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Abstract

This paper analyzes the impact on price dynamics of price continuity-depth
requirements that restrict transaction-to-transaction price changes when some
traders possess private information about asset values. Price continuity rules
enable insiders to slowly exploit their information over time. Paradoxically,
more stringent price continuity requirements may actually improve market
efficiency indirectly by increasing insider profits and inducing more traders to
become informed at cost. We also demonstrate that the autocorrelation in
returns induced by price- continuity rules provides a rationale for the use of
technical trading rules by outsiders who effectively ‘free-ride’ off the private
information of insiders. We show that price continuity requirements can make
both insiders and outsiders better off by reducing the rents to market makers.

JEL Classification Numbers: D82, D83, G12, and G1/.



1 Introduction

In many markets, the prices set by market makers must satisfy price continuity-depth
requirements. The simplest price continuity rules place upper limits on the absolute
change in price during trading hours.! More sophisticated rules link the allowable
change in price to order flow. For example, consider the New York Stock Exchange
(NYSE). Rule 104 requires the specialist (on the NYSE a single market maker or specialist
1s assigned to each stock) to maintain a ‘fair and orderly market.” To accomplish this,
the NYSE provides price continuity-depth guidelines to its specialists that vary across
stocks and are determined by the price range and normal trading volume of the stock.?
These requirements are taken seriously and specialists who perform poorly according
to these measures risk having their stocks reassigned to others or not being assigned
more profitable stocks in the future. Usually there are special provisions for suspending
continuity requirements after a public announcement. On the NYSE for example, the
specialist can call a trading halt (with the permission of a floor official) in the event of
an impending public announcement. Such events are not infrequent; in a recent paper,
Bhattacharya and Spiegel (1990) report that there were, on average, four such suspensions
per day in the period 1974-1988.2

Price continuity rules are usually justified as a way to maintain price stability for
‘small’ investors. However, there may be a trade-off between price stability and market

efficiency. In an early analysis of the problem, Black (1971) notes:

There is a right amount of price continuity for every stock under any given
set of market conditions, and either more or less than that is undesirable.
Large changes in price caused by the arrival of new information affecting the
value of the stock are desirable. Large changes in price that are caused by a

temporary imbalance between supply and demand are undesirable.

In this paper, we examine the implications of price continuity requirements and examine

whether there exists an economic rationale for such rules.



We consider the following model: A group of traders (or insiders) possess private
information concerning the full-information value of a security. Insiders and uninformed
traders without private information trade in the market until a random date at which
time the full-information price is publicly revealed. In each period, a market maker who
acts as a trader of last resort determines the asset’s price, subject to price continuity
requirements of the types discussed above.! In this paper, we analyze the effect on
price formation and market efficiency of continuity-depth requirements that restrict price
movements when some traders possess private information.

Since informed traders are always on one side of the market, either buying or sell-
ing, their trading creates price trends when price movefients are limited by continuity
requirements. We demonstrate that outsiders can profit from the autocorrelation in prices
induced by insiders’ dynamic trading strategies by following price trends. Of course, in a
market without insiders, trading on price trends induced by pure liquidity trading leads to
systematic losses. Since outsiders are unable to distinguish perfectly between price trends
caused by insider trading and those caused by liquidity trading, their optimal trading
strategies are determined by the likelihood of their being insiders in the market. Within
a restricted class of trading rules, we determine the optimal outsiders’ trading strategy.
Thus, our model provides a rationale for the prevalence of technical trading rules. The ef-
fect of such competition from outsiders is to increase price efficiency and lower the profits
of the informed traders.

We also analyze the impact on price formation and efficiency of changes in price conti-
nuity rules. In equilibrium, if the number of insiders is fixed, price continuity requirements
do not affect the rate of convergence of prices. As a result, if private information can be
acquired at cost, more stringent price continuity requirements actually increase market
efficiency by increasing the rewards to becoming informed. However, this leads to the du-
plication of investment in the production of short-term information that will soon become
public, imposing social costs.

Finally, we analyze the optimal price continuity rule under alternative criteria for an



exchange. We demonstrate an important rationale for the existence of price continuity
rules; restrictions on price movements limit the market power of market makers who
may otherwise move prices significantly in response to order flow, thereby narrowing the
effective bid-ask spread and increasing the welfare of all investors.

The rest of the paper proceeds as follows: In Section 2 we set up the model, and
describe the strategic choices of the players. Section 3 analyzes the strategies of a mo-
nopolistic insider, and in Section 4, we analyze the multiple insider case. The analysis
is extended in Section 5 to the case where traders can acquire information at cost. In
Section 6, we discuss how these strategies are affected by competition from outsiders who
use simple trading strategies to free-ride on the autocorrelation in prices induced by in-
sider trading. In Section 7, we discuss the determination of an optimal price continuity
rule. Finally, Section 8 summarizes the paper and offers suggestions for further research.

Proofs are in the appendix.

2 The Model

2.1 The Structure of Trading

Consider the market for a single risky asset that can be traded at dates ¢ = 1,2,... , T
The security is a claim to the cash flows from a project which begins to yield revenue or
dividends at a random date 7 in the future. The dividend paid at time (¢t > 7) is denoted
by d;. We assume d; is independently drawn from a distribution with unknown mean
d > 0. The event date 7 is an integer-valued random variable; on this date the mean of
the dividend process d is publicly announced and the first (random) dividend payment is
made. The announcement is made just before trading in that period begins. As an aside,
it is useful to note that date 7 can be interpreted as the time when news of an impending
news event first becomes public (as opposed to the event day itself), allowing the market
maker to halt trading according to exchange rules. We assume that the probability that
the event occurs in the next period, given no announcements to date, is $€(0,1)5

With these assumptions, the expected value of the security is simply the expected



present value of the stochastic stream of dividends. Let r > 0 denote the risk-free rate of
interest, and denote by v the expected value of future dividends given private information
about d. It is easy to show that v = ;;% (%), so the expected value of the asset is constant
in the pre-event period.®

We turn to a formal description of the objectives and information of market partic-
ipants. The stochastic structure of the economy is common knowledge. The focus of
the paper is on the behavior of two group of traders. The first group is referred to as
insiders or informed traders and they obtain private information regarding the mean of
the dividend process, d, at time 0. Insiders are assumed to be risk-neutral. In particular,
we are interested in the question of how insiders profitab¥y exploit their information in
the pre-event epoch and the effect of their strategies om price dynamics. There are N > 1
insiders, indexed by 7 = 1,..., N. Let g;; represent the order quantity of informéd trader
¢ with the convention that ¢ > 0 denotes a trader purchase and ¢ < 0 a trader sale.

In addition to traders with private information, other agents with no private informa-
tion, referred to as outsiders or uninformed traders, also trade. There will be two classes
of uninformed traders: i) liquidity-motivated outsiders (and their trade, #;;, is a random
variable that is independent across time-periods with mean zero and variance ¢2) and
ii) strategic outsiders who trade an amount x5, at date t. The strategies we shall consider
for strategic uninformed traders will attempt to capture popular rules of thumb including
variants of technical analysis. In particular 5 will be a function of observable public
data such as the size of trade and price changes. Let z, denote the aggregate uninformed
trade at time ¢, where z > 0 (z < 0) denotes net purchase (sale) as before.”

The trading protocol follows Kyle (1985). Denote by p; the security’s price at time
t. This price is determined by a market maker or specialist, who takes the opposite side
of all transactions, on the basis of the order flow at that time, and we write p: = pe(Q),
where @y = 3, ¢t + x; is the total order flow originating from informed and uninformed
traders. Only market orders can be submitted and the specialist is required to fill all

orders. The market maker revises prices according to a known price schedule, p,(-). Since



the specialist is at an information disadvantage relative to informed traders, he suffers

expected losses from trade with these traders but profits from trades with noise traders.

2.2 Price Continuity Requirements

We assume that the price revision is linear, as in Kyle (1985): p, = p;_; + AQ,. This
rule could be viewed, following Hakansson, Beja, and Kale (1985), as a representation
of the price adjustment process in an automated trading system that does not require
dealers. Hakansson, Beja, and Kale (1985) analyze price formation under a variety of
predetermined trading rules, including linear rules. Further, Black (1992) argues that in
a dynamic equilibrium, exchanges will adopt price revision rules of the type analyzed here.
For some information structures, such as Kyle’s (1985) model, a linear price adjustment
rule arises endogenously out of the learning process of an uninformed market maker.®8 The
coefficient A > 0 summarizes the liquidity of the market, with lower values of A implying
more shares can be traded for a given price change. We define market depth as A~!, the
minimum order flow associated with a unit price change, a definition analogous to that in
Kyle (1985). When the dividend announcement is made at time 7, we assume prices adjust
to the new level implied by the release of dividend information, i.e., the market maker
calls a trading halt and revises prices while the continuity rules are suspended. Finally,
we note that our model can be used to provide insights into other types of continuity
requirements as well. In Section 5 we analyze an alternative price continuity rule where

the price adjustments are linked to past and current volume.?

2.3 Trading Strategies and Equilibrium

Suppose there are N informed traders. At time ¢, each trader submits an order g;; based on
all available information including the previous trading history (denoted by h:) generated
by past prices and quantities and the anticipation of the price (p:(Q:)) set by the specialist
given the strategies of the other traders. Let H, denote the set of histories (i.e., Hy = {h:}),

the set of all possible realizations of prices and quantities in previous trading rounds. A



strategy for an informed trader is a decision rule to select the order quantity ¢; as a
function of the particular history observed, h;. The decision rules are said to be Markov
(or history independent) if they depend only on the beginning period price, p;_;.

A vector of strategies forms a Nash equilibrium if each player’s strategy maximizes
discounted profits evaluated at date 0, conditional upon the strategies of all other players
being correctly conjectured. A vector of strategies form a sub-game perfect equilibrium if,
after each history, the continuation strategies, form a Nash equilibrium in the remaining
game. A sub-game perfect equilibrium is a Markov perfect equilibrium if the decision rules
are Markov.

In this paper we consider subgame perfect equilibria i "the trading game under a vari-
ety of scenarios. We begin with the familiar case of 2 monopolistic insider, generalize our
results to the case of competition among several insiders, and finally consider the impact

of introducing strategic outsiders who attempt to free-ride on the trading of insiders.
3 The Monopolist Insider

In this section we analyze the optimal trading strategy of a single insider in the peri-
ods preceding an information event. The market also contains liquidity-motivated noise
traders. We examine first the optimal trading sequence of the insider and the implied
price dynamics, assuming for the moment that there are no strategic uninformed traders
present in the market. We incorporate strategic outsiders into the model later on.
The initial price po is the unconditional expectation of the value of the security at

time 0. The optimization problem faced by a monopolist insider is:

. T (v— Dt )Gt

e [ 0] »
where p; = pi—y + Ag; + Azy, with probability 1 — ¢ and v with probability ¢. The ex-
pectation in (1) is taken over 7 and Z,. After 7, the security pays a liquidating dividend
and all trading ceases. Observe that the price continuity requirement on price adjustment
implies the insider’s trading problem is intertemporal in nature. If the security is under-

valued initially, insider purchases lead to price increases, lowering potential profits in the
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future. We will show that the optimal dynamic strategy is to trade a fixed proportion of
the deviation between the market price and the value of the asset.
Let V(p;-1) denote the value function corresponding to the optimization problem (1)

for any time ¢ < 7. The associated optimality equation is (using the Bellman principle):

V(pi-1) = max E{(v = pi1— Ay — Azye)q + BV (pro1 + Mgy + Azyy)] (2)
where 3 = i—:;? is the effective discount factor. It will be analytically convenient to

consider as a basic state variable the deviation of price from true value rather than the

price itself. Accordingly, define z,_; = v — p;_, as the state variable and denote by W the

associated value function. Of course, W(z,_;) = V(v — z,_,).

Proposition 1 For t < 7, the optimal trading strategy of the monopolist insider is a
linear function of the price deviation:
Gep1(2t) = 0z (3)

where 6 is inversely proportional to A. Further, the value function is:

Wiz = (Fgi0)  +26, (4

i.e., discounted profits are a quadratic function of the initial price deviation. Further,

expected prices converge geometrically to the true value of the asset:

Elz] = (a(l - ¢))'z0

where a = a(f) € (0,1) and «(B) are constants described in the appendiz. In particular,

a is independent of the continuity-depth parameter X.

Remarks: The parameter a is a metric for market efficiency since it is the rate at which
prices converge to the full information value in the pre-event period. Prices jump to
the present value of future dividends following the earnings announcement.’® Lower

values of o are associated with greater market efficiency, i.e., faster rates of convergence.



Proposition 1 shows that the continuity-depth parameter A does not effect the rate of
convergence of prices, a.

Proposition 1 forms an important benchmark case where the insider is a monopolist.
The trader’s strategy is such that the rate of price convergence is independent of market
depth. The effect on insider’s profits of market depth is determined by the amount of
initial mispricing z. If this is high, more stringent price continuity rules allow an insider
to extract larger rents by trading bigger volume (although price dynamics are unchanged
in A). If z is small, and an insider does not wish to trade much, more stringent price
continuity rules have the adverse effect of making prices insensitive to liquidity trading.
So, for large mispricing, the effect of more stringent price continuity rules (i.e., lower ) is
not to slow the rate at which private information is impounded in prices, but to increase

the informational rents of the insider.

4 Multiple Insiders

In this section, we are concerned with the analysis of price dynamics resulting from com-
petition among insiders and later on competition with outsiders.!!? Purely for notational
ease in the immediate sequel we discuss the case where N = 2. The generalization of our
results to N > 2 is straightforward (and is presented at the end of the proof of Proposition
2). Again for notational ease we ignore strategic uninformed traders in the present sec-
tion, and focus exclusively on the competition between informed traders, in the presence
of liquidity motivated noise traders.

Trader i’s best response problem, given the trading strategy of trader j, denoted by
g;(p), is:

(v — pi)gin
e 5 ?

where p; = pi_1 + A(git + gjt(pe-1)) + Az1:. As in the monopolist insider case, it is
convenient to think of trader : as the residual trader who picks the deviation of price
from fundamentals in the next period. Let z,_; = v — p;—1 be the current price deviation.

Then, writing W; for the value function for trader ¢, some algebra yields the following



Bellman equation'? for the trader:

1= 2 — Agi(2e-1) — A
Wi(sis) = mp B | MR Z 2 g (0

where 3 = (1 — ¢)/(1 + r) and z is the next period’s price deviation. Suppose now that

trader j’s strategy is a linear function of the price deviation:

CIj(Zt) =0,z , (7)

where 6; > 0. Such a strategy is motivated by the linearity of the monopolist insider’s
optimal trading strategy. We explore two elements of the analysis: the optimal trading
strategy or best response of insider ¢ as a residual trader and, secondly, the existence and
character of equilibria in linear strategies.

The following result establishes that there exists a 6= € (0, 55) such that if ; = 67,
then the best response of trader i is a linear trading rule with 6; = 8*. In this equilibrium,

prices converge geometrically to v at a rate faster than the monopolist insider case.

Proposition 2 There is a proportional trading rule 6*z for the insiders, which constitutes
a Markov- perfect equilibrium given the linear adjustment rule p; = p;_; + AQ; for the

specialist. The ezpected rate of price convergence is geometric:

Elz] = (a2(1 - 8))'z0 , (8)

where ay € (0,1) is a constant. Further, a; < a, i.e., the rate of convergence of prices is

faster with 2 traders than with a monopolist insider.

Proposition 2 describes the unique symmetric equilibrium when traders adopt linear

Markov strategies. Expected discounted profits are given by:

(=071 - 2267 3 o
Wiz) = G2 Ly o] ©)
= -,23224-13.

We discuss the relationship between the continuity-depth parameter A and the rate of

price convergence later.



5 Continuity Requirements and Market Efficiency

We now‘ investigate the variation in equilibrium behavior as the market primitives, the
number of informed traders N and the market liquidity A, change. We examine the effect
of varying (N, A) on price efficiency and the size of informational rents.

Recall that the (symmetric) equilibrium strategies are given by: each informed trader
trades 8(.V, A)[v — p,_,] at price p;_; and discounted expected profits are H—A;’\-l(v —po)? +
€(N, A) if the initial price is pp. Moreover, in the rounds before disclosure, prices converge
geometrically at the rate 1 — NAG(N,\) = a(N, A). Proposition 3 examines the effect of

changes in N and A on market efficiency and profits.

Proposition 3 In a symmetric Markov equilibrium:
1. The rate of price convergence @ is independent of market liquidity ).
2. However, a is a declining function of the number of insiders N.

3. Insiders’ profits W(zo; N, A) are decreasing (increasing) in A if the initial price de-

viation zg is greater (less) than z(A).

4. The value function W(zo; N, A) is decreasing in N for every initial price deviation

20 =V — pPo.
5. The total losses of market makers is decreasing in N.

The proposition shows that for a fixed number of informed traders, price efficiency, as
measured by «, is independent of the continuity-depth parameter . As expected, prices
are more efficient with a greater number of informed traders. An immediate corollary of
proposition 3 is that the trading proportion 6(N, )) is inversely proportional to A, i.e.,
given a more continuous price regime, in equilibrium all traders exactly offset the potential
increase in smoothing by larger volume of transactions. The intuition underlying the effect
on total profits of a change in the price continuity rule ), is similar to the monopoly case.

Consider a lowering of A. This relieves price pressure consequent upon any insider trade,

10



provided the insiders do want to trade at current prices, i.e., provided z is large. If z is
small, a lower A means that liquidity trading is less likely to make z larger; this affects
insider 7 adversely. On the other hand an increase in the number of informed traders
reduces informational rents.

In our analysis so far, we have assumed that some traders are exogenously endowed
with private information. Suppose now that traders can endogenously determine whether
or not to become informed at cost. We assume that there is a pre-game round in which the
number of insiders is determined endogenously. The payoffs to this game are determined
by insider profits in the subsequent trading rounds, which depends on the total num-
ber of traders who choose to become informed. The Nash equilibrium for the pre-game
determines the number of insiders.

Formally, suppose at time 0, a trader can become informed at cost ¢ > 0. If the
current price is p and the number of other informed traders is N — 1, then the expected

returns to becoming informed is:

Bu(p) = [T W(o-pN @) -« (10)
_ ﬂ%ﬁAw(v_p)2df(v)+E(N,A) p (11)

where f is the prior density of ¢ given public information.
Indeed, the total profits can written, using the results in the appendix, as:
W) = o) [T+ 725 ]
where g(NN) is known from Proposition 3 to be a decreasing function. Writing %(p) =
Jo°(v — p)*df(v), the number of traders who choose to acquire information is given im-
plicitly by

C
g(N*) = 5 —
Yo+ %A

Clearly the larger the expected deviation of current price from the true value, the greater
the number of informed traders. The number of insiders will also depend on the continuity-

depth parameter A, as shown by the following proposition:

11



Proposition 4 If traders can acquire information at cost, stricter price continuity-depth

requirernents (i.e., lower values of A) are associated with faster price convergence (i.e.,

with lower values of ), if and only if 2%\(531 > T-'a_s %2‘

Proposition 4 implies that more stringent price continuity rules can, in some circum-
stances, improve efficiency. At first glance, this result appears counter-intuitive. The
intuition, however, is straightforward: Lower values of \ increase the expected profits
of insiders, inducing a higher N*, and implying faster price convergence. From a policy
viewpoint this is not necessarily the best way to increase market efficiency, however, since
it induces a larger number of socially wasteful searches.

Since variations of the price continuity rule studied in this paper are also observed in
security markets, it is worth exploring the robustness of our results to such variations.
In particular, the form of the NYSE guidelines for transaction-to-transaction price move-
ments (referred to in footnote 2) suggest a price continuity rule which restricts the price
changes in the t-th round to some moving average of volume in current and immediately

preceding trading rounds. Consider a rule such as:

Pt = prot + A [%Qt—l + %Qt] ) (12)

where price change is limited by the average volume in the current and preceding round.
Clearly, (12) is equivalent to (the notationally simpler) price revision rule p, = p_; +
AM@i-1 + Q¢, where A\ = %;\ In the rest of this section we will demonstrate that our
conclusions are qualitatively unaffected by this variation. In particular, we will analyze
in detail the (notationally simpler) case of a monopolistic insider and show that the
conclusions remain unchanged. The reader can verify that the same is true for the multiple

insiders case.

The following proposition characterizes the consequent price dynamics and the in-

sider’s profits.

Proposition 5 For t < 7, the optimal trading strategy of the monopolist insider is a

linear function of the price deviation and the aggregate quantity traded in the previous

12



round:
q:(zt—l) = 91Zt—1 - (1 - 92)Qt—1, (13)

where 8, is inversely proportional to A\, whereas 6, is independent of . Further, the value

function is:
2

Wi(zi-1) =ar +b (% + )\Qf..1> +czim1 Q-1 (14)

where a, b, ¢ are constants independent of A, i.e., discounted profits are a quadratic function
of the initial price deviation and volume. Further, ezpected prices converge to the true

value of the asset at a rate which is independent of the continuity-depth parameter \.

The proposition shows that our analysis can be extended straightforwardly to more com-
plicated price continuity rules based on moving averages of volume as opposed to current
volume alone. Our basic conclusions in this more complex case are unaltered, so from this

point onward we will assume the continuity rule is a function of current volume alone.
6 Strategic Outsiders

So far, we have assumed that the only active traders in the pre-event period are insiders
and noise traders. The equilibrium strategies of the informed traders generates, as we
have seen, positive autocorrelation in returns. Rational outsiders, although uninformed,
who observe such autocorrelation may attempt to make inferences about the private
information of insiders. Unless the outsiders know the number of insiders, this inference
is non-trivial. Of course, insiders will take into account the learning strategies of outsiders
and modify their trading accordingly. Fully rational outsiders in turn will condition on
this in making inferences, leading to a complicated learning problem. In this section
we examine the effect of outsiders who attempt to free-ride on the private information of
insiders. We confine our analysis to the case where outsiders use simple trading strategies,
precisely to avoid the difficulties created by having to model intertemporal learning. The
optimal policy may well be linear given the structure of the problem.

Suppose then that some uninformed traders trade in a boundedly rational manner.

By this we simply mean that such outside traders do realize that publicly observable

13



variables as aggregate order flow and price changes contain the information known to
insiders. However they are boundedly rational in that they employ simple rules based on
such observables to determine their trades. For simplicity, we restrict our attention to the

case of a single insider.

Suppose that the outsiders look at price changes to determine their trades. In partic-

ular suppose
Ty = 6(pt — Pr-1) (15)

where ¢ is a constant. The constant § can be positive or negative; if § > 0, the strategic
uninformed traders are ‘chartists’ attempting to trade on monotonic trends. Conversely,
6 < 0 corresponds to the behavior of ‘contrarians” who h?)i)e to profit from cyclical move-
ments in prices. We also assume that § < i, a condition needed to rule out explosive
price paths. Again, we assume the market maker charges the highest permissible price
when faced with a net buy imbalance and the lowest permissible price when faced with a

net sell imbalance.

The following proposition characterizes the insider’s strategy when outsiders adopt

technical trading rules:

Proposition 6 Fort < 7, the optimal trading strategy of the monopolist insider is linear
in z:
7 (2) = 0z

1-A8

where 0 is proportional to 152, Under this strategy, prices converge geometrically to the

true value of the asset, at a rate o which is independent of 6:

Elz] = [a(l — ¢)] 2.
Further, the value function is a quadratic function of z:

22 B or A
W =klZt(1 - -z
(2) 3 A‘S)Jr1—,at21—/\<s

where a, k, and § are described in the appendiz.

14



Proposition 6 is analogous to Proposition 1. Note that the price dynamics are independent
of the outsider’s strategy.

It is clear that the aggregate informational rent that is earned by the monopolist
insider and the strategic outsider, is indexed by the rate at which the insider’s information
becomes embedded in prices. In other words, if the insider adjusts his trading in such a
way as to keep the rate of price convergence, a, constant, then the outsider’s profits are
evidently increasing in his trading intensity 6. Indeed it can be shown that the outsider’s

total profits from technical trading in the presence of an insider, is given by:

)

= e TR

+e 622, (16)

where ¢y and ¢; are positive constants. (The expression (16) is formally derived in the
appendix within the proof of Proposition 6).

A strategic outsider does not however know, for certain, whether or not there are
insiders in the market. If the observed price movement is caused by liquidity-motivated
trading alone, then chasing price trends intensely, a high positive §, results in systemati-
cally higher losses for the outsider. Indeed, in the absence of insiders, a technical trading
rule that trades é(p; — p;—1) results in expected losses in the t-th round of

)

E[Loss|No insider] = TS (

a2y, (17)

The intuition for (17) is clear: if the outsider buys when prices are rising, he is, on average,
adding to noise buying which is driving prices away from fundamentals; conversely, for
sales. Equations (16) and (17) make the tradeoffs involved in the optimal choice of é
clear. In the presence of insiders, being a strong chartist is profitable. In the absence of
insiders, being a strong contrarian is profitable. The optimal choice of § is determined by

the likelihood of an insider arriving in the market at any given time, say P. We can then

show

Proposition 7 With a linear price revision rule, there is a subgame perfect equilibrium

in the securities market in which:

15



1. The insider trades according to the linear strategy, q, = 0(6*)z;_1.

185

The strategic outsider employs an optimal technical trading rule of the type:
Ty = 6°(pr — pi-1) -

3. The implied ezpected price dynamics are identical to those of a monopolist insider

with no strategic outsiders.

4. The outsider’s trading intensity is an increasing function of the insider’s arrival

probability P.

Proposition 7 demonstrates that the optimal trade of a strategic outsider is proportional
to the price change; the constant of proportionality increases with the probability that
there is, in fact, a trader with private information. Intuitively, if the probability that an
informed trader is present is small, a strategy of the type described will create expected
losses for the technical trader as he or she follows false price trends. The proposition also
demonstrates that price dynamics under the optimal strategy for an outside investor are
the same as those when a single insider is present. Intuitively, given the known strategy
of the outsider, the insider acts as a residual trader, yielding the monopoly solution.
Having considered the implications of price continuity requirements on price dynamics
and information aggregation, we turn our attention to the question of why exchanges

would choose to impose such rules in the first place.

7 The Optimal Price Continuity Rule

In this section, we derive the optimal price continuity rule within the linear class under a
set of alternative criteria. In doing so, we provide an economic rationale for the existence
of such rules.’®  For simplicity, we restrict our attention to the base case where the
number of informed traders is exogenous and there are no strategic outsiders.’* ~We

begin with a set of possible selection criteria for the exchange, within the class of linear

rules:

16



(C1) Minimize excess volatility subject to non-negative expected discounted profits for
the specialist.

(C2) Maximize the combined expected profits of insiders and outside investors subject to
non-negative expected discounted profits for the specialist.

(C3) Maximize market liquidity (depth) subject to non-negative expected discounted
profits for the specialist.

(C4) Allow the specialist to select the continuity parameter A subject to excess price
variability being bounded by a constant, L.

Criterion (C1) is usually cited as the main reason for maintaining continuity rules.
The term ‘excess volatility’ requires further explanation.~Price movements reflect two
components: a permanent component warranted by fundamentals, and a transitory com-
ponent induced by noise trading. Attempting to minimize the former component only
reduces market efficiency and is not a viable alternative in the long run. (Actually, both
short- and long-run objectives yield the same rule, but minimizing short-run temporary
price shocks is a more natural goal.) The other selection criteria are self-explanatory,
and coincide with the stated objectives of exchanges. While criteria (C1)-(C3) impose
restrictions on the specialist directly, (C4) allows the specialist to choose the linear rule
subject to a constraint on price variability. Another reasonable criterion is to maximize
price efficiency subject to constraints on specialist profits. This objective is not included
because the rate of price convergence in our model is independent of the choice of the
continuity rule. The following proposition establishes that there exists an unique price

continuity rule satisfying all four selection criteria.

Proposition 8 There ezists an unique linear price continuity rule satisfying criteria
(C1)-(C3), and an upper bound L* such that this rule will be selected by the specialist
in accordance with (C4). Further, for L > L*, the ezpected profits of the specialist are

strictly positive and increase with L.

Remarks: Proposition 8 has two important implications: First, there exists a continuity

rule consistent with all four exchange objectives. Continuity rules can increase liquidity,
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improve price stability in the short-run, and maximize the net gains of all traders. Second,
continuity rules limit the expected profits of the specialist. Transitory order imbalances
originating from liquidity traders can cause price movements attributable to ‘bid-ask
bounce.” Price continuity requirements are usually justified as a method of reducing price
volatility that is not warranted by changes in fundamentals. However, without restrictions
of some sort on permissible price movements, a non-competitive market maker would
set raise (lower) prices when faced with excess demand (supply), thereby widening the
effective bid-ask spread and price variability. Thus, proposition 8 provides a rationale
for the existence of continuity rules in a market where dealers possess market power. In
passing, we note there may be several reasons why a spetialist system may be preferred
to a multiple dealer mechanism. Glosten (1989) shows in a single-period model that a
specialist may be able to keep markets open in situations where a competitive dealer
system fails by cross-subsidization across trade sizes. Similarly, Leach and Madhavan
(1991) show in a dynamic model that a specialist system can function where competitive

dealers fail because the specialist is able to offset the expected profits from trading in the

future against current trading losses. .

In the appendix, we prove that the optimal continuity-depth parameter is inversely
related to the standard deviation of noise trading, i.e., to o,. Intuitively, if the expected
volume of noise trading increases, maintaining price stability requires a less sensitive price
adjustment rule. Similarly, with greater noise trading, a smaller continuity parameter is

required to maintain a given level of specialist expected profits. This discussion suggests

that the optimal price continuity-depth parameter vary by security, with thickly traded

securities having more stringent continuity requirements.
8 Conclusions

In many security markets, there are institutional barriers to price movements, but there
has been little analysis of the effect of such rules on price formation. This paper ana-

lyzes the impact on price dynamics of price continuity-depth requirements that restrict
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price changes when some traders possess private information about asset values. Price
continuity rules enable insiders to slowly exploit their information over time. We show
that irrespective of the number of insiders, the rate of convergence of prices to the full-
information value is independent of the price continuity requirements since insiders adjust
their rate of trading according to the continuity requirements. Paradoxically, more strin-
gent price continuity requirements may actually improve market efficiency indirectly by
increasing insider profits and inducing more traders to become informed at cost.

Insiders’ trading strategies in the presence of price-continuity rules generate autocor-
relation in returns. This autocorrelation allows outsiders to ‘free-ride’ off the private
information of insiders by using simple technical trading rules. The effect of such compe-
tition is to increase price efficiency and reduce the expected profits of informed traders.

We analyze the exchange’s choice of a price continuity rule under alternative selection
criteria. We demonstrate an important rationale for the existence of price continuity rules;
restrictions on price movements limit the market power of market makers who may other-
wise move prices significantly in response to order flow. There exists an optimal continuity
rule that maximizes the total expected profits of traders and also minimizes transaction-
to-transaction price movements subject to a non-negativity constraint on market maker
expected profits. The optimal continuity rule is shown to vary systematically with the
expected volume of liquidity trading, with active securities subject to more stringent
requirements than thinly traded securities.

Finally, the analysis raises some interesting theoretical and empirical issues that lie
beyond the scope of this paper. First, the model suggests a positive relation between
the continuity parameter and market maker profits, given the expected volume of trad-
ing. This relation could be tested using intraday data on market maker positions such
as those used by Hasbrouck and Sofianos (1992). Second, the model implies that the
expected price change, conditional upon current information, is positively related to the
current price change. This relation could also be tested on a transaction basis using intra-

day data, but requires some care in that the effect of continuity rules may be obscured by
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other microstructure effects such as inventory control by market makers, non-trading, or
bid-ask bounce. Indeed, recent studies of intraday returns (e.g., Hasbrouck (1991)) sug-
gest significant departures from the martingale property implicit in standard asymmetric
information models. A cleaner test may be obtained by focusing on intraday returns prior
to trading suspensions. Third, the use of technical trading strategies by outsiders may
induce other forms of technical analysis. For example, suppose that no traders obtain pri-
vate information in the pre-event period. Under the technical strategy analyzed above, a
price increase triggered by noise traders leads to buying and hence future price increases,
as technical traders chase a false trend. As this event occurs with positive probability,
there is a potential profit opportunity for technical traders who pursue counter- cycli-
cal trading strategies, i.e., selling (buying) following a price increase (decrease). These
traders, who act as market makers by supplying liquidity, earn positive expected profits
in periods when there happen to be no informed traders buy systematically lose when
some traders do in fact possess private information. Thus, the pre-event period may be

characterized by unusually high volume. These are topics for future research.
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Appendix

Proof of Proposition 1

From the insider’s perspective, the price schedule takes the form:

Pt = pi-1 + Ag + Az (A.1)

The optimization problem faced by a monopolist insider is:

" (v — pr)g:
max B {Z _(TTT] ’ (A.2)

where from equation (A.l), p; = pi—1 + A¢s + Az, with probability 1 — ¢ and v with
probability ¢. Let V(p;-,) denote the value function corresponding to the optimization
problem (A.2) for any time ¢t < 7. The Bellman equation yields:

V(pe-1) = max E{(v = peor = Age = Az1e)ge + BV (pe-1 + Age + Azae)] (A.3)
where § = i—lf Rewriting (A.3) by using z = v — pi—y and W(z) = V(p;-,) we obtain:
W(z)= rngxxE (z=Ag—Az)g+ BW(z — Ag — Azy)] . (A.4)

Let y = z— Ag— Az, be the (random) price deviation that results from a trade of size ¢q by
the insider and z; by the noise traders, given a deviation of z at the start of the period.
The trader’s choice problem then is equivalent to the choice of the expected deviation
z — Ag = y conditional upon there being no information announcement. Equation (A.4)
yields:
W(z) = m;me [3} (f__;_}f,) + ﬁW(g)]

which can be simplified to

W) = max [y (1) + BEW(y - o) (A.5)

y

Note that in (A.5) the expectation is taken over z;. Let the stationary optimal policy

of the above problem be denoted by h(z). This optimal choice satisfies (provided W is

differentiable):
z —2h(z)

=2 BEW (3] = 0. (A6)
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The envelope theorem yields:

(A.7)

Consider solutions of the form W(z) = ¢ + §z2 and h(z) = az. Substituting these in
(A.6)-(A.7) yields
2(1 —2a) 4+ Bkaz =0

which upon simplification leads to

1-2a+ fka=0. (A.8)
Similarly from (A.7) we get:
a
k= T (A.9)

Equations (A.8) and (A.9) solve to yield optimal values of k and a. In particular, a little

algebra reveals that a may be derived from the following quadratic function
Ba? —2a+1=0.

The quadratic has two roots. One root yields @ > 1 and implies an expected price path
which is explosive. This clearly cannot be part of an optimal trading strategy of the insider
since it implies that he consistently buys overvalued stock and sells, in turn, undervalued

stock. Therefore, the only meaningful solution to the quadratic is:

a=—Y "7 (A.10)

Substituting all of this back into the Bellman equation (A.5) we get

o 51 )82 9_3 2 Q2 2
€+2/\z—/\a(1 )z +ﬂ€+52)‘z +ﬂ2/\/\az

which yields
1-vi- Aol
21-p8) %7

From standard arguments we then know that as a solution to the optimality equation, W

_ B a5
Z-—-l—_—TB—2A0’$—

is uniquely defined as the value function. The first order condition (A.6) is also a sufficient

condition for optimality if the maximand is concave. The only term of any consequence
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in the right hand side of (A.5) is the coefficient of y2, which is ‘37"’ — 1, and this coefficient
1s negative so that the maximization problem is in fact strictly concave. Further az is the
unique trading strategy which maximizes a risk-neutral informed trader’s expected profits
when faced with a linear price adjustment schedule operated by the specialist. From the
strict concavity of the objective in (A.5), the uniqueness of the optimal trading strategy
follows.

Recall o = h(z)/z where h(z) = z — A\¢g"(z). Here ¢*(z) is the optimal trading volume
at price deviation z. This implies that a =1 — /\9—‘-531, so that:

¢'(z) = ——z=0z, (A.11)
where: w
(1-8)-(1-8)
0= ) . (A.12)
|

Proof of Proposition 2:

We first characterize the best response of trader ¢ given that j adopts a linear strategy.

Then we discuss the equilibrium conditions. Rewriting (6) we obtain:

Wi(s) = mp [ A28 =)

+ BEW(y — Azy1)]| . (A.13)

Denote the stationary policy for this problem by h;(2). Assuming for the moment that
W; is in fact differentiable, the optimal choice must satisfy the following first-order and

envelope conditions:

(1= X6;)z — 2h(z)
A

+ BE[W/(h(z) — Az1)] =0, (A.14)

and

(1= A6;)h(z)
3 .

Consider a solution of the form, Wi(z) = £2% + ¢, h(z) = ayz. Substituting these in

(A.14)-(A.15) yields:

Wi(z) = (A.15)

(1 - X0;)z — 2a2z + BkAazz =0 (A.16)
and
(1= A6;)
A

k=

Qo .
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Then (A.16) yields:
(1= X;) —2as+ B(1 — A;)a2 =0 . (A.17)
From (A.17) it follows that:

L+ /1=(1-A;)23
a; = S0 =09) : (A.18)

Equation (A.18) suggests the possibility of cyclical behavior (i.e., a; < 0), stable mono-

tone price convergence (i.e., oy € (0,1)), or even unstable monotone explosive behavior
(i.e.,, @z > 1). We analyze the cyclical and monotone explosive cases below and show
in particular that such behavior cannot arise in equilibrium. We begin with the case:
1 —\8; € (0,1), i.e., a situation in which, in the absence™f any noise trade and trade by

2, sgn(z:) = sgn(z:-1).
Lemma 1 Suppose (1 — A8;) > 0. Then, under the best response of trader i,

1. If E[241] > 21, then Ezpy2] > Elz441]. Conversely, if E[zi41] < 2, then E[z44] <
E(2441), 1.e., the ezpected price deviation is either monotonically increasing or de-

creasing. Further, sign(z;) = sign(E[z,44]).

2. The rate of convergence of prices is:

1= 1-(1-8X) 1-yT=F
Qg = 5(1—A0J) < ﬁ = Q.

(A.19)

3. The rate of adjustment o, is decreasing in 6;.

Proof of Lemma 1:

Consider the Bellman equation (A.13). Denote the maximand by U(z,y). We will
show that U is a strictly super-modular function. (A function U(z,y) is super-modular
if, for all 2' > 2,9’ >y, U(,y') - U(2',y) > U(z,y') — U(z,y).) A sufficient condition
is Uz > 0. Note that U;; = wﬁ > 0. From strict super-modularity, a well-known
implication is that the policy function A is monotone. Then E[z:41] = h(z;) > 2, implies

that E[z¢42] = h%(z:) > h(z) = E[z441]. Hence, a3 > 0. The converse is identical and

this establishes (a) since a; > 0.
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To prove part (2), note that if a; > 1, the implied expected price path is explosive.
This implies strict losses for trader i, clearly a suboptimal strategy given the option to
not trade at all. It is easy to check, by simple but tedious calculus that a; < «, implying
faster convergence. From the expression for as, it is straightforward to check that a5 is a
decreasing function of §;, establishing part (3). g
Remark: Recall that a; = ﬂzﬁ Since h(z) = (1 — A§;)z — A\g7(z), we see that:

ooy o A =M) =gz _
g (z) = \ = 0,(0;)z

i.e., demand is a linear function of the price deviation. To complete the argument we

must show that there are linear strategies which are best responses to each other. Lemma

2 provides the basis for this result.
Lemma 2 Suppose that 1 — A0; > 0. Then:

1. The best response of trader i to trader j’s strategy is:

q; (2) = 0,(6;)z , (A.20)
where: \/
1—A(1-)6;)
6(6;) = (1_m 2 L - TR0,

2. The demand coefficient is strictly positive, i.e., 6;(6;) > 0.

3. The demand coefficient 6;(0;) is a continuous function of 8;, and satisfies the in-
equality (1 — A6;(9;)) > 0.

4. The profits are a quadratic function of price deviation:

1— 1 —pB(1 - A6;)

2)\[9

Proof of Lemma 2: For (1), Equation (A.20) is immediate from the preceding discussion.
Parts (2) and (3) are immediate. Note that a; > 0 implies that 1 — A;(4;) > 0. For

part (4), the characterization of the value function follows from (A.15) and arguments

identical to those in proposition 1. a

[§)
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To finish the proof, we now consider the case where (1 — A8;) < 0. In this case, the
expected price deviation in the next period, z(1 — Af;), is the opposite sign of the initial
deviation, and prices are cyclical or explosive. It is straightforward to demonstrate that
such price paths cannot emerge in equilibrium. In the special case where (1 — \;) = 0,
prices converge in a single step. Then, the proposition follows directly from Lemmas 1
and 2 by applying the Brouwer fixed point argument to the space [0, ] and the function
9:’(01‘)- 1 |
Remark: It is straightforward to check that the arguments for the two insider case
generalize immediately to the IV insider problem. Hence, we only state the appropriate
conclusion: there is a proportional trading rule §*z which constitutes a Markov perfect

equilibrium; the expected rate of price converge is geometric at rate oy and the profit of

each insider, in equilibrium, is given by

Wiz = (LT AV = 109)(1 = ANG) [th+_5__)‘202:| .

2A

Proof of Proposition 3
Given that (N, A)(v—p,_1) is the trading strategy of the other N —1 traders, the i-the

trader’s maximization problem as a residual trader picking next period’s price deviation

Yy, given the current price deviation z, is

(1=(N=1)A)z —y
A

max y+ BEW(§; N, A)| . (A.21)
In (A.21) and henceforth in the proof we write 8 instead of #(N,)). The first-order

condition and envelope theorem condition are the exact analogues of (A.14) and (A.15)

in the two insider case but we report them here for completeness:

(I-(N=-1)A0)z—-2y

X +BEW'(§;N,X) =0 (A.22)
W'(z) = 1= (NA_ l)wy . (A.23)

Substituting (A.23) in (A.22) and using the fact that 0z is a best response in the above
problem (i.e., that y = (1 — N)0)z), we get:

B(1— NA)> + BAO(1 — NAG)2 — (1 — NAG) + A0 = 0. (A.24)
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Write ] — NA0 = a, 1.e.. A0 = 1—53 Then.
BIN-1)a®+8a* = (N+1)a+1=0. (A.25)

Denote the function on the left hand side of (A.25), ((N, ). Elementary calculus yields
(2 = 3B(N — 1)a* + 2B8a — (N + 1). It is easy to see that this quadratic can have
at most one root in (0,1), i.e., ((NNV,-) has a single extremum in « € (0,1). Further,
G2 = 6B8(N — l)a + 28 > 0, i.e., the extremum is in fact a point at which ( attains a
minimum. Finally note that {(N,0) =1 and {(N,1) = N(8—1) < 0. So there is exactly
one a*(N) € (0,1) such that {(N,a™(N)) =0.

We have proved 1. Notice further that (;(N,a) = fa® —a < 0. Hence, N' > N

implies that a*(N') < a*(N). So 2. is proved. v

From the value function computed above, we have -
N-1 17[22 B o
“N.A) = — b= L ZEA . .
W(z; N, \) aN[aN - +NHA+1_ﬂ2 } (A.26)
By differentiating we get

g o2 22

sgnWA=sgnL_ﬁ—2——F .

3. immediately follows. Note that ay < 1, and decreasing in N, implies that the convex
combination aN—[Y—]s—l + % is decreasing in N. From this 4. follows. Finally, 5. is proved by
noting that increasing N to N + 1 leads to faster convergence than in the N trader case,
i.e., the aggregate informational rents are lower. g

Proof of Proposition 4

We have seen that the number of insiders N* who choose to become informed is given
by

o

g(N™) = - . (A.27)
2+ 15 5

[

The proposition is proved by noting that ) 4 B 32‘2‘)\ is decreasing in A if and only if

A 1-8
2¢(p) B8 a2
A2 2 1-3 PR |

Proof of Proposition 5

The price revision rule can be written as:

2y = 241 — )\(Qt-l +q + l'lt) . (A-28)
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In other words,

Elz)) = 2= MQi-1+q) (A.29)
E[Qt] = 4t

Denote, as before, z = z,_,, y = Fz,, = 7,4, and furthermore, Q@ = Q;_;. The Bellman

equation is
W(z,Q)= m;axE[(z —AQ - Ag—Az)g+ W (z — AQ — A\g — Az,9+ 1‘)] .

Again it will be more convenient to think of the insider as the residual trader who

picks the expected price deviation y. Hence,

o

W(z, Q) = max {y <—Z—3—3’A—:ﬁ> + BEW (y v Z—T—%'—’-\—Q- + :c)] . (A30)

We will investigate the following conjecture for the value function and optimal trading
strategy respectively: W(z,Q) = ag + a12* + a22Q + a3Q?* and ¢(z,Q) = 8,z — (1 — 6,)Q.
Hence, y = (1 — A8y)z — A6,Q. Substituting the conjecture, (A.30) can be rewritten as

W(z,Q) = max [y (z;y_;\_—LQ) + Bao + Bay(y* + A2a?) (A.31)

=2

((Z P+ MQ - 2(z —y)AQ + 02)] _

A2

The first-order condition from (A.31) yields, upon simplification:

(14 Bas)(z — 2y — AQ) + 28 (/\aly -2y /\Q)) —0. (A.32)

Upon substituting the conjectured trading strategy we get:

(14 Ba2)(226; — 1) +28(Aay (1 = A6,) — bra3) = 0 (A.33)
(L + Baz)(26, — 1) + 28((1 = B2)as — 0X%;) = 0. (A.34)

Furthermore, (A.31) implies (by matching coefficients and then rearranging terms)
ao(l = B) = Bo?(A\%a; — hay + as) (A.35)
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a(1=B8(1=261)°) = 61(1=21) + Basbi(1— A1) + aaf?]  (A.36)
a2(92 - 2/\0192 + /\91 - 1) = (1 - /\91)(02 - ].) (A.37)
— B[2a1(1 = A01)AB; — as(6, — 2)6,

as

T(1-81-0)p) = %(1—92))—%/3l:age—;(l——ﬁg)—}—aﬂ%]. (A.38)

Given the symmetry in the pairs of equations, (A.33)-(A.34) and (A.36)-(A.38), a
natural conjecture is that Ad; = 6, and a;A? = a3. Substituting in (A.33) and simplifying,

we get
(20, — 1) [1 + Bay — 25;’3] =0. (A.39)
Likewise (A.36) yields
as|L = B(1 = 62)*] = 620(1 — 62) + B[aaba(1 — O2)A + az] . (A.40)

In fact, suppose that a3 = b\ (and hence, a; = %) Then, (A.39) yields b = —1—‘%%“—1

Upon substituting this in (A.40) we get

(1+Ba2) (1= B(1—62)"] = (1+ Bar)B(2 - 63)

or

1-B(1-6:)" = B2—63) (A41)

(A.41) can be seen to have a solution in (0, 1), for all 8 > 3 (which we will assume is the
case). By successive substitution the values of ag, b, a;, and 8, can now be determined.
The form of the optimal trading strategy, (13), and the discounted insider profits, (14),
have therefore been established.

To see that the price convergence is independent of A, recall that E[z;] = (1—A8;)z—1—
Ab2 Q1. Since Af; is independent of A (it is equal to 6; which can be seen from (A.41)
to be independent of A) and since Qg = 0, it follow that E[z] = az and E[Q,] = %1 2.
In particular, E[z] is independent of A and E[Q,] is inversely proportional to A. By
induction it follows that E[z] is independent of A (and E[Q;] is inversely proportional to
A). The proposition is proved. i
Proof of Proposition 6
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Note that:
Pt = pt-1+ Mg + T + Tat) (A.42)
Since T3; = 8(ps — pr-1), (A.42) yields

A
Pt = pt-1 + Y (gt + z1t) - (A.43)

From (A.43) it is clear that the monopolist insider’s trade optimization is formally
identical to that treated in Proposition 1 if we interpret the market depth to be T—/\_,\&'
From this observation and Proposition 1, Proposition 6 follows.

Recall that o denotes the expected rate of price convergence with a monopolist insider.

Hence,a =1 — Té'%' since from (A.43) we get Fz, = <1 — 1—1\—%) Zi_1.

We now derive (16), the outsider’s profit when there is an insider in the market. Note
that*

U(z1) = E|(2)8(pe — pees)| + BEU(z,) .

Appropriate substitution yields:

A Ad
U(zimy) = (azt-—l Ry Iu) Y (0241 + z1¢) + BEU(%,)
2 26 2 =
= a(l - a)6zt_1 - (1———}5—)262 + ﬂEU(Zt) .

Suppose we try a solution of the form U(z;_;) = Cy + Cyz2,. Then:

A28

Cot Qi =~y

or +a(l—a)ézl, + B TG

2
Co+Cla22t2_1+Cl( A ) af,] .

Collecting terms, (A.44) yields

_ a(l-a)
Cl = T——,HQT‘S

~A262(1 4 Ba?) )

Co = ToB)I=pa) T=2eF "

That establishes (16).

Next we will derive (17). If there is no insider in the market, then the price revision

is given by

Pt = pr-1 + Az1 + z21) (A.45)
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Since z4; = 6(pt — pi-1), (A.45) yields

Pt = pt-1 + T8 (A.46)
Hence the strategic outsider’s ¢-th period returns are
E(% = pe)b(pe — pe1) = E[(5 = pic) = (Pt — pe-1)] 8(pe — pecr) - (A4T)

From the outsider’s perspective, the fundamental ¢ is a random variable. However, its
distribution is independent of the distribution of noise trading z;, i.e., is independent of
pt — pt-1- So (A.47) implies that the expected profit of the strategic outsider is given by
—(/\2‘7;2:)(_1%’ Le., (17) is proved. g

L i

Proof of Proposition 7

In order to derive the dynamic trade-offs of a strategic outsider, consider the following
model: every period, the outsider believes that with probability P, an insider arrives in
the market. In other words, with probability P the lifetime profits are EU(z,_;) (where
the expectation is over z,_;) and with remaining probability 1 — P, no trader gets inside

information. Writing K (§) for the expected lifetime payoffs to a technical trading rule 6,

we have

)

K(8) = —(1 — P)(\?o?) Toay + PEUG) + 61 - P)K(6)
Hence,
1 2 2 )
I((é) = T__—ﬂ—(-l—_—i)—) —(1 - P)(/\ O’x) m + PCQ(I—_"")T)2 +P61 60‘,2’ s (A48)

where ¢y = %1'\_%%{11%’[‘;%2)1 and ¢; = %}gg} and in deriving (A.48) we have used the fact

that the amount of mispricing v — p is a random variable from the outsider’s perspective;
suppose that E(d — p;_,)? = o2.

Rearranging terms yields:

—B(1— _ o1 — ajoy 22|y (1+ Ba?)B 6
(1- (1 P))K((S)_P< — )5 ) [1 P+ P = ) (1_(?{;2129)-

Recall that a = 3——-@ Straightforward algebra determines the optimal é* and shows

that it is increasing in P. g
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Proof of Proposition 8

First, consider the selection criterion (Cl). As py — pimy = AMNO(v — pioy) + z14),
the excess transaction-to-transaction price variance, for a given fundamental value z,
is 0%(ps — pi~1) = Ao%. This variance represents the excess volatility in transaction-
to-transaction returns introduced by transitory demand shocks, as the demands of the
informed traders are deterministic functions of z. Clearly, satisfying (C1) implies choosing
the smallest level of A consistent with non-negative specialist profits. (Note that this is
the same action that would be chosen if the objective were to minimize the unconditional
price variance, as the permanent price changes are not affected by continuity requirements
over the long-run.)

Let II° denote the expected trading profits of the sp.;:’cialist, ie, II' = El(p: — v)Q4].

Then, from our previous results it follows immediatély that:

I’ = E((pi-1 + M(NO(v — p1—1) + z14) — v)(NO(v — piy + 214))- (A.50)

Then:
II° = ElaN6(v — p,_1)* + Az?], (A.51)

where @ = 1 — AN@ is a constant. From Proposition 3, we know that a = 1—:@ is

independent of A and that N6 = (1 — a)/A. Then, we can write the specialist’s expected

profits as a function of A:
II'(A) = —a(l = a)oiA™" + Aol (A.52)

From equation (A.52), we see that II°(A) is strictly increasing in A. Intuitively, higher
values of A reduce the expected losses to informed traders and increase the expected gains
from trading with uninformed traders. Clearly, the ez ante expected discounted profits
of the specialist are proportional to the II°, where the proportionality constant depends
only on the discount factor, 3. Thus, setting II° = 0, we see there exists a unique value
of A given by g = \/a—(l_—_:x‘)a,,/az satisfying (C1).

For (C2), we simply note that trading is a zero sum game, so that the expected
profits of the informed and uninformed traders collectively are the expected losses of the

market maker. Thus, setting the specialist’s expected profits equal to zero is equivalent to
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satisfying criterion (C2). From equation (A.52), this yields the same value of \ as criterion
(C1). For (C3), we note that depth is just A™!, so by the earlier arguments, the same
rule is chosen. Finally, for criterion (C4), we can choose a limit L such that L = A262.

As specialist profits are increasing in ), the specialist chooses the same continuity rule as
selected under (C1)-(C3). g
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Notes
! In futures markets, these limits are intended to act as circuit breakers in the event

of an extremely unusual event such as a crash.

*For example, for a stock trading between $20 and $29 I with average daily share

Qo =~1

volume in the previous month (excluding trades of 25,000 or more) of 10,000-24,999, the
maximum price change permissible for volume of 3,000 shares is $ I. The NYSE reports
that in 1988, 92.1% of all transactions of 1,000 shares or less traded with a price change

of 0 or % from the immediately preceding trade.

®See also Bhattacharya and Spiegel (1991) for a theoreticl analysis of the factors trig-
gering a market breakdown.

*In existing models of trading under asymmetric information, e.g., Kyle (1985), prices
are not restricted.

SIn other words, the time to revelation is exponentially distributed, and is thus inde-

pendent of the elapsed time.

®This is a direct consequence of our assumption that the probability of an event (an-
nouncement) is independent of the current time period. The model can be extended to
allow for time-dependence, without affecting our qualitative conclusions in any way. Note
that the expected value is computed at the beginning of each period given the event
outcome.

"Noise traders are a standard feature of models of trading, such as Kyle (1985) or

Admati and Pfleiderer (1988), serving to camouflage the actions of insiders.

8Foster and Vishwanathan (1990) present a continuous time version of Kyle’s (1985)

model where market depth is constant, as we assume here.

® The case of price limits independent of volume are not analyzed here. Such price
limits are primarily designed to act as circuit breakers in the event of an exceptional event,
such as the October 1987 crash, and not to maintain short-run price stability.
1% Meulbroek (1991) examines the stock price run-up before takeovers and finds price

paths suggestive of the slow exploitation of information by insiders. In particular, she



finds that 43 percent of the run-up in the 20 days before the announcement occurs on

days when insiders traded.

11Gee also Holden and Subrahmanyam (1992), who analyze the effect of competition
among insiders in a dynamic model. In their model, market makers are not constrained
by price continuity rules. The focus of our analysis is on the consequences of such rules

on price formation.

12The value function W; will depend on trader j’s trading strategy g¢;, and should
therefore be written as W;(-;¢;). However, in the immediate sequel we will construct a
particular form for ¢; and the value function will refer to this strategy.

-

13We thank the referee for suggesting this to us:

141t is straightforward to extend our results to these more general cases; our qualitative

results are unchanged.

*For notational simplicity we will retain 3 as the strategic outsider’s discount factor.



