0.0509) (0.0073) (0.0856) (0.0103)
0.5 LIML 2.3069 41.490 -0.00338 0.00138 0.08899 0.3343
(1.391) (46.65) (0.03716) (0.0020) (0.574) (0.507)
FIML 2.2981 41.073 -0.00385 0.00140 0.1118 0.3624
(1.383) (45.33) (0.03741) (0.0020) (0.595) (0.550)
N2P 1.5183 22.2057 -0.002359 0.00064 0.0596 0.1498
(1.219) (28.77) (0.02536) (0.0010) (0.384) (0.245)
DA2P 1.5243 24.4951 -0.004188 0.02128 0.0570 0.2177
(1.250) (31.81) (0.14654) (0.0529) (0.465) (0.385)
0.25 LIML 0.3176 0.8760 -0.0115 0.0390 0.2621 5.2400
(0.134) (0.940) (0.198) (0.059) (2.286) (8.719)
FIML 0.2825 0.7055 -0.0576 0.0398 0.3340 4.6069
(0.163) (0.648) 0.192) (0.053) (2.131) (7.332)
N2P 0.2201 0.3678 -0.0103 0.0027 0.2397 4.1699
(0.103) (0.298) (0.051) (0.004) (2.038) (8.208)
DA2P 0.2211 0.4287 -0.0178 0.4624 0.2253 5.8789
(0.108) (0.365) (0.683) (1.074) (2.426) (10.815)
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Table 11
Summary Statistics of the T-ratios and Rejection Frequency: Design [5]

Design on P, Mean Standard Skewness Kurtosis | Minimum Maximum Rejection
x, and x, Deviation Frequency
1.004 0.165 2.792 -2.063 2.676 4
0.999 0.276 2.759 -1.924 2.580 5
1.179 0.047 3.299 2.993 3.200 i1
Table 12
Summary Statistics of the Condition Numbers
Design on x, and x, P, Mean Standard Skewness Kurtosis Minimum Maximum
Deviation
x; = x, ~ U(0,3) 0.75 23.036 2.2704 0.385 3.013 17.63 29.07
0.5 53.708 4.9941 0.631 3.831 44.80 72.46
0.25 155.68 17.597 0.453 2.648 119.4 202.5
x; = x, ~ U(0,10) 0.75 8.2399 0.2920 0.043 2.264 7.542 8.927
0.5 17.337 0.8825 0.432 2.991 15.59 19.81
0.25 64.44% 5.326 0.203 2.661 51.67 77.92
x, ~ U(0,10) 0.75 3.9068 0.0284 0.327 2.903 3.851 3.991
x, ~ U(0,10)
8(x,,x,) = O 0.5 4.0645 0.0405 0.341 2.923 3.988 4.200
0.25 4.5570 0.0886 0.297 2.850 4.360 4.784
x; ~ U(0,10) 0.75 3.9356 0.0271 0.246 3.784 3.862 4.015
x, ~ U(0,10)
0(x,,x,) = 0.5 0.5 4.051 0.0398 0.103 2.756 3.959 4.157
0.25 4.3765 0.0824 0.581 3.885 4.205 4.685
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