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Abstract

We study independent-armed Bandit problems with geometric discounting over an infinite
horizon. When there is no cost of switching between arms, it is well known that the “Gittins
Index” completely characterizes the set of optimal strategies in such problems. In contrast,
we show that if switching costs are are allowed to be non-zero, optimal index strategies no
longer exist. This is true even if attention is restricted to that family of Bandit problems in
which the cost of switching between any two arms is fixed a priori at some constant (non-
zero) level.

Keywords: independent-armed bandit problems, switching costs, Gittins index, index
strategies.






1 Introduction

The Theorem of Gittins and Jones (1974) is, perhaps, the single most powerful result in the
literature on Bandit problems. This result establishes that in independent-armed Bandit
problems with geometric discounting over an infinite horizon, all optimal strategies may be
obtained by solving a family of simple optimal stopping problems that associate with each
arm an index known as the Dynamic Allocation Indezx or, more popularly, as the Gittins
indez. Importantly, the Gittins index of an arm depends solely on the characteristics of that
arm and the rate of discounting, and is otherwise completely independent of the problem
under consideration. These features simplify significantly the task of characterizing optimal
strategies in this class of problems.!

The purpose of this paper is to examine the extent to which the Gittins-Jones Theorem
remains valid when the cost of switching between arms is possibly non-zero, t.e., to determine
whether suitably defined index strategies continue to remain optimal in this case. The need
to include switching costs arises primarily from economic considerations. Such an extension
is, perhaps, of especial interest in a labor market setting where the Bandit framework has
found wide applicability,? but appears more generally important. Indeed, it is difficult to
imagine a relevant economic decision problem in which the decision-maker may costlessly
move between alternatives.?

As our framework of analysis, we use a generalized version of Whittle (1982) with arm-
specific costs of switching. It is obvious that in the most inclusive case where there is a
cost ¢;; for switching from an arm ¢ to another arm j, there cannot exist an optimal index
strategy with the index on an arm depending solely on the arm’s characteristics. We consider
therefore, the more restrictive case where the cost of switching away from an arm (resp. to
an arm) are independent of the arm to which (resp. from which) the switch is made. In
principle, at least, this leaves open the possibility that an optimal index strategy may exist.

Unfortunately, our main result is negative. We show that, in general, it is not possible
to define indices which have the property that the resulting index strategy is optimal on
the domain of all Bandit problems with switching costs. Indeed, this remains true even
if attention is restricted to that subset of the domain in which the cost of switching is a
given (non-zero) constant. From one point of view, this non-existence may not appear very
surprising, for the Gittins Index is known to be non-robust in some (other) directions. For
instance, the stationarity of the underlying problem is very important: Berry and Fristedt
(1985) show that geometric discounting is a necessary condition for the validity of the Gittins-

1See, e.g., Whittle (1982), or Banks and Sundaram (1992).

2See, e.g., Mortensen (1985). See also Banks and Sundaram (1992), who provide a list of other applications
in economics and political science.

31t is somewhat surprising to note, therefore, that the literature on switching costs consists only of a few
stray papers. Examples include Kolonko and Benzing (1983) who study the special case of a two-armed
Bandit with one known arm, where the other arm generates rewards according to a Bernoulli distribution
with unknown parameters; and Agrawal, et al (1988) who study the existence of asymptotically efficient
adaptive allocation rules (in the sense of Lai and Robbins, 1985) in the presence of switching costs. See also
the recent contribution of Feldman and Spagat (1993) on the impact of switching costs in a general model
of optimal Bayesian learning.



Jones Theorem. On the other hand, the addition of switching costs does not affect the
model’s stationarity, and certainly, there is no a priori reason to expect lack of robustness in
this direction. In particular, Weitzman (1979) shows that optimal index strategies do exist
in the closely related “Pandora’s Box” problem, where there is a non-zero cost to be paid the
first time an arm is used, but subsequent visits to the arm are free, even if one has switched
away to another arm in the interim.

Our proof of the non-existence of an optimal index uses a reductio ad absurdum ap-
proach: we assume that an optimal index strategy does exist, derive some of the properties
it must satisfy, and show that these properties are not mutually consistent. The intuition
underlying our construction is quite straightforward. Consider an n-armed Bandit problem,
and suppose the decision maker is currently on some arm (the incumbent arm). If, in the
optimal continuation, there is any possibility of switching back to the incumbent arm after
leaving it (depending on, say, the realizations from the other arms), then the index on the
incumbent arm must depend non-trivially on the cost of switching (back) to it, since a higher
cost of coming back should make the decision-maker more reluctant to leave the arm. If,
on the other hand, coming back to this arm is a zero-probability event (say, because the
worst realizations on the other arms would still dominate the present incumbent) the arm’s
index must be independent of the cost of switching back to it.* Together these statements
furnish the required contradiction, since (by definition) the index on an arm cannot depend
on features extraneous to the arm, such as the payoff prospects from other arms.

The remainder of this paper is organized as follows. Section 2 provides a description of
Bandit problems, introduces switching costs, and defines the notion of an optimal index in
this case. Section 3 formalizes the intuition of the previous paragraph in proving the non-
existence of an optimal index under switching costs, both in general and in the restricted
case where attention is limited to problems having an a prior: given and fixed switching cost.

2 Bandit Problems

2.1 The Standard Framework

Our description of the standard Bandit framework in this paper is, of necessity, terse. We

also keep the technical exposition at a relatively informal level. For omitted details, we refer
the reader to Whittle (1982).

An independent-armed Bandit problem with geometric discounting (hereafter, simply
Bandit problem) is defined by the following objects:®

4Alternatively put, the index on an incumbent arm changes depending on whether we compare it to an
arm whose payoff prospects are known for certain, or to an arm whose payoffs involve some uncertainty.

5Qur description follows Whittle (1982). In the “classical” version of the Bandit problem, as used for
instance, by Berry and Fristedt (1985), the states of arm ¢ would correspond to the set of possible beliefs the
decision-maker may have regarding the “true” distribution of rewards from arm ¢; the transition probabilities
are implicitly defined by the map taking prior beliefs and observed rewards into posterior beliefs.



1. A set N ={1,...,n} of arms of the Bandit, where n is a positive integer.
2. A tuple F; = (X;,r;, Q;) for each arm ¢ where

(a) Xi, a subset of some Polish (i.e., complete, separable, metric) space, describes
the set of possible states of arm ¢, with generic element z;;

(b) r; : X; — Ris a bounded measurable function describing the instantaneous reward
from arm :; and

(c) @; represents a family of transition probabz'lities on X, i.e., for each z; € X,
Qi(.|z;) is a probability distribution on X;, and for each fixed Borel subset D of
X, Qi(D].) is a measurable mapping from X; into [0,1].

3. A discount factor p € [0,1).

The Bandit problem has the following interpretation. In each period ¢t = 0,1,2,..., of an
infinite horizon, a decision-maker must decide which arm of the Bandit is to be employed in
that period, given the vector of states (zi, ..., z%) at the begining of that period. This decision
is made with full knowledge of the history of the problem to date. If arm ¢ is chosen in period
t, two things happen. First, the decision-maker receives a reward of r;(z!). Second, the state
of arm ¢ transits to its period (¢ + 1)-value z!*! according to the (conditional) probability
distribution @;(.|z!). The states of all other arms remain frozen, so that we have z'** = z*
for all j # ¢. The decision-maker discounts future rewards by the factor p € [0,1), and aims

J J
to maximize total discounted expected reward over the infinite horizon.

More formally, for any t > 0, a t-history h, for the problem is a description of the state of
each arm in each period upto ¢, the action taken in each of those periods, and the period-t
state. Let Hy = X; X -+ x X,,, and let H; be the set of all possible histories upto ¢t. A
strategy o for the decision-maker is a rule that recommends the arm to be played at any
point in time as a function of the history upto that point, i.e., it is a sequence of maps {c;},
where for each t > 0, o; is a measurable map from H; into N.

Each strategy o defines in the obvious way an expected t-th period reward, denoted r;[z],
from each initial state z = (z4,...,x,) and for each t. The total worth of ¢ from z, denoted
W(o)(z), is then defined as W(o)(z) = 2, p're[z]. A strategy o* is an optimal strategy if
its worth is maximal amongst all strategies, i.e., if W(o*)(z) = sup, W(o)(z) for all z.

Standard arguments from dynamic programming (see for instance, Whittle, 1982) estab-
lish that optimal strategies exist in this problem, and, indeed, that stationary Markovian
optimal strategies® exist. The breakthrough achieved by Gittins and Jones (1974) lies in
showing that a particularly simple class of strategies—those defined through the Gittins
index—actually suffice to obtain all optimal strategies. We turn now to a brief description
of this result. In the sequel, p is assumed fixed at some level in [0,1), and all dependence on
p is suppressed.

6 A stationary Markovian strategy o is a strategy under which the period-t action depends solely on the
period-t state vector z* = (2},...,z%), but not on how or when that state was reached. Such a strategy can
evidently be represented by a measurable function g: X; x - -+ x X;; — N, with the interpretation that g(z)
is the action recommended by the strategy when the state is z.



2.2 The Gittins Index

The Gittins index on an arm ¢, whose characteristics are given by F; = (Xi,r;, Q;), is
obtained by the following procedure. Let m € R be given. Consider the stopping problem
in which in each period (given that the terminal reward m has not yet been accepted) the
decision-maker must choose between playing arm ¢ for one more period, and stopping and
accepting the terminal reward m. Routine arguments show that the value V(z;, Fi;;m) of
this problem is well-defined and finite from any initial state z; € X;. The Gittins index on
arm 7, denoted by p(z;, F;) is then defined by

w(zi, F) = inf{m| V(z;, Fi;m) = m} (2.1)

Since r; is bounded by assumption, it follows that for large m, we have V(.; F;,m) = m,
while for —m large, V(z;, F;; m) is independent of m. Thus, the Gittins index is well-defined.
The importance of this index lies in the following result. Let {N, (F;)ien} be an arbitrary
Bandit problem. ‘

Theorem 1 (Gittins and Jones (1974)) The optimal selections at the state (z1,...,2y,)
in the Bandit {N, (F;)icn} are those arms i for which pu(z;, F;) = max{pu(z;, F;)|j € N}.

Equivalently, the Gittins-Jones Theorem may be stated as follows: a strategy o for a Bandit
problem {N, (F})ien} is an optimal strategy if, and only if, the set of histories on which
the recommendations of ¢ differ from the Gittins index-maximal arms after that history has
probability zero.

2.3 Switching Costs in the Bandit Framework

The most general way to introduce switching costs in the Bandit framework is to assume that
there exists a cost ¢;; for switching from arm ¢ to arm j, ¢,5 € {1,..., N}. It is clear, however,
that no index can then be defined which is such that the resulting strategy is optimal, if the
index for an arm is to depend on that arm alone. The formulation we use here, therefore,
is more specialized, and one that leaves open the possibility, at least at the intuitive level,
that optimal index strategies may exist.

Specifically, we associate with each arm a pair (¢, d;) of real numbers where (i) ¢; is the
cost of switching to arm ¢ (from any arm), and (ii) d; is the cost of switching away from arm
i (to any arm). Thus, if a switch occurs from arm ¢ to arm j, the total cost paid is d; + ¢;.

To avoid further complicating notation, in the sequel the tuple F; describing arm ¢ is to
be understood as including the vector (¢, d;) also.

When switching costs are admitted, the state of the Bandit problem in any period cannot,
except at the very begining, be adequately described by just the vector (zy,...,z,). Rather,
it is also important to know the arm that was in use in the period immediately preceding.
(We will henceforth refer to this arm as the arm “currently in use.”) Defining A = X x
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-++ X X, X N, and letting z denote the vector (zy, ..., z,), routine arguments now show that
the value function V: A — R for this problem satisfies the Bellman optimality equation at
each (z,7) € A:

V(z,5) = max LV (a,5) (2.2)
where, for  # j,

LiV(z,§) = ri(e:) — ¢ — d; + p / V(zoi, 1,6)Qi(ddi]z:) (2.3)
while

LiV(,5) = 13(2;) + p [ V(2-3,83,9)Qs(dasla;); (2.4)

and that any measurable selection from the correspondence of maximizers of (2.2) constitutes
a stationary Markovian optimal strategy. In order, however, to examine the existence of
optimal index strategies, we must first define the notion of an index for this problem. We
turn to this now.

2.4 The Index with Switching Costs

As with the Gittins Index, we shall define an index on a generic arm ¢ to be any function
obtainable solely from the characteristics F; of arm :. However, if we require the index to
depend on F; alone, then simple examples show that index strategies cannot be optimal.
Consider the following:

Example 1: Let N = {1,2}; X; = X3 = [0,1]; ry = 72 = r, where r(z) = z, for
all z € [0,1]; @1 = Q2 = Q, where Q(1]|z) = 1 — Q(0|z) = z, for all z € [0,1];
dy = dy = d > 0, while ¢; = ¢; = 0; and, finally, let p be any value in (0,1).

Consider any indices A(z;, F;) for the arms. Since the arms are identical upto the
initial state, we must have A(., F1) = A(., F2) = A(., F), say, where F; = F, = F.
It is evident that the attractiveness of an arm is increasing in the value of the
initial state, so that, if at all ) is to be optimal, it must be increasing on [0,1].
In particular, we must have A(z, F) > A(0, F') for any = > 0.

But A(z, F) > A(0, F) for all z > 0 is inconsistent with the optimality of A. For,
suppose we had 0 = z; < z, and d > z2/(1 — §). Suppose further that the
decision-maker is currently on arm 1. It is clear then that the unique optimal
policy is simply to stay with arm 1 forever, but A recommends a shift to arm 2,
which is strictly suboptimal.



The reason this example “works” is that in requiring the index to depend on F; alone,
we have omitted the crucial bit of information about whether arm ¢ was the arm that was in
use in the previous period. For, it is obvious that in comparing two otherwise identical arms,
one of which was used in the previous period, the one which was in use must necessarily be
more attractive than the one which was idle. This motivates the following:

Definition: An indez in the presence of switching costs is any function A which specifies
for a generic arm i, a value A(z;, F;, s;), where F; denotes the characteristics of arm 1, z; is
the current state of arm i, and s; € {0,1} is a variable that specifies whether (s; = 1), or
not (s; = 0), ¢ is the arm currently in use.

An index ) induces in each Bandit problem {N, (F;);cn}, a strategy o(}) in the obvious
manner: let z be the vector of initial states. In period 0, o()) plays any of the arms ¢ for which
Mz;, F;,0) = max{A(z;, F},0)|j € N}. For each subsequent period ¢, let z* denote the vector
of states at the begining of period ¢, and i(t—1) the arm that was used in period (t—1). Then,
in period t, o()) plays any of the arms 7 for which A(z;, Fi, s;) = max{A(z;, F};,s;)|7 € N},
where s; = 1 iff ¢ = ¢(t — 1).

Finally, an index ) is said to be an optimal indez in the presence of switching costs if
o()) is optimal in every Bandit problem {N, (F})ien}.

3 The Non-Existence of an Optimal Index

We show in this section that an optimal index does not exist in the presence of switching
costs. Our argument consists of two parts. First, we will show that any Bandit problem
with costs of switching “from” (and, possibly, also costs of switching “t0”), is equivalent to
another problem in which there are only costs of switching “to.” We will then consider the
case where the only switching costs are costs of switching “to,” and show that in a series of
steps, that if an optimal index does exist a contradiction must result, completing the proof.

So let a Bandit B = {N, (F});cn} be given. Define another Bandit B* = {N, (F})ien}
from B as follows: for each i, let X! = X;; ri(z;) = ri(zi) + (1 — p)di; QF = Q5 ¢f = ¢i + di;
and, finally, df = 0. We will show that the bandits B and B* are equivalent.

Indeed, this is almost immediate. Viewed as dynamic programming problems, B and
B* have the same state and action spaces, hence the same strategy spaces. Moreover, since
the transition probabilities also coincide, a given strategy induces the same distribution on
infinite histories in either problem. Thus, it suffices to show that a given history yields
the same reward in either problem, or more specifically, that the net reward from a given
arm over the periods of its contiguous use is the same in either problem. To see that this
is true, observe that, in essence, the only difference between Bandits B and B* is that in
bandit B, a cost of d; is paid every time a switch away from arm ¢ occurs, whereas in Bandit
B*, d; is paid “in advance” when the switch to arm ¢ occurs, but an additional reward of
(1 — p)d; is received every period arm ¢ is in use. If, therefore, arm 7 is used for ¢ contiguous
periods before a switch to another arm occurs, the present value of the total switching cost
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paid in the Bandit B will be ¢; + p’d;. In Bandit B, the total cost will be ¢; + d;; but
an additional reward of (1 — p)d; is received in each of ¢ periods, so that the net cost is
¢ +di(1 =48 p*(1 — p)) = ci + dip', which is exactly the same as in the Bandit B. Thus,
the sums of discounted rewards in the two problems differ only by the cost of switching away
from the initial arm, and the equivalence of B and B* follows.

We now proceed to the second part of our proof, which consists essentially of formalizing
the arguments given in the Introduction. We suppose from now on that there are only costs
of switching “to,” and that an optimal index, denoted A, does exist in this case. Since all
the Bandits we shall consider from this point on involve arms with similar characteristics,
we simplify notation as follows. For any a,b € ®, z € [0,1] and ¢ > 0, let [z, + (1 — )6, ]
denote an arm with state space [0,1] and initial state z; reward function r(z) = za+(1—z)b;
transition probabilities Q(1|z) = 1 — Q(0]z) = z for all z € [0,1]; and switching cost c. In
particular, [8,,c] will denote an arm with switching cost ¢, that pays a reward of a in each
period with certainty.

In this notation, A([zé, + (1 — z)8,c];s) will denote the value of the optimal index on
the arm [z6, + (1 — z)é, c] at the state s € {0,1}. Recall that s = 1 denotes that the arm
is currently in use.

Claim 1 A([6,,¢];1) is independent of c, while A([6a,c];0) is strictly decreasing in c.
Proof: Consider the situation where there are only two arms. Suppose arm i (= 1,2)

pays a; for certain, and that the cost of switching to arm i is ¢;. Finally, suppose that the
decision-maker is currently on the first arm.

It is trivial to see that the uniquely optimal strategy is to stay with arm 1 forever if
a1 > ay — ca(1 — p); that picking either arm initially and staying with it forever is optimal if
a; = ag—c3(1—p); and that switching to arm 2 and staying there forever is uniquely optimal
if a1 < ag — (1 — p). Tt follows immediately that the only indices A that can be invariably
optimal are those that are strict monotone transformations of the index ), defined by

([6a, €};1) = a, and (3.1)
([6a, €];0) = a—c(1—p), (3.2)

establishing the claim. ¢

On the other hand, the following two claims together establish that A([4,c];1) must be
strictly increasing in c:

Claim 2 Fora > b, A([z6, + (1 — z)b, c};0) is increasing in z.
Proof: Let z;,z; € [0,1], with ; > z2. Pick a € R so that
[az1 + b(1 — 1) — c(1 = p)] > @ > [aza+b(1 — x2) — ¢(1 — p)]. (3.3)

7



Now consider a two-armed Bandit in which the first arm is given by [64,c*] for some c¥,
and the second arm by [z:6, + (1 — z;)8,¢]. Suppose further, that the decision maker is
currently on the first arm. When ¢* is sufficiently large, a simple calculation shows that it is
uniquely optimal to switch to the second arm and stay there forever if : = 1; and to continue
indefinitely with the first arm if ¢ = 2. Since X is optimal by hypothesis, we must have

A[z16a + (1 = 21)6b,¢];0) > A([6as];1) > A([z26a + (1 — z2)és, c]; 0), (3.4)
establishing Claim 2. ¢
Claim 3 For any a € R, A([6a, ¢]; 1] must be increasing in c.

Proof: We derive this as a consequence of Claim 2. Let ¢; > ¢;. Pick a, 8 € R such that
(i) @ > a,and
(i) 8 < [a=(1=p)a] < [a=(1—p)ea)].

Pick z; € [0,1] such that in the two-armed Bandit problem where the first arm is given by
[6a,c1], and the second arm is given by [z16, + (1 — 21)6p,0], either arm is an optimal initial
choice. Define z; analogously. Some calculation shows that the desired values are’

(1—p)(a— B+ pci)

r;, = . 3.5

= (L= p)B—pa+p(1— el (3:3)
Note that 1 > 21 > z2 > 0. It follows, by the presumed optimality of A, that

A([6as cil; 1) = A[zi6a + (1 — )88, 0]; 0). (3.6)

Claim 3 is now an immediate consequence of Claim 2, since z1 > 3. ¢

Claims 1 and 3 are in obvious contradiction, establishing the impossibility of consistently
defining an optimal index A on the domain of all Bandit problems with switching costs.

On the other hand, claims 1-3 do not rule out the possibility that an optimal index A
may still exist in the restricted subset of Bandit problems where costs of switching are fixed
a priori at some constant level, and, in particular, are not allowed to vary across arms.®

7To check that these calculated values are correct, note that if the decision-maker sticks to the first arm
forever, then the total discounted reward is a/(1 — p). Suppose, on the other hand, that the decision-maker
switches to the second arm at the outset. By choice of a and S, it is optimal to switch back to arm 1 if, and
only if, the state on the second arm moves to 0, i.e., the second arm yields a continuation reward of § in
every period. Thus, the total discounted reward in this case is z;a/(1 — p) + (1 — z;)(8 + pa/(1 - p) — pci),
which by choice of z; is simply a/(1 - p).

8The possibility of existence of an optimal index in this case was raised by a referee.



Nonetheless, it is easily shown that existence on this limited subset of the overall domain is
also impossible.

For, suppose some (non-zero) switching cost c is fixed and given as the cost of switching
to any arm. By claim 1, we may assume (without any loss of generality) that the values of
the index ) defined there are in fact the values taken on by our hypothetical optimal index
A when the arms are of the form [4,, ¢]. Consider, first, a two-armed Bandit where the first
arm is of type [6,, ] and the second is of type {261 + (1 — )bo, c].

Suppose that the decision-maker is on the second arm. Simple calculation reveals that
when

x
a=p(z) = ————=+c¢c(l—p), 3.7
either arm is an optimal initial selection. Thus, we must have A([z6, + (1 — z)do, c];1) =
A([64(z), €];0), and so, by the presumed optimality of A,

Similarly, by supposing that the decision-maker is initially on the first arm, and calculating
optimal continuations, we obtain the following (the details are omitted): if z € [2¢(1 — p), 1],
then

z — (1= p)(1+p(l —2))
1-p(1-z) ’

AM[z6y + (1 = )b, ¢];0) = (3.9)

while, if z € [0,2¢(1 — p)), then
A(z,0) =z —¢(1 — p). (3.10)

We will use equations (3.8)-(3.10) to derive a contradiction. To this end, consider a two-
armed Bandit, where the first arm is specified by [z6; + (1 — z)éo, ¢], and the second arm
by [y61 + (1 — y)do, c]. Assume that the decision-maker is currently on the first arm. Simple
calculation reveals that the uniquely optimal strategy is to pick the first arm (and then to
switch to the second iff the state of the first moves to 0) when the following conditions are
met:

y>c(l—p)>z (3.11)

z y
T=p0=p=2)  (T-p)

—c (3.12)

Thus, we must have A(z,1) > A(y,0) whenever these two conditions are met.

9



But it is easy to construct examples where these inequalities are inconsistent with the
definition of A from (3.8)-(3.10). For instance , let p = ¢ = 1/2, £ = 3/17, and y = 27/50.
Then, y > 1/4 = ¢(1 — p) > z, s0 (3.11) is met. (Note that, in fact, y > 1/2 = 2¢(1 — p).)
Moreover, the LHS of (3.12) reduces to 4z/(1+z) = 3/5, while the RHS of (3.12) is 29/50, so
(3.12) is also met. However, A(z,1) = 3/5, while A(y,0) = (9y —3)/(2+2y) = 93/154 > 3/5.
¢

10
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