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1. Introduction

It is widely acknowledged that the threat of bankruptcy! directly affects economic
decision-making and that, in the presence of uncertainty, agents may be unable to
guarantee survival. Yet the problem of bankruptcy is either not modelled or effectively
side-stepped in a number of dynamic economic models. In a general equilibrium model
with complete Arrow-Debreu markets (and hence a single lifetime budget constraint),
borrowing in the event of negative current net worth is permissible. In portfolio
allocation or consumption—savings models in which there are borrowing constraints, a
standard assumption is the presence of at least ome safe asset; bankruptcy can always

be avoided and in an optimal solution, under usual conditions, is in fact avoided.?

The objective of this paper is to investigate a simple dynamic model in which not
all risks can be hedged and agents are restricted in their ability to borrow. I do not
propose any general theory but rather study a specific single-agent decision problem -
the "gambler’s ruin" — which has been widely used in probability theory to analyze
bankruptcy, after adapting it appropriately for economic applications. In this model, I
examine two questions: maintaining the hypothesis of expected utility maximization,
how does an agent optimally trade off utilily against survival prospects, at different levels
of wealth? Since there is always residual uncertainty, survival cannot be guaranteed in
such a model. So, how do the bankruptcy prospects of an ezpected utility mazimizer
differ from those of an agent who is more ezplicitly interested in survival’

The model I study incorporates one important generalization of the gambler’s ruin
problem. In the classic formulation of that problem (see Dubins—Savage (1965)) the
agent’s action is identified with a bet (whose returns are uncertain). Consequently,
different actions are distinguishable only from the long—term view of which ones are
better suited to survival. In ecomomic applications, actions will correspond to effort or
consumption or choice of projects etc., and consequently will need to be distinguished
in terms of short—term utility consequences as well. And that is exactly what I do in
this paper; I introduce a utility formulation in the pure ruin or pure survival problem.?

In the formulation studied here, the agent’s wealth follows a diffusion process and
an action is the choice of the incremental mean and variance of the process (and each
action additionally yields some instantaneous utility). I first investigate the
maximization of expected discounted lifetime utility (subject, of course, to the
bankruptcy constraint). I show that the agent’s value function is a strictly increasing,
strictly concave 02_ function which satisfies the Bellman differential equation. (The



smoothness property and the optimality equation are surprisingly difficult to prove and
the approach has to be completely different from that employed in proving the same
results in the gambler’s ruin problem; this point is explained in greater detail in the
sequel). I further show that there is a (stationary) Markov optimal policy for the
agent’s problem. In this policy, as the agent’s wealth increases, he either picks higher
variance or lower mean and mean-variance ratios. Indeed when the instantaneous
utility function is separable in mean and variance, at higher wealth the agent is more
willing to assume risk and picks both a higher variance as well as a lower mean* (and
consequently higher instantaneous utility).

When agents can, in fact, go bankrupt it is not immediate that expected utility
maximization is the only rational decision criterion; indeed people seem to sometimes
employ a "pessimistic" criterion like the maximization of survival probabilities instead.
I characterize the optimal policy in that case and show that it has a very simple form;
it involves a constant action at every instant. Moreover, the optimal action is easily
computed and, as the discount rate approaches zero, involves picking the action with
the highest mean-variance ratio. By way of comparison, I provide a bound on the
ratio of the probability of failure under survival maximization to the same probability
under expected utility maximization. I show that, although both probabilities approach
zero as the agent’s initial wealth becomes unbounded, the rate of approach is faster for
survival maximizers and hence the ratio of the two probabilities also tends to zero.

Finally, I show that the generalized gambler’s ruin structure covers a number of
interesting economic models including the well-known consumption—savings problem (see
Deaton (1991)). I present a brief discussion of that problem under the usual
assumption of borrowing constraints as well as the additional assumption of bankruptcy.
I demonstrate that this additional constraint can change the optimal consumption policy
quite significantly. I also believe that the current framework is sufficiently flexible so
that it can be adapted, in future work, to study many-agent problems. That will
allow an examination of several questions related to bankruptcy which arise in a
market context; the most interesting of these is possibly the Alchian (1950)- Friedman
(1950) argument that firms that do not maximize profits eventually go bankrupt.

In Section 2, 1 formulate the problem precisely. Section 3 contains results on the
pure survival maximization problem while Section 4 presents existence and
characterization results for expected utility maximization. Some comparative results
and implications are discussed in Section 5. Section 6 presents two computable
examples as well as a discussion of the consumption—savings problem. All proofs are in



the appendix.

2.  Basic Definitions and Assumptions

I examine a continuous time® optimization model in which the agent’s wealth
follows a diffusion process; [Y(t): t > 0] on [0, o) given by a stochastic differential

equation
av(t) = m(t)dt + v/3(t) dB(t), Y(0) = y (2.1)°

where [B(t): t > 0] is a standard Brownian motion and [m(t),v(t)] are the
instantaneous mean and variance of the incremental (normal) distribution dY(t) and
these are chosen from a set A. The initial wealth level is denoted y. Suppose further
that the process is absorbed at the origin and let T denote the random time of
absorption (which could be infinite and whose distribution depends on the strategy
followed). The choice [m(t),v(t)] yields a flow payoff at instant t which is denoted
U(m(t),v(t)). At the time of absorption the decision maker receives a terminal
payment (and from this point on, I normalize this payment to zero). Future payoffs
are discounted at a rate § € (0,m).

The following assumptions on U and A are maintained :

(A1) The utility function U(m,v): R x R, - R is continuous and strictly concave.

(A2) Variances are bounded away from zero: there is b > 0, s.t. (m,v) e A3 v2h
(A3) The set A of feasible controls is a convex and compact subset of R x R "

I study two distinct control problems. The first, the expected utility mazimization
problem, is to pick an admissible strategy to maximize expected discounted lifetime
payoffs:

(P1) Maximize E 8/ ¢ U(m(t),v(t)) dt (2.2)

Let U = sup U(m,v), (m,v) € A. For this problem to be interesting we must
have U > 0. Optimization involves a tradeoff between instantaneous payoffs and a
movement away from zero. A second optimization problem, survival mazimization, is to
maximize expected discounted time to bankruptcy:

6T

(P2) Maximize 1 - E e (2.3)



Admissibility of Strategies: Let [B(t):t > 0] be a standard Brownian motion on
some complete probability space (€, §, P) with a filtration [3(t):t > 0] such that for
each t, §(t) is complete with respect to the measure P. Let C[0,n) denote the space of
continuous functions on the non-negative real line and let Y[0,0) denote a generic
element; a continuous function on [0,0). E(t) will be the notation for the smallest
o-algebra of subsets of C[0,w) which contains all sets of the form {Y[0,0): Y(s) < D,
s<t, beR}. A strategy, [n(t) = m(t),v(t): t > 0], is a specification (t): C[0,0) = A, for
all t>0, and it is admissible for initial state y if it is progressively measurable with
respect to Z(t) and there exists at least one solution to the stochastic differential
equation (2.2) which is $(t)-measurable for each t.” A strategy is said to be a
stationary Markov sirategy if n(t) = B(y(t)) for some measurable function A [0,0) = R.

(P1) and (P2) are clearly stationary dynamic programming problems, and I shall
denote the value functions, respectively, by Vl(y) and Vz(y). Any solution of

(P1)—(P2) will be called an optimal strategy or policy. If a stationary Markov policy
is optimal in the class of all admissible strategies, it will be called a stationary Markov

optimal policy.

3. The Survival Problem: Existence and Characterization

In this section I study the simpler optimization problem; survival maximization or
(P2). Since such a decision—maker does not have to trade off immediate utility against
future wealth, the analysis is considerably simplified; indeed, I demonstrate explicitly
the optimal strategy. The agent picks a constant control regardless of his wealth level;
the only determinant of this choice is the discount rate.

The pure survival problem has been studied extensively as a gambling problem,
first by Dubins—Savage (1965) and subsequently by a number of others (for example,
Heath et.al. (1987), Orey et.al. (1987), Pestien—Sudderth (1985), and
Sudderth-Weerasinghe (1989) etc.). These authors have examined a number of different
criteria but almost all of them are relevant for undiscounted problems.® For
completeness therefore, I present a characterization for the discounted case.

Pick any feasible action, (m,v) € A and define —\(m,v) as the negative root of

A A

m,v)

m + 4 m“ + 2V5 Let(
A

the quadratic, 1/2 vx? + mx - § = 0; A(m,v) =



be defined by )\(1;1,;7) € argmax A(m,v), (m,v) € A.

Theorem 3.1 An optimal policy for a survival maximizing decision—maker is to use
the control (m,v) at all wealth levels. The lifetime returns to this policy, i.e. the

value function, is Vz(y) =1- e—)‘y, where ) = A(IAD,V) The value function is

therefore strictly increasing, strictly concave and twice continuously differentiable.’

Remark: Note that as 6J0, A(m,v) - 2(m/v) if m > 0. Further, the criterion itself
tends to a maximization of the probability of survival. So this suggests that the
optimal policy for the undiscounted problem of maximizing survival probability, is to
pick the control with the highest mean—variance ratio. This is similar to the results of
Pestien—Sudderth (1985) and Sudderth-Weerasinghe (1989) in somewhat different
versions of this problem.

4. The Expected Utility Problem: Existence and Characterization

In the general problem (P1) there is a tradeoff between immediate payoffs and
continuation values; consequently, constant controls are typically not optimal. Hence, it
is impossible, except in very special cases, to directly "guess" an optimal policy (and
use a verification theorem to establish its optimality); we have to establish the
existence of a value function with appropriate differentiability properties and the
existence of optimal policies by analytical methods. As I explain below, there is no
general result in the optimal control literature, that I am aware of, which directly
covers this existence problem. Theorem 4.1 is the existence result for (P1). I then
present characterization results for the value and optimal policy function. In particular,
I investigate how the optimal action choice changes with the agent’s wealth level.
Again, the presence of a utility function considerably complicates the analysis.

The following theorem is the basic existence result:

Theorem 4.1  The value function is C2, V(0)=0, lim V(y)=U and satisfies
yw
Max {1/2v V' (y) + m V(y) - 8§ V(y) + 6 U(m,v)} = 0 (41)
(m,v)eA

Furthermore, V is the unique solution of (4.1) in the class of functions which are
twice continuously differentiable on [0,0) and gqual to the endpoints 0 and U.
Finally, there is a continuous function p , such that the stationary Markov



strategy formed by this function is an optimal policy.

Remark 1: Theorem 4.1 is similar to a result proved in Krylov (1981, Theorem 1.4.5).
There are two main differences between the results. Firstly, Krylov’s result is valid
when the state space is a compact interval (and indeed it does not seem that the proof
would extend to unbounded domains). Secondly the result proved there requires the
immediate payoff function U to satisfy a Lipschitz condition (and this rules out
standard boundary conditions like Inada conditions). On the other hand, in Krylov’s
formulation, state dependence in the payoffs is admissible and he does not impose the
condition of strict concavity on the payoff function. Furthermore, he allows a more
general discounting structure including the undiscounted case, 6 = 0. Note also that
the results from the portfolio allocation literature (for example, Karatzas—Shreve (1987))
cannot be employed for two reasons: it is critical for those results that there be a
risk—free asset and in that problem, given any consumption, the mean and variance
necessarily have a linear relationship to each other.

Remark 2: The result is also valid when the agent stops if he either goes bankrupt or
reaches a high level of wealth, i.e. Theorem 4.1 covers the two—sided absorption
problem as well. The characterization results that follow can also be derived for this
case by employing similar techniques as those used here. Hence, I do not discuss the
two—sided absorption problem in this paper.

I turn now to the characterization results:

Theorem 4.2 i)*The value function is strictly increasing in y.

ii) Suppose that 7 is an optimal strategy. Then,
*

V/(y) = v(0) BT (V) (4.2)
where, .
T (y) = min {t: Y(t) = 0 | Y(0) = y, 7"}

iii) The value function is strictly concave. Further V'~ is strictly increasing in y.
Remark: The characterization (4.2), which will be seen to be extremely useful, is true
even when the immediate payoff function is not concave; in particular, the strict

concavity and monotonicity of the value function require neither monotonicity nor
concavity of the utility function.

*
Consider the stationary Markov optimal strategy # . The function defining this



strategy is given by the (unique) maximizer of the Bellman equation (4.1). From that
equation it immediately follows that as the agent becomes wealthier, the change in his
optimal mean—variance choice is (partly) determined by the behavior of the local
risk—aversion index, V’’, and the marginal valuation, V’, in y. But evidently knowing
the behavior of these two indices alone, which knowledge can be inferred from Theorem
4.2, is not sufficient; from (A.20) the reader can see that what we need to know is
how V’/ [V, the coefficient of relative risk aversion, changes in y. Although, in
general, this information is impossible to deduce, I now present results which develop
alternative and increasingly more detailed characterizations of #* under some further
restrictions.

Proposition 4.3 Suppose y’ > y. Let ﬂ*(y) = m,v and ﬂ*(y') = m’,v/. Then, it
must be the case that either or both of the following monotonicity relations are
satisfied: i) v/ > v, ii)) m’ < m and m’/v’ < m/v. In words, either the optimal
variance increases with wealth or the mean and mean-variance ratios decrease. In
particular, if all actions have the same variance, then the optimal mean decreases with
wealth.

Remark: Proposition 4.3 holds without any assumptions whatsoever on U. It is my
conjecture that under monotonicity and strict concavity restrictions on U, both i) and
ii) will hold for an optimal policy; I have however been able to prove this only under
some further conditions. I do have counterexamples to show that, without concavity
assumptions, only i) or ii) but not both need hold (see Section 6).

G* is said to be an interior optimal policy if F*(y) € int A, for all ye R "
Suppose that U is differentiable and define H_: A — R as H(m,v) = U(m,v) -

vU,(m,v) — mU,(m,v).

Proposition 4.4. Suppose f* is interior. Then, y’ > y implies that
H(m’,v’) > H(m,v) (4.3)

Further, the optimal policy #* is a one to one function.

(4.3) establishes that in general the order of usage of optimal controls is nothing
as straightforward as the mean-variance ratio or some other such simple index (unlike
the pure survival problem). The utility function is said to be separable if there exist
functions ¢(m) and ¢(v) such that



U(m, v) = ¢(m) - ¢(v).

Proposition 4.5 Suppose that f* is interior and U is separable. Then, y’ >y
implies that m” < m, v > v. Consequently, if the utility function is decreasing in m
and increasing in v, then U(m’,v’) > U(m,v). In an optimal policy at low wealth
levels, the decision-maker picks lower utility actions which have however larger means
and smaller variances.

If the feasible set A has more structure, one can even dispose of the interiority
assumption. We say that A is a rectangle if A = [m, m] X [v, v, 0 < ¥ < V.

Proposition 4.6 Suppose that A is a rectangle and U is separable. Then, y’ >y
implies m” < m, v/ > v, (and under monotonicity assumptions), U(m’,v’) > U(m,v).

5. A Comparative Analysis of Expected Utility and Survival Maximization

In this section I present some results on the comparative survival properties of
expected utility and survival maximizing agents. I will contrast the probability of
failure under the optimal policies implied by each of those criteria; from Theorem 3.1
we know that this probability is strictly positive for both decision—makers. Note that
since I consider a discounted problem, the appropriate index is Ee_éT; (1 - Fe 0T

converges to the survival probability as & | 0).

It will be instructive to begin with a discussion of the comparative survival
properties of myopic utility maximization; a myopic utility maximizer picks the

constant control (m,v) where U(m,v) = U = max_  U(m,v). Denote A(m,v) as X

(and recall that X < )). Define the relative survivability of a myopic agent as

R(y) =
? Ee“‘ST(Y)

the ratio of expected discounted times to failure, from initial wealth y, if the decision
rules are respectively those of a myopic maximizer and a survival maximizer.

Proposition 5.1 The relative survivability of a myopic maximizer is given by

R(y) = o (5.1)
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Relative survivability of a myopic maximizer is a decreasing convex function with
R(0) = 1 and ]jmy_mR(y) = 0.

I turn now to comparing expected utility maximization against survival
maximization. Since expected utility maximization does not have a simple
representation for its optimal policy, the estimate here is going to be less precise. Let
p be the relative survivability of an expected utility maximizer

Ee—ﬁ'i‘ (yv)
p(y) = Ee_gT_*_(y)

*
where T (y) is the (random) time to failure under the optimal policy of an expected
6T
)

?

— —T* — _
utility maximizer if initial wealth is y. Since U(1 - E¢°T ) > V(y) 2 U(1 - Ee

§T* , - 6T (F-))

it follows that Ee < Ee and hence p(y) > e Y. Additionally, I can show:

Proposition 5.2 a) The relative survivability of expected utility maximization is a
ratio of two convex functions which satisfies

v, -1
1>p(y) 2 1 + 5o 0T(¥) ] (5.2)

where ¢ = _IT/fI -1

b) Survival and expected utility maximization are perfectly congruent if and only if U
= U. Further, p(0) = 1 and, if survival and expected utility maximization are not
perfectly congruent, limy_’mp(y) = 0.

6. Two Examples and An Economic Application

In this section I first present two simple computable examples of expected utility
maximization. The examples show that a variety of policies are consistent with
optimality. Since computable examples are hard to come by when controls have direct
payoffs, the examples will have an artificial flavor; strong resrictions will be placed on
the payoff function U and feasible set A to facilitate computation. In particular, the
convexity assumptions which were used to prove Theorem 4.1 will not be satisfied by
these examples (and that does not create problems because the verification result, that
a solution of (4.1) and an associated stationary Markov policy are in fact optimal, is
true even without such convexity restrictions).
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Example 6.1: U(m,yy) = m” vo, 20 + y€ (0,1). A= {(myv):v= m2, m>b>0}.

The solution I will check for is V(y) = k(y+b)* and Ay) = (y+b)/c, (y+b/c)2,
where k > 0 and ¢ > 0 and a € (0,1) are choice variables whereas b > 0 is an
exogeneous constraint defined by the set of controls A. Moreover, the candidate policy
is feasible if ¢ < 1. There are two conditions to verify: 1/28,(y)V’’(y) + B0V (y)

- 6V(y) + 6U(A(y)) = maxy, o {1/2vV’/(y) + mV‘(y) - 6V(y) + 6U(m,v)} = 0. It

is straightforward to check that the first equation implies that a = 20 + < and further
that k = 26c2_a[a(1—a) + 26c% - 20c]. The second equation implies that k = 627
1-o- c]_l. It is a somewhat tedious exercise in algebra to then show that these
last two equations have positive solutions for all large 6 (in fact for § > a[2(1—a)]_1)°
Note, furthermore, that a positive solution for k implies that ¢ < 1 — a < 1.

In this example, the relative risk-aversion index, —V’//V’, decreases in y.
Hence, in the optimal solution, the lower the wealth level the more conservative the
agent’s choice; the mean increases (and consequently the variance increases) as y
increases— although the mean—variance ratio decreases at the same time.

Example 6.2: U(m,yv) = |m|” va, 20 + v € (0,1). A= {(m,v): v=m2, m<-b<0}

By a procedure identical to that of the previous example it is possible to show
that V(y) = k(y+b)® and A(y) = ~(y+b)/c, (y+b/c)2 for k > 0, 1> ¢> 0 and a €
(0,1). So in this example, the mean decreases while the variance and the

mean—variance increase in y; the intuition is similar to that given above.!

Remark: In these examples, the feasible control set is not compact. However, it follows
from a theorem in Karatzas and Shreve (1987, Proposition 2.13, p.291) that there are
diffusions consistent with each of the exhibited strategies. A standard argument, but in
two steps, then shows that V is an upper bound for the returns to arbitrary strategies,
and that this bound is attained by . The first step is an argument for the truncated
problem on state space [0,k] and then, in the second step, let k-w.

I turn now to a brief discussion of two economic applications of the current
analysis — the optimal consumption/savings problem of an agent subject to stochastic
labor income and principal-agent models.

The consumption—savings problem (see, for example Yaari (1976), Schechtman
(1976) and for a more recent treatment, Deaton (1991)) investigates the nature of the
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optimal consumption policy for an agent subject to uncertain income. The recent
literature has emphasized limited borrowing opportunities and indeed has focussed on
the case where the agent is completely unable to borrow (although he can lend). One
insight of this literature is that in the presence of borrowing constraints, an agent will
use his wealth as a buffer and smooth consumption by accumulating wealth; in the
limit as the discount rate and interest rate go to zero, we get the permanent income
hypothesis, that an agent will consume exactly his mean income every period, if he can
(see Schechtman (1976) and also Deaton (1991)).

An important assumption in this literature is that wealth is always invested in a
safe asset and labor income is strictly positive in all states of the world, i.e. there is
no bankruptcy. The current analysis can be used to determine the consequences of
incorporating bankruptcy in the above problem (in addition to the zero borrowing
condition). In particular it can be shown that, unlike the standard model, as the
discount rate goes to zero, the optimal consumption at all wealth levels goes to zero as
well. This result is proved in the appendix and should be contrasted with the
permanent income hypothesis result discussed above.

One other economic application may be briefly mentioned. In the principal-agent
literature, incentive schemes which require an agent to maintain output above a given
performance index or else face dismissal have been widely studied. The agent’s best
response problem when faced with such a dismissal scheme is an example of the control
problem studied in this paper (see Dutta—Radner (1991) for details).



13

Appendix
Proofs of Section 3

Suppose we have a C2 function W which satisfies the Bellman equation
max_ . {1/2 v W ' (y) + m W/ (y)} - 6W(y) + 6 =10 (A.0)
Standard arguments by way of Ito’s lemma then shows that W 2 Vo Take the

constant control (rrl,r;) and consider the function W = [l—e‘)‘y].A From the definition of
)\ it is easy to show that this function satisfies 1/2 v W’/ + m W’ W + 6 = 0.
A second usage of Ito’s lemma then shows that W is in fact the expected discounted
time to failure for a decision—maker using the constant control (m,v); W(y) = 1 -

e—‘ST(Y). In particular, W < V,, Further, using the property that A = max AM(m,v),

it is possible to show that (A.0) is satisfied by this function. The theorem follows.g

Proofs of Section 4

It is simpler for a logical development of the proofs of Theorems 4.1 and 4.2 to
actually prove them in approximately the reverse order More precisely, I will first
prove that the value function is increasing and, if C satisfies (4.2). This will be used
to prove Theorem 4.1 after which I will conclude by proving Theorem 4.2iii).

Proof of Theorem 4.2 i)  Consider two initial states y and y’ with y* > y. A
candidate policy from y’ is: use the constant control that generates U (say a) till the
first time the state hits y. Thereafter, use 7 where 7 is e-optimal from y. Then,

V(y) 2 T (1 - B h) 4 BT (V(y) - o) (A1)
where T = min {t: Y{t) =y | Y(0) =y, 7 = a}
Since € is arbitrary and U > V(y), it follows from (A.1) that the value function

is monotonically increasing (it will in fact be seen to be strictly monotonic from the

strict concavity property that we will shortly prove). -

Proof of (4.2) when the value function is Cl and there is an optimal strategy: Let 7
be any strategy and fix © > 0. Take any sample path Y[0,0) and let the ©-translate
of Y[0,0) be the sample path Z[0,0) s.t. Z(s) = Y(s)-©, 0 < s. Define the O-translate
of the strategy , call it «(®), as follows: for every sample path take its ©-translate.
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If at time t, Z[0,0) has not yet hit zero, i.e. Y(s)-© > 0, for all 0 < s < t, then take
the same action as taken under 7 at Z[0,0). If Y(s)-© = 0, for some 0 < s < t, then
take any action; suppose (m,v). It is easy to see that if 7 is Z(t) measurable then so
is 7(©) and furthermore, there is a solution to (2.1) which is $(t)- measurable.

Fix an initial state y > 0 and let 7r be an optimal policy from y. Conmder an
alternative starting state y + © and take 7 (9) as the policy. Then, defining T (y)
as the first time to hit 0, with initial state y and 7r as policy, we have,

V(y + 0) - V(y) » BT W) (o) (A2)
It immediately follows that
V/(y) > V/(0) B¢ T () (A.3)

Consider instead the starting state y — ©. Consider now the (—©)-translate of 7*, as
a policy for this initial state. By arguments as above we have

V(y) - V(y - 0) < BT (10) y(e), (A.4)
where Ty, ©) = min {t : Y(t) = © | Y(0) = y, 7}
From (A.4) it follows that

V(y) < V(0) B¢ 0T () (43)

(8 5) follows by the dominated convergence theorem, utilizing the fact that T (y,@)) T
T (y) a.e. From (A.4) and (A.5), (4.2) follows. Notice that the strict concavity of
the value function is an immediate consequence of (4.2). U

Proof of Theorem 4.1: In proving Theorem 4.1 the following notation will be useful:

2m 20 26
F(b¢) = max { p- 2y U(m,v)} (A.6)
1 (m,v)eA v v v

For a stationary Markov policy G:R L A and a C2[O,m) function w, define

Lgw(y) = W) + Bw () - 8 () (A7)
where A(y) = B,(y).05(y) = m,v
= lVW” mw’ — O0W m,v .
() = | max ) + me(s) = ) + 0 n} (a8

The proof of Theorem 4.1 will be in two steps.



15

Step 1. Consider the k—step truncated optimization problem, in which the agent
controls the diffusion process starting at some y € (0, k), where k > 0. The process is
absorbed the first time it hits either 0 or k. Let Vk denote the value function for this

problem. Continue to assume that returns after absorption are normalized to zero,
irrespective of whether the absorption was at y = 0 or y = k.

Lemma A.1 i) Vk is C2 and is the unique solution to the constrained Bellman equation

FIVI() = max VD) + Vi) - ) + U(mv)} = 0, yelo)  (A9)

Vk(O) = Vk(k) =0 (A.10)
ii) There is M < m, independent of k, such that
Vil + Vil + Vil < M (A.11)

where [|-|| denotes the sup-norm.

Step 2. I shall then let k | », and argue that limits are well-defined and indeed
define the value function of the k = « problem, i.e. prove

Lemma A.2 There is a C° function \}, such that (V, Vi) - ({/, {”)
Moreover, F[V](y) = 0, for all ye [0, s). Further V = V.

Proof of Lemma A.1: The proof proceeds by way of several auxiliary lemmas. The
underlying idea is the Bellman—-Howard improvement routine. Parts of the proof are
adapted from Krylov (1980, Theorem 1.4.5).

Lemma A.3 Suppose f : [0,k] » A is a continuous function. Then
i)  there is a unique ¢ function w 8 such that

Lawg(y) + 6U(A)) = 0, yel0, K] (A.12)
Wﬁ(O) = Wﬂ(k) =0

ii) there is M; < m, such that
gl + wgll + Iyl < (A13

Proof: This result is proved as Lemma 1.4.6 in Krylov (1980). g

The next result is standard and shows that the function w 8 given by Lemma 4.3
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is in fact the lifetime returns from using § as a stationary Markov policy.
Lemma A.4 Consider the stationary Markovian policy in which wt(Y[O,m)) =

B(Y(t)) where f is continuous. Let

14y) = B 61}; 8 u(p(Y(s))) ds
where T= min {t : Y(t) = 0 or k | Y(0) =y, 6}
Then, Iﬂ is the unique C2 function that solves L ﬂIﬂ + 8U(B)= 0, ye[0, k]|, and further
satisfies Iﬁ(O) = Iﬂ(k) = 0.

Proof: By Lemma A.3, there is a unique c? solution of (A.12). Since g is
continuous, from Theorem 5.2 of Skorohod (1982), the stochastic differential equation
(2.1) has a solution [Y(t): t > 0], unique in probability law. By an application of Ito’s
lemma to e—étwﬁ(Y(t)) we get

TAt
wly) = By {8 [ UY6)) 8 a5 + AT w (v(Tany)

Letting t -+ », TAt - T, and the dominated convergence theorem yields
T
— 0
Wﬂ()’) = Eﬂ 6] e ° U(B(Y(s))) ds |
0
Let ﬂO be an arbitrary continuous function, and denote its associated lifetime

returns w,. Consider,

Fwgl ) = max {fvwig(s) + mw(s) = dngla) + 0(mn)} (413

)

By the strict concavity of the utility function and the convexity of A, the argmax
in (A.13) is single-valued. By the Maximum Theorem (Berge (1963), p.116), the
function of maximizers is in fact a continuous function. Denote this function ﬂl and

the associated returns Wy In this manner, we can construct a sequence of 02

functions w and stationary policy functions ﬁn, n > 0 such that
Lw, + 5Un =0« Ln+1Wn + 6'Un+1

(where L w = Lﬂn, (URERY(N! etc.)

Lemma A.5 For all n, ye[0, k], w_ +1(y) > w_(y)
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Proof: Let the continuous function hn > 0 be defined by

Ln—i—l(Wn+1 - wy) + oy =0

Then, an application of Ito’s lemma to the function Woni1 ~ W yields

T
D g

Wn+1(y) ~w(y)=ES6 {) e h(Y(s)) ds 2 0 -

To continue the proof of Lemma A.l, let us now define w = lim w_ . This limit
- m

is well-defined by Lemma A.5, for all ye [0,k]. Further w/ is uniformly bounded by
(A.13). Since

y
wo(y) - w(z) = ,;' w'(x) dx (A.14)
it follows that w is in fact an equicontinuous family. Hence, w is a continuous

function and w - w uniformly on any compact subset of R n Similarly,

y
wi(y) - wi(z) = | wy’(x) dx

and hence w; is also an equicontinuous (and uniformly bounded) family. By the
Arzela—Ascoli theorem, there is a subsequence (retain notation) such that w_ is

convergent on it, to ¢ say. Taking limits, along this subsequence,
y

w(y) — w(z) = | ¢(x) dx (A.15)
Z
I further used the dominated convergence theorem in arriving at (A.15).
Moreover, (A.15) establishes that w'(y) = ¢(y). Hence, along the full sequence, w; -

w’, and of course w is ¢l 1 have hence proved

Lemma A.6 LA where w is a C1 function. Further, W, oW

It remains to show that in fact w is C2 and further that F[v~v] = 0. This last
step of the proof of Lemma A.1 is identical to the proof of the analogous step in
Krylov (1981) Theorem 1.4.5 and hence is not reproduced here. Clearly, w(0)=w(k)=0.

A standard application of Ito’s lemma now shows that v~v > Vk' Further, let g

be argmax F[w] (and hence it is a continuous function). Then, a second application of
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Ito’s lemma to the diffusion process generated by the stationary policy f, establishes
that I 8 > w . The first half of Lemma A.1 is completely proved. I now turn to the

proof of Lemma A.1 ii).

Lemma A.7 Let ﬂk denote the stationary Markovian optimal policy for the kth

truncated problem. Define
0 .
0y) = min {t > 0: Y(t) = 0 |Y(0) = ¥, B}

Ti(y) = min {t 2 0: Y(t) = k [Y(0) =y, B}

T, (y) = min (T)(), TEG)

0 k
, —6T 0 , —0T k ,
Vi) = By ¢ ) p(rl = T )vi(0) + Tk (T} = T V()] (A.16)
Proof: The proof of Lemma A.7 is very similar to the proof of Theorem 4.2 ii),
and hence I omit it. -

It is immediate from (A.16) that [|V{(y)|| ¢ max (v, v I)- To
establish an upper bound on ||V1’(|| it clearly suffices to establish such a bound on

[V{(0)|| and [Vi(k)||. I now show that such a bound exists and is, in fact,

~

independent of k. Note that W = T [1—e—)‘y] > Vi (y) for all y and k, and of course
W(0) = V;(0) = 0. Hence,
Vi(0) < W(0) = A
Of course, by definition Vf((O) > 0. It is easy to see that a symmetric set of
arguments could be repeated for Vy(k).
Further ||V, || < U. Finally note that

2mk

Vi) = - T Vi(y) + 5— Vi(v) - U(mk, i) (A.17)

Clearly, the uniform upper bounds on HVI’{“, [Vill and [|U], imply a uniform

upper bound independent of k on IIVI’{’II Hence, Lemma A.1 is fully proved.U

I now turn to the second step in the proof of Theorem 4.1. The objective here
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is to use the properties of the k—th truncation value function to establish analogous
properties for the value function V. First of all, clearly Vk is a monotone sequence of

functions, and hence there is \~/' such that Vk il \~/, as k -~ . By an argument

identical to that in Lemma A.6, we get
Lemma A.8 \~/' is a C1 function. Moreover, VII( - \~/', as k - o

Note that F[V,](y)=0 is equivalent to F (Vi 5Vy) + V,77=0. Hence,

y
Vi) - Vi(0) + (j) F, (Vi (x), Vi(x)) dx = 0 (A.18)

But Vk’(y) converges to {f’(y) for all y and by the maximum theorem

Fl(Vk',Vk) converges to Fl(\}’,\-f). From (A.18) it then follows that

- - y - -
V(y) - V/(0) + é F,(V(x), V(x)) dx = 0 (A.19)

From the fundamental theorem of calculus, the maximum theorem and (A.19) it
follows that V has a continuous second derivative V/# = -F,(V,V’). Further F[V] =

0. A standard application of Ito’s lemma then establishes that V = V. Further given
the strict concavity of the utility function, there is a unique element to argmax F[V]
and this selection, by the maximum theorem, is a continuous function. A further use
of Tto’s lemma establishes that this selection in fact achieves the returns V, i.e. is
optimal. The proof of Lemma A.2 and Theorem 4.1 is complete. O

From the strict concavity and monotonicity of V, V// + Fl(V’,V) = 0 implies
that V’/’ increases with y. The proof of Theorem 4.2 is complete. -
Proof of Proposition 4.3: Suppose y’ > y. From the fact that (m,v) = argmax F[V](y)
and (m',v’) = argmax F[V](y’) it follows that

(v-v)V(y) - V) + (m-m)(V(y) - V() 2 0 (A.20)

Further F[V] = 0 is equivalent to V' + F;(V*,V) = 0 and there is a common
argmax for F and Fl' It then follows that

(m/v - m’ /v )(V/(y) = V'(y)) = 8(1/v = 1/v)(V(y) - V(3")) 2 0 (A.21)

From (A.20), (A.21) and the properties of V established in Theorem 4.2, the
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proposition follows.g

Proof of Proposition 4.4: First-order conditions yield

1/2 V' (y) = — 6Uy(m,v) (A.21)

V' (y) = — 6Uy(m,v) (A.22)
Substituting (A.21) — (A.22) back into F[V] = 0, yields

H(m,v) = V(y)
From the strict monotonicity of the value function it follows that the stationary
Markov optimal policy is in fact a one to one function. O
Proof of Proposition 4.5: Follows from (A.21), (A.22) and the fact the utility
function is assumed to decrease in m and increase in v. -
Proof of Proposition 4.6: Since A = [m, m] x [v,v] and U is separable, F[V](y)

can be re—written as
(mrflair{)eA {%— vV’ (y) + mV-(y) + 5U(m,v)} = max {mV'(y) + 6¢(m)} +
max {3V (9) - 840 = V()

Let Wy(y) = max {V'(y) + 8&m)}. From the strict concavity of V it
immediately follows that m’ < m. For similar reasons v/ > v and hence U(m,v) <
U(m’,v’).H
Proofs of Section 5:

Proof of Proposition 5.1: By the arguments used in proving Theorem 3.1 it can

be shown that 1 — Be 9T(Y) for the constant control (m,v) is given by 1 — &N The
proposition follows.g

_AT*
Proof of Proposition 5.2: That Ee 0T*(y)

fact that V-’ is increasing in the initial weallth. From the definitions it follows that

is convex follows from (4.2) and the

Up-ee 0]y v - Ee“ﬁ(Y)] (A.23)

From (A.23) it follows that
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U
U

From (A.24) the first part of the proposition follows. If U = T it is clear that (m,v)
is an optimal policy, as can be verified from the optimality equation. From the bound

-1> Ee_a'i‘(Y) [1/p - 1] (8.24)

(5.2), the necessity of U = U follows whenever (m,v) is an optimal solution for the
expected utility maximization problem. Finally, if U # U, then from Theorem 4.1 and
Proposition 4.3 it follows that controls other than (m,v) are used for all sufficiently

high wealth levels. By a straightforward amendment of the arguments used in proving

5’1“*

Proposition 5.1 it can be shown that Ee goes to zero more slowly than Ee_ﬁT.l

Proof of the claim in Section 6:

To fix ideas, suppose that the agent receives uncertain income, with mean
every period. The agent’s choice of a consumption rate c, ¢ € [0,c], determines the
average increment of wealth, m = p — c. The agent goes bankrupt at wealth level
zero; in this formulation, there is no choice over the variance of incremental wealth.

I show now that when 6|0 and the variance is fixed, the solution of (P1) tends
to the constant use of the control with the highest mean. Note that (4.1) implies that

the optimality equation tends to max ){1/2 vV’/ + mV’} = 0. It is easy to show

(m,v

(using the techniques used in proving Theorem 3.1) that the unique solution to this

differential equation is V(y) = 1 - e_(2m/ V)Y where @ = max m, (m,v) € A.g
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Footnotes

!Bankruptcy will be defined by the condition that net assets are non—positive. In
practice, an agent has some discretion on when to declare bankruptcy. I ignore this
possibility in the discussion that follows.

?Indeed, Robinson (1962), in discussing theories of economic growth, notes critically that
"an equilibrium position” which contains consumption of exhaustible resources or
starvation of some group is in course of upsetting itself from within, and chance events
may upset it from without."

3Note that several recent papers in economics have studied the pure survival problem.
These include Majumdar—Radner (1990, 1991) and Mitra—Roy (1990). A literature that
follows the Dubins—Savage gambling problem includes Heath et.al. (1987), Orey et.al.
(1987), Pestien—Sudderth (1985) and Sudderth-Weerasinghe (1989).

“This result requires either of two additional conditions (see Propositions 4.5 and 4.6).

5The reason for adopting a continuous time formulation rather than one in discrete
time is that if time is discrete an agent can go bankrupt with any non-positive
terminal wealth and there is no obvious way in which to assign termination values to
different levels of terminal wealth; different assignments will clearly change the optimal
choices an agent faced with possible bankruptcy will make. To avoid these
"overshooting at the bankruptcy barrier" problems, I work with a continuous time
model in which sample paths are continuous.

6An alternative formulation is one in which the incremental returns depend on the

action as well as the level of wealth; say dW(t) =m(t)W(t)dt + W/ 2(t)W(t)dB(t). As
is well-known this can be reduced to (2.1) by dividing through by W(t) in the above
equation and defining InW = Y.

"My definition of a strategy is what Krylov (1981) calls a natural strategy. A strategy
can be defined more generally as a stochastic process progressively measurable with
respect to §(t) (see, for example, Krylov (p.23) or Karatzas—Shreve (p.375)). All of the
results that follow are valid under this broader definition.

8The undiscounted criteria that have been examined include: maximization of expected
time to failure (Heath et. al.(1987)); in a problem with absorption either at zero or b
> 0, maximization of the probability that absorption is in fact at b (Pestien—Sudderth
(1985) and in a finite horizon model, the maximization of the probability that by the
terminal date the process has reached b (Sudderth-Weerasinghe (1989)). Orey et. al.

(1987) have looked at a discounted problem which is the converse of the pure survival
problem. In their problem the decision-maker would like to get to zero rapidly.

9A referee points out that the from the proof of Theorem 3.1 it is immediate that the
set of feasible controls A needs to be neither convex nor compact for the result to

hold. Inmstead, it suffices to know that there exists m,v such that A(m,v) = max
Mm,v). A second referee points out that the reasoning behind this result is similar to
that underlying Theorem 2.1 in Orey et.al.

0]n this example, it is straightforward to show that there are positive solutions, for
the constants k and c, of the Bellman equation (4.1) and its first—order condition. To
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ensure that the solution for ¢ is a fraction we need some restrictions; a sufficient
condition is that 20+v < 1/2 and 2§ > (4-26-7)(1-20-y).

UThis problem was first studied by Yaari (1976), subsequently by Schechtman (1976)
and more recently by a number of authors who have used this framework to study
macroeconomic consumption issues (for an authoratative treatment and a complete set
of references, see Deaton (1991)).



